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A MATHEMATICAL THEORY FOR BLOOD 
FLOW DYNAMICS IN THE ARTERIAL SYSTEM. 

an induction of blood flow velocity. 

Hirohumi HIRAY AMA， Kohichi ONO， Hisakazu， Y ASUDA 

Summary 

A theoretical expansion of mathematical models of the cardiovascular system are developed. We established a 

distributed parameter model of the arterial system. In this paper we have deduced the blood fJow velocities in 

the longitudinal and radical direction based mainly on the Womersley theory. Neglecting the non.linear terms 

(the convective acceleration terms) in the Navier.Stokes equation and setting linear cyciic solutions， the N.S 

equations were reduced to the Bessel type ordinary differential equations. By utilyzing the Stokes stream func-

tion， the equation which input pressure satisfy was proved to be a Bessel type differrential equation. Applying 

the Bessel type pressure function to the linearlyzed N-S equation， a strict form of the solution of the blood flow 

velocities were obtained. these solutions were confirmedωsatisfy the conservative law of mass. 

To ensure whether these solution satisfy the Stokes stream function another process was used to obtain the 

blood fJow velocities. Turning to the stream function and differentiating direct1y of these functions also induced 

a series of solutions which are identical with the solution that were obtained by solving the Bessel type N-S 

equation. By these strict mathematical process， linear solutions of the blood fJow velocities were obtained. To 

simplyfy the system and problems we made some assumptions and we have discussed the validity of tltese 

assumptions within the range we concern 

Introduction 

It is important to correlate the biological phenomenone and their interactions quantitatively. In 

such a stand point， the cardiovascular system is one of the most suitable subject for such analysis 

Especially to represent the pulse wave transmission phenomenone in human arterial system gives 

much advantages for understanding the control mechanisms of tne circulatory system. Furth 

ermore in the pathophysiological state especially for the congestive heart failure or the trans-

plantation of the heart， it should be analyzed that the interaction and feed back control mechan 

isms of pulse wave conduction which should appear dynamically between the heart and the 

peripheral circulation 

To satisfy such requirement， mathematical or physical models of the circulatory system have 
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been presented. For the arterial system， beginning with Witzig (1914)， the essential and pioneer. 

ing work of the elastic tube theory have been expanded by Womersley (1958) [1]. On the other 

hand the physical electrical model also have been constructed elaborously at the same timeand the 

basic model was completed by the group of Westerhoff and Nordergraaf (1967) [2] 

The mathematical model can be classified into 3 categories on the basic of common feautuers of 

assumptions. The first group is the thin walled model which is based on the m巴mbranetheory. 

Morgan (1954)， Womersley (1954) [3]. Klip (1962)， Atabeck (1968)， and Chow (1967) partici. 

pated in this type of model 

The second group is the thick walled model. Klipp (1967)， Mirsky (1967)， Cox (1969)， Jager 

(1966) [4]. Whirlow (1965)， concern吋 thisfield of model. The last group is the longitudinal 

tethering model and is consequent1y indentical with the rigid tube model. Witizg (1914)， Womers 

ley (1958)， Taylor (1959)， Jones (1969) dealed with this model 

Althought precise and complicated models have been presented by these researchers， they con. 

cerned only with the pulse wave velocity or the transmission efficiency. What we should make 

c1ear is how transmission phenomenone can be represented or revealed realistically. Yet these 

problems are solved. 

About for the physical models， kind of electrical or hydrodynamical analog have been con 

structed. By connecting many condencers or registances， the blood flow waves can be simulated in 

the arbitrary precision. To increase the approximation， one can reinforce the elements of the cir. 

cuit and further complex circuit can be easily constructed. However the biophysical significances 

of each elements embeded in the circuit would become obscure [5]. 

Because of the histhero mentioned grounds， there exists a reasonable necessity to establish a 

comprehensive and easier recongnizible mathematical model. It is a vital necessity for the purpose 

of analyzing the effects of changes of the arterial wall and blood properties on the arterial blood 

flow. 

In the series of these papers， we have constructed 3 basic models about the cardiovascular sys. 

tem， the distributed parameter model of the arterial system， the exponential paramerter model of 

the aortic arch， the lumped circuit model of the total systemic circulation. 

In these three models we firstly show the theoretical expansion about the distributed parameter 

model of the peripheral arterial system which is based mainly on the transmission line theory in 4 

steps. 

Then we reveal how it does express the pulse wave transmission phenomenone in time and 

space domain realistically and the巴ffectsof changes in the biophysical parameters of the arterial 
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wall and blood on the blood flow parameters. In this paper as the first step for the mathematical 

expansion， we have deduced the strikt form of the blood flow velocities from the linearlyzed 

Navier-Stokes equations by two different solution process. 

MATHEMATICAL EXPANSION-1 

To represent the pulsatile flow through a distensible tube mathematically，it is necessary to obtain 

sets of equations which include not only the blood properties itsself but also the mechanical prop-

erties of arterial wall 

For the purpose of such requirements. the equation about the blood flow dynamics and wall mo-

tion should be given independently. Then those equations must be associated by setting the adequ-

ate boundary conditions. In this chapter we reduce the blood flo v velocities from the Navier-

Stokes fluid dynamic equations 

Before solving the equations， we have made following assumptions about the blood properties 

and the geometric characters of the vessels 

l. The blood is Newtonian and incompressive. 

2. The blood viscosity is independent of blood shear rate. haematcrit， body temperature， blood 

flow velocity nor internal radius of the artery. 

3. The blood flow contains only laminar flow. The tangential blood flow velocity is very small and 

the secondary flow. nor turbulence exists 

4. The abnormal viscosity does not exists. 

5. The effects of the entry zone are negligible. 

6. The sllipage between the blood and the vessel wall at the innner surface of the wall does not 

exists. 

7. The vessel is straight， cylindrical， and axisymmetric 

8. The biophysical properties of the vessel wall are constant and independent of the distance from 

the entry zone. 

9. There exists no tapering of the vessel and no leakage flow 

10. The effect of the gravity is negligible. 

1 I The fluid dynamic equations of the blood flow 

The movements of the blood in the closed space especially in the cylindrical tube as a vessel are 

expressed in the Navier Stokes equations. In the cylindrical coordinates， the blood flow velocities 

satisfy following equations 

For the longitudinal direction 
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fαVzαVz  aVz ¥ 一αp (a2Vz 1 aVzα2VZ ¥ 
=--+μ|一一一，，+---+一一一，， 1az αr】 r arαz“ J 

PI-一一一+Vr一一一一+Vz一一一一|ar ar az (1) 

For the radial direction 

fαVrαVr  aVr ¥αp  (a2Vr 1 aVr a2Vr Vr ¥ 
PI-ー+Vr一一+Vz一一一 1=一一一一十 μ|一一亨一+-~--+一一丁一ーす|

at αrαz  )αrαr- rαrαz- r ) 
(2) 

The variables and parameters are defind as fol1owings 

V z : the instantaneous blood flow velocity paral1el to the vessel axis， (the longitudinal blood flow 

velocity.) 

Vr the instantaneous blood flow velocity along the radial coordinates. (the radial blood flow 

velocity.) 

Z : the longitudinal space coordinates. 

r : the radial space coordinates. 

p : the internal pressure 

ρ: the blood density. 

μ: the blood viscosity 

The left sides of the equation 1，2 are in the form of unit mass( P ) multiplied by the acceleration 

DV IDt which mean the internal force in the longitudinal direction and the radial direction respec 

tively. To balance such forces， two forces are given in the right hand of these equations. these are 

the pressure gradient along the axis αplαz and along the radius aplαr. 

Furthermore the viscous retardation force (the frictional force) contributes. In general. for the 

case of dynamical1y moving fluid， the stress changes parallely with the velocity of the deformation 

of the fluid， that is the shear rate of the biood flow. 

Assuming there exists no leakage flow， the conservative law stands. 

