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On a characterization of some function space as Banach
lattices under the topological equivalence

By Kb6j1 Honda

Abstract
Characterizations of Orlicz spaces as Banach lattices are interesting problem. In previous paper [5], we
considered this problem from the point of view of some relations between Banach lattices and their
conjugate spaces.
In this paper, we give another conditions under which Banach lattices are toplogically isomorphic to some
Orlicz space.

1. Introduction. Let @(&) be a continuous Young function, 1. €., in the interval [0, oo),
@(£&) is a real valued, non-decreasing, continuous and convex function with @(0)=0. Let
4 be a non-atomic, completely additive measure on a set 2 with p(Q)=1.

The Orlicz space L ¢(L, #) consists of all real valued functions f(¢), pmeasurable
on , for which

.o(aff):’/;2 O(al f(H])du<oo for some resl number a>0.

This space is a conditionally complete*’ vector lattice and becoms a Banach space with
the Luxemburg norm

lo=int {5 :0(6) =1

If @ satisfies the (4)-condition**? we have p(f)<co for all £ in Ls and more the norm
has following properties:

1) the norm is continuous, i. €., fx 4 %=, 0**¥implies | £l %=10,

2) the norm is monotone complete, i. e., if f, 15.;and supaz:llfale<oo there exists
a function f € Lo such that f, 131 £,

3) o(f)=1 is equivalent to |fllo=1§%

In the preceding papers [4] and [5], we considered two characterizations of the Orlicz
space, namely the former is given by making use of the N-function and the latter is
considered, under the topological equivalence, by making use of some transformation from
a Banach lattice to its conjugate space.

*) A vector lattice R is said to be conditionally complete, if R 3 ¢, 20(4 3 A) there exists ¢ € R such that
a=infiea dA'Cf. [9]

**) Cf. [7]

***) The notation f» {5-1(f» 15-1)means that the sequence {f,}is non-increasing (non-decreasing).f» 5=
f(fn1%=1f) means that f is the limit of f, in the order.

£%) This property is equivalent to 1)
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In this paper, we also deal with the same problem. In a vector lattice R, for any x€R,
we define x*=xJ0 and x~=(—x)UO0. Then, we have x=x*—x7x "2~ =0 and the absolut
lx| of xis defined by |x|=x*+x7 When |x|Nly|=0, we say “x and y are mutually
orthogonal.

R is said to be a condisionally complete Banach lattice when R is a conditional complete
vector lattice and has a complete norme ||| on R such that |x|<|y| implies [x]<]y] (x
VES R).

For any 0+ p €R, the projector [p] is defined by

[p]x*zggy{nlﬁlﬂf}, [p]x“:ggg{nlplﬂx‘} and [plx=[plx*—[p]x~

The projector [p] is a linear projection operator in R.

The norm on R is said to be smooth, if for every element ¢ € R with |J¢|=1 there exists
only one linear functional (we write it by «*) on R such that (g, ¢*)=1 and |l¢*[=sup{(x, a*)
Jxl=1,x € R}=1, where (x, ¢*) means the value of g* at x. Then, it is seen that

w1 llatex]—1
(x,a )*hm—————g

e-0

for every x in R

The purpose of this paper iIs to prove the following theorem.

THEOREM. Let R be a conditionally complete Banach lattice and the norm || on R be
continuous, monotone complete and smooth. If R has a positive complete element s (1. e., s
lx|=0 for x € R implies x=0.), with ||s|=1, and satisfies the jollowing conditions:

D plsl=Mglsl implies (Ipls, s*)=(lqls, s*),

2) there exists a constant number A>Q such that

Ilé Ly ] 11 implies 2 ([p:]s. ) ”2 “[P] !”

[Lg:ls| ([g:]s, s*) = Lg:lsl
and
& ([pi]s, s*) o [pils
B fg 1 msties 13 <A
where {[p:1} are any mutually othogomal projectors and {[q:]} are any nonzero projectors,

them R is topologically isomorphic to some Orlicz space.

2. Preliminaries. Before to prove the theorem, we restate some results in Nakano's
spectral theory. (Cf. [8)], [9] and [10])

The set B of projectors in R is called an ideal, if 1) 0 & B, (i) [x] € R and [x] £ [y ]
e, [x]z = [yl for all 0 < z € R) implies [y] € B, (i) [x], [y] € B implies [x][y] €
([x]ly] means [lx[N]y]]).

Let & be the space consisting of all maximal ideals B of projectors in R. Then, & is
a compact Hausdorff space and ./={Uix:x € R }is a neighbourhood system in &, where U
={B € &:[x] € B)}. Furthermore, each Uy is both open and closed in & and it is valid that

{pllg]=0 implies Uipsq= Up+ Uiq1(+ means the union of disjoint sets).

