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A Note of Vibrational Rate Equations for CO;~N, System
Applied to CO, Gasdynamic Laser

Kazuo Maeno

ABSTRACT

The detailed derivation of molecular vibrational rate equations in CO;—N; (+He) system
is presented, based on the assumption of three-mode model. Also given is an improvement
of the form of derived rate equations with temperature expression, which is convenient to time-
dependent numerical analysis. A quasi-onedimensional estimation of the characteristics of
CO; gasdynamic laser by these equations was performed with the aid of mass, momentum,
energy conservation, and equation of state. Explicit time-dependent technique devised by
MacCormack was employed. The estimated performance of CO; gasdynamic laser shows

reasonable agreement with the result from conventional CO; GDL analysis.

NOMENCLATURE
C : Mass fraction of i—th gas
H : Vibrational energy per unit mass of i—th gas (mode)
4 . Vibrational energy per unit volume of i—th gas (mode)
f : Activation factor, fraction of collisions that involves sufficient energy
g : Statistical weight of I—th energy level
h : Planck’s constant, #=6.6256x10"3¢ Jsec
k : Boltzmann constant, k=1.38054x10-23 J/K

Kw, Kc: Rate constants for T—V process defined by Egs. (3—17) and (3—18)

l : Quantum number of an energy level

mi : Molecular weight of i—th gas

M : Collisional partner molecule

Ni : Number (population) density of i—th gas per unit volume, Ni=IZ_IONi,1
Ni,;  : Number density of i—th gas per unit volume in energy level ¢,

N{/  : Number density of I~th energy level in i—th mode with r—th level in j—th mode
P : Steric factor, fraction of sufficiently energetic collisions for reaction
Pc¢  :rate constant of intramolecular V-V process defined by Eq. (4-7)

Q7 : Vibrational partition function of i—th gas

Department of Industrial Mechanical Engineering Muroran Institute of Technology

(29)



556 Kazuo Maeno

Qcy @ Rate constant of intermolecular V-V process defined by Eq. (4-8)

R; : Gas constant of i—th gas, Ri=k/m;
r : Quantum number of a vibrational energy level
T : Temperature, or translational temperature

%,% . Normalized number densities defined by Egs. (3—46)

7

% : Normalized number density defined by Egs. (3—46)

Xi : Molar fraction of i~th gas

Z : Number of molecular collisions per unit volume, per unit time

z; ; : Number of molecular collisions between i—th and j—th gases (modes)

v, V,V, vy Symmetric, bending, asymmetric vibrational mode of COgz, and vibrational
mode of N3, also denoting the energy frequencies of these modes
& : Vibrational energy of a molecule, e=lhv, 1=0, 1, 2,......

6,0,0,0y: Vibrational characteristic temperatures of modes v, v,, v,, and vy

v : Frequency of energy (radiated light), c=2av

7 ;  : Relaxation time of energy transfer between i—th and j-th gases (modes)
Subscripts

1, 2, 3, N:Vibrational modes v, v,, v,, vy

12 : The first mode of three-mode model, combined mode v, and v,

C : COq

N : N2

H, He: He

I, r :Quantum numbers

1. INTRODUCTION

With the progress of investigations about CO; gasdynamic laser (GDL), new appli-
cations have been in our scope to technology such as isotope separation, space energy
transmission, laser fusion, or material processing.  Together with these applicational
approach, the clarification of fundamental phenomena in CO; GDL is still of importance.
As regards the general characteristics of gasdynamic lasers, the reviewed volumes by
Anderson® and Losev® should be referred.

In analyzing the fundamental performance of CO; GDL, a system of ‘vibrational
relaxation equations that dominate energy transitions in laser gas system (COs—N3) play
a principal role. Several rate equations have been derived corresponding to the model of

COs—N; vibrational relaxation processes®®-®, Among others commonly employed are.the

(30)
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rate equations based on three-mode model, which were dissertated by Lee® or Anderson®
in the standard formulation. The detailed deduction of these equations, however, is not
so familiar to aerodynamicist who investigates CO; GDL from the fluid dynamical aspect,
and some misunderstanding for rate equations may occur without regarding the difference
of kinetic models, e. g. those of intramolecular processes.

Anderson? gave partly the information of these formulations following the work of
Munjee”, which is not enough to understand the intramolecular vibrational-vibrational
energy transfer of CO2 The derivation of these equations was given also by Suzuki® in
detailed form.

