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A MATHEMATICAL THEORY FOR BLOOD
FLOW DYNAMICS IN THE ARTERIAL SYSTEM.

an induction of blood flow velocity.

Hirohumi HIRAYAMA, Kohichi ONO, Hisakazu, YASUDA

Summary

A theoretical expansion of mathematical models of the cardiovascular system are developed. We established a
distributed parameter model of the arterial system. In this paper we have deduced the blood flow velocities in
the longitudinal and radical direction based mainly on the Womersley theory. Neglecting the non-linear terms
(the convective acceleration terms) in the Navier-Stokes equation and setting linear cyclic solutions, the N-S
equations were reduced to the Bessel type ordinary differential equations. By utilyzing the Stokes stream func-
tion, the equation which input pressure satisfy was proved to be a Bessel type differrential equation. Applying
the Bessel type pressure function to the linearlyzed N-S equation, a strict form of the solution of the blood flow
velocities were obtained. these solutions were confirmed to ‘satisfy the conservative law of mass.

To ensure whether these solution satisfy the Stokes stream function another process was used to obtain the
blood flow velocities. Turning to the stream function and differentiating directly of these functions also induced
a series of solutions which are identical with the solution that were obtained by solving the Bessel type N-S
equation. By these strict mathematical process, linear solutions of the blood flow velocities were obtained. To
simplyfy the system and problems we made some assumptions and we have discussed the validity of these

assumptions within the range we concern.

Introduction

It is important to correlate the biological phenomenone and their interactions quantitatively. In

such a stand point, the cardiovascular system is one of the most suitable subject for such analysis.

Especially to represent the pulse wave transmission phenomenone in human arterial system gives

much advantages for understanding the control mechanisms of the circulatory system. Furth-

ermore in the pathophysiological state especially for the congestive heart failure or the trans-

plantation of the heart, it should be analyzed that the interaction and feed back control mechan-

isms of pulse wave conduction which should appear dynamically between the heart and the

peripheral circulation.

To satisfy such requirement, mathematical or physical models of the circulatory system have
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been presented. For the arterial system, beginning with Witzig (1914), the essential and pioneer-
ing work of the elastic tube theory have been expanded by Womersley (1958) [1]. On the other
hand the physical electrical model also have been constructed elaborously. at the same time and the
basic model was completed by the group of Westerhoff and Nordergraaf (1967) [2].

The mathematical model can be classified into 3 categories on the basic of common feautuers of
assumptions. The first group is the thin walled model which is based on the membrane theory.
Morgan (1954), Womersley (1954) [3], Klip (1962), Atabeck (1968), and Chow (1967) partici- -
pated in this type of model.

The second group is the thick walled model. Klipp (1967), Mirsky (1967), Cox (1969), Jager
(1966) [4], Whirlow (1965), concerned this field of model. The last group is the longitudinal
tethering model and is consequently indentical with the rigid tube model. Witizg (1914), Womers-
ley (1958), Taylor (1959), Jones (1969) dealed with this model.

Althought precise and complicated models have been presented by these researchers, they con-
cerned only with the pulse wave velocity or the transmission efficiency. What we should make
clear is how transmission phenomenone can be represented or revealed realistically. Yet these
problems are solved.

About for the physical models, kind of electrical or hydrodynamical analog have been con-
structed. By connecting many condencers or registances, the blood flow waves can be simulated in
the arbitrary precision. To increase the approximation, one can reinforce the elements of the cir-
cuit and further complex circuit can be easily constructed. However the biophysical significances
of each elements embeded in the circuit would become obscure [5].

Because of the histhero mentioned grounds, there exists a reasonable necessity to establish a
comprehensive and easier recongnizible mathematical model. It is a vital necessity for the purpose
of analyzing the effects of changes of the arterial wall and blood properties on the arterial blood
flow. -

In the series of these papers, we have constructed 3 basic models about the cardiovascular sys-
tem, the distributed parameter model of the arterial system, the exponential paramerter model of
the aortic arch, the lumped circuit model of the total systemic circulation.

In these three models we firétly show the theoretical expansion about the distributed parameter
model of the peripheral arterial system which is based mainly on the transmission line theory in 4
steps.

Then we reveal how it does express the pulse wave transmission phenomenone in time and

space domain realistically and the effects of changes in the biophysical parameters of the arterial
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wall and blood on the blood flow parameters. In this paper as the first step for the mathematical
expansion, we have deduced the strikt form of the blood flow velocities from the linearlyzed

Navier-Stokes equations by two different solution process.

MATHEMATICAL EXPANSION-1

To represent the pulsatile flow through a distensible tube mathematically,it is necessary to obtain
sets of equations which include not only the blood properties itsself but also the mechanical prop-
erties of arterial wall

For the purpose of such requirements. the equation about the blood flow dynamics and wall mo-
tion should be given independently. Then those equations must be associated by setting the adequ-
ate boundary conditions. In this chapter we reduce the blood flov velocities from the Navier-

Stokes fluid dynamic equations.

Before solving the equations, we have made following assumptions about the blood properties
and the geometric characters of the vessels.

1. The blood is Newtonian and incompressive.

2. The blood viscosity is independent of blood shear rate. haematcrit, body temperature, blood
flow velocity nor internal radius of the artery.

3. The blood flow contains only laminar flow. The tangential blood flow velocity is very small and
the secondary flow. nor turbulence exists.

4. The abnormal viscosity does not exists.

5. The effects of the entry zone are negligible.

6. The sllipage between the blood and the vessel wall at the innner surface of the wall does not
exists.

7. The vessel is straight, cylindrical, and axisymmetric.

8. The biophysical properties of the vessel wall are constant and independent of the distance from
the entry zone.

9. There exists no tapering of the vessel and no leakage flow.

10. The effect of the gravity is negligible.

1] The fluid dynamic equations of the blood flow.

The movements of the blood in the closed space especially in the cylindrical tube as a vessel are
expressed in the Navier Stokes equations. In the cylindrical coordinates, the blood flow velocities
satisfy following equations.

For the longitudinal direction
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+ Vr + Vz
at ar az

aVz aVz aVz — aP a®Vz 1 aVz a?Vy
4 [ + H [ - +

7z~ + 2] (1)

az ar ar az

For the radial direction

aVr aVr aVr aP
P[ + Vr + Vz JZ——+F‘[
at ar az

a?Vr
2

i aVr a2Vr Vr
ar r

+ ar + az? _7] 2

The variables and parameters are defind as followings
Vz : the instantaneous blood flow velocity parallel to the vessel axis. (the longitudinal blood flow -
velocity.)

Vr : the instantaneous blood flow velocity along the radial coordinates. (the radial blood flow
velocity.)

Z : the longitudinal space coordinates.

r : the radial space coordinates.

p : the internal pressure.

P : the blood density.

# : the blood viscosity.

The left sides of the equation 1,2 are in the form of unit mass(# ) multiplied by the acceleration
DV/Dt which mean the internal force in the longitudinal direction and the radial direction respec-
tively. To balance such forces, two forces are given in the right hand of these equations. these are
the pressure gradient along the axis ap/ az and along the radius ap/ ar.

Furthermore the viscous retardation force (the frictional force) contributes. In general, for the
case of dynamically moving fluid, the stress changes parallely with the velocity of the deformation
of the fluid, that is the shear rate of the biood flow.

Assuming there exists no leakage flow, the conservative law stands.

