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Totally Ordered Linear Space Structures
and Extension Theorems

Kazuo Iwata

Abstract

Let E be a partially ordered linear or partially ordered linear topological space over the real
field R. By copying 20), from the viewpoint of fofally ordered linear space structures of the product
linear space £ X R, the author synthetically improves Cotlar-Cignoli (21), IIl, § 1.2) type extension
theorems in the direction of Anger- Lembcke (22), §1, §2).

Introduction. By means of (20), Ths. 1, 2) —applying our new (for the author)
views 18) — we have been concerned with the Hahn-Banach extension theorem* in
some detail**. As a sequel, let us now introduce our short approach 20) to the argu-
ments of Cotlar-Cignoli (21), I, §1.2) and of Anger-Lembcke (22), §1, §2). Now
that things have come to this pass, both problems of Krein type extensions*** and of
Hahn-Banach type extensions (even if in the sense of 22)) are unified with and are
answered simultaneously. In this article, all these particulars are given as Theorems
3 and 4, the former for real linear spaces, the latter for real linear topological spaces.

Needless to say, our present results are self-contained. For instance, for Theorem
1, it suffices to put together the proofs of Theorem 1 itself, (20), Th. 1], and (18),
Th. 4).

The author wishes to express his gratitude to Prof. S. Koshi (Hokkaido Univ.) for
his obliging inspection.

Preliminaries. In this paper, let E (#{0}) denote a linear space over the real
field R. We sometimes abbreviate a real linear topolgical space to Lt.s. To introduce
“hypolinear functional”, we abopt the follwing.

DEFINITION (cf. Klee (6), §12)). Let R= R U {oco} with £ + co = oo for each £,
g+ o0o=ocofor £ >0,and 0-co=0. A hypolinear funciional h on a pointed convex cone
K is a positively homogeneous and subadditive functinal on K to R.

In particular, p (resp. ¢) denotes a gauge function on E (resp. on a pointed convex
cone K in E).

» By this the author quotes (14), § 17, 3. (1)) .

+ * Recently, Anger-Lembcke (22), existence Theorem (1. 8), Theorem (2. 4), etc.) were an-
nounced. Our result 20) (although our method is quite different from them) are closely related to
them. The whole circumstances will be read in the present article.

x + » To learn the Krein's, the. Krein-Rutman, and the Bauer-Namioka extension theorems, the
author relied upon (15), {V, 5)] (and others) instead of their originals. Our present work follows the
wake of the Krein's extension theorem.
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738 K. Iwata

In addition, for convenience, notations and terminology employed in 18), 19), and
20) are available unless otherwise specified. Especially, e.g., (EX R, %) signifies a
totally ovdered linear space stucture (for short, t.o.l.s.) of underling linear space £ X R
with respect to a binary relation 2. As already indicated in the title of this paper,
these structures are important in our discussion.

Statement of the results. Let us introduce our short approach 20) to the
argument of the literatures*. Indebted to these literatures for the subject, first we can

draw the following.

THEOREM 1. Let E be a partially ordered linear space with positive cone C. Let K be
a pointed convex come n E, h a hypolinear functional on K. Let X be a pointed convex
cone i E, and f a linear functional on X. A necessary and sufficient condition that there
exists a linear form F on E extending f and satisfying F{y)< h(y+c) for aly+c€ K
with c€ CUL0} is that there exists a to.ls. (L, R) with the following properties :

(i) BFfUC.C(L, R);

(i) (L, R is absorbing at (0, 1) for L ;
where L is the product linear space EX R and Bf ={(x1—x2, €) 1f(x1)—f(x2) <&, x1,
1. € X), Ce={(# 1) : there exists ce CU{0} such that y+c€ K with h(y+c)<n)
m L.

PrOOE  To begin with, extending f to the unique linear form f on(X), where (X)
is the linear hull of X, By is none other than {(x, &):Ax)< & x€(X)}. & is ahypoli-
near functional on K. Besides, each hypothesis in question assures that convex cone
C. (+%) does not contain the origin. In these circumstances, treating By, C. as By,
Cq, one may now finish the proof as in (20), Th. 1).

For reference, the simplest examples are

EXAMPLES, Let E be R?. Set C={(a, 8) : >0, or =0 and >0} (that is, max-
imal positive cone in E). Taking K=1{(0. g): #= 0} (or K={(0, 0)}) in E, define
h on K to mean 2(0, g)=pA With this

(1) let X={(a, 0): @0} and define f on X by fla, 0)= a;

(2) let X be {{0, 0)} and define (0, 0) =0 ;

(3) let X be the B-axis and define f on X by f(0, 8) =8 ;
respectively. Then in case of (1) (resp. (2)), notwithstanding B7U C¢ is not absorbing
at ((0, 0, 1) (resp. at any point of X X R ) for L, the sufficient condition of Theorem 1
is met enough. While in case of (3), although f(x) <h(x+¢) (x€ X, x+c€ K, ce C
U{0}) holds, f fails to have desired extension. This comes from the identity g((0, 0),1)
+ (1, 0), =) +(0, —p—1), —p)+(—1, o + 1). )=01in L.