Then continuity equation is given as following. 

ap 1α(ρVr*r) ， 1 a (P V 8) ， a(pVz) ハ

一一一+ー← +一一 +一一一一一一一 =0
at r ar r afl αz 

(3) 

We also assume the incompressibil1ty of the blood， the blood density does not change with time. 

Then the eq 3 is reduced as following. 

αVr 
一一一一十αr 

VrαVz 
一一一+一一ー一 =0r az (4) 
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Since we concern only in the linear system， we seek the linear solutions for this system. There-

fore these above mentioned non linear partial differential equations should be linealized. Assuming 

that the effects of the convective acceleration terms such as 

aVz aVzαVr  aVr 
Vr←一一 Vz一一一 Vr一一一.Vz一一←

αr az ar αZ 

on the flow velocity are negligible， we linealized the equ 1 2 to following form. 

αVz 1α P μ ( a2Vz 1 aVz a2Vz ¥ 
一一一一一一一 I

α ραZ  I P lαZ2 r αr  ar2 J (5) 

aVr 1 aP μ(a2Vr 1 aVrα2Vr Vr ¥ 
一一 T 一て三← T 一一一~T 一三二2--ーす!

日 p ar p ~ az~ r ar ar" r~ ) 
(6) 

A 1 The induction of the equation which satisfy the input pressure P 

Before solving the linealized N-S equations， we should obtain the functional form of the input 

pressure P. 

Define the Stokess stream function ψwhich satisfy the continuity equation 3 as following. [61 

Vz = -~αψ z 一一
r α r  

(7) 
V 1αいrニ=

r az 
(8) 

For the sake of obtaining the relation between and P， we input equ 7 into equ 5， then 

:t (干名1= ; [長(子:f)十十:r[千tP)+ 五(千三:~ II 

1αP  

p az 

=手(↓ι(守 l+↓(ιヲ(:与)十二日tP-LC))
1 aP 

Pαz  
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μ (1 a ( α2o ~ ， 1 a併 1α2ψ2α砂 2α2併 1 a3併 1
一一一一一一一一一一一一一一一 1

P l rαr ¥αZ2  J I r3αr r2αr2 r3αr I r2αr2 r ar3 J 

1α P  

Pαz  

μ (1 a ( α2o) 1 a併 1α2砂 1 a3砂 1αP
= P l--;:-~ l一て7)ーゴー--，て吉----==-z一一つ7J-r" ar r~' ar~ r ar" J P αz 

=手(汁[-:z~ 1 +↓7J(干名1-↓士(与)) fkt: 

μ(  1α 「 α2ゆ 1αψα2o ~1 1αP  
一一一一一一一一一---"ー一-

P l r ar lαZ2 rαrαr2 JJ P αz 

We also input equ 8 into equ 6， then， 

ι(↓tZ)27L(ゴユ(干名]+干土(干43)十三二(443ト去42)
1 aP 

P ar 

μ(  1α3O ， 1 ( 1αゆ 1α2o)α1  aO ， 1 a2ゆ 1
= -_-1 一一一?十一一|ーーす一一一+ー一一一一ー!十一一一|ーーす一一一+一一一一一一|

P l rαzυr  ¥ r~αz r araz) ar ¥ r“ az rαraz ) 

1 aO 1 1 α P  

r3αz J P αr 

μ(  1α3 o 1 aO ， 1α2い 2α砂 1 a2o 1α2o 
=一一卜一一__3一一一玄一一一+-::z一一一+-::3一一一一-::z一一一一一-::z一一一一P ¥ r a乙 Eαz r~ arαz rαz  r- arαz r~ arαz 

+~~笠T-L1土)
r azar- r-αz ) 

μ (1 a3砂 1α2o ， 1α3 o ~ 1αP  
一 一一一一一 一 -
P l rαZ3 r2αzαr rαzαr2 Jραr  
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μ ( a (α2 tt 1 a併 a2ψ 1) 1αP 

P lαz ¥αZ2 r ar ar2 J J p ar 

then we get equ 9， equ 10， 

1 a2 tt μ1α a2併 1αψα2ψ 1αP
一 -----一一γ+ 十一___'2 I一一一一

rαrat P rαr ¥ az~ rαr ar~) p αz 
(9) 

1 a2 tt μ1  a (a2 tt 1αtt . a2 tt 1 1 a P 

rαzat一 ρrαz ¥αZ2 rαrα r2 p ar )
 

ハ
リ

噌
』
ふ(

 

Next step we eliminate P in equ 5， equ 6 by differentiating equ 5 with respect to r and diffren-

tiating equ 6 with respect to z. firstly we differentiate equ 5 from left side. 

α(  aVz ¥ 1α ( aP ¥ μ(a3Vz a3Vz 1αVz 1 a2Vz ¥ 
--=-1-一一 1=一一一一一 l一一 1+一一|一::-::z:一十てア了一才一一一十一てごγ|αr ¥αt) P αr ¥ az) p. ¥ az~ ar ar0 r~ ar r ar~) 

-1α ( aP ¥ μfα2 1α a2 1 ¥ 
--I~I 十 |てヲ十一一一 +τ二2 -て玄|ραr  ¥ az) P ¥ az~ r ar ar~ r~ ) 

αVz 

αr 
(11) 

Differentiate equ 6 from lift side. 

:z [守]= ~ 1 :z [ :~]-予防(三手)寸(↓-21)+77(ζ予)

-fz(引)

1αfαP  ¥μ (a2 1α a2 1 ¥ 
=-，---1-1 +-，-1一一ーす+---+--?ーーす|

p az ¥ ar) P ¥ az~ r ar αr“ r~ ) 

αVr 

αz 
(12) 

Subtracting both sides of equations each other， we get 

1 :t -;ご:ニ fJ1i f2r 山一一一(-z十一+---:-::z ---=z 1 ~ • 1 一 -F)20 (13) 

By equ 7 and equ 8， then second factor in equ 13 is 
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21-fE=1ft--土三土+ a2~ 1 
az αr r，αz“ rαrαr“ J 

(14) 

Inputting equ 14 into equ 13， we obtain， 

砂一
d+

 

ψ
'一
町

妙一
d

1
7
 

十+
 

d
一
d

μ
一p

The second factor in equ 15 can be modified as following by recognizing the meaning of the dif 

ferential operator (this step of the mathematical treatment is refered in the appendix) 

j :t - ;α2  1αα2  1 11 I a2 
， 1 α a 2 1 i 供

一一一一(つ十一一十寸ーマll.jー す 十 一 +ゴーすf.f=ar- r-) I I az- r ar ar- r-I 

(16) 

Define the spatial differential operator as 

a2 1 a a2 1 D=ーーす+一一一一一+て二百十一二玄
U乙 rαr

(17) 

Then we can get the simple operator equation. 

(frfLD)D千=0 (18) 

Here we assume that eq 18 can be given by summing two independent solutions ctj and CT2 as. 

ψ= ctj + CT2・

Then either ctj or CT2 must satisfy either of those equations. 

D (千トo (三-; D] 一千=0

Operating these differentiations by eq 17， next equations are induced. 

