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Magnetometer using High Temperature Superconductor

Hisato WADA and Hideaki NAKANE

Faculty of Eng., Muroran Institute of Technology

Abstract

A new magnetometer was constructed using a high temperature superconducting bulk core (YBayCusO;7 ») in the
liquid nitrogen. The permeability of bulk core changes with applying a coil—current magnetic field or an external
magnetic field due to flux penetration effect. Sensitive nonlinear inductance characteristics of high temperature su-
perconducting bulk core with tightly wound coils was utilized for fluxgate magnetic—field sensors. The sensor is

used for second—harmonic type.

B1E F @

e NBO b 03l <, RITHT 2 S HA DR HNS LT d, HEAEFRICbHBAEIE
MLAb DS CATEL, @AM AMRELRECEDONTWE, 2OPTHLHEL B
BRI CHFE S TV 2 b OIS 2 HICE T 2 20 OfKt v H55d B, BT MUMNEY%
M%T%tbﬂ&xt/#mW ERIERDPHDORED D> TH 5,

Quantum Interference Device) #%@ %, SQUID &} 1310° 6~10 o [G] ThhHEvbhTWw5 (Fig
Do L2 L, SQUIDIFEEHKOHIM A LD A & BT & B5HIEE CTH 5720, #EoMxtn
HTRNESSENIMENDIENTER G, §72, SQUIDDFDHE D — > X EHEEIEH»4.2 [K]
N ETHDZDDITHEN) T 2 E2 VDI EICED T2 FAE CH) 258 L,
AW BT, LA R RGO RE 2 1T 5 720 SHOBERE Y OFRT
SQUIDIZKWTIRIE D Wb DI AR E V575 9 7 27— FEIERE 2 H 2, 75 v 7 2
7= IR OIS I B O L DT 1 ~10"° [G] TH S (Fig. 1)o 75 v 7 24— FEE
it R FPH & SQUID D MlE FPH o s BIEE (107°~107° [G]) % E T & B il 2B 124 %
Lholze LArL, Z OISR IFEZ & 0 REE S %, JEBIERE L S ICLEE S h
DAL HY, TOL) lEEEILINT W, 40, 75 9 7 25— IR O



O A B

MAFRE L, @8R E YO WG R EHLE ) L3580 THD, DMK
#hig, j%%%mwt%%®7ﬁv7xf—bﬂm%ﬂuhmﬁ&%HmT$®f%%(ﬁgUo
F7, SQUIDTIEMETE R VBB OMAa N E S EHINERD B ENTED E VD FAH
H5b,

T HH#EE - WHOME LR BRE K

T ###4

| i, 1., 1 ] | I 1., 1.
1 10" 10° 10° 10° 10° 10 10 10° 10° 10" 10"
[GAUSS]

& — L ETF RS f
75y 7 A5 — NEIREERET SQUIDBRET SQUIDDM% =

ot r o L
Fig. 1 ikt o oIk

FRAL R (SRR 2 OIS % &, il o G BGE R & BRI e o gl (HCy) BL LT
WS RES AT A D A A, BUREAREEAT OSSR SREPEIRIEAS N T B 2 OB, ML B 08k
PR TH D L, HOE D /NS V@SR TY LTS AN IO 5, WEITEK A L 72 ik
RO (®o=2.07X10 ""Wb) HAT T v TR & 2B (Fig. 3-1)0 Z O YR H o +
Ty THAEEES I L O BEITA LA TE L, 2R, SRR B ToOfKARE
¥ OIh) & HHEREESC K DI S O L MR IC S 5 Lo TX v, BALELOERIC BT S
DL BL OB RHETER T OB WA, o NS AN IS B TRET S
EThh, ZOLOWRDT T 5 7 A0 — MUEAGTE D QIEED 1AB Z alfiffsnsg, £
o, wiE LSRR VD 2 L ORI, AREE (TTK) CRUEIREBIC 25055,
IZED, Zli TR WA AR TH e TE b,

PIMESs & I T B 72 0 DR E © i, BT COIBH A E 2 DD RS E IR
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3-1(b))o ZRIAANVIE—HINZaA VEEE, BRIV ZRERIERMOHHEIZT A VDL
MEEERD, TANVIEH BN X ZFBEPNZ DD b I A D, 1R A Vi
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WL TWh, 1RIAIVIZEHREREZEMT % &, Fig 3-1(a) X0, @l 0@ b2 Fig. 3-1
(c)&hd, THid, HEZHABETH D, K HALTH D, WA LML 2w & 51,

L

2

9



HOH A - B s T

BFRFE
(M3 v THH)
S S
S
S &S O
| BROEE
Bz WE

(a) BIZWAEARD 5 v THER

Bt

EEEEI

[2&xa31 0 tihik |

| EACAAE i |
(b) BREHORE

IEEERPN T

(c) FE2RERERERE

Fig.3—1 KSR

10



AU RS K B AT 0 SRR

LRKIANVDAINZF B 2 K2 A VO JEGEBTH L, Zhizxh L, YHBRER AL 7
EXITR2ZRIANVORIJEMBIBHOR G2 E L B, CHAF 2K GHKkE LTS, o2
KGH B DLALDS, IHBER OZAL LR L, A e LTCoiEE T 52 L2k b,

3-2 EREE

A B A CEB LWL BT AHEDIRB RV —F2OoM s AMb LTV II0L S
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S AU K0 HL g s

H=0.746i [G] (iidEHifi)

THOND,

NIV LRIV 34 VIZHT R E, R TIEEE (Metromixfh412-125) 12X 0 A9.0 [A]
W ENTED, ZOL DM IERA6.7 [G] TH o7,

I 7z, TR A (B KHTI100W) 2L 0 k1.6 [A] T 2 TR, oMo
RS RL.2 [G] TH -7,

B O HENE, HFEL. 2em, @23 2.5emOMHEIRO b D F A2, i, 1ka4 v (i
M) 20001, 2Kk A v (BRIA) ;50X 2 [l % %72, (Fig. 3-2(c))
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0.5 [G] TOZILHIOBANE NI ETHLH, 2O, RINEHIZIL, 2L
AL, £7:, 6.5 [G] OBAFAML L 52121, SERMICIIENMEHTH - 70

0.5 [G] OBERATFNIML 2205 B b RHEIE A K E Ao 22 & &, M4 0.3 [G] ~0.5 [G]
LM L0 [C] fEOHMTIHEANSC AL 2R LTWAS, T/, 6.5 [G] DU
REFML & &2, BUZBEARNIEO b5 o FHAAEIAIL 72720, 4RI Ul o
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W, BONMES ORISR 2 & & AIRL Tw B, BRI AT0.18 [V] O, &2 RATH -
oo THOELEDOMEIE, 5.0 [#V/G] THo7:0
4-2 TRWRTOEIE

ANV LRV Y 2 VII00Hz DA FRER %0.1~1.2 [G] AL TR 52472 » 720 & OB,
BRI 2 A WAZ10kHz D383 % 0.1 [V] ~3.0 [V] oM<k s27 GHEHMA 62.2x10° [A
/m] ~1.8X10° [A/m])o & DUEDH 2 K e WS DI &M L7220 (Fig. 4-2-1)

Fig. 4-2-10 77 74, I rmugst (G, #ediam®EIE (V] Td s, BREHI 1 Vic
FNg 2%H4E, 0.8 [V] & ¥ — 2 12 AMET L 22 FIINEIEA50.1 [V], 0.3 [V], 3.0 [V]
TRBRNER T g L B o7, 72, 0.7 [V], 0.8 [V], 0.9 [V] TORIEIE D
ZAbER L7 0.7 [V], 0.8 [V] Ti20.7 [G] MLEOBERA A5 L NEBIC F 5 » TRRH
A BLOHHBNBANRD R Dy 20D IRINEIEDOZALAIINE 5ty

K, B OEIH L TO 7T 7 0 & %7K 5 Fig 4-2-2105 3, SO E K X
WL DI EIHBRER IS L CORENER TV DL ETHR 5, 77 743, BEErmmR (6] <
Y, HewiImE [V/G] Thhb, ZoOMETIR, HRBAOMNEHE 3R20, WHEE 4
SHEBIR )G TRt M - 727280, MBI 2T s T v, OB TR, HRBAROR & [H
BB L F TORFNI L THURIC G L 72, $ 72, BHREE G A &4 X2 & @RESLT
Lo SOMTS, /NS BRSO, BINT AESOMEAKNE D5 72, WESHTETOM
Y % TSE S B DA e S L R L T B, BRI AT0.8 [V] O, X 25 ATd - 770
COLEDHEE, 4.0 [V/G] Th o7
4-3 R/ A XANI S L

SRERHE S 2 AN §, Bt 3 L X 0 BLR A £5912 2 W TSPECTRUM COMPARATOR (/)N
WEFCF310) TRMWEA XY b9 L %54 L7z, (Fig 4-3)
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A system of pre — and post — processing on personal computer
for finit element analysis

Takatsune Moriyama®, Toshihiko Matsuda

Abstract

A small size system of pre — and post — processing for two — dimensional finite element analysis is presented. It
is emphasized to be able to use easily by students with a personal computer. The processing functions of the system
are structural drawing with a small size CAD ; interactive mesh generation ; optimization of node number ; displaying

of flux lines ; evaluation of coil inductances ; and so forth.
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CHARACTERISTICS IN AN RF SUPERCONDUCTING
QUANTUM INTERFERENCE DEVICE AS A FUNCTION
OF APPLIED MAGNETIC FLUX:
SYSTEMATIC CALCULATIONS 1

Tsuyoshi AOCHI, Shuji EBISU and Shoichi NAGATA

Abstract

There has been a lot of discussion of characteristics in superconducting quantum interference device (SQUID).
However, much less information is available on systematic calculations of these behavior. In this report, we describe
various features in a superconducting ring having one Josephson junction. Systematic computer calculations of static
behavior of the 7f — SQUID have been carried out. The characteristic features depend strongly on a parameter f =
(27 LIy) / ®, where I is a critical current of the junction, L is a self — inductance of the ring and ® is the flux
quantum. In the regime B >1, the quantum states are discrete and the transitions between the quantum states are
irreversible. The present work is focused on the correspondence between energy of the system and the characteris-
tics in the 7f — SQUID over the range of 8= 0.20 to 2 7 The results of the calculations are shown in the following
No. 2 paper.

