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Abstract 

G巴ometricprogramming provides a powerful tool for solving algebraic nonlinear programming subject to 

linear and nonlinear constraints， but it is rather difficult to apply the method to a general optimizing probl巴m

In this paper， a penalty t巴rmin the transformed objective function in process of the calculation by SUMT is 

approximated with a single-term posynomial and makes it possible to apply geometric programming to a 

general minimization problem. This paper also explains the thr巴巴 numericalexamples and the approaches to 

the optimum points are shown in the figures 

1. Introduction 

s-eometric programming was discovered first by Zener early in the 1960's and after that 

developed by Zener， Duffin and Peterson. This method provides a powerful tool for solving 

algebraic nonlinear programming problems subject to linear and nonlinear constraints， and in 

recent years the application of this method is studied in mainly Chemical and Civil 

Engineering fields 

Geometric programming displays its ability especially， when the objective function and 

the constraints are all posynomials and the number of degrees of difficulty is small. Once 

some of the coefficients in the polynomials are negative or， even if all the coefficients are 

positive， the number of degrees of difficulty are relatively great， it will be difficult to apply 

efficiently geometric programming to such problems. Then， to overcome this difficulty， A 

B. Templeman proposed to approximate a general fuction with a single-term posynomiaj!l， 

and C. Beightler and D. T. Phillips explained in their book the technique of reducing a 

plynomial to a posynomial by condensation2l. The former paper dealt with the problem of 

minimum weight design of truss structures. But， in the case of minimum weight design of 

truss bridges， the number of terms in the objective fuction is equal to that of the design 

variables. So， even if each constraint is approximated with a single-term posynomial， the 

number of degrees of difficulty may be still equal to that of constraints-1 and it is seemed 

to be hard to use the method to such problems. Until now， the problems were solved 

principally by Sequential Linear Programming (SLP) or Sequential Unconstrained Mini 

mization Technique (SUMT). But some disadvantages of each technique were pointed out. 

The former technique requires much memory capacity of a computer， while the latter 

technique， although the possibility of converging into a global optimum point is improved， 

requires long computing time in optimizing a transformed objective fuction. Then this 

paper deals with the application of geometric programming into the optimization of the 

transformed objective function. In the method proposed here， the penalty term in the 

transformed objective function is approximated with a single-term posynomial， and by 
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applying geometric programming to this function it is possible to get the approximate opti 

mum value by only one iteration， so far as the point is in the feasible region. 

In this paper the constraints are to be general polynomials and the objective function to 

be a posynomial， in which the number of terms is equal to that of the design variables 

2. Posynomial Approximation of Transformed Objective Function 

A general optimization problem is defined as follows， 

ロllillmlze
n n 

f= ~ Ci rr Xfik. 
i=l k=l 

in which 
Ci>O; i=l・…"n，

Xk>O; k=l......n， 
subject to 

gj孟O;j=l…'''m，

( 1 ) 

( 2 ) 

In equation (1) Xk (kニ…n)are design variables and αik (i = 1…n， k=1...n) are arbitrary real 

numbers. 

The primary constrained minimization problem defined above is transformed into a 

sequence of unconstrained minimization problems. The function is as follows， 

n n m 

F=21cz且xf十γtE(酌)ぺ ;1= l......L， ( 3 ) 

in which，れ isa response factor and βis an arbitrary positive real number. 

If Xk (ll(k = 1...n) are feasi ble values of the variables， the second term in the equation (3) is 

approximated with a single-term posynomial as follows， 

m n 
rt ~ (gJ一β二 Cn+lrr xgn+lk， ( 4 ) 

in which η， n 
Cn十l二 rt{~ (g51

)) β} rr (xi.ll)一αn+lh， ( 5 ) 

αn+lk ニ___ß.X~l)24L)(l)(gjl))一 ; k=l......n 
呂(g)l)) β 戸川 ( 6 ) 

After all， the primary problem defined by equations (1)， (2) is transformed into a problem 

of optirnizing a posynomial with zero degrees of difficulty as follows， 

n+l n 

F= 2:: Ci rr xfぺ (7 ) 
i=l kニ l

3. Minimization of An Unconstrained Posynomial 

From equation (7) the rninimization problem of an unconstrained posynomial is defined 

as follows， 

町llillmlze n十 1 n 

F= ~ Ci rr Xfik， 

(7) 
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in which 
Ci>O; i=l・…"n+1，