Then continuity equation is given as following.

a (PVrkr) +L a(pPVe) " a (pPVz) —0

1
+T ar r af az ©)

at

We also assume the incompressibillty of the blood, the blood density does not change with time.

Then the eq 3 is reduced as following.

aVr Vr aVz
+ —+

ar r az

—0 | (4)
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Since we concern only in the linear system, we seek the linear solutions for this system. There-
fore these above mentioned non linear partial differential equations should be linealized. Assuming
that the effects of the convective acceleration terms such as

aVz aVz aVr . aVr
Vr ,Vz ,Vr ,Vz

ar az ar az

on the flow velocity are negligible, we linealized the equ 1 2 to following form.

aVz 1 aP ¢ ( a%Vg b oavz aZVz] 5
at P az o az? r ar ar? ()
aVr 1 aP _fL{ a®Vr 1 aVr | a?Vr __VL] 6
at L ar P az?® r ar ar? r? (6)

A ] The induction of the equation which satisfy the input pressure P.
Before solving the linealized N-S equations, we should obtain the functional form of the input
pressure P.
Define the Stokess stream function ¢ which satisfy the continuity equation 3 as following. [6]
L ay 1 ay

Vi=—— = 7) Vr=-—- - (8)

For the sake of obtaining the relation between and P, we input equ 7 into equ 5, then

a (—1 a¢ ] a2 ( —1 a¢ 1 «a —1 a¢ a®? (-1 a¢
3 )= e J*var J+ = )
at r ar 4 az r ar r ar r ar ar r ar
_ 1 P

P az

# (1 a 2¢ 1 (1 a¢ 1 a?¢ a (1 a¢ 1 a%¢
T A IR E - e & PR U N

14 r ar az r r ar r ar ar r ar r ar
_ 1 ap

P az
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L az¢]+L op 1 &g 2 ap 2 a1
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1

P az

? (1 a a?¢ 1 a¢ 1 a?¢ 1 o3¢ 1 aP
=5 _—[__2'—]———3 + = 2 - 3 - T

4 r ar az r° ar r ar r ar P az
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Top rar[ azz] rar[r ar] r ar ar? o az
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We also input equ 8 into equ 6, then,

a (1 a¢ #( a® (1 a¢ 1 a (1 a¢ a? (1 a¢ 1
e R
atl r az 14 az r az r ar\r az ar r az r
1

£ ar

# (1 a®¢ 1 1 a¢ 1 a?¢ a 1 a¢ a?¢
O

P r az r r az r araz ar r az r araz
_ 1 a$) 1 aP

3 az P ar
_L[Lﬂ_i op 1 @Y 2 ap 1 a9 1 oy
T e lr & P oaz r? araz r? az r? araz r? araz
1 d¢ 1 af

r azarz r3 az

2 (1 &3¢ 1 a%¢ 1 a3y 1 aP
=7 | 3T T2 +— Z | T T,

4 r az r° azar r azar P ar
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az az r ar ar?

It

then we get equ 9, equ 10,

2

1 a?¢ 21 a [a2¢ 1 a¢ a’y 1 aP
= -~ L = + = ]
r 14 az r ar ar

- o Tar (10)

Next step we eliminate P in equ 5, equ 6 by differentiating equ 5 with respect to r and diffren-

tiating equ 6 with respect to z. firstly we differentiate equ 5 from left side.

a aVz]__La aP]_i_i a3V2+a3VZ__1_a'VZ+La2VZ
ar at J P ar | az e\ azlar ard r?  ar r ar?
-1 a[aPJ_i_/l a? 1 «a a? 1] aVz
T e ar | az P [azz r ar + ar? r2 ar (11)
Differentiate equ 6 from lift side.
_a[aVrJ_—l a[aP] Y2 a[az\/r a[l aVr a[aZVr
az et ) P az | ar P | az az? ] az \r ar ]+ az ar? J
v [l&]
az | r?
—1 a aP yZ3 a? 1 a a? 1 aVr
- P az [ ar ] +—P_[ aZZ TTI’ arz ——I'T] ’ az (12)
Subtracting both sides of equations each other, we get
& _#(L 1 a a1 aVr _ aVa) _
at P [ az? r ar ar? rz] az ar )0 (13)

By equ 7 and equ 8, then second factor in equ 13 is
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aVr aVz 1
az ar r

2 2

az r ar ar

o2 2
¢ ia¢+a¢] (14)

Inputting equ 14 into equ 13, we obtain,

af® 1 a¢ a?¢ 3| _
aZ "t ar T a ”_0 (15)

at az® ar ar? r? r

a y2] a? l «a a? 1 1
N RN A S S | RS
P r

The second factor in equ 15 can be modified as following by recognizing the meaning of the dif-

ferential operator (this step of the mathematical treatment is refered in the appendix)

a © o a? 1 a a? 1 a? 1 «a a? 1| ¢
B il B e | e e B
at P az r ar ar r az? r ar ar r r
(16)
Define the spatial differential operator as
p=,pte @ 1 17
o r ar arZ T 2 (17)
Then we can get the simple operator equation.
a y23 ¢ _
(at_PD) D-=m=0 (18)

Here we assume that eq 18 can be given by summing two independent solutions ¢; and ¢, as,
Y=¢1+ ¢,

Then either ¢1 or $2 must satisfy either of those equations.
a “
(w0 (G- goh e

Operating these differentiations by eq 17, next equations are induced.
a?¢, 1 a¢, a®¢,
— —_ + rZ

azz _T ar a =0 (19)

a®¢, 1 a¢, a’¢, P ayy
az?  r  ar + ar? ¢ at =0 (20)
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Summing equ 19 and equ 20 abd utilizing the relation ¢ = ¢1+ ¢, , then

)

2 2 a
@9 _1ap &Y _ o ay o)

az? r ar ar? T ¢ at

Inputting equ 21 into equ 9 and equ 10

_Lﬂ_iii[_iwz]__iap 09
r arat P r ar £ at )] P az (22)
iﬂ_LLL[L“¢2]__L aP 3
r azat P r az M at - P ar ’ (2)
Because of ¢1=¢ — ¢, , then equ 22 and equ 23 are
P a*$,  aP
r arat - az (24)
P a? aP
_ P e _ aP (25)
r azat ar

To eliminate ¢;, multiplying r both equations in each sides and differentiate equ 24 with re-

spect to r and defferentiate equ 25 with respect to z, then

S )=

az az ar ar

Therefore the partial defferential equation which include only function P is

=0 | (26)

B. The solution of the equation which satisfy P.

As P is the cyclic function which depends on the cardiac rhythm, we assume the linear cyclic solu-

tion as in the following form,
"P=P(r)*exp|in*(t—z/c)} (27)
n : the angular velocity n=2 7 f
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¢ : the pulse wave velocity

1: imaginary unit.

