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ASYMTOTIC STABILITY OF INDUCTION MOTOR* 

VIA SECOND乱1ETHODOF LIAPUNOV 

Yasuhiko Dote and Richard G. Hoft** 

Abstract 

A stability analysis of an ideal three phase squirrel cage induction motor is p巴rformedby呂pplyingth巴

second method of Liapunov to the nonlinear equations which d巴scribethe dynamic behavior of the ideal 

induction motor 

Ingen巴ral.previous stabili ty an呂lysesof the induction motor have been accomplished by linearizing about 

a steady state operating point. This has been th巴mostfeasi ble昌pproachbecause of the complexi ty of the 

nonlinear equations. lf the methods of Liapunov are applied to the nonlin巴arequations ¥lsually there is great 

computational difficulty. This paper describes呂 uniquetransformation resulting in a simplified system of 

equations to which the second method of Li丘punovis applicable. In the determination of the stability region， 

a simple method is present巴dusing the sp巴cificnature of the nonlineariti巴s;l.e. terms involving the product 

of the two state variables. The asymptotic stabili ty r巴gionwhich is obtained here is a region of stability in 

the large. This region is rnuch larger than the local region of stabili ty resulting from linearization about the 

steady state operating point 

In troduction 

The squirrel cage induction motor is of great practical interest because of its low cost 

and high reliability. But in the past it had the disadvantage that its speed was not easily 

adjustable. With the advent of the silion controlled rectifier， triac and related members of 

the thyristor family， it has become feasible to design variable frequency inverter fed induc 

tion motor drive systems. It is well known that the variable frequency induction motor itself 

becomes unstable at certain operating conditions even when supplied from an ideal three 

phase ac power source 2，3. Since the torque produced by the motor iら proportionalto the 

product of the winding current and air gap flux， the motor is represented by nonlinear 

differential equations. Previous stability analyses of the induction motor have been accomp 

lished by linearizing about a steady state operating point， but no attempt has been made to 

analyze directly the nor!linear system equations. In this paper Liapunov functions are used 

to find a simple method to predict the stabiiity region for an ideal three phase squirrel cage 

type induction motor. First a new state representation for a口 idealthree phase induction 

motor is devised， for which the second method of Liapunov is applicable. Then in the 

determinatio日ofasymptotic stability， with the aid of the theory of matrices and vectors and 

polar COOI戸dinates，a simple method is presented using the specific nature of the nonlinearities; 

*This res巴archwas supじortedby th巴 NationalSci巴nceFrJUndation on NSF Grant GK34970X 
**He is with the Electrical Engineerin耳Department，Uni v巴rsityof Missouri， Columbia， Mo. 65201， U.S.A 
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l.e.， terms involving the product of two state variables. The asymptotic stability region 

which is derived here yields conditions for stability in the large， not in the small. Thus， it 

provides us with much information on the transient stability of such machines subject to 

disturbances which can often occur during transient operation of thyristor controlled variable 

frequency induction motor drives 

System Equations 

In order to devise analytical methods for studying the stability of an induction motor， a 

suitable mathematical model of this machine was developed. The general procedure was as 

follows: first， certan assumptions were made which were very nearly correct for practical 

machines; then， with the help of the d.q transformation of variables， the basic equations 

were developed1. This yields， 

Vml | 止_ V W 左主!2 W X12 
r1 + _1:'_ Xll - ....::..::_ Xll 一一一一一 11Zld 

飢Jb Wb Wb Wb 

。1_1:!:I ρXll _1!!_ X 12 1ιXMy 1h 2 一~ Xl1 r1十 X 12 1 1 Z 1 q 
Wb Wb Wb .-. Wb 

。l 点Mノ三O swx dLfノ竿b X22 一一 12 rz + ~- SW一一一 11Zld 
Wb • Wb Wb 

。I s-"':'.-X 12 bL>.lZ "vv X 22 r2十W ‘ムXZ41b25ωρX 22 

Wb • Wb Wb Wb 
11 Z2 q 

and 

2H 山一

三一一w2B一一+TL
二 Xdi1qi2d- i1di2q) 

ι4ノb LAノb

wherer 

Vm会 statorapplied voltage transformed to d.q coordinates 

h 会 statorreslstance 

r2会 rotorreslstance 

Xll 会 statorleakage reactance plus magnetizing reactance at w b 

X22 会 rotorleakage reactance plus magnetizing reactance at Wb 

X12会 magnetizingreactance at w b 

pムd一
一dt

s会 slip

w会 electricalan只ularvelocity of applied stator voltage 

Wb会 therated maximum stator frequency 

W2会 rotorangular veloci ty 

Hム inertiaconstant 

Bムviscousfriction coefficient 

Tl会 fixedload torque 

l1d会 instantaneousstator direct .axis current 

11 q会 instantaneousstator quadrature.axls current 

12d会 instantaneousrotor direct.axis current 
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12q会 instantaneousrotor quadrature-axis current 

777 

For simplicity a special set of state variables is defined using the following linear transfor-

matlOn 

Yl X11 0 X12 0 。
Y2 。X11 0 X12 0 

Y3 ム X12 0 X22 0 。
Y4 。X12 0 X22 0 

Y5 。。。。l 

Zld 

ZlQ 

Z2d 

Z2q 

W2 

Wb 

( 3 ) 

Next the steady state operating point (YIO， Y20， Y30， Y40， Yso ) is transferred to the origin by 

defining new state variables. 