This paper presents the detailed formulation of vibrational relaxation rate equations
for CO2—N; system, according to the method reported by Suzuki, with further refinement.
Also an improvement of the form of rate equations is discussed in order to apply them

with computational facility to the numerical time-dependent analysis of CO,; GDL.

2. VIBRATIONAL KINETICS

Under the condition that dissociation or ionization of molecules are not prevailing, the
probabilities of detailed energy transfer in CO,—N; system are ultimately specified by the
following vibrational kinetic reactions;

Translational-Vibrational (7-V) Processes

COFw,)+M=—=CO+M+667 cm™! (2-1)
Ni*+ M= Ny+M+2331 cm™! (2-2)

Intermolecular Vibrational-Vibrational (V-V) Processes

CO¥(v,)+N===COs+N#+18 cm™! (2-3)
Intramolecular Vibrational-Vibrational (V-V) Processes

COF(w,)+M==COF** (v,)+M+416 cm ™! (2-4)

COF(w)+M=COF* (v,)+M+102¢cm™! (2-5)

In these kinetic reactions, the asterisks denote the vibrational quantum level in a given
mode, and M represents a collisional partner which may be CO,, N, (He). The intr-
amolecular V-V process given by Eq. (2—5) is well known as Fermi Resonance, where the
energy transition is so fast that modes v; and v2 can be reasonably assumed to relax in

equilibrium. Though the reaction by Eq. (2—3) can also be supposed as near-resonance

3D
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Fig. 1 Vibrational modes and energy levels of

CO2;—N; molecules. (three-mode model)

called “energy pumping”, these modes are treated separately because of the intermo-
lecular effect and of the applicability of this analysis to laser energy extraction. Ac-
cording to the conditions above mentioned, three-mode model can be assumed in vi-

brational kinetics of CO,—N, (+He) system, which is shown in Fig. 1.

3. FORMULATION OF RATE EQUATIONS

3—1. Vibrational Energy, Transition Probability, and General Rate Equation

As for the processes shown in Fig. 1,vibrational rate equations canbe derived in corre-
spondence with Eqgs. (2—1) to (2-4). Before penetrating into the each detailed rate
process, several fundamental relations of molecular statistics are outlined.

The vibrational energy of unit mass of i-th gas, ¢?,is given by

e 1
U — 1 3_1
€= Nimi; Nimi 120 Ni.ie= Nom IZ:ON;,Ith , ( )

where number density per unit volume, Aj;, is defined by the number (population) density

of i-th gas, NV, in energy level ¢, as
Ni=% N, e/ =Ilhv.
=0
From local thermodynamic equilibrium (Treanor Equilibrium) defined by temperature

(32)
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T, Boltzmann distribution in I-th energy level can be formed as

.g,. exp <~k—%)

= 3-2
lel N: Qf ( )

The statistical weight g, of I-th level is regarded as unity, and €/ is partition function of

i-th gas to give

Q,'-’=i exp <“M—1-J)=———L——— (3-3)

=0

for the system of harmonic oscillators. In terms of the combination hv/k called charac-

teristic temperature, ,, Egs. (3—2) and (3—3) become

Ni,i=Niexp (—@T-!){l—exp (—%)}
1 (3-4)
1—exp (—%%) ,

and vibrational energy e of Eq. (3—1) is expressed as follows?,

Q=

€f=RT25(:;: InQ¥= .__Q”ai__ . (3-5)
G

These relations are applied to the gas of diatomic molecule.  For poliatomic molecules
the relations can be extended, and the following equations are obtained about CO, under

the assumptions of local equilibriums;

Rcﬁl , 2R502 + R603

eg:(el;_'_zeg_'_eg):exp (%)_; exp (Tif)ﬁl exp (%33)_1 >

- (- )P (o (- (r-on (R 0on

where Ty;=T1=T,, T; are vibrational temperatures that define the local equilibrium vi-

(3-6)

brational energies, Rc is the gas constant of CO,, and 8, 6;, 65 denote vibrational charac-
teristic temperature for each mode in Fig. 1, 6,=1997 K, 6,960 K, 65~3380 K, (0,=3353 K) .
The energy ¢’ is extended to the local vibrational energy in i-th mode of CO,. The factor
2 of the second term in the right-hand side of Eq. (3—6) represents the degeneracy in v,

mode.
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In the process of vibrational energy transfer by molecular collision, the rate of a re-

action is presented in the following general expression'?;

which take transition

per unit volume, per that involve sufficient
unit time. energy.
[collision rate]Z [activation factor]f

per unit volume, per

Number of collisions (
unit time.