Which means one can separate the solution into time and space domaine and these quantities
should have no interaction. ‘ )

Inputting equ 27 into equ 26, equ 26 is reduced to the O order bessel type differential equation
of P (r).

d2P(r) 1 dP(r) n?
w2z vt &~ zPn=0 (28)

As the limitting case r-0, there exists a finite solution. So the second order solution should be

discarded. Then one can easily obtain the solution as
P(r)=1J(@%n*r/c)
" Therefore P can be given in the form as,
P=A, Jo(inc/r)*exp(i*n*(t—z/c)) (29)

cl Thev solutions of the linearlized Navier-Stokes equations
Assuming the linearity of the arterial system, then the frequency of the input and output must
be idential. Consequently the blood flow velocities Vz, Vr can be written in the form simmilary as

input pressure,

Vz=w (r)*%exp li%kn*({t—z/c) (30)
Vr=v (r)%exp li*kn*(t—z/c) (31)
P=P(r)%exp li*n*t—z/c)

Inputting equ 27, equ 30, equ 31 into equ 5, 6, then

inw = 10 +_/i[azv+iaw+[—in]z )
MW= T PO T e T C W (32)
Lo =Ll aP@) 4 (a*V 1 aV —in 2 v

V=g T+ [ e +[ C ] V—?] (33)

Which is the equations including variable r only.

The continuity equation 4 also should be modified into following form
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+—+W——=0 (34)

Rearranging equ 32, then

a’w 1 aW pin . —in \ 2 1 p ( —in
ar? T Tar —[ 7 —[ J ]W‘TT[ C ]P“) (35)

Which is the Oth order Bessel type differential equation. In general about for the Bessel type

equation as
Y'+Y/z—(B*+ v¥HY =0

The finite converging solution is Y=]J v (i 8 z)

Therefore in equation 35, putting

2 inp _Iiz_

Then the solution of the equ 31 is

Wi =ClJo(iBr)

C1 : integral coefficient

on the other hand the specific solution is

- B*W,=

(e

|-

Therefore utilizing equ 29,

in inD J, (inr/C) ‘
W2=—2—P<r)=’ﬁ+#c— (37)

"Then the general solution is

inD Jg (inr/C)

,W‘_‘ClJo(i:@r)"‘W (38)

As for the radial direction V, simillary rearranging the equ 33
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aP (r)

ar

a®v 1 aV £ in —iny2 1
+ - —[ ] + (39)

1 »p
P z]V“T#

ar r ar

Utilizing equ 36, equ 39 is-converted into 1st order bessel type differential equation. The solu-

tion of it is given as

Vi(r) =Cz2J1(iBr) (40)

C2 : integral coefficient.

As for the P (r) = D % Jo (i ¥ n % r/c), (here the integral coefficient is redifined as D instead of

Al). According to the formula about the differentiation of the Bessel function,

dZv(r) v ’ .
o -7 +1(r)
Then,
dP(r) in .
I —-D ?Jl (inr/C)

Therefore the specific solution is given as

_ . in J; (inr/C)
Vz=D C —/«lﬂz (41)

Then the general solution is

Din ], (inr/C)

V=Czh(iﬁr)+TWZ— (42)
Now we set.
i*a?n ]
IZOZ = Y = 13 dz Vv = 7 (43)
ina
Bo= < (44)

a : the Womersleys coefficient.
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a : the internal radius of the artery.

inP

since n?/C = 0 , then B2 = e (45)
Then
Din _ Dﬂo a
CHBZ = Hagl ‘ (46)
) i3 ne i3 nz 124 aoz ﬂoz 1
if= 7 * c? ] o [ az T a2

(the pulse wave velocity C is 13-18m/sec in human arterial system).

By utilizing the @g and B¢ , changing the intégral costants C1, C2, D into Al, A2, the solution

38, 42 are expressed in the following

v (ag® + Bo?)”* (ag” + Bo°) % r A1 Bea [ ﬂor]
W=Va=4z aglo(ay) a Hoay? *Jo | a
*explin(t—z/c)l| (48)

_ Bo [(0‘02+ Bo*) % r AP a [ L] n
Vr = Az “oJo(“o)h a Hag h /30a *explin(t—z/c)]

(49)
, r
P=A]p [ ﬁ:] *exp|in(t—z/c)}
Now the coefficients are normalized by « Jo ( ag).
Since n/c =0, so by equ 43 and equ 44, then @o®+ By’ ay?
Putting r/a=r/R=y and i%n%a/c=k, then we get the following form of solutions.

_ Jo (agy) ﬂ ina a
Vz = AZ JO(aO) P C i3 a2 JO (kY) (51)

_ 4 Bo Jilay) @ kA,

Vr = A, ay Jo(ag) 7 Bal J1 (ky) (52)
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If one redifines Ay B¢/ @g=Cy , this form is idential with what Womersley had induced.

D. The satisfactory condition for the conservative law.

As those solutions and equations are based on the Stokes stream function, as mentioned in eq 7,
8 which had been assumpted to satisfy the conservative law eq 4, eq 51 and 53 should be ex-
amined whether the continuity equation 4 satisfy. The continuity equation should be converted

into

d(Vry) inR

1
7 dy < Vz (53)

Utilizing the differentiation formula of the Bessel function for equ 52

dly(agy) Ji(agy)
—_— T = a —_—a
dy . JO( OY) agy 0
We now put
A
2 Po =C,
Q

Then the left side of the equ 53 becomes

Cy _ Ji(agy) )y RkA, _ Ji(ky) Ji(agy)
e [ @ (eoy) = 20— SR (ko ky) o R

RkA, J; (ky) ayJo(apy)  Rk?A .
T uPaly = (e~ aTar o) (54)

and the right side of equ 53 reduces to

inR =~ Jo(apgy) inR  inR?
C 2 JO(aO) - C #Ci3a2 AIJO (kY)

The equation 54 and and 55 should coincide. Therefore the coefficients of Jo (@ y), Jo (k*y) in
both side should be idential. Then
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&_ inR  inR __inR
A,  Cay  Cai?2: kK=7¢ (56)

This is exactly what we have put k=i%n % a/c. Therefore equ 51 and equ 52 satisfy.the con-
tinuity equation 4. ’

Assuming n/c — 0, the approximation formula for the Bessel function reduce the term Jo (i% n
*R/c) approaches to 1 and J; (n* R % y/c) reduces to n* R % y/2c.

Ultimately the blood flow velocities are given as followings

— 5 Jolagy) A

Va= A (57)
_ inR 2]1(010)’) A,

Vr= 20 A2 a5 (ay) T Y pC (58)

a : the Womersleys coefficient

E. Another solution of the blood flow velocity by the Stokes stream function.
In equ 19 and equ 20, assuming that the two stream function ¢ and ¢ is separable in time

and space domaine, one can express the solution in the linear form as

$1:F(r)*explikn*({t—z/c) (59)
$2:G(r)kexpliknk(t—z/c) (60)

Inserting equ 59 and equ 60 into equ 19 and equ 20,

e e A ©b
d2G 1 dG n? inp
a? " rdar 28T T 650 | (62)

Putting F=r*f (r) and G=r* g (r) and simple calculation brings us to the following Bessel type
differential equations.
daf 1 df n? 1

o il e A S (69)
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Here we newly defined @ as above and is different from the Womersley coefficient.