1. Introduction

The superconducting quantum interference device (SQUID) is originated from the epoch — mak-
ing theoretical prediction of the Cooper pairs tunneling between two superconductors.l) We will
describe here the details of the physical bases and the numerical calculations for the SQUID.

The SQUID has been investigated from various viewpoints and by various kinds of experimental
techniques since the first observation by Jaklevic et al. in 1964.24 These subjects represent some
of the purest and most fundamental aspects of the superconductivity.>9

However, much less information is available on systematic calculations of the characteristics of
the SQUID. The present work is concerned with systematic computer calculations of the static be-
havior of the 7/ — SQUID, which contains one ideal Josephson junction in the superconducting ring.

The SQUIDs are based on the two physical pillars. The first is fluxoid quantization and the
second is Josephson effect. Figure 1 shows a superconducting ring with a single Josephson weak
link. We shall make the simplification that the ideal Josephson junction area is small enough for
the current density to be uniform, and that it never contains a significant fraction of a flux quan-

tum. The internal magnetic flux ® passing through the ring includes the magnetic flux LI s gener-

33



Tsuyoshi AOCHI, Shuji EBISU and Shoichi NAGATA

ated by the current [ s circulating in the ring, where L is the self — inductance of the ring. As

shown in Fig. 1, the internal flux ® threading the ring is then related to the applied flux ® x by
d=90 x —Lls y

where ® x is the applied flux intercepted by the ring, and LI s is the screening flux generated by
the induced supercurrent.

In the present paper, many physical quantities have been calcuated as a function of applied
magnetic flux @ x. Their behavior depends on the dimensionless parameter 8 = (2 7 LIy) / &,
where I is the critical current of the junction and ® ¢ is the flux quantum. For # <1, ® is a
single — valued function of ® x, whereas in the regime 8 >1, it is three — valued around half in-
teger values of @ x. Then hysteresis appears, for transitions in increasing and decreasing field

occur at different ® x values. Namely the quantum states are discrete and the transitions between

X
Fig. 1 Superconducting ring with a ideal Josephson junction denoted
by /. The contour used for integration is shown by the broken
line. Internal magnetic flux ®, circulating current I s, self —
inductance L and applied magnetic flux ® . are related by ®
=& x —LIs. Typical values are L = 5nH, and Iy = 1 g A.

The junction resistance in the normal state is R = 10 , and
the diameter of the ring is about 2mm.

34
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the quantum states are irreversible.

Most practical 7f — SQUIDs have typical values of L ~5X10"19H, Ip~1X 106 A ; hence the
magnitude of £ is about 1.50. Our numerical calculations have been carried out for values of B
from 0.20 to 2 7.

We emphasize the correspondence between the energy of the ring and the various characteris-
tics in the 7f — SQUID. For f > 1, when the applied magnetic flux ® x is increased, the potential
energy barrier preventing transition from the initial fluxoid quantum state to an adjacent one de-
creases. Actually, the transition occurs as the energy barrier vanishes at a critical value of ® x c.

In section 2 the fluxoid quantization, the Josephson tunneling and the energy of the system are
briefly reviewed in order to recall their physical meaning and to define physical quantities for the

following discussion.

2. Basic Equations

2.1 Fluxoid quantization
2.1.1 Bohr — Sommerfeld quantum condition

A closed line integral of the canonical momentum along a path in a superconducting ring can be
derived in the presence of a magnetic field. Then the Bohr — Sommerfeld quantum condition gives

the fluxoid quantization, as follows :

§p'dl=nh,

p=m'vte A (e*<0),

where p is the canonical momentum of a Cooper pair (m" = 2m, ¢ = 2¢), A is the vector potential
and » is an integer. If the superconducting ring is sufficiently thick in comparison to the penetra-
tion depth then the contribution fm' v+ d/ for the supercurrent vanishes except in the Josephson
junction. The dashed line in Fig. 1 represents the integration path. Hence the integral can be writ-

ten as
(1 /e‘)é p- dl= [m‘ / (‘0* e’ )]fjunction J* dl+fsur{ace B- dS’

which is equal to n (b / e") = n (h / 2¢) = n ®@o. Here j is the current density given by (p *¢* v), £*
being the number of the Cooper pair per unit volume. The enclosed flux will be called internal
magnetic flux and denoted by ® and the flux quantum is defined to be ®¢( =h / 2¢).

For simplicity we assume that the Josephson junction is sufficiently small in area. Hence we in-
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troduce a following definition of phase difference across the junction @ :

8 =—1m /@ P M junction J * AL

=271 [®/ Dotnl.

The minus sign indicates that the direction of current j is opposite to that of the increase in @,

as can be seen in Fig. 1.
2.1.2 Ginzburg — Landau viewpoint

The order parameter is a complex quantity as
= \ ¥ (2,9, 2) | expli ¢ (x,y, 2),

where the amplitude is ’ ¥ (x, y, 2) | =+ P*and ¢ (v, 2) is the phase. A relationship between

the current density flowing in the superconductor and the order parameter in the presence of a

magnetic field is given byS)

=R/ @mti) e -t — 2/ m) AT |2
Substituting ¥ into this equation, we get

To=(/R)A+ m* /(e LR

From the viewpoint of GL theory, the fluxoid quantization is based on the existence of a single —
valued complex superconducting order parameter ¥. This requires that the phase $ (x, y, 2) must

change by an integral multiple of 27 when a complete close circuit has been covered.

2an=("/h) [ qrpae B dSF /€ P W [ junction J * AL

= (" /1) [ qwrace B+ S+ 6.
Then, the value of the phase difference # and defind by

0 =—(m" /€ L B[ junction J - AL,

=27 [®/ Dotn |

2.2 Josephson current

The superconducting current I across the junction shown in Fig. 1 depends on the phase differ-
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ence 6 asl®
I=1Iysin |6 (0) +e* Vit / hl

where [p is the maximum zero — voltage current that can be passed by the junction and V is a con-
stant dc bias voltage. With no bias voltage (the dc Josephson effect) a dc current will flow across
the junction with a value between Iy and — Iy according to the value of the phase difference 8 .
This phase difference @ adjusts to the current I, according to the above Josephson relation. If a
current greater than Iy is passed through the junction, a voltage appears across it.
2.3 Energy of the system

If the current through the junction is varying with time, the phase difference # must also be
changing with time, and it can be shown that a voltage V is developed across it. This voltage is re-

lated to the time rate of § by!®

dg 2e

At ko
Consider a junction through which a constant current [ s is flowing, the current having been
raised from zero to this value over a time t. During the time the current is increasing, the rate of
change of current dI / dt corresponds to a voltage V across the junction. Therefore, power IV is
being delivered to it and work, dE; = IVd¢, is performed in setting up the current and the conse-
quent phase difference. The value of dEj is the increase in energy of the junction due to the pas-

sage of a current through it and dE| is given by!?

dE, = IVdt,

deg
= (Ioh) / (2e) sin § ——d¢.
dt
Then, we obtain the junction coupling energy Ej which depends on the phase difference, as

Ey = (Ioh) / (2¢) [1 — cos 0],

= — Epcos § + constant.

Provided E; is large compared with the thermal fluctuation energy k g T, phase coherence extends
across the barrier and a supercurrent can be passed through up to the critical current Io.
On the other hand if the current I goes through the superconducting ring, the magnetic energy of

the current flowing in the inductance L is (1 / 2) LI % The energy of the system of the supercon-
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ducting ring is then expressed by two terms,!V

1
U=—2-L152—E0c030,

).

where the first term is the magnetic energy Em associated with a current and the second is the

_ L _ 2 21
<2L) (®—P«) Eqcos ( .

[

junction coupling energy E j. Here the electro—static Coulomb energy associated with any differ-
ence in charge density between the two sides of the barrier is neglected. The extra amount of con-
stant energy is also assumed to be zero.
2.4 Basic equations

The basic equations are summarized and are described below. The main characteristics of the #f
— SQUID are the behaviors of the internal flux ® and of the screening circulating current I's as a

function of the external flux ® x. They are derived from the next equations,

¢=¢x_LIs, (1)
=27 [®/ Dotn (2)
Is:IOSina. (3)

Equations (1), (2) and (3) are linked equations for the three unknown quantities ®, I and 6 in

terms of the applied flux ® x. Here we introduce dimensionless parameter #, defined as
ﬂ: (ZﬂLlo)/ q)o, (4)

where B depends on the value of Llo. The limiting forms of the equations are ® = ® « for LIy =
0, which corresponds to an open ring, and complete flux quantization ® = n ® ¢ for Llp) ® o,
which corresponds to a closed ring with no weak link. Making the substitution of egs. (2) and (3)

into eq. (1), we get a next relation,
S=® x— Llpsin (27 D / ®y). (5)
Substituting egs. (1) and (2) into eq. (3) gives
Is =Igsin (27 @ / ®y). (6)
For the ring with a junction the energy of the system is given by
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erqa)

1
U= (5) (®—®* — Egcos o

3. Numerical Computer Calculations for the Characteristics in rf— SQUID

3.1 The system energy U(®, ®x)

The system energy U, normalized by (<I>o2 / 2L), is written as
U/ (®*/2L)=(®/ @o— D,/ B2 — B /(27 cos (2T D / o). (8)

The energy U (®, ®,) of the system given by eq. (8) is calculated. Figures 2 to 11 show the re-
sults of U (®, @) for various values of parameter 8. Using partial derivative of U (®, ®,) with

respect to @, the condition at the local minimums of U (®, ®,) is

U (D, @) _

5 0, (9)

which leads to the next equation :

CI)=<I>X—LIOSin(2;q)). (10)
0

This is exactly the same equation to eq. (5). We can get the following relation :

e _ ! . 1)
dd, 1+ Bcos(2m @/ D)

For B <1, the denominator of eq. 1) has always positive value and then there are no portions of
the curve with negative slope in ®. Therefore, ® is a single — valued function. As a result, the
ring has only one stable state whose ® value is obtained by eq. (10 for any value of ®,. On the
other hand, for #>1, @ in eq. (10 is three — valued for some parts of the range ® .. Then meta-
stable states can exist. Consequently, hysteresis can occur since the transitions in increasing and
decreasing flux occur at different ® xc.