α2 ctj 1 a ctj ， α2 ctj 
一一 一一ι 一一
az2 rαr  ar2 - v (19) 

a2 ctz 1α 併z ， a2 CT2 ραψ2 
一一一+一一一一 H

az2 rαr  ar2 μ at V 
(20) 
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Summing equ 19 and equ 20 abd utilizing the relation ct =併1+ゆ2，then 

α2い 1 act a2ゆ ρ aCT2
一一---~一一一αZ2 r ar αr2μαt  

Inputting equ 21 into equ 9 and equ 10 

1 a2 ct μ1α p αCT2 1 1αp  

rαrat P rαr ~μ at ) p az 

1 a2併 μ1α (p α併21 1αP  

rαzαtρrαz ~μ at) P ar 

Because ofψ1=ψψ2 ， then equ 22 and equ 23 are 

Pα2 CT1 aP 

rαrαtαz 

ρα2ψ1αP 

rαzαtαr 

(21) 

(22) 

(23) 

(24) 

(25) 

To eliminate CT1， multiplying r both equations in each sides and differentiate equ 24 with re宇

spect to r and defferentiate equ 25 with respect to z， then 

??(rtZ)+去 [r :~ 1 = 0 

Therefore the partial defferential equation which include only fun'ction P is 

a2p 1 aP α2p 
-ーす+ 十一←.，=0 。Z】 rαr ar~ 

(26) 

B. The solution of the equation which satisfy P. 

As P is the cyclic function which depends on the cardiac rhythm， we assume the linear cyclic solu-

tion as in the following form， 

P=P (r)*exp I in*(t-z/c) I (27) 

n : the angular velocity n = 2πf 
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c : the pulse wave velocity 

i : imaginary unit 

Which means one can separate the solution into time and space domaine and these quantities 

should have no interaction 

Inputting equ 27 into equ 26， equ 26 is reduced to the 0 order bessel type differential equation 

of P (r). 

A
U
 

D
i
 

n
一
e

p--d 

A
U
一+

 

P
一-U

A
U
↑
 (28) 

As the limitting case r.O， there exists a firtite solution. So the second order solution should be 

discarded，. Then one can easily obtain the solution as 

P(r) =J(i*n*r/c) 

Therefore P can be given in the form as， 

P = Al Jo(inclr) * exp(i * n * (t-zl c)) (29) 

c I The solutions of the li配 arlizedNavier批 okesequations 

Assuming the linearity of the arterial system， then the frequency of the input and output must 

be idential. Consequently the blood flow velocities Vz， Vr can be written in the form simmilary as 

input pressure， 

Vz=w(r)*exp li*n*(t-z/c)1 

Vr=v (r)*exp li*n*(t-z/c)1 

P=P (r) * exp Ii * n * (t-z/c)1 

(30) 

(31) 

Inputting equ 27， equ 30， equ 31 into equ 5，6， then 

1 inμ(a2V 1 aW ー in¥ 2 
inW=pで P(r)+p同 戸 十 r aτ刊です WJ (32) 

打 1αP(r) ， μ(  a2V . 1αV 白 (-in~2__ V~ 
mV二二一一て一 十一一一 i一一一万一十 十|ーで一一 v --~ I 

yαr  P l ar“ rαr し rム l (33) 

Which is the equations including variable r only 

The continuity equation 4 also should be modified into following form 
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サ
一

cw
 

十
V
一
r

十
州
一
町

(34) 

(35) (子rlW = + ; (子1P (r) 

Rearranging equ 32， then 

a2W 1α W  (p  in 
-ー一一 一一 -
ar2 rαrμ  

Which is the Oth order Bessel type differential equation. In general about for the Bessel type 

equatlOn as 

Y"+Y'/z-(s2十 ν21z2)y= 0 

The finite converging solution is Y=Jν(i s z) 

Therefore in equation 35， putting 

2
n
F
 

+
 

M
一μ一一

3μ

・
(36) 

Then the solution of the equ 31 is 

W 1 = CIJo (i s r) 

C1 : integral coefficient 

on the other hand the specific solution is 

一九=士イト(子1P (r) 

Therefore utilizing equ 29， 

2 i n nD  Jo (inr/C) 
!'}一一0P(r)=~ß~ f1 し β2μC (37) 

(38) 