Then the solution can be easily attained as

. |
(0)=—=AnLfn =A% (o)

g = =Bhan =81 (i[5 + 20 %)

The J (i * x) is the pure imaginary number, then to have non trivial solution, the coefficiens

should redifined as
A=A %i B=B#*i
Then the Stokess stream function is given as following

$=9¢1+ ¢, =Fr)+G(r)*exp fi*kn*({t—z/c)
=r(A1J1(Br)+ B1]1(iar) *kexplin (t—z/c)

Because of the definition of the equ 7,

1 «a
Vo= — —— ri(AJl(iﬂr)+BJI(iar))] o

r ar

Utilizing the differential equation of the 1st order Bessel function

d,(ifr) _ dL,({Br) difr) _ JiGBr)

dr dign  dr ”[JO(iﬂr)_ iBr ]iﬂ

Then
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Vi= = [ALGAD + Blian + [AOO“M_JI_i(;ﬁ—r))m

+B [Jo(iar)—M] ia ]]

=—Ti[r-iﬁAJo(iﬁ'r) + riaBJO(iar)J

= ABl(fr)+ Baj, (i [ n P ] %r>

[CaR” (66)
As for the radial velocity only, the differentiation with respect to z reduces to
n n )
Vr=A?JI(iﬂr)+B?h(1ar) (67)

As C (pulse wave transmission velocity) is 13-18m/sec in human arterial system, then n/c—0,

and Jo (ifr)—1

iA .
Vz = ‘C" + Bi*f av]o(i¥%a %r)

At the innersurface of the arterial wall, the blood flow velocity attains the finite value

Vz(r=R)=V, Then

Ani
C

Vi = + Bi”* a¥ ] (i¥2a %R)

So the coefficient B is

f Vs — Ani/C
321 —

_ Vk —AniC
Biak =7 xR

123



Hirohumi HIRAYAMA, Kohichi ONO, Hisakazu, YASUDA

Therefore

Ani
C

Vg = Ani ] Jo (i¥2a %r)

+[vre -2 Jo 7 2 %R)

Here redefine the coefficient and parameter as following

Ain _ Al
< " pC [V*

Ani
C ]: !

R* ak=a y=r/R

Here the coefficient @ idential with womersleys coefficient.
Then the longitudinal blood flow velocity is obtained as
Ay Jo(ai¥?y)

Vz = pC+C1 To (@ 172 (68)

The same procedure bring us to the following equation with respect to the radial blood flow
velocity is
inR 2] (ai¥?y) A,

V=3¢ (O a2, (@7 TV pc

(69)
The eq 68 and 69 are idential with eq 57 and eq 58 respectively.
Therefore the solutions of the linearlyzed Navier-Stokes equation are obtained in the form as eq

57,58 or eq 68, 69.:

APPENDIX

124



A MATHEMATICAL THEORY FOR BLOOD FLOW DYNAMICS IN THE ARTERIAL SYSTEM.

_L@y 1 ap 20 1 ep 1 at 1 g 29
T r az? r2 ar rd r? ar r ar?® 2 ar 3
_lay 1 1oy
T r o oaz? ar? r? ar

DISCUSSION

In the first chapter of the series of mathematical modeling of the cardiovascular system, we have
developed a distributed parameter model of human arterial system. This papre treated with the
mathematical expansion for the pure blood flow velocities which does not include the arterial wall
properties. To obtain the velocities (which are the solutions of the Navier-Stokes equations), we
made some assumptions about the blood and artery. We discuss firstly the significance of modeling
and the Navier-Stokes equation, then expand the discussion mainly about the blood properties.

I. The modeling of the biological system.

There are several candidates of the models which can express the cardiovascular system. To de-
scribe the effects of the cardiovascular elements on the blood flow two typical models exist.

First is the lumped circuit model in which many biophysical properties of the arterial wall and
blood are gathered together.

The classical but representative model is the windkessel type model as Frank had suggested.
Such model is composed of the reistance and compliance only. So each character of the element
which compose the arterial blood flow and the effects on the flow wave were made obscure. Furth-
ermore it can be seen which component (for example whether arterial wall thinkness or the blood
density) mainly contribute to the change of the total arterial resistance or the arterial compliance.
Of course such lumped circuit model cannt represent the transmission phenomenone even much
elements are incorporated, since this type of model never contains the variable x. However to look

the dynamical system macroscopically and analyze overall behaviour of the large system, the
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lumped circuit model is suitable.

On the other hand the distributed parameter model is arranged utilyzing R,L,C,G in the axial
direction and radial direction (the ladder circuit) depending on the distance from the entry zone.
So a simple increment of the number of the elements brings us to more precise representation of
the transmission phenomenone of flow wave. But when one should look the cardiovascular 'system
exclusively and to analyze the effects of the change of some compartment of the artery (such as
aortic arch or small arterioles), one would confuse to treate such distributed model since the para- .
meters all change continuously in the special domain and these sequential parameter change may
obscure the segmental change which one concerns.

In any way the selection of the model is depend on the purpose or phenomenone that one wish
to analyze and to disclose. In the first series of the papers we analyze the pulse wave transmission
phenomenone. So we adopted the distributed parameter model.

The candidates of the arterial that satisfy these mentioned assumptions are rather many in hu-
man arterial system. We apply this model for the middle sized arterial system such as femoral
artery or brachial artery.

Il. The solution of the Navier-Stokes equation.

We have deduced the blood flow velocities in the longitudinal and radial directions from linear-
lyzed Navier-Stokes equations. As a conventional way, we utilyzed the Stokes stream function
and induced the differential equation about the input pressure P. The pressure was shown to be
a Bessel type function.

There is at least two process tf) obtain the blood flow velocity from the N-S equations utilyzing
the Bessel type function of blood pressure P. First is to solve the linearlyzed N-S equation as a
Bessel type Oth order or 1lst order differential equation. The second is from differentiating the
Stokes stream function. In either solution process, the Bessel function and its differential are in-
cluded. By setting adequate coefficients, these solutions proved to coinside each other and also
satisfy the conservative law.

The linearlyzed solutions include those parameters as y=r/R,  (the blood density), C (the pulse
wave velocity), @ ( the quersley coefficient : r % m n : the angular velocity). The
Womersleys coefficient is the ratio of radius of tube and thinkness of the vibratory boundary
layer and this ratio directly relates to the velocity profiles of the flow in an artery especially for
the pulsatile flow.

Therefore the blood velocity are the function of both the blood and arterial wall properties. This

interrelationships intimately correlate with the specificity of the distributed parameter model and
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transmission line theory.

lll. The signifcance of the Navier-stokes equation

When the fluid moves, it travels continuously in time and space domain. Therefore it is the
velocity in the time and space domain and not position that should satisfy the N-S equatuion. In
general the N-S equation can be expressed as following form,

DV/Dt = F—grad P +f{.

D/Dt-is the lagurange’s differential operator and indicates the change of the velocity of each
particle in the fluid. This also corresponds to the inertial force that act on the unit mass of the
fluid. F is the external force. Grad P is the pressure gradient. f is the viscous stress inherent of
the viscous fluid. The N-S equation represent the balancing state of the forces acting on the vis-
cous fluid. As in the analysis of the electromagnetic field, the interruptioﬁ of these equation is
different when the fluid dynamical phenomenone is looked in a macroscopic view or microscopic
view. Applying the conservative law of the momentum to a given time and space domain in the
arbitrary point of the fluid and squizing these region infinitely small, then one can obtain the
limitting equation. That is the Navier-Stokes equation. Therefore it is suitable to express minuetly
the local flow state qualitatively. On the other hand to apply the conservative law to a finite time
and space domain, the N-S equation should be integrated. This is the integral equation of the
momentum and applied to the analysis of the macroscopic flow state. In such a stand point N-S
equation also can represent the turbulent flow and movement of the compressible fluid. The N-S
equation is different in form of the solution depending on the character and quality of the flow
which the N-S equation express. In the case of the Reynolds number smaller than 1, the domina-
tive term is the dissipative term and the solutions are always stable. However when Re increase,
the convective acceleration term increase and the differentiation of the flow should occurs. Such
that the main flow part is the one viscous flow and in the boundary layer, the shearing flow exist.
Until the Re exceed 1000, the flow is mainly laminar but for the larger Re, ithere develops the
turbulent flow and the analysis is extremely difficult. About for the practical solution of the N-S
equation, many approaches have been presented such as

1. Convertion into the difference equations

2. The utilization of the functional derivation of the Navier-Stokes equation and apply the
variational princple.

3. The linearization of the Navier-Stokes equation.

In our studies based on the linearization of the whole system we adoppted the 3rd analyzing

method. The reasons for the validity of utilyzation of the linearity are discussed in the 5th papaer

127



Hirohumi HIRAYAMA, Kohichi ONO, Hisakazu, YASUDA

of our studies.

