EWIERFE T
FMEIR—HDAT oo

Muroran Institute of Technology Academic Resources Archive

7

Invariant Extensions for Linear Functionals and
Supplement to the Paper "Totally Ordered Linear
Space Structures and Extension Theorems"

S8 eng

HiRE: EEIEKRE
~NEFEH: 2014-07-28
F—7— K (Ja):
*—7— K (En):
ERE: &5H, —5
X—=)LT7 FLR:
Firi&:

http://hdl.handle.net/10258/3696




Invariant Extensions for Linear Functionals

and Supplement to the Paper

)

“Totally Ordered Linear Space Structures and Extension Theorems’

Kazuo Iwara

Abstract

By modifying the preceding short work 33), some results for invariant extensions for linear functionals
are furnished. A supplement is added to my 31).

Introduction. This paper has two aims. First, as a sequel to 33), from the view-
point of the totally ordered linear space structures of £ X R, some problems for invariant
extensions of linear functionals are discussed. Subsequently, a correction to a part of
my 31), is applied for. As for the former, our hypotheses introduced here seem to be
somewhat general. To say more precisely, though e. g. in [33), Cor. 2],

1. 7715 a semigroup of linear transformations of E into E,
2. p(TN< p(y) holds for vEE, TE,
3. f is tnvariant under 9,

were assumed, but this time they are weakened to

1. Jis a set of lineayr transformations of E into E,

2. D is merely a gauge function on E,

3. f 1s merely a linear form on M.
The main purpose of this part is just to enlarge [33), Cor. 2] in such directions. In
consequence, our results relate to Klee [8), (@)« (8) of (2. 2) Theorem] and to Edwards
[14), 3. 3. 2 Remark], and cover them. Some of our results are given in terms of ideals
(right or left) of 9

For reference, as is apparent, our approaches to extension problems are (were) all
based on the following self-contained angle (for this and for its topological version, cf.
[21), Th. 2], [26), p. 46, foot-note and Suppl. to Th. 3}, [32), Th. 1)).

THEOREM.! Let E be a real linear space, C a subset of E.  Let M be a linear sub-
space of E, f a non-identically-zero linear form on M.  Designated by

(>)  f can be extended to a linear form FF on E so as lo F(c)>0 for cEC,

T The latter statement of this theorem is a Krein type extension theorem. This part, non-topological
version of Bauer-Namioka theorem (cf. [17), (V, 5. 4)]), and the some case of Anger-Lembcke [29), Th.
3. 2] are equivalent.
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(=) f can be extended to a linear form F on E so as to F(c)=0 for ceC,1
(1) thereexistsa tols (E, #) such that

) AUCC(E,#)", where A={x=M: f(x)>0),
() (E, #)* is absorbing at some point of M,

(2) there exists a convex absoring (at the ovigin) set U in E such that AUCU
(U++ ao) 1s positively independent in E, where f(a)=1,

(>)=(2)=(1)=(=) holds. If C is a non-pointed convex cone (i.e., C30), (=), (1),
(2) are equivalent.

It was at this point (the first statement of this theorem) that we were free from the
convexity of Cpee In the proof of [33), Cor. 2]. This like is given in the present work
too. With this fact, it appears to me that this angle (including its proof) is somewhat
good for our discussion.

To present this note, for the first part, the author was motivated by Agnew-Morse
[6), Lemma 2.01], and 8), 14) above cited. For these instructive informations, he is
deeply grateful to them.

Preliminaries. For convenience, unless otherwise specified, let the notations and
terminology employed in 21), 26), 30), 32), and 33) be available. Especially for E, C,
K, M, f, % L refer to the statement of [33), Theorem 1]. Denote by N the set of all
positive integers. We introduce

DEFINITION 1. a) Let ¢ be a gauge function on K.

b) By &1s meant a set (#0) of linear transformations of E into E such that T(K)
CK and ¢(T(yv))<q(y) (y€K) forall TES.

