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Admissible Sectional Dimensions of R/C Floor Elements 

to be Designed without Deflection Check 

Part 1: Transverse Beams 

杉野目 章・井野 智・伊藤正義・駒込 環

Akira SUGINOME*l， Satoru INO*2， Masayosi ITO*3 and Tamaki KOMAGOME*4 

Abstract 

By use of our proposed modified method， a parametric deflection analysis is attempted for transverse beam 

models with their dimensions varied within a major practical range in typical cases of their end condition de-

pending on whether or not they have， at one end and/or both， adjoining beams in a slab-beam-girder floor sys-

tem; the analysis being intended to result in necessary criteria for beam section sizes admissible in floor de-

sign without intricacy of deflection check. 

Some other design criteria needed for maintained serviceability are derived at the same time_ 

1. Introduction 

Our most recent report indicated that a tenably adequate or practicable estimation system for 

long-time deflections of r I c flexural members had been provided by use our renovated method_ [1] 

Its .earlier form [2] was developed mainly incorporating D. E. Branson's accepted quasi-empirical 

formula and using the ACI's time-dependent multiplier; later to be modified reflecting Yu-Winter's 

well-documented test resu1ts combined with sustained elastic modulus used in the original paper 

for their evaluation. [3] And correspondingly the modified version adopted a more rigorous treat 

ment at difference mesh level of member stiffness in preference to its average whose expediential 

use is common in most design codes， generally tolerated as practically sufficing_ 

By use of this improved approach the subject matter has already been examined at the least for 

discrete beams; the result having been obtained and checked for three elementary cases of end re-

straint of a member viz. due to to its being supported and/or fixed at one and/or both member 

.J_ [1] [3] 
enas. 

Succeeding to this adequacy check of our method in such simpler cases， herein to be examined 

* 1 Muroran Institute of Technology， Muroran 050;本 2Faculty of Engineering， Hokkaido University， Sapporo 060; 

*3 Hokkaido Institute of Technology， Sapporo 006;本 4Hokkaido Branch， Sumitomo Construction Co.， Sapporo 060 
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(a) Vertical Forces. (b) Bending and Tor-
sional Moments. 

Fig. 2 Vertical Forces and Moments Acting on 
a Joint. 

are beam elements of two-way slab-beam-girder systems; specifically regarding major serviceabil-

ity limiting data including admissible beam section size ranges in case of their being designed in 

default of def!ection check. 

For this purpose， long-time def!ection analysis at the infinite member age is carried out on a reg-

ularly graduated set of member sizes within a commonly well-used range of total systein models 

under working loads. Preliminarily， the present analysis requires some additional finite difference 

formulation as follows 

2. Equations of Equilibrium at Member Intersections [3] 

2. 1 Vertical Forces 

For vertical forces acting on four members spanning in orthogonal directions x and y， as shown 

in Fig. 2(a)， the following condition of equilibrium holds at their mutual joint. 

(Q01-Q03) + (Q02-Q04) =Po 

where Q01-Q04 =member end shearing forces and Po=concentrated load acting at the joint. 

(1) 

For any member in the x-direction， the finite difference forms of end shearing force Qx are to be 

obtained from the governing equation (2) and its first integral (3) for beam def!ection w. 

d2 
1. d2w ¥ qx 

瓦子(Ix盃7)=EJ

d d2w， Q 
(Ix ~ _:~ ) = - ;x 

dx "X  dx" I Ec 

where Ix=moment of inertia and qx=intensity of load distribution corresponding to Qx. 