IV. The non Newtonian property of the blood.

The fluid which obeys the law of the Newton is called the Newtonian fluid. In the newtonian
fluid the flow velocity gradient D paralells with the shearing stress (S). Then the relation D=1/7
* S holds. The proportion coefficient 7 is the viscos coefficient. Such law stands only for the
simple liquid and gas. For the deformative substance, another expression of the formula is ¥ =
S/n, where 7 is the shear rate. As a result the shear rate parallels with the shear stress. Howev-
er in the fluid such as colloid solution, a simple parallel relation does not hold between the shear
rate and the shear stress. In the non Newtonian fluid, the viscosity of the fluid is defined as 7 a
= S/ 7 which is the apparent viscosity. In the blood the apparent viscosity decrease with in-
crease of 7 and this phenomenone is called the shear thinning.

The apparent viscosity depend on the following factors.

a. The temperature of the liquid.

b. The length of the tube.

c. The diameter of the tube.

d. The concentration of the RBC and Haematocrit.
e. The velocity of the blood flow (the shear rate)

a) The apparent viscosity falls with the increase of the temperature. But except for the exterme-
ly low shear rate (below 1/sec), the viscosity is almost constant as 10-40c¢

b) The viscosity changes depending on the length of the tube which character is called the thix-
otropic effect. This effect can be neglected since the length of our model will be assumed to 60 cm
and the radius of the artery 0.35cm at most. So the length of the artery is 100 times larger than
its diameter.

c¢) When the diameter of the tube decreased below hundred g m, the épparent viscosity de-
creased with the decrease of the tube diameter. This phenomenone is called the Fahraeus-Lind-
quvis effect. This.phenomenone is explained by the local change of the Haematcrit (the axial accu-
mulation) and is negligible for the range of radius as femoral artery.

d) The apparent viscosity increase parallely with Hct increase, yet the viscosity striongly de-
pends on the diameter of the viscometer. According to Whittaker and Winton (1933) such results
are also obtained in Vivo (the perfused canine hind limb). Their data were clearly coincided with
data obtained by the viscometer when the results are corrected by the inertial losses [7].

e) The relation between the shear stress applied on the blood and resulting shear rate is ex-

pressed in the Casson’s equation
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s=k*x 7 +C s : shear stress, 7 : shear rate.

C is the shearing stress neccesary for begining the fluid movement and is called the yield stress.
As a matter of course the viscosity coefficient also depends on the Hect and dereases with the in-
crease of the shear rate. However this tendency is explicit only for the shear rate smaller than
10/sec. and is constant for the range gréater than 100/sec. at any Hct value [8]. However these
results are obtained under the condition of steady flow and in small diameter glass tube., Neverthe-
less in human arterial system, the shear rate for the ascending aorta is 190/sec at wall (mean
136/sec) and for the large artery such as the femoral artery, the shear rate is 700/sec at wall
(mean 470/sec) [9]. Therefore theoretically the viscos coefficient shoud be independent of the
shear rate. If this holds ture, then the relation between the pressure difference P and the flow rate
should parallel under the condition of the steady flow. However in general these relation is all
nonlinear. Bayliss [10] firstly measured this relation at Hect = 49% for the steady flow using the
tube with the radius 408 #m, length 155cm. The resulting pressure flow relation was nonlinear.
So the Poisseulie’s law does not hold. _

The conditions that hold for the Poisseuile law originate mainly in the Newtonian properties of
the blood. These are followings.

1. The tangential stress between the shearing cylindrical laminar of the fluid parallel with the
velocity gradient across the laminae. This indicate the consistency of the préportionality of the
viscous coefficient and is independent of the velocity gradient (the shear rate).

2. The flow is laminar which means the viscous forces responsible for energy dissipation are
parallet to the axis of the tube. ‘

3. The velocity profile should be parabolic.

4. The fluid is homogeneous.

These conditions are demanded however only in the steady flow. In the non Newtonian fluid
such as the blood, some different experimental results were reported. Rivlin (1948) already had
shown the existence of the normal components of the stress tensor in the non Newtonian fluid.

Haynes and Burton (1955) [11] showed the existence of the dissipative normal forces to-the axis
of the tube and concluded the blood flow was not laminar. They also calculated the viscous coeffi-
cient along the radial direction. It increased from 4P at the wall to 6P at the axis by the axial
accumulation. After these study they analyzed the effects of the non-Newtonian properties of the
blood on the pressure-flow relation in the glass tube of the radius from 50 to 800 # m. The ex-
perimentally obtained curves had become linear as the flow rate increased. Based on these data,

curves of shear rate as the wall 4Q/R3 versus shearing stress at the wall PR/2 were constructed
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under the steady flow. These curves were all linear at shear rate PR/2 greater than 20 dyn/cm.
In the human artery, the stress at the wall is 60 dyn/cm for large artery (R= 0.5cm) and 93
dyn/cm for the terminal artery. So theoretically in the femoral artery, obviously PR/2 > 20
dyn/cm. Then the relation should be linear and the non-Newtonian properites should not be re-
flected. Since these results were obtained under the condition of the steay flow in the small dia-
meter, and in the rigid circular tube and above mentioned data were obtained all in Vitro and
some differences may exist between the results obtained in Vivo.

Benis [7] and his colleges assesed the effects of these non Newtonian properties of the blood on
the non linear relation of the pressure-flow. These experiments were performed in the perfused
isolated hind paw of the dog. They used the specific parameter Rv/Rvo (Rv : the viscous vascular
resistance, Rvo : viscous flow resistance for cell free perfusate). This variable was not affected by
the vascular geometric parameter and has been corrected for the inertial losses. So it reflected
only the rheological behaviour of the perfusate. The change of the Rv/Rvo could be regarded to
originate in the non Newtonian viscosity of the RBC suspension. The Rv/Rvo increased with the
increase of Hct and with decrease of the normaliyzed flow rate. At Hct of 20.5%, the increase of
the relative normalyzed flow rate of about 240% reduced the Rv/Rvo only for 8%. For the case of
Het =50.6%, the increase of relative normalized flow rate of 260% reduced the Rv/Rvo only for
11%. Consequently the significant change of the true viscosity occured only in the case of extreme-
ly large change of the flow rate. These observations were done under the perfused steady flow
state and is not directly comparable with the pulsatile flow. Nevertheless even under the pulsatile
flow such large flow rate change would not occur. So the viscosity should not change and can be
regarded as independent of the flow rate.