Number of collisions) Fraction of collisions)
X

collisions resulting in actual reaction, (3-8)
defined by quantum mechanics.
[ steric factor] P

(Fraction of sufficiently energetic
X

The combination fP is usually considered as transition probability. Activation factor f
can be evaluated from equilibrium kinetic theory'® or simply from the principle of de-

tailed balancing® to give

1l+1

JANE) ]=exp<—g,l%> for /-1I+1, o)
3-9

Hil'l]:l for I+1-1.

Using the terms above mentioned, obtained is the general rate equation that represents
the change per unit time of number density of harmonic oscillators in I-th vibrational
energy level as follows;

2l+1

. I+ 1+ IENES! 15
ANii_ o NN fE d IPL G 1 zuNuNe i fC 1 1PC s ]

a M
-1 )y

bil-1 1 - I-b/
2 NNt L7 1PL & 14z NulNesifL 1 1PC D, (3-10)

5,1+1
where z;, is collision frequency between i-th gas and M, and the bracket [ ¢ ] denotes

the transition of I-th quantum level of i-th molecule to I+1 level.
3-2. T-V Energy Transfer

Regarding the transition probability, Landau-Teller’s condition in quantum mechanics
gives the following relations for steric factor,
li+1 l+Ll
PL ¢ 1=PL i 1],
(3-11)
I+1,1 1,0
Pl ¢ 1=(+DHPL 7 1.
From Egs. (3—9) and (3—11), the general rate equation (3—10) becomes in the following

form,

(30)
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dNt,I

Vot WP Ui I DN, o=t oo (=5 ) { Vo= D ML)

(3-12)
As the vibrational energy e/ is expressed by Eq. (3—1), the rate of energy change is ob-

tained by multiplying lhv to Eq. (3—12) and summing them over to give

de! 1 ) 8, )
i MNMP[ i ]th [1(/+1)N, o2 rrexp (2 ){/N,, DN
(3-13)
In the bracket of right-hand side of this equation, we have
S {UCH) Ny o= 2N, Y= 5 U=1IN; = 3 N, == 3 IV, 1, (3-14)
1=0 1=0 =0 =0
and
S PNy - I D Ny )= IN6 i+ S N (3-15)
=0 =0 =0

With these relations, Eq. (8—13) is rewritten as

de! 1

d Pl i - S thl, r+exp (-%) (& mon S I, )]

=W};n—i2iMNMP[ ‘;"] { —eY+exp (—'9—T”> (e}’+k0yN;)}

=z,.MNMP[1'z'0]{1—eXp( 2} R<> ~et}. (3-16)

This is the rate equation for 7-V process, and applying this relation to N; and v; mode of

CO; (Egs. (2—1) and (2—2)), following rate equations are represented;

(), om0 {1 (-G Lon—a)

()1

ZKN{;;R(A%;’:)i—I_e;}’ (3-17)

(G zeuvap i1 {1-exp () - (5

el ) (319

where Ry is the gas constant of N,, and Ky, Kc denote the rate constants for 7-V pro-

(35)
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cesses.
3—3. Intermolecular V-V Energy Transfer

As for the intermolecular process in CO;—N3, following kinetic reaction should be con-
sidered;

CO% '(v)+N;=COL(v)+N; " +18cm™". (3-19)
Equation (2—3) corresponds to the case of the lowest quantum level of this equation, and
it presents the model to determine the kinetic rate constant associated with transition
probability in undermentioned procedure. Similar to Eq. (3—9) from the principle of de-

tailed balancing, activation factor f for this intermolecular reaction can be obtained as

LI+1 r+1,7 _
Flw, Nz]=exp(#03 0”>,

T

(3-20)

L o+l

f[ Vs NZ ]:1 >

and the relations between steric factors are given by
I+1,1 rr+l 1,0 0,1

Pl ; Nol= (1+1)(7’+1)P[V3 N»J,

(3-21)

[+1,0 r,r+l L,I+1 r+1,r

PLvs; N2 1=P[vs ; N;]

A) Intermolecular Transition Rate for Mode v3 of CO.
With the aid of relations aforementioned, the energy transferred into mode v; of CO,
can be estimated. In the similar manner as Eq. (3—10), general intermolecular rate

equation from Eq. (3—19) has the following summed form,
dNBl I+1,0 rr+l I+1,1 r,r+1

dt ZZCNNa 1+1NN rf[ v3; N, 1P[ vs; N, ]