Initially the above two are given their corresponding difference expressions (4) and (5) 

E"In 世 Iki'j~lWi'j~2一山i'j~l+ kiJWi'j~l 十 (ki'j~l+牝 J十ki.j+1)Wi'j

2(ki.j+ki・j+1)Wi'j+1+ki'j+1Wi'j+21 -qxi'j= 0 
Rーし

Qx=一言主 l-ki'j~lWi'j~2十九 J←川 l-(ki ' j ー 1 一 ki ' j +1)Wij
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2ki.j+lWi'j+l + kj・j+lWi'j+zl (5) 

Th~n performing such operations as (5)一(4)Xt:..x/2 and (5)+(4)X t:..x/2 results in the end shear 

ing forces: required above in difference form. Q01 or Q03 

mE"ln 
Q01. Q03= ";~;u lkj'j爪 J-m一(2ki'j+ki'j+m)Wj'j

+ (kj.j+2ki什 m)Wi'j+m-kj'j+mWj'j+Z品I+qxj'jt:..x/2 (6) 

provided: QOl=end shearing force for m=l; Q03=that for m=-l; Ec=concrete elastic modulus; 

qxi'j=self weight. acting at joint O. of member in the direction x; ki.j=lxij10=flexural stiffness 

ratio of member at any of its points of subdivision; lo=reference moment of inertia of member; s x 

= width of subdivision of member; and w' = imaginary deflection at an exterior point of subdivi-

slOn. 

2. 2 Equations of Moments 

On our assuming the signs of moments acting in the y-direction on joint 0 of members the fol 

lowing requirement for equilibrium is to hold. 

(Mω-Moz)+ (M05-M06) + (TOI-T03)=Mo (7) 

where: M04. Moz=end moments for member in the y-direction; My05. My06=those column end mo-

ments in the y-direction acting respectively at the column bottom and top; T01. T03=torsional mo-

ments for member spanning in the x-direction; and Mo=external moment acting at the mutual joint 

of members; with aJl these given as foJlows_ 

Moz. M04=Ec10ki./ -Wj+m・j+2wj'j-w'j-m'j)/ムy

My05 = 4Ec1y058yj・/L05

My06=4Ecly068yj・/L06

TOl. T03=G 10 ri./8yi'j-8yj'j+m)/ムX

(8) 

(9) 

帥

with Moz. TOl = moments for m = 1; M04. T03 = those for m = -1; .t:.. y = width of subdivision of 

member in the y-direction; ly05. ly06=moments of inertia in the y-direction of respective upper-and 

lower-stair columns connected to the mutual joint; L05. L06 = repective heights of upper and lower 

storeys; G = shear elastic modul us; 10 = reference torsional resistance; ri' j = 1 xj・/10= torsional stiff-

ness ratio .at any point of subdivision of member; and 8y = torsional angle of rotation about mem-

ber axis in the x-direction. 

The terms for imaginary exterior points are to be eliminated by use of end condition dw / dy 

=8y. or its difference form in practice. Eq. (11). set up at exterior member ends. 

w'1-m・j=Wi+m・J+2mAyOyrj (11) 
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For a subsequent review of our pre 

sent calculation result as compared with 

those earlier， its substance is necessarily 
Mod 

reproduced beforehand; viz. it is con- el 
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cerned with the above three elementary 

cases with their span， load allocation 

width， section sizes shown in Table 1 
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3. Previous Result 

Table 1 Dimensions of Earlier Calculation 
Models目
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: Additional Annotation 

and material properties and loading conditions in Table 2. Long-time deflections were calculated 

for the members designed with their tensile reinforcement allowed up to two layers of the steel 

All calculation results may be plotted in terms of final deflection ratios， viz. final or terminative 

deflections divided by span lengths. Among these f.d. ratios， those for simply supported cases refer 

to the critical or most adverse conditions for deflection control; thus being shown in Fig. 3 re-

latively to depth/span ratios as abscissas. 

Therein noticed are extremely larger rates of increase in final deflection ratios as beam depth/ 

span ratios become smaller than 0.075. This is ascribable to a significantly lowered minimum 

depth of members capable of two-layered reinforcement which is pursuant to the design practice of 

assumed medial sections to be tee-shaped 

Table 2 Material Properties and Loads for the Calculation 
Models， Earlier and Present 

Assumed 1 tems Adopted Values wi th Supplementary Note 

For Concrete. in k匝Icm2

C冶皿pressive Strength 
Modulus of Rupture 
Bond Strength 
Elastic Modulus 
Sustained Modulus 
Poisson' s Ratio 

