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Heat exchange and metabolic response to gradual 

cooling in developing chick embryos 

奥田 篤・小師 隆・鈴木幸司・田津 自告

ATSUSHI OKUDA. T AKASHI KOMORO. YUKINORI SUZUKI. AND HIROSHI T AZA W A 

Abstract 

(1) The large heat conductance of incubating eggs indicates that heat loss upon step-function exposure to even 

mild cold (1-2'C difference) exceeds metabolic heat production of developing embryos 

(2) Determination of O2 consumption during gradual cooling of the egg suggests that a weak metabolic re-

sponse emerges at about day 18 of incubation 

(3) After external pipping. the metabolic response to gradual cooling is stronger. The embryo need not emerge 

from the egg for the compensation to occur 

(41 Thiourea which antagonizes the metabolic effects of thyroid hormones impaires this metabolic response 

(5) We suggest that precocial hatchlings in 0110 may exhibit incipient endothermic homeothermy. Full 

homeothermy may be prevented by the low gas conductance of the eggshell. effectively“throttling" the 

embryo's heat production capacity. This is a constraint altricial birds probably never experience 

1. Introduction 

There is no doubt that chickens are dominantly poikilothermic during embryonic stages and de-

velop a marked capacity to maintain body temperature after the time corresponding to hatching 

(Romijn and Lokhorst. 1955; Freeman. 1964. 1967; Wekstein and Zolman. 1967; Tazawa and 

Rahn. 1987). When it comes to the emergence of metabolic compensation to cooling during 

embryonic development. experimental results are ambiguous. It has been reported that when 

embryos reach 19 days of incubation. they respond to cold with a transient increase in O2 con 

sumption (Freeman. 1964). while in other reports (Romijn and Lokhorst. 1955) this apparent 

metabolic compensation does not appear. even in the full term embryo. Rather. O2 consumption de-

creases upon cold exposure. reacting to cooling as younger embryos do. To examine the metabolic 

response of developing embryos to cold. a magnitude of cold relative to a metabolic heat produc-

tion of embryos may be substantial. The present study was therefore designed. at first. to estimate 

the magnitude of heat conductance of eggs which allows the heat loss upon cold exposure to exceed 、
the metabolic heat production. Secondly. based on the result of the first experiment. the gradual 

cooling procedure was designed to make the difference between hcat loss upon cooling and heat 

15 



奥 田 篤・小師 隆・鈴木幸司・田 i宰 自告

production very small and examine whether or not a metabolic compensation to cooling emerges 

before hatching. The result suggested that the metabolic response emerges before hatching. Fur. 

thermore， it has been reported that the thyroid hormone is involved in the thermoregulation of 

newly hatched chicks， which further prompted us to examine if the thyroid hormone is related to 

this metabolic response of embryos. The third experiment was therefore designed to determine the 

metabolic response of embryos which were given thiourea antagonizing the metabolic effects of 

thyroid hormones. Lastly， we envisioned the transition from poikilothermy to homeothermy in pre. 

cocial and altricial birds 

2. Methods and materials 

Determinati仰 ofegg heat conductance Fertile chicken eggs were incubated at 380C in a forced 

draft incubator. One day prior to measurement of egg temperature， a calibrated cupper.constantan 

thermocouple， 0.8mm in diameter， was implanted 1cm inside the egg. The egg， along with its ther 

mocouple， was returned to the incubator. The temperature was measured to O.lOC (model BAT8， 

Instrument Lab.， U.S.A.). The following day， the equilibrium temperature of the egg in the 380C in. 

cubator was recorded and then the egg was moved to a 280C chamber. The egg temperature was 

continuously recorded during the next 5 hours. The cooling curve to this step.function change in 

ambient temperature was used for calculating the egg heat conductance. When the cooling curve is 

approximated by Newton's law of cooling， the coefficient of cooling rate (k) can be calculated from 

egg temperature at time t (T(t)) as follows， 

k=ー (lIt)lnIT(t)-(Tex +ムT;l]/IT。一(T目+ムTi)] (1) 

where To is equilibrium temperature of the egg in 380C ambience，ム Tjis temperature difference 

between egg and ambience and Tex is exposing temperatllre. The reciprocal of k is a thermal time 

constant (τ) which is given by a product of heat resistance (R) and heat capacitance (C) of the egg 