"~ V. The turbulence

For the steady state flow in the straight circular cylindrical tube, it has been known that the
laminar flow transients to the turbulent flow if the conditions that satisfy the critical Reynolds
number have been reached. The critical Renolds number is defined as

Re = U*D* p/ ¢ (U: the blood flow velocity, D: the diameter of the tube, p: the blood de-
nsity, #: the blood viscosity)

According to the physical experiment the critical Reynolds number Re is calculated to be 2000
when the steady flow pass through the circular rigid tube. Calculating the Re for the case of hu-
man femoral artery, assuming Vz=100cm/sec, D=0.5cm, ¢ =1.05, ¢ =0.03, then Re=1758
which is understimated. On the other hand by Whitmore (1968) [9], it was revealed that for the

human ascending aorta, the Reynolds number ranged as 3600 ¢ Re < 5800, for the descending aor-
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ta it ranged as 1200 < Re < 1500, for the large artery such as the diameter 0.2 < Dem « 0.6, Re=
850. However these calculations were done on the assumption of the steady flow in the rigid
circular tube. Practically the blood flow in the main arteries are pulsatile nature and the tube has
enevitable visco-elastic properties. Consequently these simple mathematical theory can’t be applic-
able. Some physical engineering experiments have been reported especially with respect to the pul-
satile flow of the arterial system.

Sarpkaya (1967) [12] studied the conditions of the critical Reynolds number under the condition
of the pulsatiling flow in the rigid tube. The Re was a function not only of the frequency para-
meter @ (the Womersley’s parameter) but also of the flow amplitude ratio lambda (the ratio of the
periodic mean velocity versus total mean velocity). According to his data the critical Re Was not a
simple increasing function. It increased with lambda (the pulsatile flow velbcity component) and
had reached maximum value, then decreased exponentially. For example in the case of @ =4.0, Re
increased with lambda and had attained max= 5150 for lambda=0.625, then it decreased to Re =
400 for lambda=1.0. For the case of @ =7.2, Re attained max= 2950 at lambda=0.28, then de-
creased to O at lambda=0.65. The Re increased with lambda and decreased with @ . He concluded
that for the same mean pressure gr'adient, the Re for the pulsatile flow is higher than steady flow.
In addition the Re for the nonharmonic oscillation were lower than those of the harmonic pulsatil-
ing flow. Nevertheless his data refered only to the ratio of lambda untill 0.95. These flow were
mainly steady flow and the proprotion of the pulsatile components in his experiment was extreme-
ly small comparing with the actual flow. For example for the human aorta the flow ratio is2tob
and for the femoral artery the ratio is 7 to 8. As the Re had decreased exponentially after attain-
ing the max value, the large lambda would cause the Re decresed markedly for the large value of
the frequency parameter @. So their results are not easily applicable for our studies.

Hino (1978) [13] analyzed the behaviour of the critical Re under the condition of the purely
oscillatory pipe flow. So the flow ratio lambda was infinite. They used the following parameters
Re, Rd (=U *%d/v, d= 2v/w, v: the kinematic viscousity, w: the angular velocity) which is the
Reynolds number defined in terms of U (flow velocity) and stokes layer thickness d. The relation
of Re and Rd was Re= 2 * lambda * Rd. The lambda was’ the stokes parameter which relates the
frequency parameter of Womersley as Re=2 % lambda % Rd. Their data did not include the steady
flow components. The types of the obserbed oscillatory flow could be classified into 4 types in
terms of the Re and the stokes parameters. Each flow pattern depended on these parameters dif-
ferentially. They were

1. The laminar flow
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2. The distorted flow

3. The weakly turbulent flow

4. The conditional turﬁulence in which the turbulence appears only in the deccelerating phase of
the flow although in the acceleration phase the flow transient to the laminar like flow. For the
laminar or distorted laminar flow the critical Re increased with the decrease of lambda (=1/2 %
@). For example when lambda= 4.5, then Re=670 and lambda= 3.1, then Re=1330. This pat-
tern coinsided with the data of Sarpkaya. However these data were scattered and dissipated much
and the interpretation was tentative. For the type 4 flow, the Re increased with lambda, for lamb-
da=1.45 ( * 2= @) then Re=2900 and for lambda = 3.85, then Re=4200. In addition Hino’s
data was obtained under the condition of lucite circular pipes having the inner diameter of 14.5 to
29.7mm and the length of 400cm. These values were far from the physiological data of femoral
artery. v

Yellin (1967) [14] examined the laminar- turbulent transition process. They analyzed the factors
that influence the transition from the laminar flow to turbulence under the condition of pulsetile
flow. The growth rate of the turbulence decreased in the flow with low frequency and with large
flow amplitude ratio which was the ratio between the steady component of the volume flow vs the
amplitude of the periodic component of volume flow. He analyzed the effects of these parameters
indépendently. Increasing the flow amplitude ratio from 0.1 to 0.3 as @ =7 (the frequency para-
meter of Womersley) had decreased the growth factor. decreasing the frequency parameter de-
pressed the growth factor almost to O for the flow amplitude ratio of 0.33 (in this case the pulsa-
tile component was rather small) at @ < 7 (Re=2650). This phenomenone was explicit in the low-
er Reynolds number. However for the frequency range of 0 < @ < 2.5, the growth factor decreased
with an increase of @ . According to their data for the frequency range of 3 < @ ¢ 8, the remark-
able decrease of the growth factor of the turbulence appeared. This tendency was reinforced much
by only slight increase of the flow amplitude ratio which indicated the increase of the pulsatile
component. In his studies he used the sinusoidal flow which differes from the practical arterial
flow. So the results were not comletly comparable with the actual blood flow. However the fact the
increase of the pulsatile component would decrease the turbulence gives much confidence of our
study, for in the systolic phase of femoral artery, large acceleration induces a much gréater flow
and the flow amplitude ratio will be augmented to 6.5 to 8 times where even in his result shows
much depression of the turbulence for the ratio of 0.1 to 0.3

About for the animal experiments firstly carried by Hele (1955) [15]. He had visualized the ﬁul-

satile nature of the blood using canine arterial system. He injected the dye in the canine femoral
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artey in Vivo and analyzed the stream line by high speed cinematograpgy. As a result under the
condition of the pulsatile flow, only laminar flow existed and the turbulence could n’t be observed.
On the other hand in the Rabitt abdominal aorta McDonald (1952) [16], discovered the existence
of the turbulence. The difference between the results of Hale and McDonald would originate in the
heart rate. The rabitt’'s HR was twice larger than that of the dog. This factof is comparable of the
Sarpkaya’s data. Dick [17] analyzed the relation ship between the turbulence and the power spec-
trum density of the nonlinear components that were included in the pressure flow relation in the
canine aorta. By injecting the Norepinephrine, the nonlinear components of the power spectrum de-
nsity were markedly decreased and the blood pressure- flow relation approached to the linear one.
Nevertheless the turbulance did not changed. Based on these physical experiments, he infered the
independency of turbulence and the nonlinear blood pressure-flow relation.

Associating these theoretical and experiments results, the turbulence can be infered to be small
in pulsatile flow in the viscoelastic middle sized artery such as in the femoral artery.

Further more even if one assumes the existence of the turbulence, the effects of the turbulence
on the linear or the nonlinear blooq pressure-flow relatio_n would be small in comparison with the
other factors. Recently the analysis of the turbulence itself have been developed extensively and
elaborously. But the mathematical and physical treatment is extremely difficult. One connot ex-
press the component of the turbulence and laminar flow in an idential equation.