¢) By 9 ismeant a set (#£8) of linear transformations of E into E such that 7(X)
CK forall T~

d) The identity map of E to E is written by 7. Since (1. 0) below is synonymous
relative to .9 and .9 U{[}, throughout, .7 is taken to be .77 U {I} to our advantage. So
1s the case for &.

e)Let Ty, T, Ts,.€9 To(Ti(y)) (vEE) is written by T:T:(y). Obviously,
composite mapping T, T 1s a linear transformation of £ into £, and Ts( T2 T1)=(T:T2) Th
holds. By T¥ (x& N)ismeantasusual. .9 is called Abelianif Ty Ty = T\ T»|whenever
T, T.€.9 A subset . of 7 is called a right (resp. left) ideal of 7 if 9 C F(resp.
if 9 cC.#), where £9={T,T\: T\€.7 T:€%} and such.

DEFINITION 2. a) Jqcs is another (the 2und) quasi-epigraph of gauge function g on
K with respect to C and & Jees=1{(v, n) : there exist c€C, TEE, mE N, such that

y+cEK and Lq(Z‘. T”(y+c)><77}
mo \px=1

T Our symbol “=" is syn. with “=".
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b) Kecsr is the (3rd) quasi-epigraph of gauge function g on K with respect to
C, 9 Kgcyy:{(y, 7) : there exist c€C, T€Y, mEN, such that y+cEK
and ;}Esup g<§ ST”(y+c)>< 77}, where . is a certain non-void fixed subset of 7~
Sey #=1
o) If C={0}, Jocs, Kecss are resp. abbreviated to Jos Kesw-
We use Kecse in (1. 1) below. In this case it is well-defined, 1e., Kecow CL .

We note in advance that unlike Cgoy, Kgcss is N0t necessarily convex even if 7 is
Abelian.

Statement of the results. Some modifications of the preceding [33), Theorem
1] establish the following. This theorem simultaneously relates to [8), (@) () of (2,
2) Theorem] and to [14), 3. 3. 2 Remark].

THEOREM 1. Under the hypothesis of [33), Theorem 1], let & be rescinded and let
I be considered in place of it. Then the following are equivalent :
(1.0)  The statement (1. 0) thereof remains valid for I~

(1.1)  There exist a gauge function g on K and a non-void subset & of 7 such
that g(ST*(y))< q(y) for yeK, T, S&, p&N, and there exists
atols (L, #) whose (L, #) is absorbing at (0, 1) for L for which

BsUKecr C(L, %)

(1.2)  There exist a gauge function g on K and a non-void subset & of 7 such
that g(ST*(yN< qly) for yEK, TE Y, S&€% uEN, and there exists
a convex absorbing set U in E for which B ;U Kecov J(U X {1}) is positively
wndependent in L.
PROOF is done routinely : (1. 0)=(1. 2): Letting g be the restriction of F to K,
choose a non-void subset % of .2~ Then (1. 0) entails that F( y)<% SSup g(i 1ST “
=2 =
(v+ c)) for y+c€EK, y&€E, ceC, TEY, meEN and that g(S T*(y))=g{v)< g(¥)

for ye K, T€.9, SE¥ p& N which show that g, & and U={x€ E : F(x)<l}
are as required. For (1.2)=(1. 1), under g, & of (1.2), appeal to [30), Rem. 2] (an
analogue of) and to [21), Lemma 1) (1. 1)=(1.0) : Likewise as in the case of [30),
Th. 1 ("if” part)], indeed we obtain an Fy& E* such that extending f and satisfying

Fo()/K%gggg(ilST”(y—i—c)) (v+cEK, vEE, cEC, TEI mEN). F, meets

the (b) of (1.0) is clear. Fy does the (¢) of (1.0) is obtained thanks to but mutatis
mutandis from the final part of the proof of Agnew-Morse [6), Lemma 2. 01}, (For

the details, Fo(y— T(y))S%SUD g<% ST(y— T(y)))Z%SUD g(ST(y)-ST™!
1 Se ¥ #=1 Se s
(y))S%{q(y)qu(—y)} follows for y& K, T€ .9 m&N.)