21会 Yl-YIO 

22会 Y2-Y20 

23会 Y3-Y30 

24会 Y.-Y40 

2s会 Ys-Y50 

Then， (1) and (2) become 

where 

ZニAz十三(乏)

Z会[ふれあふおf
ー今 ^ r 1 T 
Z 盆 1Zl Z2 Z3 Z4 Z51 

A会Wb

γ'lBγ 

W 

Wb 

-γ2B明

W 

Wb 

γlBγ 

。
rlBm 。
。 -rlBm 

r件 、(去一釣0)。 一γ2B視 -l=--Y50 ) r2Bs 
¥ι4ノb / 

MBmY40 -MBmY30 -MBmY20 MBmYIO 

g(乏)会仇[0。-Z4Z5 

1 
M 会 2Hwb

Z3Z5 

B 会 X11
s = Xr2-X

11
X22 

B 会
X22

r = Xr2-X11X22 

B閉会

一

X12
間

Xt2-XllX22

MBm(Z山 -Z2Z3)F

。
。

-y40 

Y30 

MB  

( 4 ) 

( 5 ) 

( 6 ) 

( 7 ) 

( 8 ) 

The resulting system equation (4) is a nonlinear fifth order autonomous differential equation. 
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Stability Analysis 

On the basis of Liapunov's second method， the stability of systems with nonlinear terms 

involving the product of two state variables is investigated. 

Consider (4) 

↓

o
 

一一

↓
z
δ
 

↓
g
↓
g
 

+
十

↓
z
↓
O
 

A

A

 

--一一

づ
Z

づ
Z

Next choose a positive definite diagonal matrix Q where 

V(，z)= -z  T Qz 

and then solve the matrix equation 

( 9 ) 

ATR+RAニ -Q (10 ) 

for the matrix R ， where also 

V(Z)=ZT Rz )
 

市上
旬

1
ム(

 
If R is positive definite then the lineari2ed system is asymptotically stable. This V.function 

also may be used to determine the instability of the system. If R is not a positive definite 

matrix nor a positive semi.definite matrix， the origin of the system is unstable. When the 

system is unstable near the origin， it is of no practical value and thus it is not necessary to 

investigate stability elsewhere. 

Using the V funcution of (11) we can now determine V(z) for the nonlinear systems as . 

follows 

V(z)= -z TQZ十2zTR正(z)

Consider the last terms of (12) 

(12) 

2;T RgC;山2わ)二2

O 

-Z4Z5 

Z3Z5 

[MBm(ZIZ4-Z2Z3) 

二一2X1Z4Z5十2X2Z3Z5+2X3Z1Z4-2X3Z2Z3 (13) 

where 

XJWb会 r132，十 r2322十 r3323 + r 4324十 r5320

XzjWb会 r1421十 r2422十 r3423十 r44Z4 + r 5425 

X3/Wb会 MBm(r1521十 r2522十 r3523十九524十 r5525) (14) 

and rり arethe elements of the symmetric matrix R. 

Therefore the total derivative of the Liapunov functio!1 (12) may be expressed in the fol1o← 

wing general form : 
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n 

17(，z)= -Z TQZ' 十 2~ C悦 XiZjZk )
 

F
h
U
 

1
E
i
 

(
 

where the C ijk' S are constants 

Letムぃム2・・・， 65be the positive diagonal elements of the matrix Q. 

Then a simple V(z) can be derived due to the nature of the nonlinearities (terms involving the 

product of two state variables). 