L, 1+1 r+1,7 LI+l r+1,r

ZZCNNS INN r+1f[ v3; N» JPL vs; N; ]

oo 1,1-1 r,r+1 Li-1 r,r+1

"Z=OZCNN3,1NN,rf[ vy ; N2 JP[ vs; Ny ]

I-1,1 r+l,7 I-1,0 r+1,7

+ZZCNN31 1NN r+1f|: V3, Nz ]P[ V3, Nz]. (3—22)
Substituting Egs. (3—20) and (3—21), and with rearrangement we have

dnN. 1,0 0,1
d;l z2eyPlvs; NaJ [{(/"‘1)1\/3 1+1~ [ N3, 1}2 (r+1) Ny,

DN exp (< BE DN ] (5-28)

The summation terms can be modified as

(36)
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S o o 1 &
> (7’+1)NN,r=Z VNN,r+Z Ny,»=7— )y hyyrNy,,+ Ny
r=0 r=0 r=0 hVN r=0

=N (75 NN;Nk-H) (3-24)

and
Z(r"‘l)NN r+1—z rNN r= ka » (3_25)

to give ¢

1,0 0,1 v
gg%:zcnrNNP{ Iz Nz][{(l“‘l)Na,n1‘1Ns,l}(ﬁ%+ 1)

01\] 63 . _
_{(1+1)N3,1—1N3,;—1}exp< )NwﬁNk] (3-26)
The rate of energy change of €5 per unit volume is now obtained by multiplying Ilhvs

to both sides of this equation and summing them over,

< dN L0 0,1 o
S it = zCNNNvaa;Nz][goth3[{([+1)N3’ZH_ZNM}(Névk_H)

—{(1+1)N3,1—/N3,1—1}exp<0N;03)];]—Neo%?g , (38-27)

then we have

de 1,0 0,1

= ey NwPLvy; Nz]hw[(Ne k+1)2 I(+1) N3, ,+1~1N3,}
N

ek Oy—0,\ & o B
VoA exp (2 )120 I(I+1)Nas 1N3,,_,}]. (3-28)
The summation terms in the right-hand side are replaced as
) Y No o1 N }—i(m)/N S Ny (3-29)
EO{/(Z‘H N3 141 af= 2 507 L NS =" g s
and

5 {l(1+1)N3,1—12N3,;_1}=i [(H1) N3~ 3 (1+1)2Ns,
/=0 =0 I=-1
=—§](Z+1)N3,1

— (;ekJrNc). (3-30)

Equation (3—28) thus has the form

cfie; 2oy N PL :z: ;\/;] [N:gv,vk exp (0";03> (e‘§+ch03> - <N_5;£N_k+1> e‘é] .
(3-31)

Using the equations for energies per unit mass and gas constants,

(37
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. 8 T R . SR & (3-32)
eS_Ncmc’ N Nymy' “Tme’ M my

the equation of intermolecular V-V energy transfer rate per unit mass into vs mode of

)(e+RCB) ( i )e3]

(3-33)

CO; is transformed as follows,

(‘%‘i):ﬁ:zCNNNP[ Lf ?\/‘; ] [ Ruby, &P (

B) Intermolecular Transition Rate for N,

Similar to Eq. (3—10), the general rate equation of r-th energy level of N; has the

form;
dNNr o LI+1 r+l,r Li+1 r+l,r

Z CNNS,INN.7+1f[ vs ; N JPL vs ; N, ]

+1,] r,r+1 I+1,] r,r+1

Z ZCNNs 1+1Nu, - fL vs 3 N2 JPL vs; N2 ]

LI+l r,r=1 Li+1 7r,r—1

—Z ZCNNQ. /NNrf[ V, Nz ]P[ Vs , Nz ]

I+1,1 r=1,7 [+1,0 r-1,7

+Z ZCNNB 1+1NN7*1f[ vs ; No JP[ vy ; N. . (3-34)
Through the same procedure, following relations are obtained;

PN+ DNV} B DN

N 1,0 0,1
d—u=zCNP[ vs3; NpJ [exp (

at
~{ DN Ny } E G DN 1] (3-35)

2<1+1>N3,-k0 + N,

. . (3-36)

g(l“‘l)Na 1+1= kﬂi )