REMARK 1. Compare the above estimate with the original.
Needless to say,

13
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REMARK 2. [33), Theorem 1] is essentially found (is proved by) in this theorem.
The Hahn-Banach extension theorem itself is as well found in this theorem.

Theorem 1 enables us to generalize [33), Corollary 2 to Theorem 1] in three di-
rections :

COROLLARY. Let in particular K=E', C={0} in Theorem 1. Then" (1.0) and
the following statements ave equivalent :
(P 1) There exist a gauge function g on E, a nonvoid & .7 and an FLEE*
extending f such that
() Sup g(ST*(y))< Sup e(SyN<ply) for yeE, TE .97 pEN,
(11) Fl( Tl TZ“'Tj-—lTj"'Tk(y)):Fl( Tl TZ"'Tjij«l"'Tk(y)) fOVyEE,
TsE.9; 7, k&N (2<j< k), and they are equal to f(v) if vEM,
(i) Fi(y)< 30 g(S(w) for yEE.
(1.2Y There exist a gauge function g on £ and a non-void & C 7 such that b§qu g

(ST ()< ply) for yeE, T€9, n&=N | and B\ Kg s 1S positively in-
dependent in L .

PROOF. Since K. O Cp by Theorem 1, it suffices to prove (1. 0Y=(P 1)=(1. 2).
Assuming g=F,=F, choose a non-void subset .% of .77 and the first implication is
self-evident. (P 1)=(1.2) is done under g and % of (P 1) : To begin with, let x+ a1y,
+ary.=0 for (x, £)EB,U{(0,0)} ; (v1, 71), (v2, 72)E Kg g ; @1, @>0; where say%
Eug g(ZYlST{‘(yl)>< 71, %§u$g<élst”(yz)>< ne for some m, neN ; T, T.€7

= M= e V=
Then since part (i) of the hypotheses guarantees m

o Lswe(BsTron) s Lswe($sTH00)

mses

>Lnsup g<%n (ST¥T#(y:)+ STt Tz”(yz))>,

MN sc o = \i,v=1
it follows from the hypotheses that

3 (ST TH (@) + ST THasva))

L%

1
E+011771+dz772>f(x)+w ?ggg(

m,n

> () 4y P2 (T T )+ TE T @)
=f(x) +M7}/17?::1F1< Tzqul(afly1+a/2yz)>

=f(x)+f(—x)=0.

1 In this case, ¢ is written by p.
it In this case, (1. 0) is written by (1. 0Y.
71t The original form of this estimate is due to Agnew-Morse [6), pp. 21-22].

(14)



Invariant Extensions for Linear Functionals and Supplement 15

Now that thus the above is all correct, let us generalize (*) by the induction, and the
proof is carried out in line with the above.
The following remarks are immediate consequences of this corollary.

REMARK 3. If we are concerned with the case when 9 has a right ideal % (P 1)
may take the shape of

(P 2) Thereexist a gauge function g on E and an NS E* extending f such that
0 F(y)<supe(S)<p(y) for yEE,
) () of(P ]) holds, where TsS # =2,

And if, moreover, & 1s &, (1) is weakened to

E(y)<ply) foryeE.

REMARK 4. Sometimes F; is substituted " for g in (P 1). In this case it should
be noted that (iii) thereof is dispensable (reconsidering the proof above (cf. ¥C ).
Thus, if 7 has a left ideal %, (P 1) may take the shape of

(P 3) (Klee type condition) There is an Fy< E™ extending f such that
W FK(SW)<ply) for yeEE, SES
() (@) of (P 1) holds.