210 Fc: Al] Code Valuel A. C. V. for short 
26. 1 1. 8 ./Fc: Suggested in Code 
Fc/15 for End-Top Deformed Steel: A. C. V 
210.000 : A. C. V 
26.600 at Infinite Age (t ∞) 

O. 2 A. C. V 

For Steel. in kg/cm2: 

Allowable Tensile Stress 
Elastic Modulus 

2. 000 for Code No. SD300 Steel: A. C. V 
2. Ix 106 wi th Modular Ratio nニ 10:A. C. V 

Loads. in kg/m2: 

Construction Load 
Full Design Li ve Load 
Long-Time Sustained 
Portion of Li ve Load -
Wt. of Cei ling品Finish

Conventional 2. 1 t imes Wt. of an R/C Floor 
300品 100・ A.C. V. for respective 

Office and Living Room 
1/3 of the above Values 

80 ~ C. ~ (in Ordinary Use) 
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Table 3 Dimensions of Current Calculation 
Models 

Lx 
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B' 

U 

二コBx

一一Lt -r 

Fig. 6 Introduced Calculation Models with 
Identified Notation for their Dimen 
SlOns. 

1 tem 

Span 

Girder 
wi thout 
Beam， GY 

Girder 
wi th 
Beam， GX 

Bea皿

Column 

Storey 
Height 

Flange 
Depth 

Dimensions in cm Note 

Lx 300. 375. 450 Measurements 
between Sup 

Ly 450. 600. 750， 900 port Centrs 

By 40十 2，5(Ly -900)/150 Provided 
Effecti ve 

Hy O. lLy十 5(600-Ly)/150 Widths are 
given AIJ 

Bx 40 t 5(2Lx -750)/150 Code Values 
for All Mem 

Hx 0.2Lx t 5(900 -2Lx)/150 bers in the 
Left Frames; 

b 40十 2.5(Ly-900)/150 h is made 
equal to Hx 

h Ly/l0， Ly/12， Ly/15 for h i Hx 

Bz I 60 t 5(Ly -750)/150 Bz 0 Hz 
Hz " 

Lz I 360 Both Figures 
Convent ional 
or Assumably 

t 15 Most Frequent 
in Pract ice 

Now let serviceability limit depflection be span/500 which is a justifiable standard as the com 

mon maximum in the majority of the available Western design codes[4] Then it can be said that 

based on this value the above smallest depth will be determined at beam interior ends where rein-

forcement is to be designed for a customarily assumed rectangular section 

4. Beams as Elements of Floor System 

4. 1 Assumption 

The chosen calculation models consist of three types of beams in a slab-beam-girder flooor sys 

tems as illustrated inclusively in Fig. 6; where， except for a type lastly to be defined， an infinite 

multitude of identical bays are supposed to extend in the x-or y-direction. 

Namely， depending on whether a floor system stretches outward at only one or both of the beam 

ends， any introduced beam is to be treated as what we call exterior or interior structure in the fol-

lowing. The said last type refers to a member with none to adjoin it at both its ends in a floor sys 

tem longitudinally having only one span， henceforth being referred to as none-adjoining beam， for 

simplicity. 

Sectional sizes of all model members are shown in Table 3， with the concurrent assumption of 

material properties and loading conditions in Table 2. Reinforcement is calculated with deformed 

bars D25 and D22 of nominal diameter respectively for girders and beams under gravity loads 
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alone. 
B聞5

Syr略。1:+ foru =300 CIII 
ロ~ l.Jt"幻，，，
o 1/ !...x=450叩Column tops and bottoms are assumed as before to 