(r = RC). Suppose the heat capacitance (C =ρ.c.V， where p =egg density (1.035g/cm¥ c=spe 

cific heat (0.8 cal/(g・OC))and V=egg volume (60cm3)) is 50 calrc， the heat conductance (G=l/R 

in cal/(min・。C))is approximated from thεcooling rate coefficient mllltiplied by 50. The value was 

converted to SI units (m W /oC) dividing by 14.32 X 10 -3. 

Determination of oxyg叩 consumttionduring gradual cooling The oxygen consumption (M O2) was 

measured with a modified Scholander and Edwards respirometer (Scholander and Edwards， 1942) 

which was submerged in the thermostatted water bath (45 X 45 X 30cm¥ Gradual cooling of the 

egg was accomplished by turning off the temperatllre reglllator of this water bath. The average 
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cooling rate coefficient of the water bath plus eggs was 0.180C/ (hr・'c)and it took 7-8 hours to 

cool to room temperature. This procedure made the difference between the heat loss estimated 

from the egg heat conductance and the heat production small 

The egg respirometer consisted of two plexiglass chambers of equal size， connected by a water-

filled U・shapedmanometer. The experimental egg， along with a KOH solution， was placed in one 

chamber and a non-living egg was placed in the other (compensating chamber). When the water 

bath was allowed to cool， the temperature change in the egg of the experimental chamber was com-

pensated by that of the non-living egg， which had similar cooling time constant. Furthermore， the 

thermocouples installed in both egg chambers recorded temperatures continuously and showed no 

significant difference during the cooling phase. As embryos consumed O2， the level of water in the 

manometer was displaced， which was periodically corrected by injecting O2 during 10 or 20 min 

The time and volume of O2 injected were recorded and a regression equation was calculated for 

the variables after the volume was reduced to STPD. The M02 was given by a slope of regression 

equation and the value was expressed in IIday 

Administration 0/ thiourea Treatment of eggs with anti-thyroid hormone (thiourea) followed Witt 

mann et al. (1984). A 50 

mg-thiourea was solved 40 

in 5 ml-saline. On day 

17 of incubation， a small 38 

hole was made in the 

巴ggshell and 0.25 ml-
ι。236 
} 

thiourea solved saline 三q‘ー~ 34 

(32.8 micromol thiourea) βceEE ‘-L ， ， 32 

was injected into the 

allantoic fluid. The hole 
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egg which were exposed to step-function decrease in ambient temperature are shown in Fig_ 1. Due 

to the metabolism. the egg equilibrium temperature in 380C (referred to as To) was higher than the 

ambient. a difference of which increased with embryonic age (referred to as Ll TJ The non-living 

(dead) e.邸 had.on the other hand. equilibrium temperature below the environment because of evap-

orative heat loss and lack of metabolic activity. Upon exposure to low environmental temperature 

(referred to as Te.). the egg cooled exponentially and 4-5 hours later egg temperature reached a 

plateau (referred to as the quasi-equilibrium temperature). The cooling rate coefficient was calcu-

lated from eq. (1) and the time constant (reciprocal of cooling rate coefficient) is shown in Table 1 

along with Ll T j • The heat conductance (G) was approximated by dividing the heat capacity by time 

constant (Table 1). 

-
Metabolic restQnse to gradual cooling Eighteen eggs. ranging in ages from 12 days to externally 

pipping. were subjected to measurement of M02 during gradual cooling. The measurement of M02 

was repeated for some eggs on different incubation days. The metabolic responses to gradual cool-

ing which were determiQ.ed for embryos before external pipping were sorted out into two groups 

based upon the following criterion in order to discriminate development of responses. The crite-

rion used for discrimination was the oxygen consumption which was decreased below or main-

Table 1. Summary of results from step-function cooling experiments. 