-X3 

0 ム2 X3 
。。

ジ(z)=-zTl 0 X3 ム3
。-x21 z二 zTQ'Z (16) 

-X3 0 0 ム4 X1 

o 0 --X2 X1 ム5

For asymptotic stability， Q' must be positive or positive semi-definite. From Sylvester's 

Theorem the conditions for positive definiteness of thεmatrices Q' a-e 

す(z) 会ム lXr十ム 2X~十ム 5XI=z TLz :s;ム 5ムzムj (17) 

whereムiム)sthe smaller one ofムlム.andム2ム3. To determine the region of asymptotic 

stability， a constant K can be found such that the surface 

V(z) =K lies entirely within the region where 

V(z) is negative or negative semi-definite; i. e. 

l乙(ぶk企 5ムzムj.Both V(z) and Tり(z)have quadratic forms. R is a positive definite 

matrix， L is a positive semi-definite matrix for a stable system. Both are real symm→ 

etric matrices. V(Z>ニ K is a closed hypersurface and V r(Z) =ム5ムzムjSpaCelSan open 

hypersurface in five dimensions. Since 

λminllz 1!2:s; V(Z) = K:s; AmaxllZ 11
2 

where 

Ilzll会3 7
λmax会maximumeigenvalue of R 

λmln会minimumeigenvalue of R 

therefore 

長 112k長 (18) 

Also since 

17r(z )=ム56iムj A:naxlIZ 112 

where λmax会maximumeigenvalue of L 

Therefore 

日一山 (19 ) 

From (18) and (19) a sufficient condition for the V(z) = K surface to be entirely within the 
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VrCZ' )=ム 5ムzムj surface is 

or 

F記i 二 JE
K ム5ム;/'..jλmln

À~ax 

Therefore the system is asymptotically stable inside the hypersurface defined by 

VCz)二 zTRz=Kl

(20) 

(21) 

(22) 

The region defined by (22) may be much smaller than the largest possible region. Thus， 

more investigation is necessary to find a larger K. Consider polar coordinates 

ZlU=  Slnθ1 smBz smB3 cos8. 

Z2U= smB， sin82 sin83 sin8. 

Z3Uニ smθ，smB2 cosB3 

Z.u二 smB， cos 82 

Z5U= COSθ1 

where 
一一歩

ZiU会 componentof the vector Z~ on the ith axis form the 

ongm 

θz会 anglebetween ith axis and (d)th space where 

O三Qi壬三 π 

Ilzuト~=l
Thus a unit vector in a口ydirection can be generated by changing 8; 

(23) 

Let r be the length of the vector to the V r =ム5ムzムjsurface from the origin ; then the 

component of this vector along each axis is (r)(ziu)' From (17)， for a point on the V r surface 

Therefore 

一→ y ー→rZuLrzu二 /'..5ムzムJ

ム5ムzム1
y土佐 /τ才デ子ー二オ

Zu' LZu (24) 

when the V surface and V r surface are tangent at a point， then the distances to the two 

surfaces at this point must be equal. From (11) and (24)， K is then 

K = r2(zuT Rzu) (25) 

Next K is calulated for each generated unit vector using (25). The min印imumK， des臼igned

Kηm，川"
Thiβs region is the interior of the hypersurface def臼inedby 

V(z )=z T Rz = Kminim町u山um刀r

The approx氾lma抗tetangent poαm凶tsof two surfaces V(βz)and丸午何(2幻)are obta創inedby equating 

t廿h児edisはtancestωo the s叩urぱfa配ce白s. Exact tangent points in the vicinity of these approximate 
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points may be determined in the following way. If the two surfaces V(三)， and Vr(五)are 

tangent， then they have the same tangent plane and the same vector normal to this plane 

A vector normal to this plane at a point z;， is the gradient ofV(z)and Vr(z). Therefore 

マV(.z)I→ =q 仏(z)I→ (27) 
I Zp I Zp 

where q is a scalar， and 

Vr(z) I 二ム5ムzム3
l 一一歩 v 

I Zp 
(28) 

The solution of (27)and (28) gives the exact tangent point zt. 

Examples 

The theoretical results are verified numerically using the digital computer 

Two different machines are taken as examples. One is stable and the other is unstable. 

The per unit machine parameters are as follows 

Machine 1 (stable) Machine II (unstable) 

r1 0.036 0.025 

r2 0.0425 0.008 

Xll 2.853 4.1 

X22 2.784 4.1 

Xl2 2.74 4 

Vm 1.025 120/377 

可'11 377. 377. 

可J 377. 120. 

H 0.5 0.1 

B 0.02 O. 

T1 1.0 O. 

Computational results are given in the following sections 

Machine 1 

Steady State Operating Point: 

Y10 1. 8737E-02 

Y20 -9. 8525E-01 

Y30 -1. 4893E -01 

Y40 -9.2096E-01 

Y50 9.4978E-0l 
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Linearized System 

Aェ (377) 

0.2303E十o 0.1000E+01 0.2267E十00 0.0 ハUA
V
 

0.1000E十01-0. 2303E十00 0.0 0.2267E十00 0.0 

0.2676E十00 0.0 0.2786E十00 0.5022E-01 0.9210E十00

0.0 0.2676E十00-0.5022E-01 -0. 2786E+00 -0. 1489E+OO 

0.1597E-01 -0.2365E-02 -0. 1704E-0l -0.3073E十03-0. 5305E-04 

Matrix R for Q二 wb1in(l0): 