Then the general solution is 

inD Jo (inr/C) 
W = Cdo (i s r) + ----!'}.~ 

s2μ C  

As for the radial direction V， simillary rearranging the equ 33 
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α2V 1 aVρin  (-in i 2. 1 ~" 1 P a P (r) 
~~~一+ 一1---1一て一 1+←.， 1 V =一一一一一一一一一
αr~ rαrμL し r~ J P μαr  

(39) 

Utilizing equ 36. equ 39 is converted into 1st order bessel type differential equation. The solu 

tion of it is given as 

Vl (r) = C2h (isr) (40) 

C2 : integral coefficient 

As for the P (r) = D * Jo (i * n * r / c). (here the integral coefficient is redifined as D instead of 

A1). According to the formula about the differentiation of the Bessel function. 

十
ワ

L
ヲ
L一一

山
一
む

Then. 

dP(r) in 
lJ=D  Iア11(in山

Therefore the specific solution is given as 

in h (inr/C) 
V~ = D一一一一一一一一一

ム C μjj“ (41) 

Then the general solution is 

Din h (inr/C) 
V = C2h (isr)十 一一一万-2~

C P.同
(42) 

Now we set. 

3 ~2 
l~ a~ n .3 _.2 

α。二二 一一一一一←一 α 
ν 

μ 
ν 二二

ρ (43) 

F 一 ln
0一 C (44) 

α: the Womersleys coefficient. 
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a : the internal radius of the artery. 

sin町n町…c (45) 

Then 

(46) 
Din Dso a 

-一一万す=一一一ーす
C f1 ß~ f1ao 

is = (与L1311f=(手十字、%

(the pulse wave velocity C is 13-18m/sec in human arterial system). 

By utilizing the αo and so ， changing the integral costants Cl， C2， D into Al， A2， the solution 

38， 42 are expressed in the following 

一主ド 10(与)
(α02 + s02)y， ( (ao2十戸。2)Y， r ~ w = Vz = Aフ Tn I ' v 

a010 (α。 JV 1 a 

*explin(t-z/c)f (48) 

Vr = A胃
so ，.T1 r JaoZ+F02)M r:..l 

~ ao 10 (α。)J L 1 a 当o~ h ( so : ] *吋

(49) 

P = Ado (け]*州川 z々

Now the coefficients are normalized by α10 (α0)ー

Since n/c→o ， so by equ 43 and equ 44， thenα02十 s02→ α02

Putting r / a = r /R = y and i * n * a/ c = k， then we get the following form o~ solutions 

(51) 
1o(aoy) Al ina a 

VZ=A2~一一一ー ゴすτす10(ky) 
10 ( a 0) μC  

(52) 
so h (αo y)αkA1 

Vr = A2~一一一一一ー す _2h (ky) 
α。10(α。)μi"a
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If one redifines A2 sol aO=C2 ， this form is idential with what Womersley had induced 

D. The satisfactory condition for the conservative law. 

As those solutions and equations are based on the Stokes stream function， as mentioned in eq 7， 

8 which had been assumpted to satisfy the conservative law eq 4， eq 51 and 53 should be ex-

amined whether the continuity equation 4 satisfy. The continuity equation should be converted 

into 

(53) 

Utilizing the differentiation formula of the Bessel function for equ 52 

α
 

ve一o
一
y

α
一
O

/
1
一
α

vd 
Aυ a
 

ハU一一
vd一

ハ
り
↑a

一
vd

/
l
、一
A
U

τ
a
J
一

J
U
一

We now put 

A2 so 
ーし2

α 。

Then the left side of the equ 53 becomes 

C2 (_ T ，_ h (ao y) i RkA1 (， T "， h (ky) i . ~ h (ao y) 一一一 IaoJo (ao y)ー ト ~τI k Jo (ky)一一一一 1+C2一一」一一Jo (ao) l V'V， V 0' Y J1 i.j a~ l"'v '''0' y)'  ~~ Jo (α。)y 

RkA1 h (kyα。Jo(αoYRk2Al 
μi3 a 2 y = C2 Jo (ao) -'- J1 i3 a2 Jo (ky) (54) 

and the right side of equ 53 reduces to 

inR . Jo (ao y) inR inR2 

で-A2J訂瓦了一三一王百万玄AlJo (ky) 

The equation 54 and and 55 should coincide. Therefore the coefficients of Jo (ao y)， Jo (k * y) in 

both side should be idential. Then 
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(56) 

This is exactly what we have put k = i * n * a/c. Therefore equ 51 and equ 52 satisfy the con. 

tinuity equation 4. 

Assuming n/ c→ 0， the approximation formula for the Bessel function reduce the term Jo (i * n 

* R/ c) approaches to 1 and 11 (n * R * y / c) reduces to n * R * yl2c. 

Ultimately the blood flow velocities are given as followings 

Jo (α。y) ， A1 
Vz = Aっ一一一←一一十

~ Jo(ao) . ρC 
(57) 

Vr 主主 fAヮ三h竺oy) + v A: i 目.，

2C ¥ゐ aoJo(ao) 目 J P C ) 
(58) 

α: the W omersleys coefficient 

E. Another solution of the blood flow velocity by the Stokes stream function. 

In equ 19 and equ 20， assuming that the two stream function砂1and砂2is separable in time 

and space domaine， one can express the solution in the linear form as 

供1:F(r)*expli*n*(t-z/c)1 

tf2 : G (r) * exp Ii * n * (t -z/ c)1 

(59) 

(60) 

Inserting equ 59 and equ 60 into equ 19 and equ 20， 
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Putting F = r * f (r) and G = r * g (r) and simple calculation br・ingsus to the following Bessel type 

differential equations. 

d2 f 1 df n2 1 ~ 
一ーす十一一一一一+ I--?一ーす 1f = 0 
dr“ r dr c“ r】 J

(63) 
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d2 g 1 dg n2 1 in P ) 

dr2 十 717十 |-ET-y-7
ー
Jgニ O

Then putting as before equ 43 and equ 44 as 

F in /nj M}% = α 一一+一一一l
C'¥c“ μ/  

Here we newly defined a as above and is different from the W omersley coefficient 

Then the solution can be easily attained as 

f(hf=Ah州=Ah (与)

G ( ( n2 in P ) y， ¥ 
g (r)ニ王=Bh(iαr) = B 11 l i同玄十一五一J r) 

(64) 

The J (i * x) is the pure imaginary number， then tohave non trivial solution， the coefficiens 

should redifined as 

A=A*i B=B*i 

Then the Stokess stream function is given as following 

件=CT 1 + CT 2 =(F(r)+G(r)) * exp li * n * (t-z/c)f 

=r (Adl (isr)+ s 1h (i a r))*exp jin (t-z/c)f 

Because of the definition of the equ 7， 

VZ7z-J77(rI川仙)+ Bh(iαr)) 1 

Utilizing the differential equation of the 1st order Bessel function 

dJdisr) dJdisr) d (isr) (~.. r>.  Jdisr)) 
一一一一~一一一一一!.... = I Jo (i s r)一」一一 Ii 

dr d(isr) dr \JV\'/~" isr 

Then 
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As for the radial velocity only， the differentiation with respect to z reduces to 

vr=AfM  

(66) 

(67) 

As C (pulse wave transmission velocity) is 13-18m/sec in human arterial system， then n/c→ 0， 

and 10 (i s r)→1 

a = iY2 (引にiY2* a * 

Vz =ヤ+B iY2 a女川

At the innersurface of the arterial waU， the blood flow velocity attains the finite value 

Vz(r=R)=V*， Then 

V*=芋+B iY2叫ん (i3/2a献)

So the coefficient B is 

1/. V*  -A n i/C 
B i7i a * = " ，..，.~!? 

10W'句女R)
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Therefore 

( ~. • Ani 1 Jo (i3/2 a女r)
z=一一一+tv*一一一一 'Cτ守ず寸τl"" C) 恥 id/"α女町

Here redefine the coefficient and parameter as following 

子=会 [v*-芋1= Cl 

R *α*=α ，y=r/R 

Here the coefficient a idential with womersleys coefficient. 

Then the longitudinal blood flow velocity is obtained as 

Al ，~ Jo ( a i3/2 y) 
z 一一一一+Cl 引っρC -， Jo(ai"/~) 

(68) 

The same procedure bring us to the following equation with respect to the radial blood flow 

velocity is 

V 凶 rCl~Jdα1ν2y~+ v ~:. 1 
rzEEl1αi3/2 Jo (αi3/2 )十 y下cJ

The eq 68 and 69 are idential with eq 57 and eq 58 respectively 

(69) 

Therefore the solutions of the linearlyzed Navier-Stokes equation are obtained in the form as eq 

57， 58 or eq 68， 69 

APPENDIX 

(JL477+壬-古)(わ

1 a2ψ 1 (併白 1 a砂¥ a2 ゆ 供
二一一一一一一一，-+-一一一αZ“ r¥r“ rαr /α r】 r r~ 
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1α2併 1αtt W ， a (l aゆ併¥砂
一一一一一一 目T --:.:z --::::.:---:Jl T -:::: ¥ 一一三C-J てすr az- r α r  rαr¥r  r-/ 

1 a2ψ 1 aψ2ψ1  aψ1α2ψ1α2併 2ψ
=一一ーす←十ーす一一一一一寸一一ーす + - - - ' ? - 一 ー す 一 一 一 一 + 一τ 一

rαz- r】 αr r- r】 ar rαr“ r- ar r-

1α2い 1α2併 1α約
一一一一一一一
ーー r az2 r αr2 r2 αr 

=↓(43-;ff+42) 

DISCUSSION 

In the first chapter of the series of mathematical modeling of the cardiovascular system， we have 

developed a distributed parameter model of human arterial system. This papre treated with the 

mathematical expansion for the pure blood flow velocities which does not include the arterial wall 

properties. To obtain the velocities (which are the solutions of the Navier-Stokes equations)， we 

made some assumptions about the blood' and artery. We discuss firstly the significance of modeling 

and the Navier-Stokes equation， then expand the discussion mainly about the blood properties. 

1. The modeling of the biological system. 

There are several candidates of the models which can express the cardiovascular system. To de-

scribe the effects of the cardiovascular elements on the blood flow two typical models exist 

First is the lumped circuit model in which many biophysical properties of the arterial wall and 

blood are gathered together. 

The classical but representative model is the windkessel type model as Frank had suggested. 

Such model is composed of the reistance and compliance only. So .each character of the element 

which compose the arterial blood flow and the effects on the flow wave were made obscure. Furth-

ermore it can be seen which component (for example whether arterial wall thinkness or the blood 

density) mainly contribute to the change of the total arterial resistance or the arterial compliance. 

Of course such lumped circuit model cannt represent the transmission phenomenone even much 

elements are incorporated， since this type of model never contains the variable x. However to look 

the dynamical system macroscopically and analyze overall behaviour of the large system， the 
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lumped circuit model is suitable. 

On the other hand the distributed parameter model is arrang巴dutilyzing R.L.C.G in the axial 

direction and radial direction (the ladder circuit) depending on the dista.nce from the entry zone. 

So a simple increment of the number of the elements brings us to more precise representation of 

the transmission phenomenone of f10w wave. But when one should look the cardiovascular 'system 

excIusively and to analyze the effects of the change of some compartment of the artery (such as 

aortic arch or small arterioles). one would confuse to treate such distributed model since the para-