Age 12 13 14 17 18 19 E 
(days) 

Measured quantities 

No. 2 2 2 6 6 7 9 

OTi 0.55 0.75 1.0 1.7 1.9 1.8 2.2 
(OC) :1:0.4 土0.2 士0.4 士0_3

τ 47.6 45.0 44.6 42.1 41. 2 41.3 41. 2 
(min-1) 士4.0 士3.6 :1:1.3 士4.2

Ca1cu1ated quantities 

G 63.2 68.2 68.2 72.6 73.9 73.9 74_1 
(mW.・c1) :1:6.2 土5.9 :1:2.8 土7.6

q 34.8 51.0 68.2 121.4 136.7 131.6 163.4 
(mW) 士29.9 :1:21.0 士30.4 :1:21-5 

目。2 0.16 0.23 0.31 0.56 0.63 0.60 0.75 
(1・day-1) 土0.14 :1:0.11 士0.15 士0.13

E externa11y pipped eggs 
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(two 21-day， one 22 -day and one 

23-day old) 

4" Discussion 

Heat conductance 0/ the egg and 

C仰向ns仰 between heat production 

and heat loss upo日 cold exposu re 

During embryonic stages， eggs 

cooled with almost indentical rates， 

irrespective of developmental stages 

and even external pipping (Fig. 1 

and Table 1). The heat conductance 

of the egg approximated from the 

cooling rate coefficient results in 
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day 22 of incubation 
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Fig. 2.d. (d) Eggs treated with thiourea (2， 2 and 1 eggs for days 

21. 22 and 23， respectively) 
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cubation， respectively. The metabolic heat production divided by oxycalorific equivalent (4.5 cal/ 

min， Brafield and Solomon， 1972) gives Moソ atequilibium state; 0.22， 0.52 and 0.83 l/day at days 

13， 18 and 20， respectively句 forthe embryo shown in Fig. l. Th巳 O2consumption calculated as 

above for embryos subjected to step-function decrease in ambient temperature are shown in Table 

1， which is approximately identical with previously observed values (Romanoff， 1967; Visschedijk， 

1968; Bissonnettc and Metcalfe， 1978; Ackerman and Rahn， 1981; Tazawa and Rahn， 1987) 

Comparison betwecn heat conductance and heat production of developing embryos suggests that 

the heat loss caused by ambient temperature drop of 11.5'C is almost comparable to the heat pro 

duction of late embryos during early period of exposure and exceed that of younger embryos. Ex 

posure to ambience whose temperature is a few degrees centigrade lower than incubator tempera-

ture causes the heat loss to exceed the heat production. Therefore， a step-function decrease in 

ambient temperature more than a few degrees centigrade may not be adequate to determine an emer-

gence of metabolic response of developing embryos to cooling， because the large heat losses may 

overwhelm it 

Restonses to gradual cooling in ambient temterature Calculation of heat loss conductance indi 

cated that the heat lost at the beginning of exposure to 0.5-1.50C step-function decrease in ambiザ

ence is almost equal to metabolic heat produced by embryos developing during last half of incuba 

tion period. This suggests the gradual cooling o"f the surrounding may make the difference between 

heat loss and heat production very small throughout the temperature transient. This“drawing out" 

of the cooling curve may make it easier to see whatever small metabolic response might occur 

This appears to occur in late term embryos. The M O2 response to gradual temperature drop is 

different in eggs of different developmental stages (Figs. 2a-2d). The Moz which decreased gradual-

ly with decrease in ambient temperature was observed in younger embryos including four 17 -day 

old ones. As embryos grew to near the end of prenatal preiod (about 18-19 days and onwards)， a 

plateau of Mo~ (defined as M02 kept within 95% of control) is evident during at least the first one 

hour of exposure， while ambient temperature decreased by 30C. Because eggs were cooled as 

second-order system， the plateau of metabolic rate which appeared in the first stages of cooling 

might be claimed not to an evidence of metabolic compensation， but a result of the second-order re 

sponse of heat exchange. This is not the c呂se，because there is no such plat回 uin Mo~ in younger 

embryos. In addition， the plateau of M O2 which appeared in near term embryos does not owe to 

their metabolism which is enhanced with age towards the end of incubation， for this enhanced 

metabolism becomes almost identical value from 16-17 days up to external pipping. 