To return to the subject, notice that, in the direction of Cotlar-Cignoli (21), III,
§1.2,4 and 6 ((c) implies (a))), there are made some specializations about Theorem

= By these the author means (6), §12),(21), I, §1.2), and (22),§ 1, §2).
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Totally Ordered Linear Space Structures and Extension Theorems 739

1. Aside from this, of course, the same ismade for the sake of subspace X. Thus as
promised before, Theorem 1 reproduces e.g. the Krein’s extension theorem simultan-
eously with the Hahn-Banach extension theorem:

COROLLARY 1. Each statement of Theorem 1 with

(1) K =1{0} (where, h(0)= 0) (i.e, as a consequence, this statement under sub-
space X is consistent with* (15), (V, 5. 4), Cor.1 (Bauer-Namioka)}),

() C is a maximal positive cone in E and K= 10} (h(0) = 0),

(38) C = alie, this statement may be consistent with** non-topological aspects
of Anger-Lembcke (22), extension Th. (1.8), Th. (2.4))),

4y K=EFE, and

(5) both C= & and K = E (ie., this statement under subspace X immediately
generalizes the Hahn-Banach extension theovem for linear spaces)
gives (18), Th. 4(2) ], the non-topological portion of (19), Cor. to Th. 3), (20), Th. 1,
(21), Il §1.2.3 (qua strict cone)), and the non-topological portion of [ 14), § 17, 3.(1)
(Satz von HAHN-BANACH)] respectively.

ProOFS. Let X be a subspace of E. By the first assertion, to the purpose, is
asserted that unless f 1s identically-zero, both conditions submitted are directly
equivalent. For such a sake, to this end, positive independence of BsU C¢ is in-
herited to A U C (esp. vice versa). Suppose that any (E, ® )* which contains AU C
were not absorbing at @1 € X (f(@1)>0). Then there would exist #,e E with the
following properties : corresponding to p >0, there exist both finite many respective
vectors a-€ A, ¢s€ C, and corresponding scalars ar >0 (a1 = 1), As> 0 such that
Sorar+ 2 Bscs+ouo=0. This entails that there exist (Zar{—ar), £) € By { (X
o (—ar) <f—a1)<E<0), (—cs,15) € Celns >0), and (0,¢) € By (e fixed for
any o > 0) such that

*) (Zar(—ar), )+ 2ZBs(—cs, ns) +{(p(—uo), 0)+ (0, £)}=(0,0),

which yields the first implication. For the converse, we can make use of the eq. (¥
in a modified form!. The second assertion is likewise carried out by the above. The
third is self-evident. For the fourth (resp. for the fifth), indeed to this purpose, By
U C, 1s positively independent and (0, 1) € Cp Ce (resp. (0, 1) € Cp=C¢) (hbeing a
gauge function) holds. Hence the assertion is met (a fortiori) by the “if” part of Theorem
1. Thus Corollary 1 1s proved.

In this connection, an extreme case of Theorem 1 with C=&, K ={0} (4(0)
= () and‘ X being a subspace of E corresponds to a problem of simple extensions.
Of course, in view of the modified eq. (*)

COROLLARY 2" Such an extension is always possible.

Returning to the subject, our concern is also

+ See [19), Suppl. to Th.3). (Alternatively, see Rem. 2 below.)
* x Cf. Corollary 3 to Theorem 1, Corollaries 2, 4 to Theorem 2.

t Take p (—uo, 7) instead of (p{—u,), 0} thereof.
t t Alternatively, this is done using Hamel basis for £.
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740 K. Iwata

COROLLARY 3. Qur condition () plus (i) of Theorem 1 is equivalent to that there
exists a convex absorbing (at the origin) subset W of E such that B;7U C.U (W x{1}) is
positively independent in L.

ProoE  For the necessity of the condition, take W={x € E :|F(x)|<1} in view
of Theorem 1. For the converse, apply (18), Lemma 1) combining (20), Rem. 2).

In this context, as a topological version of Theorem 1, we can state and prove a
criterion of the form

THEOREM 2. Let E be an ordeved linear topological space with posttive cone C, and
let K, h X, fbe as in the statement of Theorem 1. A necessary and sufficient condition
that there exists a continuous linear formF on E extending fand satisfying F(y)<
h(y+c) forall y+c € Kwith c€ CU{0} s that there exists a convex (- neighdourhood
Uin E such that

BiUCU(UXx{1})
is positively independent in L ; where Br, Cc and L are the same as in Theorem 1.