For an example, let explain the behavior of the hysteresis in Fig. 9 in the case of 8 = 1.50.
Figure 9 shows the behavior in the low energy portion of U for 8 = 1.50 in greater detail. There
are two specific inflection points at @ / ®¢= 0.366 and 0.634 in Fig. 9. When increasing the ex-
ternal flux ®,, the transition occurs at ® ./ ® o= 0.544, whereas it takes place at @ xc / ®o=
0.456 when decreasing the flux. Up to flux ® xc the system is maintained in the lower flux side of
the potential valley by the central barrier, even if it is in the unstable equilibrium state (see &=
0.52 in Fig. 9). Finally the barrier vanishes at ®xc and the transition takes place. During the back

process the system change occurs in the inverse order.
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The behavior of the system can be understood by considering its trajectory. The essential fea-
ture is that the external flux jumps from an initial fluxoid quantum state to the next fluxoid state.
3.2 The junction coupling energy E, vs. external flux ®x

The junction coupling energy is

Ej=—Eqos (27 ® / dy). (12
Using the expressions of Eo and B, we get the normalized form of E |

Ey /(®2/2L)= —[B /(27 Y cos (2T ® / D). 13

Figures 12 to 17 display the E j vs. ® , for the following values of parameter B :0.20, 0.50,
1.00, 1.50, 3.00 and 2 @ . The derivative of E j with respect to ®, becomes

dE;  Isin (27 D/ D) W
dd, 1+pBcos@rnd/ dy’
For 8 >1,if cos® =—1/ B, the denominator of eq. (14 goes to zero, leading to an infinite
slope of Ej at ®xc. Pxcis given by the next two equations :
D/ D= / Dot (B /27)(1— L1/2, 19
O/ Po=(1/27)cost(—1/ B). (16)

As an example, in the case # =1.50, we get two values of ®xc/ ®o, namely 0.544 and 0.456,
in the range 0< ®/® (< 1. These critical values are exactly the same as»those obtained from the
analysis of the system energy U, as explained previousy. That is, hysteresis occurs since the tran-
sitions in increasing and decreasing flux takes place at different ® . values. These critical values
® «c correspond to the position at which the slope of E j takes infinite value.

3.3 The magnetic energy Em vs. external flux @,

The magnetic energy of the ring is
Em = (i) (® — @, 1Y)
2L X
The normalized form is
Em /(®P/20)=[B /@27)?sin® (27 @ / D). (18

Figures 12 to 17 show the Em vs. ®, behavior with parameter £ from 0.20 to 2 7.

The derivative of Em with respect to @ « becomes
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dEm (B /L)(®y—®)cos2m @ / )
do, 14+ Bcos(2m @ / &)

19

For #>1,if cos§ =—1/ B, the denominator of eq. 19 goes to zero, leading to an infinite
slope of Em at ®xc. The value of ®xc is the same as obtained by eqgs. (15 and (16).

Hysteresis occurs when the transitions in increasing and decreasing flux take place at different
®, values. These critical value ® xc corresponds to the position at which the slope of Em gives in-
finite value.

The total energy U, which is normalized, is also shown in Figs. 12 to 17. The value of U in
these figures corresponds to the maximum or minimum value in Figs 6 to 11
3.4 E,, Em vs. phase difference 6

The junction coupling energy E j, the magnetic energy Em and the system energy U are express-

ed as a function of the phase difference € as follows:

Ey /(®o*/2L)= —[B /(27 cosh, 20
Em/(®¢/2L)=[B /@m)?sin® 6, @1
U/ (®¢%/2L)y=—[B /(27% cos@ + [B /(27)sin? 6, @2

=—[B/27H cos@T D/ Do)+ [B/@m)sin®27 D/ D). @3

Equation @3 can be also obtained by making a substitution of eq. (10 into eq. (8). Consequently the
physical meaning of egs. 22 and @3 is that the minimum, the maxiimum, local minimum or local
maximum energies of the superconducting ring are given by eqs. 22 or 3. Figures 18 to 23 show
the behavior of these functions for several values of 8.

The derivative U with respect to 8 gives
AU/ (®o°/2L)/dO =B /(27?]sinf [1+ Bcosb]. 24)

When B < 1, the superconducting ring has a minimum energy at § = 0 and a maximum energy
at @ = 7. On the other hand, when S > 1, the system has a minimum energy at § = 0 and a
maximum energy at 6 = cos™l (— 1/ B).

3.5 Internal flux ® vs. external flux ®
In Fig. 24 to 29, results of calculations for ® versus ®, relation are shown. These behavior

depends on the dimensionless parameter 8 = (27 LIy) / ®,. Taking the derivatives of ® with re-
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spect to ®,, we can get the following relations using egs. (5) or (10):

dd 1

d0, 1+ Bcos2n®/ dy) @

For B < 1, the denominator of eq. 25 is always positive and then, there are no portions of the
curve with negative ® vs. @, slope. Namely, the value of @ increases monotonically as a function
of ®,. Therefore, ® is a single — valued functions of ®,. The slope of ® is maximum at ®,/ @,
= 1/ 2. On the contrary, for B > 1, the ® vs. ®, curves have regions of negative slope. The
portions with negative slope in these curves are unstable. This point has been already discussed
from the viewpoint of the system energy U. Namely the quantum states are discrete and the transi-
tions between the quantum states are irreversible. Consequently, hysteresis exists when the transi-
tions in increasing and decreasing field occur at different ®, values.

For 8> 1,if cos® =— 1/ B, the denominator of eq. €5 goes to zero leading to an infinite
slope of @ vs. ®, at @ xc. These values ®xc are given by the two equations (19 and (6. As an ex-
ample, in the case B = 1.50, values 0.544 and 0.456 for ®x / ®o correspond to the critical posi-
tions of the transitions when ®, increases or decreases in a range of 0 < ®,/ @, < 1, respec-
tively. These critical values are exactly the same as those obtained from the analysis for the sys-
tem energy U.

When increasing 3, the flux ranges of successive hysteresis path overlaps partly as can be
seen in Fig. 29. The critical value of B leading to overlap of the hysteresis path is given by the
criterion that the critical external flux @ xc of the one fluxoid quantum state reaches zero in the
decreasing flux process. Then the critical value of B¢ is deduced by the two egs. (19 and (16), which

give the next equation.
(1/27)cos (— 1/ Bo)=(Bo/27)(1— By D2 6
We can obtain the critical value of 8¢ by numerical calculation,
Bo=4.6033. @7

3.6 Induced flux LIs vs. external flux ®,

In Fig. 24 to 29, results of calculations of LI s versus ® , are shown. The numerical calcula-
tions have been made by using eq. (1). The calculated curves depend on the dimensionless pa-
rameter S . In these figures the positive or negative sign of LI s correspond to the current direc-
tion in the ring. By considering eq. (1), the value of LI is obtained by subtracting the value of ®

from the diagonal line in the ® vs. ® , relation. Hence the criterion for hysteresis is derived in
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the same way as for the ® vs. ®, curves. For 8 < 1,y is a single — valued functions of @ ,,
whereas for 8> 1, LI is three — valued in some parts of the @, range. Hysteresis appears since
the transitions in increasing and decreasing flux occur at different ® , values. The critical value
® xc corresponds to the position at which the slope of I s becomes infinite. These values of ®xc are
exactly the same as those obtained by the analysis of the system energy U as well as the case of
D vs. O,.

It should be noticed that the transition does not take place at the maximum value Iy but at the

value I sc given by
Ise=1Io(1 — Byl/2 (B>1). @9

For B = 1.50, the critical value of the current I s is 0.7451. In addition, the screening current
has the form Iy sin (27 ® / ®(). Then the maximum current appears always at ® / &, =1/ 4.
3.7 Phase difference 6 vs. external flux @

In Figs. 30 to 35, the values of the phase difference € across the junction as a function of ex-

ternal flux @, are shown. Taking the derivatives of § with respect to ®,, we obtain

da 2/ dy)

dd, 1+ Bcos(2m d/ By @)

For < 1, the denominator of eq. 29 is always positive and there are no portions of the 8 vs. O«
curves with negative slope. Therefore, 8 is a single — valued functions of ®,. Instead, for 8 >
1, 6 is multi — valued for some parts of the @, range. Hysteresis appears since the transitions in
increasing and decreasing flux occur at different @, values. These critical values ® xc correspond
to the position at which the slope of # takes an infinite value.
3.8 Fluxoid vs. external flux &4

In Figs. 30 to 35, results of the absolute value of | fluxoid / ®¢ | are shown as a function of
®,. The applied flux ®, is able to drive the transition from one fluxoid quantum state to another

successive quantum state. From eq. (2). ifluxoid / tI’o} is integer n which is expressed as
fluxiod / ®o|=n= (6 /27)— (& / D). (30

The derivative of n is

n do 4o
1@, /2% G, ~ 1/ R0 yg
1
= [(17 Do) — (17 D). 31

1+ Bcos(2nd/ ®y)
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The derivative can have a non zero value only if cos § = —1/ B, which corresponds to the
transitions between two fluxiod quantum states. These critical values have also the same magini-
tudes as those given by the analysis of the system energy U. The derivative of eq. 31 is zero if cos
6 +— 1/ B, which means for # to be constant.

For B <1, the fluxoid can change at ®,/ ®¢ = 1/ 2 : the system energy reaches its maximum

value corresponding to § = 7 and one flux quantum can enter into the ring.
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Figure Captions

Figures of the numerical calculations of the characteristics in the #f — SQUID and the figure
captions are given in the following paper.
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Abstract

Characteristic feature in superconducting quantum interference device (rf — SQUID) is shown on the basis of the
analysis of the foregoing paper. The behavior will be given in detail. The parameter 8= (27 LIy) / ®¢ changes gra-
dually the characteristic feature, here Iy is the critical current of the junction, L is the self — inductance of the ring
and @y is the flux quantum. Abrupt transitions between two adjacent quantum states are clearly shown in the reg-
ime 8 > 1. The results of the systematic calculations of the characteristics in the 7f — SQUID are presented over
the range of 8= 0.20 to 2 7.