Xk >0 ; k二 1......n，

αik ; arbitrary real numbers， i = 1・・・・・・ n，kニ 1......n+1

The number of degrees of difficulty of equation (7) is equal to zero， so applying geometric 

programming to it， the design variables x are obtained easily as follows 

First， the normality and orthogonality conditions are 
n+1 
~んこ 1 ，
i+l (8 ) 

n+1 
~αikl\;=O; kニ 1..…'n， ( 9 ) 

in which λi (iニl...n+ 1) are dual variables. Matrix expression of equations (8)， (9) is as 

follows， 
1 1 ..…….1 1 ，，¥， 1 

0 α11 α21・・・・・・・・・ αn1 αn+11 11，.¥ 

α12α22… … …αn2αn+12 11 : 1=101 
"¥n I 1: I (10) 

α1n α2n・・…・・・・αnnαn+1n JLAn+1J lO 

The equation (10) is divided into next two equations. 

L-i+"¥n+1=1， 

AA +BAn+1=0， 

(11) 

(12) 

in which 
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(15) 

B=[αn+llα n+12 0 • ……・ α n+ln] T 

A =[，，¥， "¥2'"……"¥nV 
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 (16) 

The dual variableん+1corresponding to the penalty term is obtained by substituting 

equation (12) into equation (11)， 

Àn+l=~ n+1~ 1~IA-1B (17) 

By substi tuting equation (17) into equation (12) the dual variables are obtained as follows， 

À=~__A 'B 
-1IA- I B - ( 1 8 )  

Knowing the dual variables ，.¥， the design variables are 

xi=10Xi; i二 1・・・…n， (19) 
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in which 

X=(A← lVS， 

log A 1 -log Cl + log z 

log A2一logC2 + log z 
5= 

(20) 

(21) 

log An-1og cn+log z 

z-買(すr (22) 

In calculating equation (20) A -1 was obtained previously in equation (17) and is constant 

through the iteration. 

The iteration of the method proposed here proceeds as follows : 

1. Start with an initial x(l) and set m， n， c，αand β. 

2. Compute A-1 

3. Set 1=0. 

4. Setl=I+1， Ylandx(l)=x. 

5. Compute Cn+1，αn+1k(k=l...n) by equations (5)， (6). 

6. Set B by equation (14). 

7. Compute A by equations (17)， (18)ー

8. If んisnegative， modify x(l) and repeat from step 5. 

9. Compute x by equations (19)， (21) and (22). 

10. Repeat from step 4 until the design variables are thought to be converged. 

In step 8， in what direction the initial design variables x(l) are to be modified may be a 

difficult problem， but it is seemed to be a beUer way to do it in the direction of loosening the 

constramts. 

Special case having the objective function as follows is considered next， 

n 

f= 2:: cixF， (23) 

In this case A -1 is simplified as follows， 
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(24) 

Substituting equation (24) into equations (17)， (18) and (19)，λand x are obtained as 

follows 

A;=一 αn+ll~~ ; 1二 1・….'n.
n 

d-2::αn+lj 
j=l 

(25) 
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An+1 
d 
n 

d-~αn+lj 

Xi=(γr ; iニ l......n

4. Numerical Examples 

673 

(26) 

(27) 

Three numerical examples are solved by the method above mentioned. In these 

examples the constraints are identical and as follows， 

glエ 4.5x1-xi十6x2-13.5詮O

g2二 X1十2xi-6x2十2孟0

g3=X1主主O

g4=X2-Xl 主主O

(28) 

(29) 

(30) 

(31) 

In the feasible region formed by above constraints， as shown in under figures， two 

optimum points are found and one of them is thought to be a local optimum point 

In these examples βand γ1 are as follows， 

βニ1.0，

γ1=γ1-1/10; l=2・…・・，

r=1.0， 

and in 4-1 and 4-2， 

XI=O. 
4-1 Example 1 

The objective function is as follows， 

!=xf-lγcxf (32) 

Refering to equations (27)， (28) and (29)， the problems in the case of dニ 1，2and c=O.1， 0.5， 