For x € R, the function (x/s, ) é’fi‘*é’ is defined by



On a characterization of some function space as Banach

lattices under the topological equivalence 167

A it P e 4 (Utxiwad = Upxr-at)
(i,iB): +oo if B €11 . (& — Uyxy)
—oo if B eI Ulxa
where [x:]=[(As—x)*]. -
This function is called the relative spectrum, and the following properties are shown.
Lemma 1. [10;Th. 19.2 and 19.3] () (x/s,B) is almost finite (i e., finite in an open
dense set in &, and continuous in &).
(i) (x/s,B)=Uplx/s,B) on Uipyxn for any projectoe [p] (Cf. [10;Th. 18.4]),
(iil) the set {{x/s, BYx € R}is linear and lattice isomorphic to K ([10;Th. 18.5-Th.
18.10]).
For a bounded continuous functions (%) on U}, the integral of F(B)by x € R,
denoted by [z F(B)d B x,is defined as the order limit of partial sums

ng f(g‘Bij)[pij]x
for every sequence of orthogonal partitions {[p:;]} of [p] such that for ¢; >0,

Osc f(PB) £ e: (1=1,2,-j=1,2,-, n)
BEUipii)
and for any B:; € Uip,y, where lim &;=0.
For an unbounded continuous function f(%) on Uy, if there exists an increasing

sequence of bounded continuous functions f»(®) on U such that
lim Fa(B)=7(B) and lim fip) FoB)d B x

exists, then we shall say that f() is integrable by x on U and denote this order limit
by [z F(B)d B x. (CL. [10; § 20)).
We have, as an integral representation, the following fact.
Lemma 2. [10;Th. 21.1 and 21.2] For any a € R,{a/s,B) is integrable by s and we
have
2= Jis <sl’%>d B s

Conversely, if a continuous function f(B) is integrable by s and
b= [S]f(‘B)d‘JS s,
then f(B)=(8/s,B) for all B € &.

Lemma 3. For any 0 + a € R, there exists a now-decreasing sequence{x.}) of step
elements in R such that supnsx.=|al.
Proof. By virtue of {9;Th. 11.6], putting

Una= (B <l gy < Ly (i=1,2,, 20m)

and

U[pn1={$1n<(%,‘$)}i (X~ means the closure of X)

(3)
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we get an orthogonal system {[pa.i], -, [p»,27n], [pa]. Accordingly, for the increasing sequence
of step elements
2 i1

=2 o [pn,ils+ nlpnls

we have
lim <%,‘E>=<~|§—l|—,5$> for each B € &.

Therefore, the desired result is obtained by Lemma 2.

3. The proof of the theorem. We define a function @(&) by the following :
& ,if 0= £< 1
o(&)= 1 : 1
(Tpls s+ 1T & = Lowhere &=y

First, we shall see that @ (&) are well defined. For each £=1, we can find a projector
[p] with £=1/|[p]sll by the continuity of the norm and the non-atomicity of R. Furthermore,
by the condition 1), ([p], s*) is uniquely determined for every projectiors with &=1/|[p]sl.
Thus, @(&) are well defined.

Next, we shall investigated some properties of @.

It is obvious that for any real number ¢ > 0, (ls+e[plsl—1)/e<(|s+elqlsl|—1)/e
if [p] = [q]. Therefore, by the smoothness of the norm on R, we have ([p]s, s*) = ([q]s,
s*) for any projectors [p], [¢] with [p] = [q].

For any projectors [7], [glwith |[#]s|<|[g]sl, we can find a projector [p] such that
Il71sl=llp)s| and [p] < [q], since R is non-atomic and has continuous norm. Then, we
have ([pls,s*) = ([gls, s*) and ([#]s, s*)=(]p]s, s*) by the condition 1) and consequently
([rls,s*) = ([gls, s*).

Therefore, by the definition of @, we have properties of @:

(@) Q) = 0(y) if 1= ¢y,

.. 1 1 .
(i1) ®< MTpTs] > = MToTsl for any projector [p] #+ 0.

Namely, @(&) is a non-negative, non-decreasing function in & = 0 -with @(0)=0. Since the
norm continuous and s* is the norm bounded linear functional on B, @(£)is also a continuous
function in & = 0.

We shall prove the following property :

(iit) QAE) £ A@(€) for 0 < A < 1 and for any &€ = 0.

If 0 < A€ <1, obviously @(A£)=A0(£). For & = 1, we take a projector [p] satisfying
E=1/l[pls]. Then, if 0 < A& < 1, we have

LN 1 )
d)(W)— |l[p]sl|§ /1(D< ||[p]s||>_’1(p(5) by (i),
if Aé = 1, taking a projector [p] with Aé=1/|{¢]sl, we have, by condition 2)

Iislsl o ([pls,sY)
gls] =4 < 1 implies 1o )y=

(4)
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and hence

1 1 A 1
(i) W@ s = Tlss = *lippen)
namely @A &) £ A @Q(¢€).