1. Introduction

The superconducting quantum interference device (#f — SQUID) is based on the two physical
pillars. The first is fluxoid quantization and the second is Josephson effect. Figure 1 shows a su-
perconducting ring with a single Josephson weak link. We shall make the simplification that the
ideal Josephson junction area is small enough for the current density to be uniform, and that it
never contains a significant fraction of a flux quantum. The internal magnetic flux ® passing
through the ring includes the magnetic flux LI generated by the current I circulating in the ring,
where L is the self — inductance of the ring. As shown in Fig. 1, the internal flux ® threading the
ring is then related to the applied flux ®, by ® = ®, — LI, where ®, is the applied flux inter-
cepted by the ring, and LI is the screening flux generated by the induced supercurrent.

In the present paper, many physical quantities have been calculated as a function of applied
magnetic flux ®,. Their behavior depends on the dimensionless parameter 8 = (27 Llo) / ®o,
where Iy is the critical current of the junction and ®y is the flux quantum.

Our numerical calculations have been carried out for values of 8 from 0.20 to 27 . The present
work is concerned with systematic computer calculations of the static behavior of the 7f — SQUID,
which is based on the theoretical investigation given in the previous paper of this volume.l) Here

we will present further detailed characteristics of the f — SQUID.
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2. Basic Equations

The basic equations are summarized and are described below. The main characteristics of the 7f
— SQUID are the behaviors of the internal flux ® and of the screening circulating current I as a

function of the external flux ®,. They are derived from the next equations,

d=&,— LI, (1)
=27 [®/ Dot n) (2)
Is = Ipsin 6 . (3)

Equations (1), (2) and (3) are linked equations for the three unknown quantities @, I and 6 in

terms of the applied flux ®,. Here we introduce dimensionless parameter £, defined as
B=(@2nLIly)/ ®o, (4)

where B depends on the value of LIy. The limiting forms of the equations are ® = &, for LI,=0,
which corresponds to an open ring, and complete flux quantization ® = n ®¢ for LIy ) @, which
corresponds to a closed ring with no weak link. Making the substitution of eqs. (2) and (3) into eq.

(1), we get a next relation,

®=0,—Llpsin(27 ® / D). (5)
Substituting eqgs. (1) and (2) into eq. (3) gives

Is=Ipsin(27™ ® / D). (6)

For the ring with a junction the energy of the system is given by

271'(1))

1
U= (5p) (®— ®,)%— Eo cos ( o,

3. Numerical Computer Calculations for the Characteristics in rf— SQUID

We have investigated the following problems on the basis of the theoretical analysis of the fore-
going our paper : 1)
1. The system energy U (P, ®,)

2. The junction coupling energy Ej vs. external flux ®,
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3. The magnetic energy E, vs. external flux ®,
4. Ej, E, vs. phase difference 4
5. Internal flux ® vs. external flux &,
6. Induced flux LI vs. external flux &,
7. Phase difference 6 vs. external flux ®,
8. Fluxoid vs. external flux &,

The results of the systematic calculations are shown in Figs 2 to 35.

4. Summary

Static characteristics of an 7f — SQUID are described on the basis of numerical computer cal-
culations. Systematic changes in the behavior of a superconducting ring are found when the pa-
rameter S varies from 0.20 to 27 .

When £ >1, the internal flux ® and the screening current Is are continuous single valued func-
tions of the external flux ®,. There are no sudden transitions, the superconducting ring can go
continuously from one quantum state to the next.

For 8 > 1, the transitions between two quantum states are irreversible. The transition to suc-
cessive fluxoid takes place at § =cos™! (—1 / £). The maximum in the system energy U (8) cor-
responds to the critical external flux ® xc at which the internal flux ® and the screening current
I have an infinite slope as a function of the external flux ® . From the energy view point of U (®,

®,), @ corresponds to the value at which the system changes from metastable state to the stable

state.
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Fig. 1

bt

Superconducting ring with a ideal Josephson junction
denoted by J. The contour used for integration is
shown by the broken line. Internal magnetic flux @,
circulating current [, self — inductance L and applied
magnetic flux ®, are related by ® =®, — LI. Typi-
cal values are L = 5 nH, and Iy = 1 # A. The junc-
tion resistance in the normal state is R = 10Q, and
the diameter of the ring is about 2mm.
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Fig. 2 A demonstration of a flux jump in a potential surface in the case of 8 =6 7. The system poten-
tial U(®, ®,) surface for ®,=0 to 3P and =P, to —4 Dy is shown. When ®,=0, the sys-
tem is trapped around a minimum such as point A in the potential well associated with a fluxoid
quantum state. The system is constrained by a potential barrier at B. As ®, is increased, the
potential energy increases along the valley A — A’ and the system can transfer from point A’,
where ®, =®,. and AU = 0, to point C'.
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Fig. 3

Fig. 4

Potential U (®, ®,) surface for ®,= 0
to 2®pand ®= 3P to — 3Py in the
case where B = 0.50. The sharp transi-
tion can not occur between the two adja-
cent quantum states.

Potential U (®, ®,) surface for ®,= 0
to 2®g and ®= 3 Pyto — 3Py in the
case where 8 = 1.50. The sharp transi-
tions can occur between the two adjacent
quantum states at ® , = 0.544 &, and
0.456 @ in the irreversible process, see
Fig. 9.
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I - 1 Fig. 5 Potential U (®, ®,) surface for ®,= 0
0 to 2®pand &= 3P, to — 3P in the
'3 "2 ‘] 0 l 2 3 case where # = 2 7. The sharp transi-
¢/¢0 tions can occur between the two adjacent

quantum states, see Fig. 11.
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Fig. 6 System energy U for 8 = 0.20 as a func-
tion of ® . The energy minimum shifts

Fig. 7 System energy U for 8= 0.50 as a func-
tion of ®. The value of ®, changes from

gradually from a flux quantum state to a 0.0 to 1.10.

neighbor state when the external magnetic

flux ® , changes. The value of ® , de-

noted in each graph is normalized by ®o.
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Fig. 8 System energy U for 8 = 1.00 as a func-

tion of ®. The value of ®, changes from
0.0 to 1.20.
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Behavior of hysteresis in U for 8 = 1.50.
With increasing external flux ®, the su-
perconducting ring stays at the minimum
point up to ®, / ® o= 0.500. From
0.500 to 0.544 the system remains in the
metastable state and the transition takes
place at 0.544. On the other hand, with
decreasing ® , the transition occurs at
0.456. For simple illustration, the solid
circles indicate the flux in increasing
process and the open circles show the
flux in decreasing process.
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10 Behavior of hysteresis in U for the case
of B = 3.00. The hysteresis appears in
the same way shown in Fig. 9. The
value of ®, changes from 0.0 to 1.10.
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~0.02} Fig. 12 Junction coupling energy E;, magnetic energy E. and
' 0'5 . I'o 4 1'5 system energy U as a function of the external flux
' (l) /(b ' : @, for £ = 0.20. The value of U corresponds to the
X770 minimum value in Fig. 6.
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0.5 1.0 1.5 Fig. 13 E;, E, and U as a function of ®, for 8 = 0.50. The
(l)x /q)o value of U corresponds to the minimum value in Fig.
7.
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Fig. 14 Ej, E, and U as a function of @, for 8 = 1.00. The

value of U corresponds to the minimum value in Fig.
8.

Fig. 15 E), E,, and U as a function of ®, for = 1.50. The
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hysteresis with transitions at different ® , is indi-
cated by arrows. The hysteresis behavior can be
understood by considering the correspondence be-
tween Fig. 9 and Fig. 15. The value of U corre-
sponds to the minimum or maximum value in Fig. 9.
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Fig. 16 E;, Ey and U as a function of ®, for 8 = 3.00. The

hysteresis behavior can be understood by consider-
ing the correspondence between Fig. 10 and Fig. 16.
The value of U corresponds to the minimum or max-
imum value in Fig. 10.

Fig. 17 Ej, E,, and U as a function of &, for 8 = 2. The
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hysteresis behavior can be understood by consider-
ing the correspondence between Fig. 11 and Fig. 17.
The value of U corresponds to the minimum or max-
imum value in Fig. 11.
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B8=0.20

21 3

Fig. 18 Junction coupling energy E), magnetic energy E, and
system energy U as a function of the phase differ-

ence § across the junction for 8 = 0.20.

Flg 19 Ej,
6 o

21 3
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E,, and system energy U as a function of 8 for
0.50.
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Fig. 22 E;, E, and system energy U as a function of 6 for
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Fig. 24 Internal flux ® and the flux LI induced by screening current as a
function of the external flux ®, for £ =0.20.

Fig. 25

Internal flux ® and the induced flux LI as a function of ®, for B

= 0.50.
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Fig. 26

Fig. 27

Internal flux ® and the induced flux LI as a function of ®, for 8
= 1.00.

Internal flux @ and the induced flux LI as a function of ®, for
= 1.50. The hysteresis with transitions at different ®, is indicated
by arrows. The hysteresis behavior corresponds to that in Fig. 9.
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Fig. 28

Fig. 29

Internal flux ® and the induced flux LI as a function of ®, for 8
= 3.00. The hysteresis behavior corresponds to that in Fig. 10.

Internal flux ® and the induced flux LI as a function of ®, for 8
= 2. The hysteresis behavior corresponds to that in Fig. 11.
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Fig. 31 Phase difference 8 and fluxoid as a function of ®, for 8= 0.50.
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Fig. 32 Phase difference 6 and fluxoid as a function of ®, for 8= 1.00.