meters all change continuously in the special domain and these sequential parameter change may 

obscure the segmental change which one concerns. 

In any way the selection of the model is depend on the purpose or phenomenone that one wish 

to analyze and to discIose. In the first series of the papers we analyze the pulse wave transmission 

phenomenone. So we adopted the distributed parameter model. 

The candidates of the arterial that satisfy these mentioned assumptions are rather many in hu-

man arterial system. We apply this model for the middle sized arterial system such as femoral 

artery or brachial artery. 

11. The solution of the Navier-Stokes equation. 

We have deduced the blood f10w velocities in the longitudinal and radial directions from linear-

Iyzed Navier-Stokes equations. As a conventional way. we utilyzed the Stokes stream function 

and induced the differential equation about the input pressure P. The pressure was shown to be 

a Bessel type function. 

There is at least two process to obtain the blood f10w velocity from the N -S equations utilyzing 

the Bessel type function of blood pressure P. First is to solve the linearlyzed N-S equation as a 

BessεI type Oth order or 1st order differential equation. The second is from differentiating the 

Stokes stream function. In either solution process. the Bessel function and its differential are in-

cluded. By setting adequate coefficients. these solutions proved to coinside e<ich other and also 

satisfy the conservative law. 

The linearlyzed solutions incIude those parameters as y = r /R. P (the blood density). C (the pulse 

wave velocity). a ( the Womersley coefficient r *イ百五~ • n : the angular velocity). The 

Womersleys coefficient is the ratio of radius of tube and thinkness of the vibratory boundary 

layer and this ratio directly relates to the velocity profiles of the f10w in an artery especially for 

the pulsatile f10w 

Therefore the blood velocity are the function of both the blood and arterial wall properties. This 

interrelationships intimately correlate with the specificity of the distributed parameter model and 
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transmission line theory 

111. The signifcance of the Navier-stokes equation 

When the f1uid moves， it travels continuously in time and space domain目 Thereforeit is the 

velocity in the time and space domain and not position that should satisfy the N.S equatuion. In 

general the N.S equation can be expressed' as following form， 

DV IDt = F-grad P +f. 

D/Dt is the lagurange's differential operator and indicates the change of the velocity of each 

particle in the f1uid. This also corresponds to the inertial force that act on the unit mass of the 

fluid. F is the external force. Grad P is the pressure gradient. f is the viscous stress inherent of 

the viscous f1uid. The N.S equation represent the balancing state of the forces acting on the vis. 

cous f1uid. As in the analysis of the electromagnetic field， the interruption of these equation is 

different when the f1uid dynamical phenomenone is looked in a macroscopic view or microscopic 

view. Applying the conservative law of the momentum to a given time and space domain in the 

arbitrary point of the f1uid and squizing these region infinitely small， then one can obtain the 

limitting equation. That is the Navier.Stokes equation. Therefore it is suitable to express minuetly 

the local f10w state qualitatively. On the other hand to apply the conservative law to a finite time 

and space domain， the N.S equation shouldbe integrated. This is the integral equation of the 

momentum and applied to the analysis of the macroscopic f10w state. In such a stand point N.S 

equation also can represent the turbulent f10w and movement of the compressible f1uid. The N..S 

equation is different in form of the solution depending on the character and quality of the f10w 

which the N.S equation express. In the case of the Reynolds number smaller than 1， the domina予

tive term is the dissipative term and the solutions are always stable. However when Re increase， 

the convective acceleration term increase and the differentiation of the f10w should occurs. Such 

that the main f10w part is the one viscous flow and in the boundary layer， the shearing f10w exist. 

Until the Re exceed 1000， the f10w is mainly laminar but for the larger Re， there develops the 

turbulent flow and the analysis is extremely difficult. About for the practical solution of the N.S 

equation， many approaches have been presented such as 

1. Convertion into the difference equations 

2. The utilization of the functional derivation of the N avier.Stokes equation and apply the 

variational princple 

3. The linearization of the N avier令Stokesequation 

In our studies based on the Iinearization of the whole system we adoppted the 3rd analyzing 

method. The reasons for the validity of utilyzation of the linearity are discussed in the 5th papaer 
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of our studies， 

IV， The non Newtonian property of the blood. 

The fluid which obeys the law of the Newton is called the N ewtonian fluid. In the newtonian 

fluid the flow velocity gradient D paralells with the shearing stress (S). Then the relation D= 11マ

* S holds. The proportion coefficient 1] is the viscos coefficient. Such law stands only for the 

simple liquid and gas. For the deformative substance， another expression of the formula is Y = 

S/n， where Y is the shear rate. As a result the shear rate parallels with the shear stress. Howev-

er in the fluid such as colloid solution， a simple parallel relation does not hold between the shear 

rate and the shear stress. In the non Newtonian fluid， the viscosity of the fluid is defined as 1] a 

S/ Y which is the apparent viscosity. In the blood the apparent viscosity decrease with in 

crease of Y and this phenomenone is called the shear thinning. 

The apparent viscosity depend on the following factors. 

a. The temperature of the liquid. 

b. The length of the tube. 

c. The diameter of the tube. 

d. The concentration of the RBC and Haematocrit. 

e. The velocity of the blood flow (the shear rate) 

a) The apparent viscosity falls with the increase of the temperature. But except for the exterme 

ly low shear rate (below l/sec)， the viscosity is almost constant as 10-40c 

b) The viscosity changes depending on the length of the tube which character is called the thix-

otropic effect. This effect can be neglected since the length of our model will be assumed to 60 cm 

and the radius of the artery 0.35cm at most. So the length of the artery is 100 times larger than 

its diameter. 

c) When the diameter of the tube decreased below hundred μm， the apparent viscosity de-

creased with the decrease of the tube diameter. This phenomenone is called the Fahraeus-Lind-

quvis effect. This、phenomenoneis explained by the local change of the Haematcrit (the axial accu-

mulation) and is negligible for the range of radius as femoral artery. 

d) The apparent viscosity increase parallely with Hct increase， yet the viscosity striongly de-

pends on the diameter of the viscometer. According to Whittaker and Winton (1933) such results 

are also obtained in Vivo (the perfused canine hind limb). Their data were clearly coincided with 

data obtained by the viscometer when the results are corrected by the inertial losses [71. 

e) The relation between the shear stress applied on the blood and resulting shear rate is ex 

pressed in the Casson's equation 
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s=k* Y +C  s : shear str巴ss， Y : shear rate 

C is the shearing stress neccesary for begining the fluid movement and is called the yield stress. 

As a matter of course the viscosity coefficient also depends on the Hct and dereases with the in-

crease of the shear rate. However this tendency is explicit only for the shear rate smaller than 

10/sec. and is constant for the range greater than 100/sec. at any Hct value [8]. However these 

results are obtained under the condition of steady flow and in small diameter glass tube. Neverthe-

less in human arterial system， the shear rate for the ascending aorta is 190/sec at wall (mean 

130/sec) and for the large artery such as the femoral artery， the shear rate is 700/sec at wall 

(mean 470/sec) [9]. Therefore theoretically the viscos coefficient shoud be independent of the 

shear rate. If this holds ture， then the relation between the pressure difference P and the flow rate 

should parallel under the condition of the steady flow. However in general these relation is all 

nonlinear. Bayliss [10] firstly measured this relation at Hct = 49% for the steady flow using the 

tube with the radius 408μm， length 155cm. The resulting pressure flow relation was nonlinear. 

So the Poisseulie's law does not hold. 

The conditions that hold for the Poisseuile law originate mainly in the Newtonian properties of 

the blood. These are followings. 

l. The tangential stress between the shearing cylindrical laminar of the fluid parallel with the 

velocity gradient across the laminae. This indicate the consistency of the proportionality of the 

viscous coefficient and is independent of the velocity gradient (the shear rate). 

2. The flow is laminar which means the viscous forces responsible for energy dissipation are 

parallel to the axis of the tu be 

3. The velocity profile should be parabolic. 

4. The fluid is homogeneous. 