ANy, deh
ZorhovT =0

ZZCNNCP[L':; R/;] [exp( w0, )(N:§3k+l)huN{gor(r—i-l)NN,rﬂ-goerN,,}

eath < 2 _
Vo LZ 7 DN~ XN} | (3-37)

oo \4
Z{r(r+1)N1v,r+1—erN,,}=——ei ,
=0 0Nk

(3-38)

< 2
EO 7’(7’+1>NN'r 7 NN‘r} (6 k +NN>
and finally for the energy transferred into N per unit mass,

(38)
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)] (3-39)

_‘—ccaN Lie_té INT -
- CN03<dt> ’ (5-40)

deN INT 1,0 0,1 01\’*03 e?é
(dt)v_ zCNNcP[xzs,Nz] (e} +Ruby )Rﬁ eNexp< T >(Rcl93

where C¢ and Cy are mass fractions of COz and No..
3—4. Intramolecular V-V Energy Transfer

The intramolecular reaction between v; and v, modes of CO; is specified as
I+1 7 r r+3
COy(y, ; v )+ M==COxv,; v,)+M+416cm™", (3-41)
where Eq. (2—4) stands for the lowest reaction level to determine the rate constant.
The principle of detailed balancing is extendsed to r—>r+3 change of quantum number,
and activation factor is given by
1,l+1 r+3,7 0*3
SLv,s v, ]=exp<~—iTe—2),

I+1,0 77+3 (3—-42)
Lo, v, 1=1 ,

Also extended is Landau-Teller’s condition to r—>r+3 change, and from quantum me-

chanics the relations of steric factors are

I+1,0 rr+3 1,0 0,3
P[ v, va ]=—(l+1)(7’+1)(r+2)(r+3)P[ua, v,1,
(3-43)
1+1,1 r,r+3 4,l+1 r+3,7

Pl v, v, I=PLv,; v, L.

A) Intramolecular Transition Rate for Mode v;.of CO,

Corresponding to Eq. (3—10), general rate equation for I-th level of mode v; can be

written as :
dN. oo [+1,] r,r+3 [+1,0 r,r+3
“ZCMMN STves v 1Py, v, ]
2,7+3 1,i+1 r+3,7 [,i+1 r+3,r
chMNMN SUv,; v, IPL vy v, ]
5,1-1 r,r+3 L,I-1 7rr+3
—Z zCMNMN f[ vy, v, 1PL vy v, ]
2,7+3 I-1,1 r+3,7 -1, r+3,7
+Z ZCMNMN f[ vy v, JPL vy v, 1, (3—44)
where N%7 is the number den31ty of CO; in mode vz with [-th level and in mode v, with

r-th quantum level. Substituting Egs. (3—42) and (3—43) into Eq. (3—44), we obtain,

(39)
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ng[ 1 1,0 0,3 o 2,7 2,7
a7 6 2uNu Pl vy v, ]Z_o[(m)(r+1)(r+2)(r+3>N3 Lo DG +3IN

ren (i 2N -GN ).

(3-45)
In this step introduced are the normalized number densities defined by following

relations;

2
_N3.1 _NZ,r , N3T ,_NS.I N

="

X;= 7 X, =7 xr;= x;= ° =XiTy.
" Ne " Nc¢’ ONe "' Ne No TP

(3—46)

In terms of these variables Eq. (3—45) can be rewritten as

1,0 0,3 I
et NP v, v, INe ) [ DD+ D+ 0, 2, L+ D42+ D)y,

+exp (@){z<r+1>(r+2>(r+3>x,_lx,+3— DD+ 2+ 3)2,3,05 ).

(3-47)
Multiplying Eq. (3—47) by lhvs; and summing over all energy levels, energy transfer rate

of mode v3 in the process of Eq. (3—41) can be written by

de' = aN
Ti%zgo”“’a -

1,0 0,3

1 oo oo
~ & zaulin Neh,PLus; 2] | £ S {1 Dy~ } 2,04 DG+2)r+3)

rexp (350 £ § {0+ D} 2 D204 (3-48)

I=0r=

The first summation term in the bracket of this equation becomes
S S {1 Dz a2, DO 2)(+3)
=0 7r=0
=35, DG+ E - Dln~ T Pa,}
r=0 =0 /=0
=3 12, 3 (P67 117 +6)z, , (3-49)
JEC =

and the second summation term is, without exponential factor,

TS {lzx,_l—l(l+1)x,}x,+3(r+1)(r+2)(7’+3)
{=0r=0
=5 DD+ £ D~ B 10 D)