Fig. 33 Phase difference # and fluxoid as a function of ®, for 8 = 1.50.
The hysteresis with transitions at different ® , is indicated by
arrows. The hysteresis feature corresponds to that in Fig. 9.
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A MATHEMATICAL THEORY FOR BLOOD FLOW
"DYNAMICS IN THE ARTERIAL SYSTEM

analysis of rotation angle and dynamical equations for forces
and moments operating on artreial wall.
Hirofumi HIRAYAMA, Shintaro KIKUCHI

Summary

We have established a mathematical model of arterial system. This paper expand theoretical analysis of the
mechanical dynamical structure of the arterial wall. The general deformation theory of dynamical analysis was ap-
plied to establish the balancing equations of the forces and moments that operate on the arterial wall surface. To
generalyze the dynamical problem, we brought the shell theory of the curved surface into the analysis of the arterial
wall surface. To associate and identify the directions of the forces and moments before and after the deformation, we
firstly analyzed the relative rotation angles between each lines of the micro surface elements around the 3 axies
which were founded on the elements. Utilyzing these parameters of the relative rotation, movements, we induced the
balancing equations of the forces. Since we Assume more general case, we also studied the balancing equations of
bending, twisting moments and transverse shear. Then we have obtained 6 equilibrium equation in 3 directions.

This paper is one of the vital points of the mathematical expansion of our theory.

Il The constructive dynamic analysis of the arterial wall Il —1 The rotation angle of the arterial wall and the

equilibrium equations for the stress and moments operating on the wall.

Introduction

The fluid dynamical interactions which develope between the blood pressure, flow and pulsatile
changes which occur within the arterial system are controled macroscopically by the cardiac ejec-
tion and the geometric and mechanical properties of the arterial system. It is not sufficient to
appreciate the pulsatile transmission phenomenone of blood as a simple conduction of change of
the biological properties of the system. Rather those phenomenons should be accepted as one of the
form of information transformation for maintaining the life activity.

Thus to understand the pulsatile transmission of the blood flow is the first step for recognizing
the cardiovascular circulation.

In the first series of a modeling of the cardiovascular system, we have established a distributed

parameter model of the human arterial system. In the previous paper, we had induced blood flow

Key words : Dynamical analysis — Rotation angle — Forces — Moments.
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velocities in the longitudinal and radial direction based on the Womersleys elastic tube theory of
arterial system. [1] To obtain the transmission line equation for distributed parameter model, one
should constitute not only the fluid dynamical equations but also the structural dynamical equa-
tions of the arterial wall and its motion equations. Before precede to the arterial wall motion equa-
tions, we must analyze the dynamical equilibrium problems of the stress and moments. Tradi-
tionally many researchers analyzed the arterial wall stress or deformations based upon the
assumptions that the distribution of the stress, moments and the deformations were axisymmetric.
However in the actual arterial wall such as the femoral artery, the wall thickness has certain
value and the effects of change of ratio of the wall thickness to the radius would cause develop-
ments of the transverse shear and moment. As a result the forces and moments naturally operate
on the wall unevenly and cause non — axisymmetric deformation. So no longer the axisymmetric
analysis can be applicable. Therefore it is needed to analyze the dynamical equilibrium problem of
more general case as the non uniform distribution of the forces and moments on the arterial wall.
In this paper as the second chapter of the mathematical expansion, based on the strict dynamical
theory [2, 3, 4, 5], which all assumed that the displacements are small and the stress — strain rela-
tion is liner, we analyzed firstly the relative rotation angle of the surface element of the arterial
wall, then induced the equilibrium equations of the forces and moments for general non — axisym-

metric case.

MATHEMATICAL EXPANSION I

The non axisymmetric loading problem of the arterial wall can be reduced to the mechanical
equilibrium problem of the cylindrical shell receiving arbitrary distributed stress. (here shell
means that the all wall are shaped to curved surface.). Therefore we expand general case of the
stress distributions.

I] Formation of the coordinate system on the surface of the arterial wall.

Because of the extenstion of the middle surface in three dimentions, we should construct two
coordinates to represent the position of the focused point. About the coordinates following defini-
tions are made.

The generator : a straigt line along a curve while maintaining it parallel to its original direction.

The profiles : all planes which are normal to the generators. It is this profiles that designate the

shape of a section of the deformed arterial wall.

The generators and profiles constitute sets of coordinates lines. We choose an arbitrary profile

as the datum line and from this, measure the coordinate x along the generators.
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The angle ¢ :the angle which a tangental plane to the cylinder makes with the holizontal plane.
We cut off from it an element bounded by two pairs of the adjucent neighbooring generators,
and by two adjucent profiles x, x +dx. The four sides of element of the cut sectioned surface are

depicted in Fig 1.
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Fig1 Arterial tube

Fig. 1 The schematic illustration of the cross section of the arterial segment. The line O’ C', A’ B’ are generators.
The curve O' A’, C' B’ are the profiles (the circumferential direction). The arterial tube is assumed to have
the constant radius for a given compartment.

author HIRAYAMA HIROHUMI

The displacements of the original point due to the deformation are defined as followings
u : the displacement along the axis of the cylindricai tube (parallel circule displacement)
v : the displacement along a circule of the radius a + z (meridian circumferential displace-
ment)
w : the displacement along the normal line (the radial displacement)
Those displacements are expressed utilizing the matrixs as (u, v, w) on the (x, y, z) coordinate on
the arterial wall surface.
The element we consider is revealed in Fig 1 as area ABCO and A’ B' C’' O’ which is the de-
formed surface of ABCO. The pattern of the deformed surface is arbitrary pictured in Fig 2.
I] The relative rotation angle.
Since the surface element which we concern is very small and can be treated as a plane, we can
construct the x, y, z axies (the Gausian coordinates) on it.As a result taking the arbitrary point O
on the middle surface as the original point, the longitudinal axies (parallel with the generator) can

be made to coincide with the x axis, the tangent of the circumferential profile with y axis and the
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normal with the z axis.

Fig2 Micro-Surface of the artery

Fig. 2 The element of the arterial wall surface as a shell. Strictly the area O’ C' B’ A’ on the surface have
a curvature, but this surface is assumed to be too micro. So one can regard this area as a plane.
The OCBA is the curved surface after the deformation had developed. The x (the longitudinal direc-
tion) coinsides with the tangent of the generator, the y axis (the circumferential direction) with the
profile, the z axis (the radial direction) with the normal. (U, V, W) are the displacements of the ori-
ginal point O’ in the longitudinal, circumferential and radial direction respectively.
author HIRAYAMA HIROHUMI

However after the deformation had been developed, these x, y, z axies - would deviate from what
previously established (the coordinate before the deformation has developed). Fortunately the
change of the axies could be restricted to only one axis within the x, y, z axies. Since the z axis
can be permitted to coincide with the Normal on the middle surface even after the deformation,
only the x axis should be treated as the changed axis. Here as an ordinally way, the deformed x
axis can be set as the longitudinal tangent line to the previous non deformed x axis (prallel with
the generator). Then automatically the y axis after the deformation is setteled as vertical line to

the x — z plane. Naturally the newly constructed y axis is different from the old, nondeformed y
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axis. So each line on the element deviate each other and make the rotative movements around each
other. Due to these mentioned circumstances, no simple equilibrium balancing equations hold and
one should analyze these rotation angle before establishing the forces and moments equilibrium
equations.

1. The relative rotation angle between the side CB to the side OA.

This rotation is dissolved into 3 components which are the longitudinal displacement along the
x axis (tangential to the parallel circule), circumferential displacement along the y axis (meridian to
the shell), normal displacement along the z axis.

A. The relative rotation angle around the x axis.

This rotation is induced by the displacement v and w.

1. The v produces circumferential revolution of side OA and CB. The side OA rotates v / a around
the x axis(v:2mTa= A ¢ :2" 7, thenA ¢ = v/ a).

It seems that side CB also revolve parallely with OA around the xaxis. But in this general case,
we consider about the non axisymmetric deformation. So the rotation is not completely identical in
strict sense. During the distance of dx (between the side OA and CB), the material (arterial wall)
exactly deforms. Therefore the rotation angle of OA (v / a) changes at the ratio of @ (v/ a)/ a x---
per unit length of the section along the x axis, accordingly at the CB which is distanced dx the

side CB rotate @ (v/ a)/ @ x* dx surplus. As a result the rotation angle of CB around the x axis
a (v/ a)
ax

Therefore the relative rotation angle between OA and CB around the x axis is

by displacement v is v/a + *dx.

a (v/ a)
ax
2. The w makes the side OA and CB rotate normally. The rotation of OA around x axis by w is w
/a(w:27Ta= A& :27 ) Further more the micro central angle d ¢ also participates this rota-

tion. As a result the rotation of OA around the x axis by w per unit central angle is @ * (w / a) /
a [a (w/a)

a ¢ . The side CB distance the side OA by dx. Then the @ * (w/a)/ a¢ change ax a g

per unit lentgth of the x axis.
Therefore CB revolutes @ [@ (w/a)/ @ ¢]|/ ax*dx more than OA. Consequently the relative

rotation angle between the OA and CB around the x axis produced by w and v is given as

a (v/a) + a?(w/a)
ax X axa ¢

dx (1)

B. The relative rotation angle around the y axis.

Now we consider the orthogonal projection of side OC on the y axial plane (the plane which is
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verical to y axis.) Fig 3. The displacement ratio of w at O along the x axis is @ w/ @ x. Since dur-
a (aw/ ax)

ax per unit length of the x axis, so at C the dis-

ing dx, this displacement ratio changes

placement ratio is added by @ (@ w / @ x* dx. Therefore at C, true displacement ratio is aw / @x

azw

+ “axZ *dx. Accordingly the relative rotation angle is

azw
L " (2)

z
A

aw
X a (aw)

C/_ZEY a x

Y
x

- dx —m88

Fig3 Rotation angle 1

Fig. 3 This illustrate the orthogonal projection of the deformed line element OC on the x — z plane (the y axial
plane). The strain @ w / @ x changes along the x axis. At the position distanced for dx, the change of the
strain is @®w / ax? dx.
author HIRAYAMA HIROHUMI

C. The relative rotation angle around the z axis. Fig 4.
Simmilary as B, we set the orthogonal projection of side OC on the x — y plane which is vertical
to the z axis, the displacement ratio of v at point O is @ v / @ x. The same consideration about B

2
. . a"v . .
brings us to the conclution of @ v/ ax + 2 xZ *dx. Therefore the relative rotation angle around
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the z axis is

azvd
ax X

@)