These conditions are demanded however only in the steady flow. In the non Newtonian fluid 

such as the blood， some different experimental results were reported. Rivlin (1948) already had 

shown the existence of the normal components of the stress tensor in the non Newtonian fluid 

Haynes and Burton (1955) [11] showed the existence of the dissipative normal forces tothe axis 

of the tube and concluded the blood flow was not laminar. They also calculated the viscous coeffi-

cient along the radial direction. It increased from 4P at the wall to 6P at the axis by the axial 

accumulation. After these study they analyzed the effects of the nOIトNewtonianproperties of the 

blood on the pressure-flow relation in the glass tube of the radius from 50 to 800μm. The ex-

perimentally obtained curves had become linear as the flow rate increased. Based on thesεdata， 

curves of shear rate as the wall 4Q/R3 versus shearing stress at the wall PR/2 were constructed 
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under the steady flow. These curves were alJ linear at shear rate PR/2 greater than 20 dyn/ cm. 

In the human artery， the stress at the walJ is 60 dyn/ cm for large artery (R = 0.5cm) and 93 

dyn/cm for the terminal artery. So theoreticalJy in the femoral artery， obviously PR/2 ) 20 

dyn/cm. Then the relation should be linear and the non.Newtonian properites should not be re 

flected. Since these results were obtained under the condition of the steay flow in the smalJ dia. 

meter， and in the rigid circular tube and above mentioned data were obtained alJ in Vitro and 

some differences may exist between the results obtained in Vivo. 

Benis [7] and his colJeges assesed the effects of these non Newtonian properties of the blood on 

the non linear relation of the pressure.flow. These experiments were performed in the perfused 

isolated hind paw of the dog. They used the specific parameter Rv/Rvo (Rv : the viscous vascular 

resistance， Rvo : viscous flow resistance for celJ free perfusate)ー Thisvariable was not affected by 

the vascular geometric parameter and has been corrected for the inertial losses. So it reflected 

only the rheological behaviour of the perfusate. The change of the Rv /Rvo could be regarded to 

originate in the non N ewtonian viscosity of the RBC suspension. The Rv /Rvo increased with the 

increase of Hct and with decrease of the normaliyzed flow rate. At Hct of 20.5%， the increase of 

the relative normalyzed flow rate of about 240% reduced the Rv /Rvo only for 8%. For the case of 

Hct = 50.6%， the increase of relative normalized flow rate of 260% reduced the Rv/Rvo only for 

11 %. Consequently the significant change of the true viscosity occured only in the case of extreme 

ly large change of the flow rate. These observations were done under the perfused steady flow 

state and is not directly comparable with the pulsatile flow. Neverthel巴sseven under the pulsatile 

flow such large flow rate change would not occur. So the viscosity should not change and can be 

regarded as independent of the flow rate. 

V. The turbulence 

For the steady state flow in the straight circular cylindrical tube， it has been known that the 

laminar flow transients to the turbulent flow if the conditions that satisfy the critical Reynolds 

number have been、reached.The critical Renolds number is defined as 

Re = U * D* P /μ(U: the blood flow velocity， D: the diameter of the tube， p: the blood de 

nsity，μ: the blood viscosity) 

According to the physical巴xperimentthe critical Reynolds number Re is calculated to be 2000 

when the steady flow pass through the circular rigid tube. Calculating the Re for the case of hu. 

man femoral artery， assuming Vz= 100cm/sec， D=0.5cm， p = 1.05，μ =  0.03， then Reニ 1758

which is understimated. On the other hand by Whitmore (1968) [9]. it was revealed that for the 

human ascending aorta， the Reynolds number ranged as 3600 ( Re ( 5800， for the descending aor-
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ta it ranged as 1200 ( Re ( 1500， for the large artery such as the diameter 0.2 ( Dcm ( 0.6， Re= 

850. However these calculations were done on the assumption of the steady flow in the rigid 

circular tube. Practically the blood flow in the main arteries are pulsatile nature and the tube has 

enevitable visco-elastic properties. Consequently these simple mathematical theory can't be applic 

able. Some physical engineering experiments have been reported especially with respect to the pul-

satile flow of the arterial system 

Sarpkaya (1967) [121 studied the conditions of the critical Reynolds number under the condition 

of the pulsatiling flow in the rigid tube. The Re was a function not only of the frequency para. 

meter α(the Womersley's parameter) but also of the flow amplitude ratio lambda (the ratio of the 

periodic mean velocity versus total mean velocity). According to his data the critical Re was not a 

simple increasing function. It increased with lambda (the pulsatile flow velocity component) and 

had reached maximum value， then decreased exponentially. For example in the case ofα=4.0， Re 

increased with lambda and had atiained max = 5150 for lambda = 0.625， then it decreased to Re = 

400 for lambda=1.0. For the case of a =7.2， Re atiained max=2950 at lambda=0.28， then de 

creased to 0 at lambda=0.65. The Re increased with lambda and decreased with α. He concluded 

that for the same mean pressure gradient， the Re for the pulsatile flow is higher than steady flow. 

In addition the Re for the nonharmonic oscillation were lower than those of the harmonic pulsatil-

ing flow. Nevertheless his data refered only to the ratio of lambda untill 0.95. These flow were 

mainly steady flow and the proprotion of the pulsatile components in his experiment was extr巴me.

ly small comparing with the actual flow. For example for the human aorta the flow ratio is 2 to 5 

and for the femoral artery the ratio is 7 to 8. As the Re had decreased exponentially after aitain-

ing the max value， the large lambda would cause the Re decresed markedly for the large value of 

the frequency parameter a. So their results are not easily applicable for our studies. 

Hino (1978) [131 analyzed the behaviour of the critical Re under the condition of the purely 

oscillatory pipe flow. So the flow ratio lambda was infinite. They used the following parameters 

Re， Rd (= U * d/v， d = 2v/w， v: the kinematic viscousity， w: the angular velocity) which is the 

Reynolds numbe 
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2. The distorted flow 

3. The weakly turbulent flow 

4. The conditional turbulence in which the turbulence appears only in the deccelerating phase of 

the flow although in the acceleration phase the flow transient to the laminar like flow. For the 

laminar or distorted laminar flow the critical Re increased with the decrease of lambda (= 112 * 
α). For example when lambda= 4.5， then Re= 670 and lambda = 3.1， then Re = 1330. This pat-

tern coinsided with the data of Sarpkaya. However these data were scattered and dissipated much 

and the interpretation was tentative. For the type 4 flow， the Re increased with lambda， for lamb-

da = 1.45 ( * 2 = a) then Re = 2900 and for lambda = 3.85， then Re = 4200. In addition Hino's 

data was obtained under the condition of lucite circular pipes having the inner diameter of 14.5 to 

29.7mm and the length of 400cm. These values were far from the physiological data of femoral 

artery 

Yellin (1967) 114] examined the laminar-turbulent transition process. They analyzed the factors 

that influence the transition from the laminar flow to turbulence under the condition of pulsetile 

flow. The growth rate of the turbulence decreased in the flow with low frequency and with large 

flow amplitude ratio which was the ratio beiween the steady component of the volume flow vs the 

amplitude of the periodic component of volume flow. He analyzed the effects of these parameters 

independently. Increasing the flow amplitude ratio from 0.1 to 0.3 as α=  7 (the frequency para-

meter of Womersley) had decreased the growth factor. decreasing the frequency parameter de-

pressed the growth factor almost to 0 for the flow amplitude ratio of 0.33 (in this case the pulsa-

tile component was rather small) atα( 7 (Re= 2650). This phenomenone was explicit in the low-

er Reynolds number. However for the frequency range of 0 (α( 2.5， the growth factor decreased 

with an increase of a . According to their data for the frequency range of 3 ( a ( 8， the remark-

able decrease of the growth factor of the turbulence appeared. This tendency was reinforced much 

by only slight increase of the flow amplitude ratio which indicated the increase of the pulsatile 

component. In his studies he used the sinusoidal flow which differes from the practical arterial 

flow. So the results were not comletly comparable with the actual blood flow. However the fact the 

increase of the pulsatile component would decrease the turbulence gives much confi 
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artey in Vivo and analyzed the stream line by high speed cinematograpgy. As a result under the 

condition of the pulsatile flow， only laminar flow existed and the turbulence could n't be observed. 

On the other hand in the Rabitt abdominal aorta McDonald (1952) [16J， discovered the existence 

of the turbulence. The difference between the results of Hale and McDonald would originate in the 

