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Totally Ordered Linear Space Structures and
Hahn-Banach Type Extension Theorem

Kazuo Iwata

Abstract

Let E be a real linear (resp. real linear topological) space. By applying 18)* (resp. [19),
Th. 3]), from the viewpoint of the totally ordered linear space structures™ of the product
linear space EXR, the author deals with the real Hahn-Banach extension theorem in some-
what general.

Introduction. By means of [18), Th. 4] (resp. [19), Th. 3}), in the
real case, we have been concerned with the Krein’s (resp. Krein-Rutman)
extension theorem in somewhat detail™™ from our new (for the author)
views. Under the circumstances, but also in the light of the literatures',
we are in a position to formulate the Hahn-Banach extension theorem' in
somewhat general (as one expected). In this article these results are given
as Theorems 1 and 2, the former for real linear spaces, the latter for real
linear topological spaces. KEspecially both are also provided with “if” and
“only if” parts.

Besides we supplementarily refer to [18), Lemma 3 (2)].

The author wishes to express his gratitude to Prof. S. Koshi (Hok-
kaido Univ.) for his valuable advice and inspection.

Preliminaries. Let E be a real linear (later, real linear topological)
space (#{0}), and let B be the real field. We first put some definitions.

DeriniTION 1. a) A subset K of E is called a pointed convex cone
if K+KcK and aKCK for all 0.

b) Let us agree upon the following. By a gauge function gq(or p) on
a pointed convex cone K in E is meant a subadditive positively homoge-
neous function on K.

DeriniTioN 2. The product linear space Ex R of linear spaces E and

* That was written under the direction of the Editors of Hokkido Math. Jour.
**  Tor this thought, the author received suggestions esp. from [10), p. 48 (p. ix)]. Subse-
quently he was benefited by [7),V. 12] and [14, § 16].
#%  For this matter, the author was benefited by [8), §8.3], [11), Sec. 2.6] and others. As
for the implications, our results are resp. equiv. to the real case of [15), Cor. 1 of (V,
5.4)] and the real case of [15), (V, 5.4) (Bauer-Namiocka)] exc. the trivial case (with ap-
ologies, the author adds “the real case of”). (Cf. [15), p. 227] and {19), Suppl. to Th. 3].)
T By these the author means [6), Th. 12.3], [13), chap. II, § 3, th. 1], [9), Th. 3.4] and others.
1t By this we here quote [14), §17, 3. (1) (Satz von HAHN-BANACH)].
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430 K. Iwata

R is their Cartesian product where vector addition and scalar multiplication
are performed coordinatewise. The topological product E,xE, of linear
topological spaces E;(i=1,2) is their product linear space with the product
topology.

In addition, for convenience, notations and terminology employed in
18) and 19) are available unless otherwise specified. Especially, e.g., (E, &)
signifies a totally ordered linear space structure (above-mentioned) of under-
lying linear space E with respect to a binary relation -#. Structures of
this kind have been discussed there in somewhat detail. The following
theorems are described in terms of these structures.

Statement of the results. Let us first introduce® our short approach
18) to the argument of the literatures®. Indebted to these literatures for
the manner, we now reach the following.

THEOREM 1. Let M be a linear subspace of E, f a linear form on
M. Let K be a pointed convex cone in E, and q a gauge function on K. A
necessary and sufficient condition that there exists a linear form F on E
extending f and satisfying F(y)<q(y) for all yeK is that there exists a
tols. (L, ) of L with the following properties :

(i) BYCL,R)";

Q1) (L, ®)" is absorbing at (0,1) for L;
where L is the product linear space E x R, and B;= {(, &): f(x) <&, xe M},
Co={ly,n): ¢w)<y, yeK} in L.

Proor. Under the hypothesis, in L, C, proves to be a convex cone
without vertex zero. And to this end, L can be endowed with a partially
ordered linear space structure (L, %) with positive cone C,. (Necessity) By
hypothesis, defining @(x, &)= — F(x)+&, @ is a positive linear form on (L, 2)
with @(0,1)=1. Hence (to be precise), take a t.ols. (L, %) such that
BUC,c(L, #)" by [18), Th. 4(1) and Lemma 1], then by [18), Lemmas 2,
3(1) and 4], (L, ®(#,)) must become a t.o.ls. as required. (Sufficiency)
Defining ¢(x, £) = — f{x)+§&, ¢ is a non-identically-zero linear form on M x
R>(0,1). Therefore by hypothesis, now with the aid of [18), Th. 4 (2)] (ci.
[19), p. 46, footnote]), we get a positive linear form @ on (L, %) extending
¢. Hence there exists a linear form F on E extending f and satisfying
O(x, &)=—F(x)+£ And hence ¢(y) <7 implies F(y)<# for all y€K, which
ensures the assertion.