The condition that changes in the environmental temperature had no effect upon metabolic rate 
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was termed the neutral condition (ref. Fr巴eman，1964). The neutral condition has been reported 

for the paranatal embryos which were exposed to step.function decrease in ambient temperature 

by 2.TC (Freeman， 1964). In the present experiment whose cooling procedure was not made by 

step.function， litt1e change in M02 was observed already the late prenatal embryos which were ex. 

posed to temperature lowering by 30C. Romijn and Lokhorst (1955) failed to see any metabolic 

reaction in ful1 term embryos when they were exposed to step.function cooling over 30C. However， 
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its membrane， the temperature change followed this line. Because egg chamber was saturated with 

water vapor to 100% and thus little evaporation occurred， the dead egg temperature was the same 

as environment during equilibrium at control temperature (380C). With gradual cooling， it deviated 

from a temperature isopleth because of large heat capacity of the egg compared with air. In living 

eggs， the temperature response curve started from further high temprature because of increasing 

heat production， but gradually decreased with time目 Afterprolonged exposure， living eggs still 

maintained a temperature higher than the dead and the surroundings because of metabolism， 

although it was much reduced 

The metabolic responses to gradual cooling are augmented in externally pipping embryos， but 

the egg temperature is not still sustained even during early period of cooling exposure. 

The metabolic response to cooling which is large enough to sustain egg temperature appears af“ 

ter the time corresponding ωhatching. Fig. 4 shows the M O2 and egg temperature responseωgrad-

ual cooling on day 22 of incubation. This egg was subjected to the same measurement during inter 

nal pipping on day 20. The chick was supposed to hatch one day prior to this measurement， but 

was still in the shell until 2.5 hours later. The M02 increased upon exposure to ambient gradual 

cooling up to about 10% above the control. Initially， egg temperature was increased slightly dur-

ing early period of exposure. However， the increase in metabolism was not yet large enough to 

maintain further the temperature which was decreasing in the meantime. The precipitous decrease 

in M02 occurred when the shell was separated and again after the chick emerged from the shell， 

which implies that the augmented latent heat loss of vaporization overburdens the chick's metabol-

ic capacity for heat production. 

The effect of thiourea on metabolic rest仰 se While oxygen consumption of embryos at 380C aver 

aged out to 0.54 (N=5)， 0.56 (N=6)， 0.64 (N=4) and 0.92 (N=5) l/day for 17-day， 18-day， in 

ternally pipping and externally pipping embryos， respectively， the average M02 of thiourea treated 

embryos before cooling exposure was 0.74 (N = 5) l/day at day 21-23. The M02 of treated 

embryos become large compared with that of late prenatal embryos， while it was prevented from 

increasing compared with externally pipping embryos. Nevertheless， the response to cooling de. 

creased with time as younger embryos did (Fig. 2d)， implying that thiourea prevents from metabo-

lic compensation for cooling which begins to emerge during late periods of prenatal development. 

The metabolic compensation is thus related to thyroid hormone and norトshivering

Envisioning for the transition from toikilothermy to homeothermy The transition from a poiki 

lothermic巴mbryoto a homeothermic hatchling is a two-part process. First， the embryo's nervous 

system must be sufficiently developed， so that the coordinated neural mechanisms necessary for 
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1984; Koskimies and Lahti， 1964): It appears that the thermore耳ulatorymechanisms of a precocial 

bird are adequately developed at hatching， needing only.to be“switched on" shortly after hatching. 