heart rate. The rabitt's HR was twice larger than that of the dog. This factor is comparable of the 

Sarpkaya's data. Dick [17J analyzed the relation ship between the turbulence and the power spec-

trum density of the nonlinear components that were included in the pressure flow relation in the 

canine aorta. By injecting the Norepinephrine， the nonlinear components of the power spectrum de. 

nsity were markedly decreased and the blood pressure-flow relation approached to the linear one. 

Nevertheless the turbulance did not changed. Based on these physical experiments， he infered the 

independency of turbulence and the nonlinear blood pressure-flow relation. 

Associating these theoretical and experiments results， the turbulence can be infered to be small 

in pulsatile flow in the viscoelastic middle sized artery such as in the femoral artery. 

Further more even if one assumes the existence of the turbulence， the effects of the turbulence 

on the linear or the nonlinear blood pressure-flow relation would be small in comparison with the 

other factors. Recently the analysis of the turbulence itself have been d.eveloped extensively and 

elaborously. But the mathematical and physical treatment is extremely difficult. One connot ex. 

press the component of the turbulence and laminar flow in an idential equation. 

VI. The internal radius. 

In this paper the radius o.f the artery was assumed to be indepenent of the change of the press 

ure and the distance from the entry zone. However the radius is never constant during the cardiac 

cycle and along the given compartment of the arterial segment. The radius changes in time and 

space domain. These cubic deformation are transmitted along the arterial segments. Since the com-

ponents of the arterial wall changes depending on the distance from the entry zone， there should 

developement of the shearing or bending stress in the arterial wall. Then these forces will make 

the deformation complex. As a matter of course such complicated wall deformation cause the 

change of the radius intricated. Consequently the radius of the artery is in itself the function of 

the pressure， distance and th.e stress. So one cannot treate the radius as a simple inQependent 

variable. 

The relation between the radius and the pulsatile pressure had been already reported. Barnett 

(1961) [18J firstly measured the s R/Rs (R=Rd (the diastolic radius)一 Rs(the systolic radius)) of 

the descending aorta in the living dog. He reported that at the BP 60mmHg ( BPmmHg ( 

140mmHg， it ranged as 2.5% ( /::，. Rlrs ( 7%. Furhermore the per unit pressure change (dynamical 
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extensibility index) A R/ムPwas 0.022 to 0.048 cm/mmHg. In addition there existed close rela 

tion between the radius and pressure. The relative coefficient was r = 0.9. Patel (1963，64) 

[19，201 analyzed further minutely for the human and canine arterial system in Vivo. For human 

ascending'aorta.， pulmonary artery， carotid artery and the femoral artery， theムR/Rswere 0.091， 

0.107， 0.011， 0.013 respectively. The A R/ムP* 10 cmHzO were l.8， 8.77， 0.071，0.07 respec. 

tively. For canine ascending aorta， descending aorta， abdomainal aorta and the brachial artery， the 

ムR/Rswere 0.0458， 0.035， 0β075，0.0198 respectively. The AR/ AP* 10 cmHzO were l.472， 

0.943，0.126.0.211，0.209 respectively. The higher values of the AR/Rs in the pulmonary artery 

were due to the proximity to the heart and the effect of the respiration. 

Arildtt (1968) [211 also measured the change of the radius in the human carotid artery in Vivo. 

The results were A R/Rs = 0.0143， A R/ A P * 10 cmH20 = 0.855. The internal radius increased 

linearly with the blood pressure within the BP range of 60mmHg < BPmmHg < 130mmHg. 

Cox，R，H (1975) [221 emphasized the dependency of the change of the radius on the pressure in 

the living dog. For descending aorta with 90mmHg < BPmmHg < 11 OmmHg， A R/Rs = 0.083， A R/ 

A P = 0.63cm/mmHg. For the abdominal aorta with 145mmHg < BPmmHg < 190mmHg， A R/Rs = 

0.022， A R/ A P = 0.456cm/mmHg. For the subclavicular artery with 75mmHg < BPmmHg < 

90mmHg， A R/Rs = 0.024. For the carotid artery with 130mmHg < BPmmHg < 170mmHg， A R/Rs 

=0.021. For femoral artery with 120mmHg < BPmmHg < 180mmHg， AR/Rs=0.023，ムR/ムP=

0.196cm/ mmHg. 

Associating these results， the change of the radius due to the pulse pressure in the femoral 

artery is 2% to 3% at best which depend of course on the range of the change of the pressure. On 

the other handdata obtained in Vitro state are conflicted and many different results have been re 

ported. 

Tickner (1967) [231 presented that the results of the canine branchial artery under the strong 

longitudinal tethering with BP 75mmHgく BPmmHg( 300mmHg. The internal radius and the outer 

radius maintained almost constant value independent of the internal pressure change 

Cox (1975，76) [24，251 analyzed the canine iliac， carotid artery in Vitro. Untill BP 120mmHg， 

the internal radius showed nonlinear increase with pressure. Beyound this pressure， the radius 

did not change and kept a constant value even marked change occurs in the BP. Adding the Nore 

pinephrine in this specimen and he activated the smooth muscle， then the behaviour of the radius 

changed from the previous result. Below BPニ 83mmHg，the radius have constant value and was 

independent of pressure. With the range of 83mmHg ( BPmmHg < 166mmHg， the radius changed 

parallely with the pressure. Over this pressure， the radius also maintained the constant value. 
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These response pattern was sigmoid. 

i¥ttinger (1966) [261 examined the change of radius by driving the wide range of pressure for 

canine arterial system in Vitro. He used the initial distending pressure about 2cmHzO 

l.4 74mmHg. For the pressure range of 59mmHg < BPmmHg < 147 .4mmHg， in the descending aorta 

the relative change of the radius was l.45 < L:; r/ro < 2.02 and in the carotid artery the ratio was 

l.83 < L:; r/ro < 2.17. He emphasized the marked nonlinearity of the radius and expressed the 

minimum change of the pressure induces a remarkable change in radius 

Associating these data， one cannot identify these results since different material， different 

measurement instrument and experimental conditions. However the difference between the data in 

Vivo and in Vitro seems to originate from the longitudinal tethering effect of the arterial wall in 

Vivo. Releasing these constraints would cause the specimen in free movable states. Consequently a 

minute change of the pressure makes the radius change surplyzingly. About for the impressive re. 

ports of Attinger， the distending pressure was mark巴dlysmall. Naturally the % change of the 

radius increased much. 

The mathematical model which include the change of radius had been reported only few cases. 

Womersley (1958) calculated the effects of change in the radius from R to R 十~ (systolic to di 

astolic) on the mean blood flow velocity in the longitudinal direction w. He expanded the change of 

radius ~ with the help of the Fourier analysis and incorporated the Navier.Stokes equations. A 

much complex computations reduced that the effects due to the radius change contribute only 3.5% 

increment of the mean blood flow velocity. In addition this calculation had been done for the case 

of Co (the pulse wave velocity) was 500cm/sec and there was no longitudinal tethering (the free 

ending movement of the arterial wall). Therefor巴 thevalue of.the 3.5% should be regarded as an 

over estimated one. Based on anothεr mathematical expansion he induced relation of the change of 

the radius and the blood flow velocity as 2 ~ /R.= w/C from the continuity equation. If one put w 

=70cm/sec and C=120cm/sec， then we get ~ /R=0.029. That is almost identical value with the 

result of the animal experiment in Vivo. Therefore both in the mathematical model and the ex' 

perimental data， the pulsatile change of the radius does not affect the blood flow velocity 

As for the dependency of the radius on the distance from the entry zone' a quantitative analysis 

had not done until only recently. Melbin (1981) [271 firstly simulated the radius of the femoral 

artery by nonlinear model. For the compartment of distance 10cm， the internal radius could be ex. 

pressed as r(x) = 0.23 * cm * exp(一0.02x)ー Thererforethe exponential approximation could be ap-

plicable. On the other hand in their lin巴arJyzedmodel r equals 0.22cm. Even thought the given 

distance was short， the tapering constant -0.02 makes the these difference negligible 
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Attinger (1967) [281 also approximated the biophysical structural properties of the canine arte-

rial system by the exponential functions. For the femoral artery the resistance was 

R(x) = 174 * exp(O.098x) dyn/cmsec， the leactance was L(x) = 35.5exp(O.05 2x) dyn/ cmsec， the com 

pliance was c(x) = O.78exp( -O.076x) dyn/cmsec. These approximation were remarkably high 

quality. However these complicated exponential and non linear approach gives no advantage for 

constructing simple comprehensive mathematical model. Nevertheless the exponential distributed 

model affords us much informations for the case of the modeling of the aortic arch. In such a situa 