\

A

dx

Fig4 Rotation angle II

Fig. 4 This figure illustrate the orthogonal projection of the line element OC on the x — y
plane (the z axial plane). The circumferential strain @ u / @ x changes in the longitu-
dinal direction at the rate of @%u/ ax?

author HIRAYAMA HIROHUMI

2. The relative rotation angle between the side OC and side AB.

The central angle composed by these two element is d ¢ . But the displacements v and w are in-
evitably modified by d ¢ .
A. The relative rotation angle around the x axis is the vector difference of following two
factors.
1. The revolution of side OC around the x axis is produced by v and w. The contribution from v

is v / a. The contribution from w is w / a. This angle is modified by the central angle d ¢ into @
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(w/a)/ a ¢. Therefore the rotation angle is obtained as

2. The rotation of AB is easily established considering that the side AB is distanced at central

/ / a)/
angle d ¢ between side OC. Therefore the AB rotates alv/at ad ;w a)/ a$] d ¢ more than

side OC. Accordingly the rotation angle of side AB around x axis is

v alv/a+ a(w/a)/ a ¢|
a @ ¢ + @ d¢

Consequently the relative rotation between AB and OC around the x axis is sum of 1 and 2, then

[a(v/a+aw/a)/a¢]d¢

a$+ -

(4)

B. The relative rotation angle around the y axis.
1. The rotation of side OC produced by w around the y axis at the original point Ois — aw / @

x. (the right rotation positive). The side AB is modified by central angle d $ more. Therefore AB
a (— aw/ ax)

rotates 40‘;—-— *d$ more. As a result the rotation around the y axis of AB is
aw a (— aw/ ax)
ax + a¢ d#

Consequently the relative rotation angle between OA and OC by w around y axis is

azw

-G d¢

a¢ ax

2. The rotation produced by v around the y axis.

At the original point O, the rotation angle — @ v / a x is modified by the degree of central angle d
¢ . Consequently the rotation angle is — @ v/ @x*d ¢ . As with respect to the point A, the rota-
tion angle (— @v / @x*d $) changes

a (— / *d .
( az ¢a xd¢) per unit central angle. So totally the point A rotates @ (— av/ ax'd$)

/ @ ¢ more. Neglecting the higher order of (d ¢ )zs relative rotation angle between OC and AB

around the y axis is

2

ad ax ax ®)

C. The relative rotation angle around the z axis.
1. The w produces the rotation of the sidle AB — @ w / @ x on the x — y plane which is orthogonal
to the z axis at the point O. Because of central angle d ¢, the side AB rotates truely — aw / ax*

d $ around the z axis.
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2. The OC rotates around the z axis @ v / @ x by displacement v. The side AB rotates

a’(av/ ax) .
T d ¢ more because of the central angle d 8 Consequently the rotation around the z

axis of the side AB is

avy a (av/ ax)
ax a ¢ d#

Accordingly the relative rotation angle between AB and OC produced by displacement v around
z is

a’*(av/ ax)
Sl gy

The associated relative rotation angle between OC and AB is composed from the contribution of

v and w independently and these results are expressed by the vector sum as

aw
a¢ ax ax

d¢ (6)

] The equilibrium equations
of the forces operating the elements of the arteridlwall.

In this section we induce the equilibrium equations of resultant forces which operate on the
sides of element based on the strucural dynamical theory of S. Timoshenko. We define the stress
as followings

Tjiv: the i axis component of the stress T which operates on the surface that cross at right angle

with j axis..
Nx : The normal force in a section x = const, the force in direction x transmitted by a unit length
of section. It is positive if tensile.
N ¢ : The normal force in a section y = const, the force in direction y (circunferential) transmitted
by a unit length of section. It is negative if compressive.
N ¢ x : The shearing force in a section x = const, the force transmitted by a unit length of this sec-
tion and directed tangent to dy. It is positive if it points in the direction of increasing y on
the same side of the shell element where a tensile force Nx point in direction of increasing x.
Nx ¢ : The shearing force in a section y = const, the force transmitted by a unit length of this sec-
tion and directed tangent to dx.
Qx : The transverese force in a section x = const, the force normal to the middle surface transmit-
ted by a unit length of each side.

Q ¢ : The transverese force in a section y = const, the force normal to the middle surface trans-
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mitted by a unit length of each side.

The forces which operate on the 4 edges (side line) should all lie in the tangential planes to the
middle surface. The load per unit area of the shell element is composed of 3 forces Px, Py, Pz in

direction of increasing x, y, z (outward) respectively. Fig 5.

z
[

Fig5 Forces on the micro surface

Fig. 5 This figure describes the distribution pattern of the orthogonal forces Nx, N $,

the shearing forces Nx $, N ¢ x and the transverse forces Qx, Q # on just de-
formed micro surface element OABC.

author HIRAYAMA HIROHUMI
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I] The equilibrium equation for the longitudinal direction

1. Nx : Because OA is extremely small, Nx can be treated as constant on the length of OA (= a’d
¢ ). However on the CB which distance at dx from OA, the stress distributes differently from that
on the CB. The Nx alters @ Nx / @ x per unit length of the x axis. Therefore on CB, Nx is added
by @ (Nx/ @ x)*dx. As a result on CB force

(Nx + aNx/ ax*dx) a*d¢.
Consequently the net force along the x axis of Nx is

a Nx
ax

dxad$

2. N ¢ x : The x component of the stress N ¢ . Since the OC is very small, the N ¢ x is constant
along the dx. But on the AB which distances for circumferentially a* d ¢ from OC, the N ¢ x

changes a N¢ x/ @ ¢ per unit angle. -

N
Therefore on AB, the N # x suffers additional @ N¢x/ @ $*d ¢, then actually (N§x + aa_;x
*d$) *dx acts on the AB. As a result the net effect of N ¢ x on the longitudinal direction is
aN¢x
_a*¢— dxd¢

Seemingly the stress which contributes to the x axis resultant are onlyNx and N ¢ x.
Nevertheless the forces N ¢, Nx ¢, Qx, Q # also produce certain effects on the x axis direction be-
cause of the relative rotation around the axies between the each sides of the surface element. By
multiplying the relative rotation angles around the z axis, we can deduce the effect of contribu-
tions of Nx ¢ , N ¢ to the x axis stress component and multiplying the relative rotation angle
around the y axis, we also obtain the contributions from Qx, Q¢ on the longitudinal direction.
3. N'¢ : which operates on OC should be multiplied by the relative rotation angle around the z
axis between OC and AB
(a'zv/ a$ ax — aw/ ax)d¢
In this case, this component operates constantly along the OC (= dx). Therefore the contribution

is

2
“N# gy~ ay) dxd$

4. Nx ¢ : which acts on the OA should be multiplied by the relative rotation angle around the z
axis between OA and CB @?v / @2x* dx. The Nx ¢ can be regarded as constant on OA (= a*d ¢).

Then the contribution to the x axis is
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a 2V
— Nx ¢ aeZ dxad ¢
5. Q% on OC must be multiplied by the relative rotation angle around the y axis between OC and

AB
—(a%¥/ a¢ ax+ av/ ax)dd,

therefore the participation of Q ¢ to the x axis is

Qéx(—1) (a¢ T+ ) d# dx

6. Qx on OA must be multiplied by the relative rotation angle around the y axis between OA and

CB(— « lw/ ax™ dx). The pafticipation of Qx to the x axis is

2
— aly
Qx ol dxadé¢
Summing up these contribution and balancing the load Tx along the x axis direction, one should

obtain the following equilibrium equation.

aaNxx dxad¢ + aN:xdst dx + (— Ngy ( ¢ax_‘;—‘:) dxd# + (= Qéy

2
(ogax tax)

2 2
A4 —Néx—pdradd +Qx (- 57) dx

ad$¢ = Tx"'d¢*a dx

I] The equilibrium equation for the circumferential direction.
1. N ¢ : which operates on the OC changes at the rate of @ N$ / a ¢ during the transition from

OC to AB traveling circumferentially around the central angle d $ . Then the force on AB is given

by
(N¢$¢ + aN¢ / a $*dé)dx

The not effect of N on AB is

aN¢
a¢

2. Nx ¢ : which operates on the OA changes at the rate of @ Nx ¢ / @ x per unit length of the x

d¢ dx

axis. Therefore it acts on CB as
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(Nx$ + aNx¢ / ax*dx) a"d¢

As a result the net contribution of the Nx ¢ on circumferential direction is

aNx ¢

o dxadé¢

Simmilary as the case of the longitudinal direction, not only the N ¢ and Nx, but also Nx, N ¢ x,
Qx, Q¢ certainly participate to the circumferential resultants.
3. Nx : contributes to y axis resultant by being multiplied the relative rotation angle around the z
axis between OA and CB (@ %y / ax® dx). Therefore the participation from Nx to the circumferen-
tial direction is

2
a
Nxad¢ a—x‘g-dx

4. N ¢ x : which acts on the OC must be multiplied by the relative rotation angle around the z axis

between OC and AB

aw

(¢ax_ax d¢

Therefore the contribution to the circumferential direction is

2
Ng Xdx (gor— o) dé

a¢ ax ax

5. Qx : should participate in the circumferential resultant by being multiplied the relative rotation

angle around the x axis between OA and CB. Then the result is

av
ax a¢ ax> dx

1
(- DQxad$ (-
6. Q ¢ :takes part in the y axis direction by being multiplied the relative rotation angle around

the x axis between OC and AB. Then the contribution is

av

aa ¢ aa¢2> dé

(—1rQérax (1 +

Organiging these terms and balancing the circumferential load Ty per unit area of the y axis, the

next equation is obtained.

aN¢

aNx¢
« dé d¢ +

. aly
dx*a*d¢ + Nxa'd¢ a2 dx

1
—Qxa'dd — (o ) dx+ Néxdxds

a¢ax
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( a’y aw avy a?

a¢ ax  ax - Q¢ (1+aa¢+aa;v7>

d¢ dx = Ty dx"a'd ¢ (8)

] The equilibrium equation for the normal direction
1. The Qx which operates on OA changes @ Qx / @ x per unit length of the x axis along the longi-

tudinal direction. Therefore the net effect due to Qx to the normal direction is

a Qx

ax

dxad¢

2. Q¢ which works on OC changes @ Q¢ / @ ¢ per unit angle. Preceiding circumferentially from

OC to AB, the net force difference is

“aQ¢¢ dxd$

Equally as the x, y directions, Nx, N¢ on OA and N¢, N ¢ x on OC contribute to z direction by
being multiplied the relative rotation angle around each corresponding axis.
3. The participation of the Nx to the z direction can be obtained by multiplying the relative rota-

tion angle around the y axis between OA and CB(— 1)* @ 2w / @ x* dx. Then the contribution is
* * * * a 2w
(—1)'Nx"a*d¢*(— 1) 52 dx.