=§ (r%c,—3r%c,+2rx,) <1+Z lacl) . (3-50)
7=0 =0

(40)
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Substituting Eqs. (3—49) and (3—50) into Eq. (3—48), obtained is

a1 1,0 0,3 =
d_tsz_G_szNMp[ vy v, J [—e‘;go(73+672+11 r+6)zx,
+ exp (302463> (Nchus_'_e;’) 20(7’3—3?’2'4"27)1‘,:1 . <3—51 )

To evaluate summation terms in Eq. (3—51), a Boltzmann distribution function is
introduced. Without taking into account other modes, mode v; of CO;is assumed to be in
a local vibrational equilibrium specified by a temperature T. Note that the partition
function is different from what defined by Eq. (3—7) because of omitting other modes in

CO;.  According to this assumption, following relations are obtained;

__ﬁz,_l_eXp< Z?)
T Ne QY
p=7r

={1—exp (hv,B)}exp (rhv,H), (3-52)

where partition function " is given by Eq. (3—3), and vibrational energy per unit volume
ey is represented from Eqgs. (3—1) and (3-5),

Nc/’ll/z

eV= Ncmce‘;='§orhuchx,=m . (3-53)
From Eq. (3—53), the summation of rx, is given by

oo A

Y rz,= 1 =% —y, (3-54)

= exp(—hv,8)—1 " Nchv,

Also from the first differentiation of this equation by g, following relation is obtained;

i(i ) hvsexp(—hv,8)  (e))%exp(—hv,B)
ap lexpC v, -0 (No)%hw,

v
+ —_
Nchuhu2< Nch) I, A(L+A) . @)

In a similar manner the second derivative of Eq. (3—54) with respect to § becomes as

ol hv,exp(—hy, )
0,82 <Z=: ) {exp(—hv,8)—1F
=(hv2)2A(1+A)(1+2A). (3-56)

On the other hand the summation of rx, is also obtained from multiplying Eq. (3-52) by

r and taking their summation over r as follows,

hiNgk:
g
X

=§07{1*exp(hu2/9)}exp(rhuzﬂ). (3-57)

(40
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Taking the first derivative of this equation with g yields

28 (; rx ) Z:O[ r*hy,{1—exp (hv,B)}Yexp (rhv,B) —rhy, exp (hv,B) exp (rhv,8)]
3,2 _5 N
rgor hvz, Eorhuz exp (—hv,)—-1
=hy, Z,Orzx,—huzAz,
and the summation of r%x, can be obtained from this relation together with Eq. (3—55) as

Z r’r,= h Y (; rx )+A2=A+2A2. (3-58)

The second differentiation of Eq. (3—57) with respect § similarly becomes;
a7 (5r) =25 2

= Z { 7% Zu%x,—Zrzh 2%
7=0

Z (#*hv,{1—exp (hv,B)} exp (rhv,B)—rhy, exp (hv,B) exp (rhv,B)]

xr
exp(—hv,f)—1 A Vzexp( huzﬂ) 1}

=% er 2”1’\;0 ™ aﬂ(;orx)+A2}—h2u%A2,

which gives the summation of r®x,, along with Eq. (3—55),
ol 1 25
3 2+ 3
rgorx, T )26ﬂ2<2 rx) Nc(hvz)z 6ﬁ<rzom) A+ A
=6AH6AA. (3-59)
Using Egs. (3—54), (3—58), and (3—59), the summation terms in Eq. (3—51) can be evalu-
ated to give;

Eo(r z,+67%c,+11rz,+6x,)=6 ( N hv2+1>

(3-60)
< 3. 0,2 — €3 \3
go(r x,—3r%,+2rz,)=6 (Nchu) .

Substituting these equations into Eq. (3—51), obtained is

de}

o zCMNMP[ vy (z)Jz] [<Nch ) (e§+Nchv,) exp <3627T03) —e} <N:I‘1£V % 1)3].
2

(3-61)
Finally the equation of intramolecular V-V energy transfer rate per unit mass into v;

mode of CO; is represented as follows;

(42)
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(%):TR_ZcMNMP[VS, sz] |:<R 0) (e4+ Robs) eXp(SﬁT 03)_6% <1+ Ritf?)a] .

