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Propagation of Elastic Wave in two Layered Concentric 

Cylinder Having Different Elastic Constants 

Kenichi G. MATSUOKA and Sumio G. NOMACHI* 

Abstract 

Propagation of stress waves in a two concentrically layered cylinder: an inner solid and 

an outer annular cylinders of different elastic moduli each other， is investigated as an eigen 

value problem of the coe伍cientsmatrices of boundary conditions which are derived from 

the solution of dynamic equations of cylindrical coordinates by means of Hankel 

transforms. 

The discussions are around the variations of wave velocity with the change of ratio 

between wave length and the diameter of the outer cylinder. Th巴numericalcalculations are 

performed for several ratio of the diameter of the cylinders. 

1. lntroduction 

A cylinder concentrically layered one with another is supposed to be the simplest 

example of composite materials. The solution of stress wave in th巴twolayered cylinder， 

may give us one of the basic properties conc巴rningthe stress wave propagation in a fiber 

reinforeced composite whieh has become of increasing importance as well as research 

object. 

In this paper， the discussion is specifically focused on the propagation of the axial 

stress wave in the two layered elastic cylinder. The variations of the wave velocity are 

shown by the change of ratio between the wave length and the diameter of the outer part， 

with the different combinations of elastic moduli and densities. The dispersion diagram 

thus obtained give the bar velocity of the two layered cylinder by letting wav巴lengthbe 

infinite， and the modes corresponding to various v巴locitydescribe how the composite 

action works between both layers. 
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2. Fundamental Equations of Stress Wave propagation 

The equation of motions written in the cylindrical coordinates r， {} and z， yield the 

solutions of the harmonic stress wave in the solid and the hollow cylinders by means 

of finite Hankel transforms in the r dir巴ction，as follows; 

Fig. 1 The two layered cylinder. 

u=(Amr+Bmr) cos m{}・e，tCI-zIV)
v= (Amr-Bmr) sin m{}・6削 I-ZIV)

Amrニ E1[必I(品r){a凶 μ+(m+l)Amk+ (m-l )Bmk-iNEmk/2} / Nμ 

十 (μN2/ρρ2){xi:j，( Nttr) / N，μ-NaXc.:t (Nar)/ N2} {f3mk/2μ 
+ (m+l )Amk-(m-l )Bmk-iNEmd J 

Bmr= 2:: [ -x~k}(Nμ r) {αmk/2μ+ (m+ 1 )Amk + (m--l )Bmk 

+iNEmk/2}Nμ+(μN2/ρρ2){X込!(Nttr)/N，μ-Naxi:} (Nar)/ N2} 

X {f3mk/2μ+ (m+1)Amk一(m-l)Bmk-iNEmk} J， 

ω=WmrCOS m{}・eitCト ZIV)= L [Ci:)( N，μr)Emk+ (2ttiN /ρρ2) 

X {C;;) (Nar) -Ci:) (Nttr)}{ f3mk/2μ+(m+l )Amk一(m-l)Bmk 

-iNEmk} J cos m8・e'PCt-zIV)， 

(1) 

(2) 

(3 ) 

(4) 

(5 ) 

where u， V，ωare components of displacements in the r， 8， z directions respectively. 

μ， A: Lame's elastic constants， N=ρ/V=2π=π!l• ρ: circular frequency， V: propagation 

velocity of wave in the z direction， L: wave length， 1: half of wave length，ρ: density， 

炉 0，1， 2，…・，N!=N2一ρpυ，N!=N2一ρ〆/(2μ+A).
The following functions are seen in the Eqs. (3)~(5) 

C;;)(Nr) =R;;:m(Nr) / Rぷら(Nak)，. x;;j，(Nr)=R払)1m(Nr)/R27間 (Nak)，

x込?(Nr)=R詐I明 (Nr)/R;;:m(Nak)， 

which are for the outer cylind巴rby letting the outer and inner radii al and a2， and ao 
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=a2， that is 

R;klm (Nr )=lj (Nr)Km (Nak-1)一(-1)j+mlm(Nak-1)Kj(Nr)， 

j=m-1， m， m+l， k=1，2 

In case of a solid cylinder， letting k=l， and the radius = a， we have 

R}~l，. (Nr)=lj(Nr) ， j=m-1， m， m+1. 

The functions 1 and K are the modified Bessel functions of the 1st and 2nd order 

respectiv巴ly.The letters αmk， j3mk， Amk， Bmk and Emk， are unknown coefficients relating to 

the stresses and the displacements on the outer and inner boundaries. 

3. Boundary Conditions 

By putting I for the subscription， we have the coe伍cientsof the outer layer and the 

coefficients of the inner cylinder are given by the subscription of 2， as shown in Fig. 1. 

Let r be ak in the Fgs. (3)， (4) we have， 

Amr)r~ak=akAmk ， (6)， Bmk)r~ak=akB帥， (7). 