0.2794E+01 0.1055E-01 0.5821E十00-0.1008E十01-0.1056E+00l 

0.1055E-01 0.2329E十01 0.9978E十00 0.5502E十00 0.2640E+01 

R二 0.5821E十00 0.9978E+00 0.2298E十01-0. 1906E-01 -0. 4271E+00 

-0.1008E+01 0.5502E+00 -0開 1906E-01 0.2238E十01 0.6703E十00

0.1056E+00 0.2640E十01 -0. 4271E+00 0.6703E十00 0.1280E十03

Determinants of Principal Minors of R : 
0.2794E + 01 0.7905E + 01 0.1444E十 02 0.2550E十 02 0.3175E十 04

This shows R is positive definite 
Eigenvalue of R 

0.3061E十 01， 0.3749E + 01， O.l355E十 01， 0.333E + 01， 0.1281E十 01

Thereforeλmαx二 0.1281E十 03

λm，n二 0.1333E十 01

Eigenvalues of L /w b3 

0.0， 0.0， 0.8027E十 01，0.6413E十 01，0.3688E十 01

Therefore Amax士 (0.8027E十 01)(377)3 

Minimum K in (25) 

Kminimu間二 0.4341

Therefore， the region of asymptotic stability is the interior of the hypersurface defined by 

(26) 

V(z )=z T Rz二 0，4341

From (18) 

/0. 4341 .11--> 11 /0， 4341 
0.0582=1 竺去さ土く Ilzll~ 、当二号号=0.57、12R 、1.333 

The size of this region of asymptotic stability is much la明erthan the region calculated 

from (21) and (22) 

(377)(377)(377)(1，333) 
V(z )=z TRzニK3二 O.167 

1- (8.027) (377) 

The solution of (27) and (28) is substitutεd i口to(11) yielding 
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KニヰRる

=0.4358 

This K is very close to Kminimum 

Machine II 

Steady State Operating Point : 

YIO 0.1915E← 01 

Y20 -0. 9996E十00

Y30 0.1868E-01 

-O. 9753E + 00 

Y50 0.3180E+00 

Linearized System : 

A = (377) 

O.1265E十00 0.3183E十00 O.1234E十00

0.3183E+OO -0. 1265E-t-OO 0.0 

0.3851E十01

0.0 

0.6388E-01 

0.0 -0.4049E-01 

0.3951E-01 0.0 

0.1223E-02 -0. 6547E-01 

Matrix R for Q = w J in (10) : 

0.0 

0.1235E+00 

0.0 

-0.4049E-01 

0.1254E-02 

783 

0.0 

0.0 

0.9753Eート00

0.1868E-01 

0.0 

0.2173E十02-0. 1457E+02 -0. 1518E十02 0.1108E十02-0.1141E十03

-0.1457E+02 -0. 3464E十02 0.1879E+02 -0. 1935E+01 -0. 1384E+03 

R = I -0. 1518E十02 0.1819E十02-0. 3203E十02 0.1975E+02 -0. 1167E+01 

0.1l08E+02 -0. 1934E十02 0.1934E+02 0.1795E-t-02 0.5391E十01

-0. 1141E+03 -0. 1384E十03-0. 1167E+01 0.3414E+02 -0. 6865E+03 

Determinant of Principal Minors of R 

0.2173E + 02 0.5403E十 03 0.6656E十 04 0.96682十 05

0.6113E十 07

This shows R is indefinite， therefore the opelating point is unstable. 

ConcIusion 

The stability ana!ysis described in this paper uses the nonlinear differentiai equations for 

the induction motor. These equations are simplified by a unique transformation of variables 

An approach using Liapunov functions for systems with nonlinearities involving the products 

of pairs of state variables is then developed to determine regions of asymptotic stability. This 

provides information on the stability of such machines subject to disturbances from the 
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normal steady state operating point. Such disturbances often occur during transient operation 

of thyristor controlled variable frequency induction motor drives. It should be noted that if R 

is found to be indefinite or negative definite for a positive definite Q， then the reduced 

linearized system is unstable. Thus， the nonlinear system is not asymptotically stable. In the 

determination of the stability region， the simple method developed here is also applicable to 

these classes of nonlinear systems with nonlinear terms involving the product of the two 

state variables such as fed back bilinear systems 

The author has recently proved that the solution of this induction motor system is 

bounded applying Yoshizawa's boundedness theorem9 and practical stability concept which 

results from LaSalle and Lefschetzs' work10
. Therefore the solution does not diverge: 

asymptotically stable or oscillatory. A global behavior of the solution will be found according 

to the definiteness of matrix R. This will be presented later. 
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