Thus, we obtain a non-negative, non-decreasing, continuous and convex function @(¢)
with @(0)=0 and @(&) >0 for & >0.Such®@(&)is a so-called continuous Young function.
Cf. [12)

Now, we define a functional v on ¢ring_#in the preliminaries as

v(U)=({x]s,s*) (x € R).
Obviously, v is a completely additive and v(&)=1 by &= Ujs. As in [4] we have a regular
Borel measure u on & as extension of .
Let Lo(&, 1) be the totality of all g-measurable functions 7(¥) such that
p(a/f):[5 O(a|lf(P))du < oo for some positive number a.
Then, the L¢ is a Banach lattice by the Luxemburg norm:

I/ lo=inf {-m

|5| co(& f) él}-

Since every (x/s,'B){(x € R) is continuous by Lemma 1 and hence g-measurable in &.
Consequently,

o(x)= [ OE By

has a sence, and we have 0 =p(x) £ p(y) if x| £ |yl for x,y € R.

We shall call x a step element in R such that its from is xZé &ilp:s for
orthogonal family {[p:];i=1,2, -, n}. =

For a step element x=317-; &:[p:]s, by rhe Nakano’s spectral theory

o) = [, OUCE, Bde
=3 o(laD (s, "),

because w(Up)=([pls,s*) and (&[pls/s,B) =€ for B € Uy

Therefore, if |x[|= 1and |£)< - Z[€r|< 1 £|rii| £ - £|€n, selecting projectors [g¢.] with
|&1=1/I[g:]s|(i=k+1, -+, »), we have then, on account of the definition of @ and the
assumptions 1) and 2) in the theorem

o(x)=2 |E|[ ]s,S*H;ﬁ“ %{H ;
gﬁ[amﬂéﬁlﬁﬁ+wﬁ

Conversely, if p(x)< 1for the step element x=3%, & [p:]s, then we have

el <13 & Lo sl +]3) & [pidsl



170 Koji Honda

=15 s+ 5 20|

=1+A4,
because we have |&]=1/|[g:]slfor iZk+1 and 2% nry  ([p:ls, s*)/([g:ds, s*)Sp(x) 1
and hence| 27 . [p:ls/llg:slll £A by the assumption 2) in the theorem.

Thus, it is seen that for any step element x, |x| < 1 implies p(x)=< 1and conversely
o(x) < 1 implies x| £ 1+A.

We shall prove that above results are also valid for any element x of R. By Lemma 3,
there exists a non-decreasing sequence {x,} of step elements in R such that supnz: x»=|x| and
hence by the Lebesgue bounded sequence theorem we have limn.. 0(x»)=p(x). Using
this fact and the continuity of the norm we have for aky element x in R,

lx] £ 1 implies p(x) < 1
and
olx) =1 implies |z} £ 1+ A.
From the above considerations, R is toplogically isomorphic to the subspace A={(x
/s, B)ixe Rlof Lo(&, ). Espetially, we have |x[leZ|x||<(1+ A)llxlle for xE R,
where we identify any xR and (x/s, B)= A under the linear and lattice isomorphism.

Now, let us take an f(B)E L4(&, u). Since F(B) is almost finite in &, by the Lussin’s
theorem (for example, see [3;p. 243] or [12;Chap. 5, exercise]) there exists a sequsnce of
compact sets C, such that

wW(E—Cr)E1/n, C.CC C-CCrCr-and £(B)is bounded and continuous on each C..

On the otherhand, it is known that for each p& R, U,y 1s both open and closed and more
compact. Accordingly, the proper space & 1s a regular topological space, 1. e., for any open
set” G C&,if By, € G then there exists an open set £ such that Bo € E C E- C G, where
E~ is the closure of E.

And also, for compact sets C., there exist projectors [p»] such that [p.] t 5=: and
CrC Upa(n=1,2,--).(Cf. [10;Th. 16.3])

Therefore, for each continuous function /(P )xc.(P)(xs means the characteristic function
on the set E), we have the bounded continuous extension g,(L) of f(B) xc(B) over &
such that g,(B)=0 for B & Upp,. (Cf. [10;p. 16])

Consequently, by Lemma 2, for each n=1,2, -

xn:f g (B)d% s exists in R
&

and

N

<x",$>:gn(*l%):f(iﬁ)xcn(iﬁ) on Cu C Ui,

Obviously, the sequence {x,}in R is non-decreasing and we have

gn(BN 5= F(B) a. e
so that



On a characterization of some function space as Banach

. . . 1
lattices under the topological equivalence n

p(f)ziirgp(gn)zyg o(xa).

From this relation, we have

lgnlle 1 %=1 17 lle and hence |xallo * %=1 |/ ]lo.

By lxall £(1+ A)lxalle(2=1,2,+--) and the monotone completeness of the norm ||| on R.
there exists an element x & R such that x, 1 .= x and (x/s, B)=7F(R)a. e. Thus, R is
topologically isomorphic to the Orlicz space Lo(&, u). The theorem is proved.

In conclusin, I wish to express my sincere thanks to Prof. T. Ando for his suggestion

and to Prof. S. Koshi for his encouragement.
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