PROOE  For the necessity of the condition, it suffices to take U={x € E :|F(x)|
<1}. To prove the sufficiency, appealing to (20), Rem. 2] and (18), Lemma 1), consult
the proof of (20), Th. 2). This leads up to the conclusion.

Notice also that there are several specializations about Theorem 2. At this point,
we have

COROLLARY 1. Fach statement of Theorem 2 with

(1) K =10} (where, h(0) =0) (i.e., as a consequence, this statement under sub-
space X is consistent with* (15), Th. (V5. 4) (Bauer-Namioka)) and generalizes** the
Kremn-Rutman extension theorem),

@) C s a maximal positive cone in E and K ={0} (h(0) = ().,

(3) C= ¢ (ie, this statement under locally convex space E is consistent with'
Anger-Lembcke (22), extension Th. (1.8), Th. (2. 4))),

4) K=FE

(B) both C= & and K=E (ie, this statement under subspace X immediately
generalizes the Hahn-Banach extension theorem for I t. s.), and

6) both C=& and XDK with Alx)< h{x){(xe K)
gives (19), Th. 3), the topological portion of [ 19). Cor. to Th. 3}, ( 20), Th. 2), the topolo-
gical version’tt of (2D, 1L § 1. 2. 3 (qua strict cone)), the topological portion of ( 14),
§ 17 3. (1)), and the Hahn-Banach theovem in (17), $.598) respectively.

* See [19), Suppl. to Th.3). (See also Rem. 2 below.)
« For details cf. also [19), p. 47).
t See Corollaries 2, 4 below.

t t The present author says: Let E be an ordered L. t. s. with positive cone C, and h a gauge function
on E. Let M be a linear subspace of E and 1 a linear- form on M such that f(x)< h{x+c) whenever
x €M, c€CU{0}. If h is continuous at the origin, there exists a continuous linear form F on E ex-
tending f and satisfying F(y)<h(y+c) forall y € E, c€CU{0}.
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Totally Ordered Linear Space Structures and Extension Theorems 741

Proors. It suffices to take X to be a subspace of E. For the first and second
assertions, proceed as preceding Corollary 1 and observe the eq. (*) in the form : Cea,
(—a,), &+ 38s (—cs, ns)+ (p (—uo), e)=1(0, 0). For the next, (20), Th. 2] is
immediately paraphrased from our Theorem 2. For the fourth and fifth assertions, to
these purposes, B,U C¢ is positively independent and % (gauge function) gets con-
tinuous on £. Hence it suffices to take U={y€ E: h(y) <1)} for the “if” part of
Theorem 2. For the last, since C»={(y, n): h(y)<n}CB,, it suffices to refer
to (20), Cor. 4].

By the way, if we are concerned with Hahn-Banach type theorems for 1. t. s., as
alluded before, the third statement above is very close to the results of (22), §1, § 2).
That is

COROLLARY 2. Let E be a . t s. Let K be a pointed convex cone in E, h a
hypolinear functional on K. The condition [ 22), (6) of Th. (1. 8)) is mutually equivalent
to that* there exists a convex symmetric 0-neighbourhood U in E such that CaU (U X
{1}) is positively independent in L, where L is the product linear space EX R and Ch
={(yg,n) :h(y)<n y€ K} mL.

Proor  For the necessity, let {7 be a convex symmetric O-neighbourhood with
h(y)= -1 for all y€ KN U. As is our custom, taking finite many respective vectors
(ys, 1s) € Cr and (ae, 1) € Ux {1}, suppose that 2 Bsns + Zyett: = 0 for some cor-
responding scalars 8s > 0, 7, > 0 where Xy, = 1. Whereas, by hypothesis, we must
have 0 < 1 (SRsvs) +1 < 2Bsh(ys) + 1< Bsns+ 2 7, which proves the asser-
tion. For the converse, let y€ KN{(eU) (¢>0) Then, even if A(y) is finite, in
view of y + (—9) =0, »+ ¢ = 0 implies < /2(y). Whence /4(y) > — ¢ holds for
al ye KN(eU).

As will soon be shown, (22), Th.(1. 12)) is also treated after our own fashion. Prior
to this, all the same

COROLLARY 3. LetE bea l. t s, and let I, J'be disjoint index sets with [U J+ &
For each A€ IU J, let Ki be a pointed convex cone in E and hi a hypolinear functional
on K. The substance of the condition (22), (2) of Th. (1. 12)) is mutually equivalent to
that there exists a convex symmeltric 0-neighbourhood U in E such that (\Uer Cil)U

(UsesCo)U (U x{1}) is positively independent in L, where L is the product linear space
EXR,Cui={(—y,n) : hdy)<nyc K for i€l and Cu,={(y, n): h{y)<n, ye
K} for jeJ.