This means that letting in particular .9~ be a semigroup (for composite, and so on) and
f be invariant thereunder, the present corollary a fortior: supplies an alternative proof
to Klee [8), (@)=(68) of (2.2) Theorem]. We note in passing that under some modi-
fications, the method of [6), Lemma 2.01] acquires (P 3).
On the other hand
REMARK 5. In this corollary, let in particular 7~ be replaced by &. Then in a
sense that g=p and & ={I}, (P 1) takes the shape of
(P 4) There exists an F,EE* extending f such that
(1) (#1) of (P 1) holds,
W Ay)<ply) for yEE.
As a result, letting in particular f be invariant, the present corollary proves the sub-
stance of Edwards [14), 3.3.2 Remark] (qua left s) without difficulty. Reasons are
known by appealing to I'; by 2772 2< j< k) times. By the way, for short [33), Cor. 2]
proves the same as well. The reason is that this problem is synonymous relative to
&and <&, where <& is the generated semigroup of & For reference, if we are
concerned with (1. 2), viewing p as g, noticing that Kpes= Jps, it is simplified by
(1.2 BsU Jps s positively independent.
We note again that unlike Cpes, Joce Is not always convex even if & is Abelian.

REMARK 6. Let in particular 97 be <&>. Then (P 1) is reduced to :

1 To avoid meaninglessness, let % {7}.
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(P 5) There exists an F,E E* extending f such that
O KT LGW)=F(T:T(y)) for yEE ; Th, T:E<6),
(i) F(T(x)=f(x) for x€M, TELE,
(i) Fy)<p(y) for yEE,

which corresponds to [33), Cor. 1 (with C={0})]. And if 7 is mvariant, (P 5) (whence
1t is equiv. to [33), (1. 0) of Cor. 2]) is equivalent to [8), (&) following (2. 2) Theorem]|
(as was given ibid) and to :
(1.2)" BsU Cpe s positively independent, where C= {é( SiTwvi— T:Sivi) S:, T
€7 yi ek, keN}.
If <& is Abelian, (P 5) is reduced to :

(P 6) There exists an & E™ extending f such that
O E(T)=7(x) for xEM, TELE,
) Fy)<ply) for yEE,

which corresponds to [33), Cor. 4 (with C={0})]. If £ is invariant, (P 6) is reduced to :
(P7) There exists an F\E E* extending f such that Fi(y)< p(y) for yEE.

This is equivalent to " f(x)< p(x) for x&M”.
We close the first part of this paper with the following.

REMARK 7. Replacing E, FEE* U, etc. by preordered linear topological space
E, FEE’, Oneighbourhood U etc. respectively, we can state and prove the topolo-
gical version of Theorem 1 with ease. We call this Theorem 2.

And, I here, with an apology, submit a part of 31) for correction :

SUPPLEMENT. Each proof of

1" the 1st and the 2nd assertions of Cor. 1 of Th. 1,

2" the 1st and the 2nd assertions of Cor. 1 of Th. 2,

3 Cor. 2 of Th. 1,
in my paper 31) is defective (the assertions themselves are available). I wish to cor-
rect them as follows.

ProoFs orF 1°. For the 1st assertion, it suffices to examine the logical equivalence
of the following conditions, where f0.

(@) There exists a convex absorbing set U in E such that AUCU(U+a) s

positively independent, wheve f(a,)=1.

(B)  There exists a convex absorbing set 'V in E such that B, U CcU(VX{1})

1S pos. ind.

(a)=(8) : Pos. independence of A U C is inherited to that of B,U C¢ (and vice
versa). Clearly CcU((—U)x{1}) is pos. ind. Let now x—c+v=0 for x€X,
cECU{0}, v&—U. Then since AUCU{—v+ao} is pos. ind, sois AUCU{x—
¢+ ao} which induces f(x+4a0)=0, Le., f(x)> —f(as)=—1. These mean that — [/

(16)
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is suited for V of (8). For the converse, since f(—a—ao)< —1 (aSAU{0}, acE A,
f(ao)=1), by hypothesis, it never happens that (—a—ao)—c—u=0 (c=CU{0},
uEf%V). This means that -%V is suited for U of (@). The 2nd assertion is

now clear via (a).
The proofs of 2° are analogized.

ProoF orF 3°. To answer this via (§8), we employ an absolutely convex absorbing
set V of £ such that |f(x)] <1for x€XNV.

(Received May 18, 1979)
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