白田4

be rigidly bui1t.in at the considered floor level. The 

number of span subdivision is six for center.to-
臨

御

center span Lx for adopted square difference 

meshes. 0.0包1

4. 2 Calculation Result and Review 

(1) None-Adjoining Beams 

目白曲

目回 目臨 日i旬

Beam Depth/Span Ratio 

0.15 

Final deflection ratios are calculated for beams Fig. 7 F. D. Ratios plotted against Beam 
Depth/Span Ratios for None-Ad-
ioining Beams. assumed to be reinforced in one to two layers as 

beam depths get successively smaller than a max-

imum of Ly/lG at 5cm intervals and the results are plotted in relation with beam depth/span 

ratios in Fig. 7; where beam/span ratios corresponding to final deflection ratios exceeding 1/500 

are more or less smaller than simply supported cases. This means that designing beams with stiff 

ness ratios more than 0.075 ( = 1/13.3) can seldom cause this serviceability limit deflection ratio 

to be exceeded. Major part of Figs. 8 shows how deflection orders change depending on spans and 

half bay widths delimiting load allocation to beams for different1y assumed beam depth ratios of 

1/10， 1/12 and 1/15 

For girders in the x-direction， to be labeled GX for convenience， re1evant ca1culation results are 

not referred to here， in that we have only last reported their being found within the serviceability 

limit deflection ratio when the girders can be reinforced double layered and be treated as fixed at 

both ends due to their being interior structures in the defined context. 

In Figs. 8(a) and 8(b) final deflection ratios are given as part1y mentioned above for girders in 

the y-direction， called GY like above， and for beams， respectively. 

With decreased beam depths negative moments at beam ends increase due to correspondingly 

larger relative stiffness of beam supporting girders GX's， concurrent with their torsional deforma-

tion， so as to bring about the noted slight increases in final deflection ratios for GY girders; admit-

ting that these values are practically insignificant， being of the order of at most 0.0005 or so and 

far less than the serviceability limit deflection ratio. 

On the other hand， beams with depths less than 1/15 of their spans which are 7m at the longest 

are noted in the pertinent data to be capable of deflection exceeding the above serviceability limit 

due to their half bay widths for load allocation being increased 

Also needed to be examined is another relative final deflection defined as the ratio to the di-
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agonal measurement of the considered bay of summed final def!ections of pertinent beams and gir 

ders of a f!oor system. N am巴lyin Fig. 8(c) distributions of that ratio are plotted. Reviewing them 

in comparison with an assumed total system def!ection limit of 20mm， commonly adopted by most 

foreign building codes [4] shows any associated hazard of detrimental def!ection for the beam 

depths less than 1/12 of the span and for the beam spans over 7. 5m. 

(2) Exterior and Interior Beams 

Plotted distributions of the above total system final def!ection ratio is represented as w巴11for 

exterior and interior beams respectively in Figs. 9(a) and 9(b); wherein noted in all cases of beams 

capable of double layered reinforcement are the corresponding ratios being kept within the preced-

ing def!εction limit; provided that in the case of exterior beams， reinforcement has proved impossi 

ble for those assumed here to have depths of span/l5 and any half bay widths of load allocation 

other than 3m. . 

5. Summary and Concluding Remark 

The whole foregoing results of current observation are summarized into the following items. 

Namely， given an admissible limit of beam def!ection ratio of 1/500 as customarily assumed we 

note at first for individual beams capable of double layered reinforcement: 

(1) deflection check is always unneeded for beams across interior or exterior span; including re-

spective extreme cases of their being fixed at both ends or being fixed at one and supported at the 

other; 

(2) the above check is needed for beams across single-span f!oor systems or for simply supported 

beams， notably for cases with depths smaller than 1/12 or 1/13 respectively because of their being 

capable of causing detrimental def!ections. 

And secondly for total f!oor frame systems: 

(3) when we assume a usual limit of 20mm on their def!ection as totaled for their beams and gir-

ders， interior and exterior beams have no possibility of their def!ection exceeding this limit， while 

none-adjoining structures have any even when their beam depth is more than 1/13 of the span， 

naturally to require a check 

However， the limiting sectional dimensions obtained at this time are based on idealized assump 

tions， tending toward criteria practically as conservative as may be expected from the actual in 

cidental conditions， including the practically natural trapezoidal load allocation dictating some 

greater amount of load than is confirmed to be the case and also beam-supporting GX girders in 

one-span structures regarded in most cases as latently having appreciably larger stiffness than 
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here assumed due to sagging wall or spandrel elements then monolithically attached to them 
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