VI. The internal radius.

In this paper the radius of the artery was assumed to be indepenent of the change of the press-
ure and the distance from the entry zone. However the radius is never constant during the cardiac
cycle and ‘along the given compartment of the arterial segment. The radius changes in time and
space domain. These cubic deformation are transmitted along the arterial segments. Since the com-
ponents of the arterial wall changes depending on the distance from the entry zone, there should
developexﬁent of the shearing or bending stress in the arterial wall. Then these forces will make
the deformation complex. As a matter of course such complicated wall deformation cause the
change of the radius intricated. Consequently the radius of the artery is in itself the function of
the pressure, distance and the stress. So one cannot tree'lte the radius as a simple independent
variable.

The relation between the radius and the pulsatile pressure had been already reported. Barnett
(1961) [18] firstly measured the AR/Rs (R=Rd ( the diastolic radius)- Rs (the systolic radius)) of
the descending aorta in the living dog. He reported that at the BP 60mmHg <« BPmmHg «

140mmHg, it ranged as 2.5% <« AR/rs <« 7%. Furhermore the per unit pressure change (dynamical
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extensibility index) AR/ AP was 0.022 to 0.048 cm/mmHg. In addition there existed close rela-
tion between the radius and pressure. The relative coefficient was ¥ = 0.9. Patel (1963,64)
[19,20] analyzed further minutely for the human and canine arterial system in Vivo. For human
ascending aorta., pulmonary artery, carotid artery and the femoral artery, the AR/Rs were 0.091,
0.107, 0.011, 0.013 respectively. The AR/ AP %10 cmH20 were 1.8, 8.77, 0.071, 0.07 respec-
tively. For canine ascending aorta, descending aorta, abdomainal aorta and the brachial artery, the
AR/Rs were 0.0458, 0.035, 0.0075, 0.0198 respectively. The AR/AP% 10 cmH0 were 1.472,
0.943, 0.126-0.211, 0.209 respectively. The higher values of the AR/Rs in the pulmonary artery
were due to the proximity to the heart and the effect of the respiration.

Arndtt (1968) [21] also measured the change of the radius in the human carotid artery in Vivo.
The results were AR/Rs=0.0143, AR/ AP % 10 cmH20=0.855. The internal radius increased
linearly with the blood pressure within the BP range of 60mmHg <« BPmmHg <« 130mmHg.

Cox,R,H (1975) [22} emphasized the dependency of the change of the radius on the pressure in
the living dog. For descending aorta with 90mmHg « BPmmHg < 110mmHg, AR/Rs=0.083, AR/
AP=0.63cm/mmHg. For the abdominal aorta with 145mmHg <« BPmmHg < 190mmHg, AR/Rs=
0.022, AR/ A P‘= 0.456cm/mmHg. For the subclavicular artery with 75mmHg <« BPmmHg «
90mmHg, AR/Rs=0.024. For the carotid artery with 130mmHg « BPmmHg < 170mmHg, AR/Rs
=0.621. For femoral artery with 120mmHg < BPmmHg < 180mmHg, AR/Rs=0.023, AR/AP=
0.196cm/mmHg.

Associating these results, the change of the radius due to the pulse pressure in the femoral
artery is 2% to 3% at best which depend of course on the range of the change of the pressure. On
the other hand data obtained in Vitro state are conflicted and many different results have been re-
ported.

Tickner (1967) [23] presented that the results of the canine branchial artery under the strong
longitudinal tethering with BP 75mmHg <« BPmmHg « 300mmHg. The internal radius and the outer
radius maintained almost constant value independent of the internal pressure change.

Cox (1975,76) [24,25] analyzed the canine iliac, carotid artery in Vitro. Untill BP 120mmHg,
the internal radius showed nonlinear increase with pressure. Beyound this pressure, the radius
did not change and kept a constant value even marked change occurs in the BP. Adding the Nore-
pinephrine in this specimen and he activated the smooth muscle, then the behaviour of the radius
changed from the previous result. Below BP = 83mmHg, the radius have conétant value and was
independent of pressure. With the range of 83mmHg « BPmmHg < 166mmHg, the radius changed

parallely with the pressure. Over this pressure, the radius also maintained the constant value.
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These response pattern was sigmoid.

Attinger (1966) [26] examined the change of radius by driving the wide range of pressure for
canine arterial system in Vitro. He used the initial distending pressure about 2cmH20 =
1.474mmHg. For the pressure range of 59mmHg « BPmmHg « 147.4mmHg, in the descending aorta
the relative change of the radius was 1.45 < Ar/ro < 2.02 and in the carotid artery the ratio was
1.83 ¢« Ar/ro < 2.17. He emphasized the marked nonlinearity of the radius and expressed the
minimum change of the pressure induces a remarkable change in radius.

Associating these data, one cannot identify these results since different material, different
measurement instrument and experimental conditions. However the difference between the data in
Vivo and in Vitro seems to originate from the longitudinal tethering effect of the arterial wall in
Vivo. Releasing these constraints would cause the specimen in free movable states. Consequently a
minute change of the pressure makes the radius change surplyzingly. About for the impressive re-
ports of Attinger, the distending pressure was markedly small. Naturally the % change of the
radius increased much.

The mathematical model which include the change of radius had been reportgd only few cases.
Womersley (1958) calculated the effects of change in the radius from R to R + & (systolic to di-
astolic) on the mean blood flow velocity in the longitudinal direction w. He expanded the change of
radius & with the help of the Fourier analysis and incorporated the Navier-Stokes equations. A
much complex computations reduced that the effects due to the radius change contribute only 3.5%
increment of the mean blood flow velocity. In addition this calculation had been done for the case
of Co (the pulse wave velocity) was 500cm/sec and there was no longitudinal tethering (the free
ending movement of the arterial wall). Therefore the value of the 3.5% should be regarded as an
over estimated one. Based on another mathematical expansion he induced relation of the change of
the radius aﬁd the blood flow velocity as 2 § /R=w/C from the continuity equation. If one put w
=70cm/sec and C=120cm/sec, then we get & /R=0.029. That is almost identical value with the
result of the animal experiment in Vivo. Therefore both in the mathematical model and the ex:
perimental data, the pulsatile change of the radius does not affect the blood flow velocity.

As for the dependency of the radius on the distance from the entry zone'a quantitative analysis
had not done until only recently. Melbin (1981) [27] firstly simulated the radius of the femoral
artery by nonlinear model. For the compartment of distance 10cm, the internal radius could be ex-
pressed as r(x)=0.23 % cm % exp(—0.02 x). Thererfore the exponential approximation could be ap-
plicable. On the other hand in their linearlyzed model r equals 0.22cm. Even thought the given

distance was short, the tapering constant —0.02 makes the these difference negligible.
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Attinger (1967) [28] also approximated the biophysical structural properties of the canine arte-
rial system by the exponential functions. For the femoral artery the resistance was
R(x)=174 % exp(0.098x) dyn/cmsec, the leactance was L(x)=35.5exp(0.052x) dyn/cmsec, the com-
pliance was C(x) = 0.78exp( — 0.076x) dyn/cmsec. These approximation were remarkably high
quality. However these complicated exponential and non linear approach gives no advantage for
constructing simple comprehensive mathematical model. Nevertheless the exponential distributed
model affords us much informations for the case of the modeling of the aortic arch. In such a situa-
tion simple linear equations does not hold. A further complicated Ricatti type nonlinear differen-
tial equation must be used. We show this type of model in the following papers.
* VI, The separation of the flow

The separation of the flow occurs in the region such as the post stenotic dilatation where the
abrupt change of the pressure gradient exist. In the tube having a nonstenotic constant radius, the
preésure gradient dP/dx is negative. However in the down stream of the post stenotic region, the
stream line diverge. In such a situation the pressure gradient dP/dx become positive. Then the
state is called in the adverse pressure gradient. Therefore the velocity of the particle in the fluid
-decrease especially at the neighbour of the arterial wall where the viscous retardation force de-
celerate the fluid movement and make the direction inversed. This inversed flow conflict with the
following forward stream. Then the separation of the flow occurs. Increasing the Reynolds number
causes the enlargement of the area of the separation where the vortex or even turbulence de-
velopes. However in the actual normal artery which have only slight tapering, The stenosis is neg-
ligible. In addition the critical Reynolds number in the pulsatile flow is extremely larger than that
of the steady flow. Therefore the separation of the flow can be neglected.