As for some simple examples

ExampLE 1. Let E be R®. Take a pointed convex cone K={(a, §):

*  Such being the case, specifically, our # below will be of asymmetry.
#* They are as quoted before; see footnote .
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a>0, or a=0 and B>0} in E. Define ¢ on K to mean gla, fl=a if a>0
and ¢(0, B)=8 if =0, and g is a gauge function on K. With this

(1) let M be the a-axis and define f on M by fla, 0)=a;

(2) let M be {(0,0)} and define f(0,0)=0;

(3) let M be the S-axis and define f on M by f(0, f)=5.

Then in case of (1) (resp. (2)), notwithstanding B/JC, is not absorbing
at b=1((0, 0), 1) (resp. at any point of M x R) for L, the sufficient condition
of Theorem 1 is met enough. While in case of (3), although f is majorized
by ¢ on MpK, f fails to have desired extension. That is why, choosing
the following four vectors &, ¢;=((1,0),2), ¢;=((1,2+1),2) in C, and a=
(—(0,p+1), —p) in B;, where P being arbitrary, there holds the equality
(Pb—c))+a+c;=0. Namely upon appealing to Theorem 1, none of (L, %)*
with B,UC,c (L, #)* can be absorbing at b for L.

ReEMARK 1. In Theorem 1, let in particular K = E (with gauge p) and
Slx)<p(x) for all zeM. Then it follows (resp.) that C, is, by itself, absorb-
ing at (0, 1) for L and that BUC, is, as above, positively independent in L.
Hence by [18), Lemma 1], the sufficient condition thereof is met enough.
This corresponds to the usual extension theorem for linear spaces. Moreover,
the “if” part of Theorem 1 essentially (and a fortiori) covers [9), Prob. 3 E].

Meanwhile, let P=(E, #)" be a maximal positive cone in E, which
is absorbing at #,€E. Let us take this opportunity to make mention [18),
Lemma 3 (2)] (this plays rather well in conjunction with Lemma 1 ibid.) in
connection with the Minkowski gauge p(x)=inf{a: a>0, xeP—au,} of
P—u,.

SUPPLEMENT ToO [18), LEMMA 3(2)]. At first, needless to say

(1) As usual, using p(x) (resp. in view of the ordered linear space (F,
%)), one can deduce this lemma also via the Hahn-Banach (resp. Krein’s)
extension theorem. But as for this lemma, its proof given in 18) is not only
self-contained but also simpler than the above.

Secondly this proof, in terms of the negaiive part f~ of feE* ie.,
f(@)=max{—f(x), 0} (x€E), now anew verifies

(2) An feE* required there with f(u)=1 is given by p in the sense
of f~=p, and vice versa. That is, f(x) must be equal to p(—x)—p(x) with
S (@)=p(x) for all zcE.

This is known by p(x)=0 (xeP), p(0)=0 and p(x)=inf{a: —x<aw,
(R =sup{f: 0<fue< —x(R)}=—f(x) (xz€—P).

Concerning (2), in fact the following will be verified.

(3) Let K be a convex cone in E which is not identical with E and is
absorbing at be E. Then g~ of g€ E* is the Minkowski gauge of K—0>b
iff g(b)=1 and {xcE: g(x)>0CKC{zeE: g(x)>0}.

Returning to the subject, next there holds the following, a topological

(215)



432 K. Iwata

version of Theorem 1. In this theorem we let R be equipped with the
usual topology. '

TuroreM 2. Let E be a linear topological space, and let M, f, K, ¢
be as in the statement of Theorem 1. A mnecessary and sufficient condition
that there exists a continuous linear form F on E extending f and satisfying
F(y) <qly) for all ye K is that there exists a t.ol.s. (L, ) with the fol-
lowing properties :

1) BYC,C(L, %)*;

) (L, R is a convex neighbourhood at (0,1) for L;

where L is the topological product Ex R and B, C, are same as in Theorem 1.

ProoF. Proceed as in the proof of Theorem 1, and check that @(z, &)
is continuous on L if and only if so is F(z) on E. And L now being a
linear topological space, to this end, we may consult the proof of [19), Th.
3]. This completes the proof of the theorem.

Notice that, similarly as pointed out in 19), our condition of (i) plus (i)
above is equivalent to that there exists a convex open subset O2(0,1) in
L such that BMYCVO is positively independent. Moreover, this time simple
computation gives the following. These simplify our condition of Theorem 2.

ReEMark 2. Let U be a convex 0-neighbourhood in E and put (hence-
forth) D=Ux {1}, B=(1/2U)x I where I={peR: |p—1|<1/2}. If BUC,YD
is positively independent the same is true for B;YC,UB.