Proor For the necessity, by hypothesis, anyway (U C;T) U (UjeCh,) is

positively independent in L. For the sufficiency, for reference Z 7;,, +1<0 implies

that there exist 7u such that 277 +1=0withm<n (v=1,2,, n). At this point, the
rest of the proof is analogous to that of Corollary 2.
COROLLARY 4. Let Ebe a l t 5. Let K be a pointed convex cone inE, h a hypoli-

* On our part, take account of an extra f with B;C Ch.
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742 K. Iwata

near functional on K. Let X be a pointed convex cone in E and f a linear functional on
X. The substance of the condition (22), (4) of Th. (2. 4)] is mutually equivalent to that
there exists a convex symmetric (-neighbourhood U in E-such that Bf U C,U(UXx{1})
is positively independent in L, where L and B; are as in Theovem 1 and Cr={(y, y):
Wy <nl inlL.

PROOE (Alternatively, apply Corollary 3.) For the necessity, let U be a convex
symmetric 0-neighbourhood such that f(x)— f(x) + A = —1 for x1,x2€ X,
v€EK, x1—x:+y€ U. fismajorized by # on K is at once. Hence taking finite many
respective vectors (X1,—x2r, &) € By, (ys, 7s) € Cr and (us, 1) € UX {1}, suppose
that Sa, (x, — %2r) +2Bs¥s + Syeste =0 for a» > 0, 8s = 0,7 > 0 (or ¢,= 0,
Bs > 0, v¢ > 0) where 3y, = 1. Whereas it comes that 0 < f(Darxir) — f
Sarxz,) + 7 (EBs¥s) + 1 < Sarér + SBsns + Ty, which proves the assertion.
For the converse, let x1,%2€ X, y€ K, u=x1—x2+y € U. Then, even if i(y) is
finite, in view of # + (—u) = 0, hypothesis deduces f{x1)—f(x2)+ h(y)= —1,
which completes the proof.

In view of this, needless to say, letting U be a convex 0-neighbourhood in £, the
assumption of local convexity in (22), (1. 8), (1. 12), (2. 4)) may be dropped.

Now, influenced by (22), § 1) (esp.), we can generalize Theorems 1and 2 as follows.
The proofs are nearly as before (cf. for the necessity, @(x, &)=—F(x)+ £ is
positive (> 0) on every positive cone Cic, (i€ 1), Chie{j€J); and for-the
sufficiency, (0,1)€ (X)X R). In these criteria, e.g., I=@ corresponds to e
Crie;=&; Bf may be replaced by C~3UCy.

THEOREM 3. Let E be a linear space, and let X, fbe as in Theovem 1. Let I ], K,,
ha be as in Corollary 3, and for each A€ IUJ let Cy be a positive cone in E. A
necessary and sufficient condition that theve exists a linear form F on E extending f and
satisfying

(@ —hdy—c)<F(y) whenever y—c€ K, c€ C;U{0} for i€,

(b)) F(y)<hly+c) whenever y+c€K;, ce C,U{0} for jeJ;
is that there exists a t. o. [ s. (L, R) with the following properties

@) B’;U(g Cic:) U (JLEJ]Chjcj) (L, )%

(i) (L, R)* is absorbing at (0,1) for L ;
where L, By are as in Theorem 1, and Cci={(—y, n): there exists ¢€ C;U{0}

such that y—c € K; with h{y—c)<n} for i€ 1, Cnic;={(y, 1) : there exists c€ C;
U{0} such that y+c € K; with h{y+c)<n} for je]J.

TurOorREM 4. Let Ebeal. t's., and let X, f, 1, J, Ka, ha, Ci be as in Theorem 3. A
necessary and sufficient condition that there exists a continuous linear form F as in the

statement of Theorem 3 is that ther exists a convex (-neighbourhood U in E such that
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BJ‘_U(SQIC}:Z-C,')U(}EJ]CMC])U(UX {1hH

is positively independent tn L ; wheve Bf, Ciic,, Cric;, and L are as in Theorem 3.

REMARK 1. Let F be such that as desired in Theorem 3 (or 4). This implies F(c) >

0 for all ¢c€ (U1 CIUU;,C3).

By the way, upon reconsidering the matter

REMARK 2. We are thus as well in a position to restate our Theorems 1-4 in terms

of (22) §1, §2). These resulting versions (which generalize (21), 1II, §1. 2. 3)) imme-
diately give the Bauer-Namioka extension theorem (real case, qua preordered) and
some of Anger-Lembcke [22), Theorems (1.8), (1.12), (2.4) etc.) simultaneously.

Finally we put the following.

REMARK 3. Let in particular C=(E, #)* in Theorem 1 (or 2). If there exists a

desired extension F', the fact is C=(E, F(®))" Thus if two nonzero linear forms
should be the case, they are at most positive scalar multiples each of the other.

i

2)
3)
4)
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)
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