4. The contribution from Nx on OA to the normal direction can be calculated by being multiplied
the relative rotation angle around the x axis between OA and CB

lav a’w
+
aax a ¢ ax

dx

5. N ¢ takes part in z direction by being multiplied by the relative rotation angle around x axis

between OC and AB. Therefore the participation to the z direction is

av azw

a¢+—~fa¢ d¢

Ngtax (1+

6. N ¢ x contributes to the normal direction being multiplied by the relative rotation angle around
the y axis between OC and AB.
Consequently the contribution is

2

(—DN$xdx(— 1) (et —r) df

a¢$ ax ax
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Associating these forces and putting equal to the normal axis loading Tz, then the following equa-

tion holds.
a Qx aQé¢ a’w
ax dxadd + =" dddé + Nxadd — 7 dx
1 sav a’w
+Nxp ad$ — (Gt g ay) dxFNExd$ dx

G a‘;zzx) +Ng dxd$ (1+ af’l‘; + "‘2‘”)

=Tzdxad$ (9)

V] The equilibrium equation of the moments operating the elements.

There are two ways to regard the arterial wall in stand point of the wall thickness. First is to
look the wall as thin shell and the second is thick shell. When one stand by the former view, the
stress can be regarded to distribute uniformly across the wall thickness. On the other hand when
one stand by the latter case, the distribution of the stress changes continuously along the wall
thickness. As we will mention in the following paper precisely, even in the aortic arch which can
be treated as thin wall, the stress distribution gradient does exist. So in the middle sized artery
such as the femoral artery where the ratio of the thickness to the radius exceed 0.1 and should be
treated as a thick wall, the stress would distribute unevenly along the wall thickness. Under such
condition, some of the stress surely produce moments with respect to the center of the cross sec-
tion. There will develope at least four moments on the element.

Define the moment symbols as following.
Mij : The j component of the moment M which acts on the surface that cross at right angle with i
axis.
Define the moments of longitudinal, circumferential and the normal direction as before
Mx : The bending moment by the stress ¢ x in a section x = const that is transmitted by a unit
length of section toward the direction x (tangent to the generator)

M ¢ : The bending moment by the stress ¢ $ in a section y = const that is transmitted by a unit
length of section toward the direction y (tangent to the circumferential profile)

Mx ¢ : The twisting moment by the shearing stress ¥ x ¢ in a section y = const that transmitted

by a unit length of the section toward the direction y.

M 8 x : The twisting moment by the shearing stress ¥ x $ in a section y = const that transmitted

by a unit length of the section toward the direction x. Fig 6.

81



Hirofumi HIRAYAMA, Shintaro KIKUCHI

Fig 8 Moments on the micro surface

Fig. 6 This figure present the distribution pattern of the bending moments Mx, M ¢ and
twisting moments Mx $, M ¢ x on the micro surface element on the arterial wall. The

moments are positive when it rotate in right.
author HIRAYAMA HIROHUMI

I] The moment equilibrium along the longitudinal direction.
1. The Mx which operates on OA changes @ Mx / @ x per unit length of the xaxis. Therefore on

CB, the normal moments along the x axis is added by

a Mx
ax

adxdé¢

This is the net effect of the Mx to the x axis direction.
2. M ¢ x which distributes evenly on OC changes at the rate of @ M ¢ x / @ ¢ circumferentially
per unit central angle. Then on AB, the moment (e M¢x/ @ $*d¢ + M$x) dx

operates. Consequently the net shearing moment is

aN¢x
Td?‘ dx
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According to the same reasons as forces, under the condition of the cubic deformation of the ele-
ment, there should be some additional contribution from Mx $ , M ¢ througth the relative rotation
angle between theeach side of the element.
3. Mx should be multiplied by the relative rotation angle around the z axis between OA and CB «
%y / @ x?* dx. Then the contribution of Mx $ to the longitudinal direction is

Mx¢‘a‘d¢'ahzvf‘dx‘

ax

4. The participation of the M ¢ which operates on the OC to the x axis is obtained by being multi-
plied the relative rotation angle around the z axis between the OC and AB

(azv/ adax— aw/ ax)d¢
The net effect is given as

a’y aw
s ax T ax) 8.

(=1 Médx (—

These moments are balanced with the Qx (the transverse shear) on OA. Therefore we get the fol-

lowing equation.

a’y a’v aw
Mx$ad$ dxryor = M#d dx (G 5ur — o
M M
ldxadg + aarxdxdsﬁ:Qxadxdsﬁ 10)

I] The moment equilibrium along the circumferential direction.
1. The M'¢ which distributes evenly along the OC (= dx) alters at the ratio of @M ¢ / a ¢ per

unit central angle. As a result the total difference of M$ between OC and AB is

(— 1) aaM¢¢ dxd¢

ag
that is the net effect.
2. The Mx ¢ changes @ Mx ¢ / a x per unit length of the x axis. Therefore the net moment is

given as

a Mx ¢

ax dxad$

3. The contribution from Mx to the circumferential direction is established by multiplied the rela-

tive rotation angle around the z axis between OA and CB a? v / a x** dx. Consequently the con-
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tribution of the Mx
— 1 * M . ¢ a ZV
(—1)"Mx"a"d¢ — = dx.
4. The contribution of M ¢ x is also calculated by utilyzing the relative rotation angle around the z

axis between OC and AB. The result is given as

a2y aw

(—1)"M¢x"dx ( - d¢

a¢ ax ax

These moments are equated to the transverse shearing force Q $ on OC. Then the following equa-

tion is formed.

2
—~ “M¢¢ dxdg + 2N ¢ dxad$ — Mxadxd$ ——r
— Mx$ dxd$ (a¢ ax ~ ax) =~ Qfadxds )

I] The moment equilibrium along the normal direction.
1. The component of the contribution from Mx for the normal direction is obtained by multiplying
the relative rotation angle around the y axis between OA and CB (— 1) (@ W/ a xz)‘ dx.

Then the contribution to the normal direction is

2
a
(= D'Mx*a"d$* (= 1) 7" dx.
2. The contribution from Mx ¢ is calculated by multiplying the relative rotation angle around the
x axis between OA and CB
1/a'(av/ ax+ e’w/ a ¢ ax' dx.

As a result, the effect is

2
Mx$add 1/a (oo + 5 ap) "dx.

ax

3. The component through which M ¢ contributes in the normal direction is obtained by multi-
plying the relative rotation angle around the x axis between OC and AB (d ¢ +1/a(av/ a¢
+ a’w/ a $?dd)

Consequently the contribution is given as

av

a?
W‘f‘a—;]z* d¢.

Méodx (1+—

4. The participation of M # x is given by being multiplying the relative rotation angle around they
axis between OC and AB
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(—1y(av/ax+ a?w/ ax a¢*dé

Then the contribution is

av a’w
+_—_
ax a ¢ ax

(— )M x dx ( "d.

These moments are known to be balanced by the difference of N ¢ x and Nx ¢ . Therefore the
equilibrium equationis expressed as following.

a ZW
a ¢ ax

z 1 a
Mxadxd$ o+ Mxd add — (o +

+M$dxds (14— (f—;+%}) — Mx$ d¢

2

ax (o +agax) =Nx$ —Néxdads 12

However in many text books the equation (12 is written as

2 2
av a“w a“w
Mx adxd¢ (ax+7¢—a—x> +Mx¢adxd¢a—xz—

av

Mx ¢ dxd # (1+%(dszs +7"27Wg)) —M$ dxd#

(av a 2w

ax a¢ ax

=(N¢x—Nxg)adxds 13

To obtain such a result, the distribution and the direction of the each moment should be given in
the configuration that are expressed in the Fig 5 — 1 of the text book of Fllﬁgge. The distribution
of the moments are different from our one. Fig 7. As a result the components of the contributions
is different from what we have deduced.

1. The contribution of Mx which acts on the OA is obtained by the relative rotation angle around
the x axis between OA and CB

1/a'(ev/ ax+ a’w/ ax a $)ds.
Therefore the contribution to the normal direction from Mx is

av G'ZW

+

ax a¢ ax

Mxtadgr1/° ( "d¢.

2. The contribution of Mx ¢ which work on the OA is given by multiplying the relative rotation
angle around the y axis between the OA and CB
(— 1)y «a 2w/ ax®dx.

Therefore
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) /
Mx¢ Mx
/ A
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y
Méx
B
C
M ¢
X

Fig 7 Moments on the micro surface
(by Flugge)

Fig. 7 The distribution of the moments according to the text of Flugge. Note the difference of the line ele-
ments on which the moments operate between our dynamical analysis.
author HIRAYAMA HIROHUMI

2
(— 1) Mx$ adé"(— 1)‘Z—;V2—'dx.

3. The contribution of M ¢ which acts on the OC to the normal direction is calculated by multi-
plying the relative rotation angle around the y axis between OC and AB(— 1)"(« fw/ra ¢ ax
+av/ ax)dg.

The result is

2
M$ dx (=1 (g ax tay) 4%
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4. The contribution of M ¢ x which operates on OC is computed by multiplying the relative rota-
tion angle around the x axis between OC and AB
d$ +1/a(av/a¢ + a’w/ap?ds.
Then the contribution to the normal direction is expressed as

Méxdxds (14— (—%+:—?Vg) )

Summing these 4 terms result in the equation (13 / ‘

But practically we don't use the equation (12 or (13 which is soon recognized. Since the definition of
Nx, N¢,Nx¢$ N¢x Qx, Q¢ in the textbook of Fllugge coincide with our definition, we use these
equations. The difference of the direction of the moments between our one are not discussed furth-
er more in this paper.