0.8 were calculated respectively. The results are in Tables 1-1-2-3 and the approaches to 

the optimum point are shown in Figures 1-1-2-3. The dot-dash-lines in these figures are 

corresponding with the objective functions 

(51) 
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Table 1.1 d= l.0. C二 0.1 Table 2.1 d=2.0. c=O.l 

initial 
f value Xl X， initial 

f value Xl X， 

(4.0，4.0) 1. 0160 2.7433 1.2903 (4.0，4.0) 1.1056 2.3476 1.7735 

(5.0，0.5) 1.0149 2.7513 1.2900 (5.0，0.5) 1.0700 2.4667 1.7533 

(2.0，3.0) 1.0208 2.7386 1.2947 (2.0，3.0) 1.0739 2.4364 1.7468 

(3.0，1.0) 1.0183 2.7359 1.2919 (3.0，1，0) 1.0966 2.3628 1.7608 

Table 1.2 d= l.0. c= 0.5 Table 2.2 d= 2.0. c= 0.5 

initial 
f value Xl X， initial 

f value Xl X， 

(4.0，4.0) 1.1050 2.3593 2.2846 (4.0，4.0) 1.1039 2.3380 3.9518 

(5.0，0.5) 1.1055 2.3605 2.2858 (5.0，0.5) 1.1106 2.3498 3.9944 

(2.0，3.0) 1.0996 2.3488 2.2740 (2.0，3.0) 1.1149 2.3551 4.0162 

(3.0，1.0) 1.9276 0.9593 2.4072 (3.0，1.0) 1.0986 2.3415 3.9483 

Table 1.3 d=l.O， c=0.8 Table 2.3 d=2.0， c二 0.8

initial 
f value Xl X， initial 

f valu巴
Xl X， 

(4.0，4.0) 1.1056 2.3455 2.9820 (4.0，4.0) 1.1057 2.3405 5.6050 

(5.0，0.5) 1.1208 2.3780 3.0232 (5.0，0.5) 2.0160 0.8818 4.6862 

(2.0，3.0) 1.1126 2.3477 2.9908 (2.0，3.0) 1.0979 2.3377 5.5771 

(3.0，1.0) 2.3730 0.5257 2.7936 (3.0，1.0) 1.9283 0.9584 4.4533 

X11 Xl 

x， 

Fig. 1 -1 d = l. 0， c =0.1 Fig. 2 -1 d =2.0， C =0.1 
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x， 

~~'\ 
涛、

x， 

Fig. 1 -2 d =l.0， c二 o5 Fig. 2 -2 d =2.0， cニ 0.5

x， 

x， 

Fig. 1-3 dニ 1.0，c二 0.8 Fig. 2 -3 d =2.0， cニ 0.8

4-2 Example 2 

The objective function is as follows， 

f=Xl/X2+CXI (33) 

675 

x， 

x， 

The problems in the case of c =0.1， 1.0 were calculated respectively. The approaches to 

the optimum point are shown in Figure 3-1 and 3-2. 

(53) 
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x， 
5 

Fig. 3 -1 cニ 0.1
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x， 

x， 
5 

Fig. 3 -2 C = l. 0 

4-3 Example 3 

The objective function is as follows， 

f=XIX2 +O.lxi (34) 

x， 

The function defined above， as shown in Figure 4-1， is not related to the value of the 

design variable X1 and approaches to zero， if the design variable X2 do so. Applying the 

method proposed here to such a function， it happens to be frequently that the values ofλare 

negative and that it is difficult to find the direction in which the design variables are to be 

modified. So， in this paper， the objective function is approximated with a linear function as 

follows successfully， 

f二 (X~l) )Xl 十 (XP) 十 O.2X~1) )X2 ・ (35)

The approaches to the optimum point in the case of xl=0.5， l.0 and 1.5 respectively are 

shown in Figures 4-1-4-3. 

x， 
5 

。。
x， 

2 3 4 

Fig. 4 -1 x ，=0.5 
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Fig. 4 -2 
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x， 
5 

。。

5. Conclusions And Comments 

x， 

Fig. 4 -3 x ，=1.5 
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1. Approximating a penalty term in the transformed objective function with a single-term 

posynomial， it is possible to apply geometric programming to the general minimization 

problems efficiently. 

2.If the initial values are selected properly， the convergence is good as shown in the figures 

above. And it is noticeable that， in spite of being a global optimum point in a very narrow 

region in the case of Xl = 1.0 in Example 3， the design variables approaches to the point very 

smoothly， when the initial design variables are (5， 2) and (4， 2). 

3. Hereafter， by solving more concrete problems， it is intended to make a comparison of the 

computing time and accuracy of the method proposed here， SLP and SUMT by direct 

search method or DFP. 

(Received May. 19， 1978) 
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