1). Conditions for r=a，・

The Egs. (6)， (7) yield， 

i) Amr， l)r~a ，= a1Am1，，， B mr.1)r~a ， =a1B問 1.h (8) 

The outer surface is free from any stresses， and it follows， 

ii) ar ， a)r~a ，=O ム 13m1・1=0， 'rO ・ l)r~a1ニO 人 am 1 ， 1=0 ，

'rz a戸 a，=O，
(9) 

2). Conditions for r=a2• 

Likewise， we have from the Egs. (6) and (7)， 

iii) Amr， l)r~a2=a2 ・ Am2 '， I. Amr・2)内 2=a2Am1，2. 

Bmr. l)r~a2=a2Bm2 叫 1. Bmr・ 2)r~a2ニa2Bm1 ， 2， 
、‘，，，nU
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and the continuity of the displacements is written by 

iv) U1)r~a2=U2)ドa2 • V1)r~a2=V2)r~a2 • ωl)r~a2=ω2)r~a2 

Am2，I=Aml・2. Bm2・I=B問 1，2， Em2・I=Eml・2
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、、
Or，1)r=02=Or・2)r=02' Tr(} ・ l)r~a2ニ 'rO ・ 2)戸a2

αml.l-αm1・2. j3ml ，，= j3m1. 2 

and 

'rz ・ l)r~a2='問 02)r=a2' (12) 
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The Egs. (8)-(12)， 1ead to the rnatrix for the eigen va1ue frorn which phase ve10city 

of stress wave rnay be obtained. 

4. Numerical Example 

Taking the ratio of the e1astic rnoduli and the densities between both layer as E/ E 1= 

7. 0 and ρ/ρ1=3. 2 with the Poisson's ratio:ν戸116，).12=0.3， we carried out the nurneri-

ca1 ca1culation of the phase velocity cocerning axially symmetrica1 wave for a/al=O. 0， 

O. 25， O. 5 and 1. O. The case of a/a1=0. 0 and 1. 0 coincide with the cases a sing-

1e solid cylinder. The ca1culation of the eigen va1ues from the prescribed matrix， was 

performed by means of iteration keeping an accぽ acyfor a nurnber of five figures. 

The eigen va1ue is nothing but the phase ve1ocity， from which the group ve10city is 

derived by nurnerica1 differentiation. 

Fig. 2 shows the dispersion diagram concerning the phase ve10city of the 1st order. 

The ordinate of the figure is measured by the ratio between the phase ve10city and the 
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Fig. 2 The dispersion diagram of phase velocity. 
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0.4 

sbear wave velocity of tbe outer material， and abssisa， by a/l on tbe left and by 

lIa， on tbe rigbt part in wbicb 1 is tbe half of wave length. Thus the figure covers 

all tbe wave lengtb from zero to infi凶te. Tbe dotted lines are for tbe solid cylinders， 
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Fig. 5 The wave modes of W， 0 z， 0 nd T rz. 

one with E"ρ" )/1 and another with Ez，ρ2，1.12・Thefull lines are for the two layered 

cylinder， and they are drawn between both dotted lines in Fig. 2. In case of infinite 

wave length， VIVs，=1. 681 for a/a1=0. 25 and VIVs，=1. 942 for a/a，=O. 5. The bar 

velocities corresponding to the above， which are calculated by use of material constants 

averaged over cross sections， are 1. 699 and 1. 940， respectively. They are of fairly 

good coincidence. However， as wave length tends to zero the velocity become to that 

of Rayleigh wave on the outer free suface. 

Fig. 3 shows the dispersion diagram of group velocities. Tbe lines in the fig町巴

represent same discrimination with those in Fig. 2. The group velocities of the 

layered cylinder are not always evaluat巴dbetween those of solid cylinders. The 

minimum values for the layered cylinder are smaller than those of solid cylinders. 

Fig. 4 shows the phase and the group velocities of the two layered cylinder， and the 

group velocity is always lower than the phase velocity except in the short wave range. 

Fig. 5 includes many figures showing the wave modes of the axial displacement W， 

the stresses Oz and TTZ， with Ila，=50. 0， 10. 0， 2. 0， 1. 0， O. 5， O. 125， and O. 025. We 

see that the modes uniformly distribute over the section when the wave length in large， 
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however， the modes vary over the section as the wave legth becomes short. The mode 

in solid cylinder tends to surface wave style as the wave length becomes shorter. 

Whereas the mode in the two layered cylinder， keeps uniform distribution on the 

section of inner cylinder until a considerably short wave length occurs， a concentration 

of the mode to the outer surface takes place at very short wave length. 

5. Conelusions 

Investigating the propagation of stress wave in the concentrical two layered cylinder 

of different巴lasticmoduli and densities in th巴wayof three dimensional stre四 problem，

we have the results as follows: 

1). The phase velocity of the two layered cylinder is in good agr田mentwith the 

bar velocity by use of statical equivalent rigidity. 

2). By tending the wave length to zero， tbe phase velocity becomes the Rayleigh wave's 

one on the outer free surface. 

3)， The group velocity of the two layered cylinder is not always in between those of 

the solid cylinders of each elastic moduli and densities. 

4). The elastic wave concentrates to the outer boundary for the short wave length. 

The numerical example was calculated using FACOM 230-75 of Hokkaido U凶v巴rSl-

ty and MELCOM 9100 of Muroran Institute of Technology. 
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