Let us now observe some corollaries about Theorem 2. Corollaries 2
and 3 mentioned below are the usual extension theorems in the context of
linear topological spaces.

CorOLLARY 1. Let E, M and f be as in Theorem 2. Let K be a
linear subspace of E with MCK, g a gauge function on K with f(x)<q(x)
Jor all xe M. If the condition

(Py) there is a convex O-neighbourhood U in E not meeting {ye K:
q(y)=1}
is enjoyed, the sufficient condition of Theorem 2 is satisfied.

Proor. Let L, B; and C, be as in question. Taking the subset D=Ux
{1} of L, suppose that BMNCUD were now positively dependent in L. Then
referring to Rem. 1, there would exist both finite many respective vectors,

say, (z,,&)€B;, (ys 15) € Cy (1, 1)€ D and corresponding scalars a, >0, 8,0,
7:.>0 (or a,=0, 5,>0, 7,>0) such that

(*) Q(Z rtut) = Q(_Z arxr)_Q(Z ﬁsy.s)
>_f(z CE,,.ZC,.)‘—Q(Z 183?/.9)>—Z a5~ 2, ﬁsns:Z Ti=1,

(216)



Hahn-Banach Type Extension Theorem 433

which contradicts the hypothesis since };7,#,6 KnU. Hence by Rem. 2 and
by [18), Lemma 1], the proof is completed.

REMARrRK 3. The converse of this result is not always valid. That is,
(Py) is, under the remaining hypotheses, not always necessary for conclusion.
Counterexamples are easily observed (cf. e.g., Ex. 2 below). On the other
hand, the condition

) there is a convex O-neighbourhood U in E not meeting {xe M :

Slx)=1}
is rather necessary for this implication (for the proof, ¢f. Cor. 3 below),
but this now fails to be sufficient for it. These facts seem to illustrate the
significance of our criterion.

Easily (resp. As a matter of course) Corollary 1 yields the following
Corollary 2 (resp. the sufficiency part of Corocllary 3).

But of course, to be short, these corollaries are fully done by Theorem
2 itself. For reference, details are given as under.

COROLLARY 2%. Let E, M and f be as in Theorem 2. Let p be a gauge
Junction on E with f(x)<p(x) for all xe M. If the condition

(P.)  p is continuous at the origin
is enjoved, the sufficient condition of Theorem 2 is satisfied.

Proor. With the convex O-neighbourhood U= {yeE: p(y)<1}, a
priori, D=Ux {1}cC, {follows. (Alternatively, C,3(0, 1) is readily open in
L.) Hence, a fortiori, the assertion follows from Theorem 2.

CorOLLARY 3*. Let E,M and f be as in Theorem 2. A necessary
and sufficient condition that f can be extended to a continuous linear form
F on E is that (F) of Rem. 3 is satisfied. If the sufficiency of the con-
dition is met, there exists at least one F such that F(x)#1 for all xc U.

Proor. This is viewed as a special case of Theorem 2 (flx)=g(x)
(xeMnK) plus M=K). (Necessity) By Theorem 2, there are both t.ols.
(L, %) and convex 0-neighbourhcod U such that B, Ux {1/2}C(L, 2)* hold.
If fluy)=1 for some w,eMnU, there would follow (—u, —1/2), (u, 1/2)
€(L, #)", an obvious contradiction. (Sufficiency) Taking the convex subset
D=Ux {1} of L, suppose that BMJD were now positively dependent. Then
it would follow more simply than (*) that f(2] 7.u,)=—/f(2 a.2,)>— 2 a.&,
= 2. 7,=1, which is impossible. Sufficiency follows from this by Theorem
2. For the rest, if F' is identically-zero, there is nothing to prove. Other-
wise, indeed our extension F behaves as F{x)<1 for all xeU since (1/2 U)x
Ic(L, #)" and since U is open in E. Thus Corcllary 3 is proved.

* Cf. [14), §17, 3. (D)].
#  Cf. [17), p. 598].
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Incidentally, an examination of this proof directly gives

CoROLLARY 4. Let E, M, f and L, B; be as in Theorem 2. The condi-

tion (F) of Rem. 3 is mutually equivalent to that there exists a convex 0-
neighbourhood U in E such that B;,Y(Ux {1}) is positively independent in L.

As a triviality, needless to say

ExampLE 2. To extend an identically-zero linear form on M in the

sense of Corollary 3, we have at least U=E. And to do this in view of
Theorem 2, we have at least D=FEx {1}.

L
2)

3)
4)

10)
11)
12)
13)

14)
15)

16)
17)
18)

19)
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