Do thεthermoregulatory differences between altricial and precocial birds extend to the embryo 

as well? An altricial embryo certainly is poikilothermic; the transition to homeothermy always 

takes place after the embryo hatches (Dunn， 1975; Hill and Beaver， 1982). Superficially， this 

appears to be the case for precocial embryos as well. We know of no case where a precocial egg 

has been shown capable of defending its own egg temperature. When exposed to cool conditions， 

precocial eggs invariably cool， as did the eggs in this study 

Nevertheless， we believe our date show that the thermoregulatory mechanisms of chicken 

embryos actually are“switched on" several days prior to hatching， even prior to external pipping 

If an embryo has externally pipped the egg， but not yet hatched， its metablic rate goes up in re 

sponse to cooling， as if the embryo was metabolically defending its egg temperature (Fig. 2c). Prior 

to external pipping of the egg， but after the egg is at least 17 days old， the metabolic response to 

gradual cooling is a plateau in metabolic rate at the start of cooling; the metabolic rate is“uncou守

pled" from egg temperature， at least for the initial phase of cooling (Fig. 2b). This response differs 

markedly from the matabol. 
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level of heat production this 

corr七日pondsto the egg tempera-

turc being warmer than ambient temperature by some Dlmlmum amount，ム T.This is similar to 

criteria used by others (e.g.， Dunn， 1975) to decide when altricial hatchlings may be considered 

endothermic homeotherms. It should be noted that the embryo's thermal conductance may change 

after hatching， whether because of evaporation from a wet， freshly-hatched bird， growth or insula-

tion (e.g.， Dawson and Bennett， 1981; Dawson et al.， 1976; Marsh， 1979). For simplicity，♂we 

ignore these post.hatching changes of conductance， for they make no difference to the important 

parts of our argument 

The eggshell gas conductance also may set a limit to the amount of heat an embryo can produce 

(Fig. 5). The diffusive conductance of eggshells to O2 is essentially fixed as long as the eggshell is 

intact (Paganelli et al.， 1978; for an interesting exception， see Booth and Seymour， 1987). There 

fore， the only way 0ヮfluxacross the eggshell， and presumably the embryo's heat production， may 

be increased is to increase the diffusion gradient for O2 (Visschedijk， 1980). Under “normal" con-

dition (i.e.， air at 1 atmospherε)， this means that hypoxia is the price the embryo must pay to in-

crease its heat production. Th巳reis presumably a limit to this， and this will impose a limit on the 

amount of heat an embryo in an enclosed eggs can produce (“O2 Conductance Limit"; Fig. 5). Be-

cause eggshell gas conductances of precocial and altricial birds do not differ (Ar and Rahn， 1980)， 
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this limit will be the same for both altricial and precocial embryos. 

We envision that a precocial bird's transition from poikilothermy takes place in four stages 

Each stage in the transition is characterized by its own limitations 

The first stage corresponds to most of the incubation period， when the embryo has neither suffi-

ciently developed controllers nor effecters. The metabolic rate is low， but increases as the embryo 

grows (“RESTING MET ABOLISM"; Fig. 5; Hoyt and Rahn， 1980). If the surroundings cool， the egg 

cools with it， and the metabolic rate goes down by some proportion (“COOLING MET ABOLISM"; 

Fig. 5). For chickenεmbryos， metabolism at 240C is about 40% of the metabolism at 3rc (Tazawa 

and Rahn， 1987). This change is in rough conformity with the Arrhenius limitation of temperature 

on chemical kinetics. This stage we refer to as A rrhenius-limited 

Altricial and precocial hatchlings share an Arrhenius-limited period. They differ in that altricial 

hatchlings hatch while their metabolic responses to cooling are still Arrhenius.limited; in other 

words， they are still poikilothermic. We are suggesting that precocial hatchlings come out of the 

Arrhenius叩limitedstage while they are still in the egg. 