B) Intramolecular Transition Rate for Mode v; of CO,
Similar consideration can be applied to the mode v; of COj and the equivalent rate

equation to Eq. (3—44);

dNZr o L,l+1 r+3,r 1,I+1 r+3,r

L 2uNulNe) " FU v o wa JPLvs 3 vy ]
1=

Lil+1 r,7-3 Ll+1 r,7r-3

_ZZCMNMN3lf[ Vg 3 VY, ]P[ vV, s Y, ]

I+1,1 r,7+3 I+1,1 77r+3

—ch,‘,,NMN3 rr S vy v, IPL vy v, ]

I+1,1 r-3,r I+1,1 r-3,r

+ZzCMNMN3 ,ﬂf[ v, v, JPL vy v, ] ' (3-63)

is transformed into

aNo.s =—é—zCMNMNCP[ Va5 [ 2 D2 { DO+ B) gy =r =D —2)2,}
=0

dt
xexp (L) £ G0y (DO D09z, r DDz}
=0
(3-64)
Making use of the following e_quations;
Z 1‘1:1 ’
=0
oo eg
D= (3-65)
EO(/ Dz, I, Ne
(1) et
P L+ thNC H

30, 03){ 2 rr+1)r+2)(r+3)z,.4

1,0 V
=—é—ZcMNMNCP[ Vs V ] hye <N . 1) exp<
- p _

_ rZ:OrZ(r—l )(r~2)ac,}—hv2 (—_NchVS){ Eor(r+1)(r+2)(,+3)x7

—2072(7—1)(7—2)@_3}]. (3-66)

(43)
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The summation terms in bracket are estimated by

Zr(r+1)(r+2)(r+3)x,+3 Zrz(r—l)(r—Z)x, 18 (2

Z rr+ 1D+ 2)(r+3)x,— Z r*r— 10—z, =

=0

And finally obtained is the rate equation of intramolecular V-V energy transfer per

unit mass to mode v; of CO; as follows;

(%)

1,0 0,3

szNMP[u'a;z; ]ﬁ[ <

Rdb,

4. COMBINED RATE EQUATIONS FOR CO.—N; SYSTEM

According to the three-mode model shown in Fig. 1, summarized energy rate equations

3
(63+Rc«9 Jexp ( 2

Nchyy >3

18(Akhyjq)3

3

T

_0>+e

(3-67)

for modes of energies €= e+ 2é}, €4, and &} can be given by the following relations;

‘Z‘l? 2 (lfiet:z)T |/+2 (%)Zi ’
GGG
GGG

Substituting Egs. (3—17), (3—18), (3—33), (3—40), (3—62), and (3—68) into these terms

yields the final form of Egs. (4—1) as;

delz " 362
—_— +_
q Ay A
des
dt ’
de,'(,__ " Ccﬁzv v
at A4 g, A0
where
0
Ae§=2KC{e§— ——RC—,,Z——}
exp <?2>~1
Ry
skt
exp <?)—1

(44)

(4-1)

(4-2)

(4-3)

(4-4)

(4-5)

(4-6)
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set=2Pc{ ({;—02 +1)3eg— (et Ret,) }%)Sexp (5—‘%”—53) 2 (4-7)
aetv=Qor{( o5+ Re00) pohexp (P200) - (1)t} (4-8)

These relations are what are called vibrational rate equations for CO;—N; (+He) system

employed in the analysis of CO, GDL. Here rate constants Pc and Qcwy are defined by

1,0 0,3
Pc:ZCMNMP[V3§ val,

1,0 0,1

QCN=ZCNNNP[V3; Nz],

and each of these constants is the reciprocal of vibrational relaxation time 7, so that the

parallel resistance rule for r can be applied to the constants to give,

Xc X
Ko, Xey Xue
Ton Toc  ToHe
Xu
KN= ¢ ,
TNHe (4-9)
Xy Xc X
Pe= el _C_|__H_"’,
Tv Tic T3he
Xw
Qev=—""
Tne

with neglecting small terms. Relaxation times can be practically determined by empirical
data, e. g. from Taylor and Bittermann!®. The data for relaxation times used in our in-
vestigation of COz GDL are examplified as follows;
log (pr,c)=—0.7636—30.94a+599, 1 ¢?*—2123a3,
log (pryy)=—2.475+41.43a—94.36a7,
log (pr34,)=1.673-72.31a+635.9a*~1667a?,
log (pryp.)=—2.179+34.6a,
log (pryc)=—0.7297+19.03a¢—170.4a’+159.7a3, (4710
log (prye)==0.9207—89.93a+1433a¢?~5114a?,

log (prgy)==20.73+412.9¢—2681a¢?+5988c?,

log ( pray,)=3.360—160.8a+1821 ¢*—5699a3,
where T(K), p(atm), and t(u sec) are employed and
a=T7"3 .,
For example, the relaxation constants obtained from Egs. (4—9) and (4—10) are shown

in Fig. 2, in the case of (X¢, Xw, Xn.)=(0.1,0.4,0.5).