tion simple linear equations does not hold. A further complicated Ricatti type nonlinear differen-

tial equation must be used. We show this type of model in the following papers 

VII. The separation of the flow 

The separation of the flow occurs in the region such as the post stenotic dilatation where the 

abrupt change of the pressure gradient exist. In the tube having a nonstenotic constant radius， the 

pressure gradient dP / dx is negative. However in the down stream of the post stenotic region， the 

stream line diverge. In such a situation the pressure gradient dP / dx become positive. Then the 

state is called in the adverse pressure gradient. Therefore the velocity of the particle in the fluid 

-decrease especially at the neighbour of the arterial wall where the viscous retardation force de-

celerate the fluid movement and make the direction inversed. This inversed flow conflict with the 

following forward stream. Then the separation of the flow occurs. Increasing the Reynolds number 

causes the enlargement of the area of the separation where the vortex or even turbulence de-

velopes. However in the actual normal artery which have only slight tapering， The stenosis is neg 

ligible. In addition the critical Reynolds number in the pulsatile flow is extremely larger than that 

of the steady 'flow. Therefore the separation of the flow can be neglected. 

VIII. The secondry flow 

In many shapes of the cross section except circule or in the bending tube， the flow never attains 

axisymmetric flow and bears cubic deformative changes. In such a case the inertia acts as a centri-

fugal force from the central part of the flow in the tube to the lateral part of the tube centrifugal-

ly. As the velocity profile of the artery for the radial direction is conical， the velocity should 

attain the maximum value at the axis of the flow and minimum at the wall. Therefore larger centri-

fugal force exist near the axis rather than in the neighbour of the wall. The pressure gradient 

operate so that balance out such unevenly distributed centrifugal forces. Near the arterial wall 

where the flow velocity is small， the pressure gradient is larger than the centrifugal force. Conse-

quently there developes another flow which direct toward the central axis of the tube. This is the 

secondary flow. Even in the straight tube， if the shape of the cross section is not circule， an ene 
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vitable seeonary flow happens. In the human arterial system， strictly speaking the cross section is 

never circle and certain secondary flow may exists. However in some compartment such as femor. 

al artery， the change of the cross section area is small and the flow in such a space ca.n be re-

garded to have only axial component. In our model therefore the secondary flow was neglected. 

IX. The effect of the entry zone 

The flow velocity profile differences exist between the entry zone (inlet zone) and the more 

down stream region. Especially for the viscous fluid， as the flow moves toward the down stream 

the thickness of the boundary layer increase. Then the effect of the fluid viscousity developes for 

the whole plane of the tube. The compartment to which the effect of the fluid viscousity reach for 

the whole cross section is called the entry zone. After this compartment the velocity profile be 

come stable. In the case of the laminar flow， the inlet length of the entry zone is approximated as 

0.065 * (Re) * S. For example in the femoral artery of the steady flow， assuming that Re = 500， D 

= 0.5cm， then the length is 48.75cm. So the effect of the entry zone covers almost whole length of 

the arterial segment. Such a calculation holds only for the steady laminar flow in the rigid tube 

The equation would be far more complex for the case of pulsatile flow in the viscoelastic tube 

where the flow pattern is not laminar. Therefore we do not consider the effect of the entry zone. 

X. The geometric character of the arterial system 

The geometric branching of the arterial system are known to obey the experience law of Roux. 

1) The symmetric branching 

2) The branching angle of the small artery is larger than that of the large artery. 

3) The total cross sectional area of the after branching artery are larger than that of the stem 

artery. 

4) In the symmetric branching. the diameter of the branched artery is smaller in 20.30% than 

the diameter of the stem artery. 

In the actual arterial system， there have many branching points. So the pulse wave bears reflec-

tion from many points along the artery. To include such terms makes the model complr ヨncthe 

mathematical treatment is inoperable. We only adopped the case of straight axisyrr .， lC circular 

tube and the reflection point are confined to the terminal point only. Th(; ，f ~ìection of the pulse 

wave is refered in the following paper 

XI. The non linear term of the Navier・Stokesequation 

The convective acceleration terms are inherent physical quantity which operate in the moving 

fluid. This acceleration do exists even the flow is stational. Since the term Dv /Dt express the 

change of the velocity in the time domain at the local flow field. The existence of this term indicate 
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the unsteady flow. On the other hand the nonlinear term in the Lagurange's differentiation ( the 

material derivation) singifies the convective change of the flow. This is the intrinsic acceleration 

which developes when the fluid transfer in the space domain where the physical quantity such as 

the flow velocity distribute unevenly. This non linear terms are the essential difference from the 

dynamic of the rigid material目 Thenonlinearity of the Navier-Stokes equation originates in this 

convective acceleration terms. Womerseley (1958) examined the effects of these nonlinear terms 

on the mean longitudinal flow velocity with the help of the first order perturbation correction 

method. He incorporated only two nonlinear term u *αu/αr and w *αw/αz. To c1arify the 

effects of the nonlinear terms he used the Stokes's stream function. The form of the additional 

term which were induced by the nonlinear terms inc1uded the higher order products of the Bessel 

functions. Therefore the finite integration of these terms became negligible small. The corrected 

axial flow velocity increased only 5% (7 cm/sec). This value is over estimated for he assumed Co 

(the pulse wave velocity) = 500cm/sec. Melbin (1981) calculated the contribution of each terms of 

the Navier-Stokes equation to the blood pressure in the human femoral artery. The terms w *αw/ 

a z， u* a w/ a r contributed only 5.6%， 2.4% respectively. The proportion was extremely small in 

comparison with the main linear term. The convective accelerative terms as has been mentioned 

express the essential and intrinsic characteristic properties which only the fluid itself have. 

However in the practical blood flow， contribution of these terms seemed to be small 5% at best. 

We have neglected these nonlinear terms because of such tentative minor contributions. Neverthe-

less it is suspicious to remove the nonlinear terms for the sake of the appropriate expression of 

the blood flow. The interaction between these nonlinear terms or between the linear terms may 

produce an unexpected unknown effect on the flow. The numerical solution of the N avier-Stokes 

equation have recently been reported in the field of the engineering by utilyzing the computer 

technique. However these methodlogical problems are out of our duty. 

XII. The significance of the Stokes stream function 

The stream function ゆ isthe covariant function with the velocity potential function 1>. The 

stream function maintains a constant value along the line of the stream whose direction coinsides 

with the direction of the tangent at the arbitrary point on the given curves. ln another words， the 

line on which the stream function keeps thεconstant value represent the line of the strea in the 

plane. ln the incompressible plane fluid without vortex， the rotation of the velocity vector is zero. 

Then a v/αx-a u/ a y=O. Utilizing the velocity potential u= a 1> /αx， v=α 世/a y， the veloc-

ity components are expressed by the differentiation of the velocity potential目 Furthermore the 

fluid is incompressive where there is no divergence， then the div(v)= O. So 
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αu/αx十 αv/αy=O.

Now setting the covariant function with the velocity potential as 

a掛/αx a ψ/ a y. aO/ay=一αψ /ax

Then the each velocity compnents are represented by these stream function as 

u=αゆ/αy v=ー αψ/αx

So to utilyze the steam function one should permit the following condition of the flow 

l. No vortex (the rotation of thr vector is zero) 

2. The fluid is incompressible 

3. No divergent flow 

In our theoretical expansion we have already made such assumptions. Therefore the stream 

function should be applicable for our study. 

In this paper we have obtained the pure blood flow velocities from linearlyzed Navier-Stokes 

equations. To construct the distributed parameter model. one should incorporate into the transmis-

sion line equation into not only the blood properties but also the mechanical properties of the.arte-

rial wall. In the following two papers. we shall expand the constructive dynami-cal analysis of the 

arterial wall 
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