For a precocial embryo， the second stage occurs from the latter part of the incubation period to 

external pipping. During this stage， the embryo's thermoregulatory control and effecter mecha-

nisms are sufficiently developed to be operative， but are“throttled" by the low conductance of the 

eggshell to O2 diffusion. If thεembryo's resting metabolic rate is still less than the eggshell's con-

ductance limit， a slight increase in O2 consumption might occur when the egg is cooled， but it will 

not exceed the O2 conductance limit. If the embryo's resting metabolic rate is already at the con-

ductance limit， a plateau， but no rise， in O2 consumption will be observed. This may explain the 

different results of Freeman (1964)， who saw an increase in metabolism in a cooling egg， and of 

Romijn and Lokhorst (1955)， who did not. With respect to egg temperature， if the throttled heat 

production is still less than the minimum required for homeothermy， the egg still will cool. At 

some point， the embryo's temperature may decline sufficiently to“switch off" the thermoregulatory 

machinery. Subsequently， the metabolic rate will decline in parallel with egg temperature， as it 

does when the egg's energetics are Arrhenius-limited. This stage we refer to as O2 COηductance 

limited 

The existence of an 0ワ conductance-limitedstage is predicted on there being a welldeveloped 

thermoregulatory system that would operate perfectly well if it were not throttled by the eggsh巴11.

This appears to be the case with chicken embryos， as we believe our data and those of others 

(Dawes， 1981) show. However， altricial embryos never will pass through this stage， because the 

controllers and effecters do not dεvelop sufficiently until after they have left the shell， and its pre-
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sumed throttling effect. Therefore， the conductance~limited stage should be unique to precocial 

embryos， 

After the embryo pips the eggshell， its metabolic rate is no longer throttled by the eggshell， be 

cause its gas exchange through the chorioallantois can be supplemented by breathing 02~rich air 

through the lungs. If the embryo is still in the egg， and its egg is cooled， it could increase its meta. 

bolic rate to the maximum it is capable of， as we observed (Fig. 2c). If the embryo's maximum 

metabolic rate still produces less heat than that needed to offset heat loss， the egg will coo1. In 

this stage， homeothermy evades the embryo because its capacity to generate heat is not sufficiently 

great. This stage might be called tower.limited. 

A power.limited stage is one that almost all avian young will go through. Again， altricial young 

will inevitably pass through it after they hatch. Precocial young probably will pass through it af. 

ter they pip the egg externally， and it will continue for some time after they hatch. Some very well 

developed precocial young， such as ducks and waterfowl (Koskimies and Lahti， 1964)， young 

brush turkeys (Booth， 1984)， or young murrelets (Eppley， 1984) may be capable of full~blown 

thermoregulation immediately after hatching; these hatchlings apparently bypass the power~limited 

stage altogether 

The final stage begins when the young呂recapable of fully defending their body temperature 

and continues through adolescence into adulthood. This is full~blown homeothermy， and is common 

to both altricial and precocial birds 

If the eggshell does“throttle" the nascent thermoregulatory abilities of precocial young， this 

raises an interesting question. To put the question rhetorically， if a precocial embryo has de. 

veloped the capability of independently regulating its own egg temperature， why should it not be 

homeothermic while it is in the egg? Why should the eggshell “throttle" it? 

There are probably many answers to this question. At least one is that an eggshell“throttle" 

makes the parent's parcelling of energy into the egg much more predictable. A homeothermic egg 

would have to be provisioned with enough energy both to develop and to regulate e耳gtemperature 

To successfully bring an egg to hatching would require the energetic costs of both to be predict 

able. The energetic costs of develop 
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It is well-established that the avian eggshell limits the diffusive loss of water vapor during in 

cubation to roughly 15% of the egg's initial mass， regardless of size of the egg or life history of the 

species (Ar and Rahn， 1980). It seems the avian eggshell is“designed" to limit water vapor losses 

during incubation. Perhaps the avian eggshell is also "designed" to limit the expenditures of energy 

during the incubation of precocial embryos. 
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