(45)
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0 —~Pc IS
| ——Qcn -
— K¢ -
g
L |

007 003 011 013 015 017 019 0.21
11
T2 (K?)
Fig. 2 Variation of rate constants with temperature.
(X, Xy, Xne)=(0.1, 0.4, 0.5)

5. AN IMPROVED FORM OF RATE EQUATIONS

Owing to the assumption of 3-mode model in CO;~N; system, modes v; and v, are spe-
cified by a single vibrational temperature T1;. When this model is applied to the numerical
analysis such as time-dependent method for quasi-onedimensional nozzle flow of CO;—Ny,
algebraic equation with respect to T2 must be numerically solved at each step to obtain
the energies ¢4 and e separately. To avoid this numerical inefficiency, the rate equations
are transformed into the improved expression with vibrational temperatures.

Since the vibrational energy in each mode is a function of single vibrational temperature,

following derivatives with respect to the temperatures can be derived;

\ exp (2-) exp (22
Z;ll: N [T\ T12c91 2 T2 T12\? Tléz 2| (5-1)
(71) {exe (T—l)‘l} (5—2) {exe (7—1)“1}
85
g;_i: y exP(n) 5o

() e (@)1

(46)
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Oy
defy eXp(TN) (5-3)
LN _ R, . _
M G e (7)1
01v TN
The Rate Equation (4—2) for mode I in Fig. 1 can be arranged as
del, dTy, 30
dTy dt def+— 0 dés, (5—-4)

and with the aid of local equilibrium together with Eq. (5—1), the expression with T’

transformed from Eq. (56—4) is obtained as

iy [ o) o) T
Zt(a—)h <%>2{8Xp (%)_1}2+2 (le> (o <le B 1} (—AT$+34TY),
where 4T% and 4T%, are defined by (6-5)
ATzvzch{eXp<;ii)_l eXp(%)_l}’ -,
o (2 oo @) (52

{oo (7)1} {or (7)1}

In the similar procedure to obtain Eq. (5—5), expressions of Eg. (4—3) by T and Eq.

(4—4) by Ty can be transformed as follows;

(&) oo (7)1}

d <€:) exp (70:2> (—dT%+4T%y) , (5-8)
<TN)2{eXp <ﬂ>—1}2
5 (gi) Oy - <§§)N <—AT}\’, g;g;ATg’iv), (5-9)

where 4T%y and 4T% are given by

O3\ (00 (O
ATy = chexp<T3>exp< I ) eXP(TN), (5-10)

{oo(3)-1Hew() 1}
1 - ! . (5-11)
AT{= KN{exp(?Z}) . exp(?”) 1}

40
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Equations (5-5), (56—8) and (5—9) are the temperature expression of rate equations,
which can be employed to numerical analysis without solving them to obtain vibrational
temperatures in each numerical step.  The similar consideration can be applied also to
the vibrational energy expression of rate equations, and both expressions are utilized ac-

cording to numerical demand.

6. CONCLUSION

According to the assumption of three-mode model in CO;~N,; (+He) system, the de-
tailed derivations of molecular vibrational rate equations are presented. An improvement
of the form of these equations convenient to time-dependent numerical analysis is also
made to be present.

Along with this system of rate equations, mass, momentum, and energy equations and
equation of state are employed to estimate the performance of CO, GDL. A quasi-onedi-
mensional calculation of these equation was applied to a nozzle shown in Fig.3 by explicit
time-dependent numerical method devised by MacCormack as an example. The typical
result for the distributions of temperatures T, T2, T3, and Ty is represented in Fig. 4. As
can be seen in this figure, the present method by the system of rate equations with temper-

ature expressions predicts reasonable performance of conventional CO; GDL.
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Fig. 3 Nozzle configuration
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Fig. 4 Distributions of translational and vibrational
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