VIIl. The secondry flow

In many shapes of the cross section except circule or in the bending tube, the flow never attains
axisymmetric flow and bears cubic deformative changes. In such a case the inertia acts as a centri-
fugal force from the central part of the flow in the tube to the lateral part of the tube centrifugal-
ly. As the velocity profile of the artery for the radial direction is conical, the velocity should
attain the maximum value at the axis of the flow and minimum at the wall. Therefore larger centri-
fugal force exist near the axis rather than in the neighbour of the wall. The pressure grédient
operate so that balance out such unevenly distributed centrifugal forces. Near the arterial wall
where the flow velocity is small, the pressure gradient is larger than the centrifugal force. Conse-
quently there developes another flow which direcf toward the central axis of the tube. This is the

secondary flow. Even in the straight tube, if the shape of the cross section is not circule, an ene-
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vitable se‘conafy flow happens. In the human arterial system, strictly speaking the cross section is
never circle and certain secondary flow may exists. However in some compartment such as femor-
al artery, the change of the cross section area is small and the flow in such a space can be re-
garded to have only axial component. In our model therefore the secondary flow was neglected.

IX. The effect of the entry zone

The flow velocity profile differences exist between the entry zone (inlet zo‘ne) and the more
down stream region. Especially for the \;iscous fluid, as the flow moves toward the down stream
the thickness of the boundary layer increase. Then the effect of the fluid viscousity developes for
the whole plane of the tube. The compartment to which the effect of the fluid viscousity reach for
the whole cross section is called the entry zone. After this compartment the velocity profile be-
come stable. In the case of the laminar flow, the inlet length of the entry zone is approximated as
0.065 * (Re) * S. For example in the femoral arfery of the steady flow, assuming that Re= 500, D
=0.5cm, then the length is 48.75cm. So the effect of the entry zone covers almost whole length of
the arterial segment. Such a calculation holds only for the steady laminar flow in the rigid tube.
The equation would be far more complex for the case of pulsatile flow in the viscoelastic tube
where the flow pattern is not laminar. Therefore we do not consider the effect of the entry zone.

X. The geometric character of the arterial system

The geometric Branching of the arterial system are known to obey the experience law of Roux.

1) The symmetric branching

2) The branching angle of the small artery is larger than that of the large artery.

3) The total cross sectional area of the after branching artery are larger than that of the stem
artery.

4) In the symmetric branching, the diameter of the branched artery is smaller in 20-30% than
the diameter of the stem artery.

In the actual arterial system, there have many branc.hing points. So the pulse wave bears reflec-
tion from many points along the artery. To include such terms makes the model compls anc the
mathematical treatment is inoperable. We only adopped the case of straight axisym  ..1c circular
tube and the reflection point are confined to the terminal point only. The .cfiection of the pulse
wave is refered in the following paper.

XI. The non linear term of the Navier-Stokes equation

The convective accelefﬁtion terms are inherent physical quantity which operate in the moving
fluid. This acceleration do exists éven the flow is stational. Since the term Dv/Dt express the

change of the velocity in the time domain at the local flow field. The existence of this term indicate
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the unsteady flow. On the other hand the nonlinear term in the Lagurange’s differentiation ( the
material derivation) singifies the convective change of the flow. This is the intrinsic acceleration
which developes when the fluid transfer in the space domain where the physical quantity such as
the flow velocity distribute unevenly. This non linear terms are the essential difference from the
dynamic of the rigid material. The nonlinearity of the Navier-Stokes equation originates in this
convective acceleration terms. Womerseley (1958) examined the effects of these nonlinear terms
on the mean longitudinal flow velocity with the help of the first order perturbation correction
method. He incorporated only two nonlinear term u* @ u/ ar and w * a w/ a z. To clarify the
effects of the nonlinear terms he used the Stokes's stream function. The form of the additional
term which were induced by the nonlinear terms included the higher order products of the Bessel
functions. Therefore the finite integration of these terms became negligible small. The corrected
axial flow velocity increased only 5% (7cm/sec). This value is over estimated for he assumed Co
(the pulse wave velocity) =500cm/sec. Melbin (1981) calculated the contribution of each terms of
the Navier-Stoke§ equation to the blood pressure in the human femoral artery. The terms w* @ w/
@z, u% aw/ar contributed only 5.6%, 2.4% respectively. The proportion was extremely small in
.comparison with the main linear term. The convective accelerative terms as has been mentioned
express the essential and intrinsic characteristic properties which only the fluid itself have.
However in the practical blood flow, contribution of these terms seemed to be small 5% at best.
We have neglected these nonlinear terms because of such tentative minor contributions. Neverthe-
less it is suspicious to remove the nonlinear terms for the sake of the appropriate expression of
the blood flow. The inferaction between these nonlinear terms or between the linear terms may
produce an unexpected unknown effect on the flow. The numerical solution of the Navier-Stokes
equation have recently been reported in the field of the engineering by utilyzing the computer
technique. However these methodlogical problems are out of our duty. v

Xll. The significance of the Stokes stream function

The stream function ¢ is the covariant function with the velocity potential function ¢ . The
stream function maintains a constant value along the line of the stream whose direction coinsides
with the direction of the tangent at the arbitrary point on the given curves. In another words, the
line on which the stream function keeps the constant value represent the line of the strea in the
plane. In the incompressible plane fluid without vortex, the rotation of the velocity vector is zero.
Then av/ax— au/a@y=0. Utilizing the velocity potential u=a ¢ /ax, v=a ¢/ay, the veloc-
ity components are expressed by the differentiation of the velocity potential. Further more the

fluid is incompressive where there is no divergence, then the div(v)=0. So
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au/ax+avy/ay=0.

Now setting the covariant function with the velocity potential as

ad/ax = ad/ay, ad/ay=—ad/ax

Then the each velocity compnents are represented by these stream function as

u=a¢g/ay v=—ad¢/ax

So to utilyze the steam function one should permit the following condition of the flow

1. No vortex (the rotation of thr vector is zero)

2. The fluid is incompressible

3. No divergent flow

In

our theoretical expansion we have already made such assumptions. Therefore the stream

function should be applicable for our study.

In

this paper we have obtained the pure blood flow velocities from linearlyzed Navier-Stokes

equations. To construct the distributed parameter model, one should incorporate into the transmis-

sion line equation into not only the blood properties but also the mechanical properties of the arte-

rial wall. In the following two papers, we shall expand the constructive dynamical analysis of the

arterial wall.
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