Associating these mentioned theoretical expantion in this paper, we have reduced the relative rota-
tion angle between each line on the element equations 1 — 6 and by utilyzing these angle we have
established the static equilibrium equations of the forces (equation 7 8 9) and moments (equation

10 11 12) by strict dynamicalanalysis.

DISCUSSION

In this research we have disclosed the relative rotation angles that the arterial wall beared the
cubic deformation on the curved three dimensional surface. Then utilyzing these parameters, we
have induced the static equilibrium equations of the forces and moments. In this discussion we
firstly refer to the significance of utilyzing the shell theory. Then discuss about the validity of ap-
plying the linear theory.

1. Artery as a shell

In this paper we analyzed the mechanical dynamic properties mathematically based on the
geometric conception that regard the artery as a shell. Naturally speaking, all piecies of the con-
structiop of the arterial wall is a three dimensional body. On the other hand with respect to the
geometric feature of the arterial segments, one is tempted to recognize the arterial structure as a
shell conformation. In the strict mathematical treatment, the shell is defined as the structure which
is enclosed by two curved surface whose distance are shorter than the principal radius of curva-
ture. Ontologically the shell is interpreted as an object which is the substantiation of a curved sur-
face, the arterial wall. This characterization does not necessary mean that the thickness of the
shell must be extremely small in comparison with other parameters, nor the components of the

shell must be all elastic solid material. So the arterial wall system is one of the most suitable ob-
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ject for applying the shell theory.

Except for the singular case of a plane plate in which the displacement of the strained middle
surface is inextensional nor incompressive, generally after deformation, the shell structure has no
developable surface already due to the extension or compression which had been spreaded around
the section. [2]

In the membrane analysis theory it is sufficent to treate only the surface forces and in fact it
can express the dynamical state in the shell appropriately. However as the thickness of the shell
increases and the developability has disappeared, especially for the section where an abrupt
change of the curvature would occure, the transverse forces or moments should operate. Therefore
the membrane theory cannot describe the arterial wall dynamics sufficientlly. So the bending
theory which imply not only the transverse forces but also the bending and twisting moments
should be utilyzed.

For the conventional way of analyzing the forces and moments that operate on the shell,it is
enough that one should confine the attention only to the small element of the surface. Generally a
curved shell structure can be expressed geometrically by its middle surface, its edge line and its
thickness. Those are the necessary and sufficient parameters. As a result one can establish the

coordinate system on that surface.

2. About the rotation angle

In the thick walled shell to which the bending theory should be applied, there exist the exten-
sion or the compression in the middle surface. The generator, the circumferential tangent (profile)
and the normal on the arbitrary point on the middle surface before the deformation coinsides with
the x, y, z axies respectively. However when the deformation had developed, the configuration of
the curved surface changes. So the different coordinates should be adopted.

Therefore after the deformation developes, expect for the normal (parallel with the z axies), not
the generato; but the tangent of the generator should coinside with the x axies. After establishing
those x, z axies, then the y axies is fixed vertical to the x — z plane.

So essentially the generator is curved in comparison with the predeformed generator. Accor-
dingly the direction of the forces would have changed. Especially with respect to the relative con-
figuration of the each line on the element, above mentioned changes in the axies produe the
changes of the position and arrangements of the line of the element. As a result there develope
rotative movements around each axies and the relative rotation angle between the each line on the

element would manifest.
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Since the displacements are all extremely small in any direction, the higher order of the dif-
ferentials could be neglected. However in the case where the cross sectional forces are not small in

comparison with the bending forces, these higher order terms will become significant. [2]

3. About the modeling of the arterial wall.

The arterial wall is composed of elastic fiber, collagen fiber and smooth muscle. These compo-
nents have different biophysical properties respectively and changes with the position of the
artery and age. Therefore essentially it is inhomogeneous and the dynamical properties change in
direction. Furthermore as will be mentioned later, the arterial wall have viscosity and the de-
formation attains to over 10% (the finite large deformation). Associating such properties, the arte-
rial wall is never linear and it is almost impossible to establish a model which includes those men-
tioned conditions completely. However looking the arterial wall macroscopically as one member of
the dynamic systemic circulation, the structure of the wall can be treated as homogeneoﬁs and
within the plane right angle to the tube axis, the directional property of the wall is isotropic.
Further more, under the kinds of limitting conditions, the steady and the dynamic stress — strain
relations can be regarded as liner. Then we can treat the wall as a linear viscoelastic material.

To express the visco — elasticity of the material by physical model, we ordinary use the spring
which describes the lumped elasticity abstractively and dash pot which expresses the lumped vis-
cosity abstractively. Those elements represent the biophysical quality of the wall but do not sig-
nify the entity which produces the elasticity or viscosity. The parallel combination of these compo-
nents is called the Voigt type model and series one is called the Maxwell type model. In many stu-
dies of the modeling of the arterial wall, the Voigt type model has been used frequently. However
it does not express the dynamic properties of the arterial wall as followings

1. the bounded stress relaxation

2. the plateau of the elastic modulus

3. the frequency dependent damping.

Accordingly this model althought express the creep phenomenone except the initial elastic resp-
once, the stress responce to the step strain input is constant and does not change with time. [6]
The Maxwell model also does not express the following features of the wall

1. the bounded creep

2. the constancy of Young’s modulus for frequency higher than 3Hz.

3. the non zero Young's modulus for lower frequency.

4. the stress relaxation to the non zero constant value.

89



Hirofumi HIRAYAMA, Shintaro KIKUCHI

Then this model can describe the stress relaxation in response to the constant strain and con-
tinuos irreversible development of the strain in reacting to the step stress but does not express
the plateau part of the strain. So the simple model of either type is not suitable to represent the
wall mechanics. Maxwell, J, A (1968) [7] examined the applicability of these elements to the ex-
pression of the attenuation (damping) of the pulse wave in canine carotid artery at frequency range
40Hz < f < 200Hz. To represent these attenuation, he concluded that the Voigt type model is
favourable. However even utilyzing this model only the damping of the torsion wave in the wall
could be expressed. Further more for the frequency range lower than 5Hz and in the small viscos-
ity of the wall, the damping of the wave could be represented more properly by the Maxwell mod-
el. According to his data, the Voigt type model is applicable only for the high frequency range
over 40Hz.

Westerhoff and Noodergraaf (1970) [8] following his previous model of the human systemic arte-
rial tree, created a new mathematical and physical model for the wall propreties. Their model con-
sisted of combination of two parallel Maxwell model with single spring and totally a five element
Voigt model. Their model expressed the frequency dependency of the Youngs modulus, the stress
— relaxation phenomenone, creep phenomenone and hysteresis quantitatively. They concluded the
model covered all the known aspects of the visco elastic wall properties. However to incorporate
such complex arterial mechanical properties which originate from the viscous property of the arte-
rial wall did not affect the frequency — input impedance relation significantly in the total systemic
circulation.

Cox, R. H (1972) [6] utilyzed the phenomenological model to represent the frequency dependence
of the mechanical properties of the arteries. He founded that a model consisting a spring in series
with a Voigt model, the 3 element model properly exhibit the data obtained from the canine femor-
al artery for heart rate larger than 2Hz. The 3 element model showed both the creep and stress
relaxation phenomenone. The initial transient elastic response which the Voigt model cannot de-
scribe, was followed by the exponential creep. The stress re]axed to the non zero value and did
not disappeared as the Maxwell model.

By such combination of these elements in complex form, we can make the degree of the approx-
imation increase arbitrary. However in the complex model, the biophysical signficance of each ele-
ments in the model becomes obscure and the effects of change of the elements on the overall be-
haviour of the system cannot be detected in clear form. In addition for the actual arterial system
in the body, such an unrealistic input form as the step stress input or the delta strain input does

not exist nor operate to the arterial wall. The input pattern of the stress or strain is far more com-
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plex. So it is not sufficient to examine the aptness of the response to only the step functional
strain or the delta form stress of these models.

By the help of engineering analyzing technique, recently some complex model of large finite de-
formative visco elastic model have been presented. However in our studies the most important pur-
pose is to establish a comprehensive easy treatable model when one wished to understand the cir-
culation system macroscopically. So we adopted only capacitance in this paper to represent the
visco — elacticity of the wall. In the following papers we surely present the visco — elastic model

that incldue the wall viscosity.

4. The linearity of the stress strain relation

In this paper we have analyzed the relative rotation angles and equilibrium conditions that
forces and moments satisfy. To analyze such situations, we confined our attention to the middle
surface of the element and assumed the Hookes law. That means the stress — strain relation is
linear. However in the actual arterial wall, the stress — strain relation is complicated. Conven-
tionally the stress strain relation of the biological materials had been investigated by applying the
step functional stress or strain and analyzing the resulting strain or stress in Vitro. Therefore the
experimental conditions are far from natural.

Wiederheim (1965) [9] utilyzed the step strain for the canine arteriales (60um < D < 150um)
and analyzed the circumferential stress — strain relation. Althought the relation was marked non-
linear for the circumferential strain range Ar / ro = 0.23, below this range, the relation was
linear.

Attinger (1968) [10] examined the difference of the stress strain relation in different direction.
He used the canine femoral artery and kept it in situ length. Inputting the step strain in the longi-
tudinal direction and he measured resulting the stress in the longitudinal and circumferential
direction. As a result in the both directions, the stress strain relations were nonlinear, yet the lat-
ter exhibited stronger nonlinearity.

To conform to the in Vivo state, converting the developed stress into the pressure dimensions
(mmHg), the physiological pressure range 60 < BPmmHg < 175 corresponded to the developed
stress for the range of 400g ~ 1200g. In this case the longitudinal strain was 0.3 < AL/L <
0.6. Within such strain range, the stress — strain relation was nonlinear. The linear stress —
strain relation manifested only at the range of input stress over 1200g which corresponded to
blood pressure over 175mmHg. Furthere more the nonlinearity in the circumferential direction

was markedly influenced by the change of the tonus of the smooth muscle. However the relation in
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the longitudinal direction was almost linear for a wide range of the developed stress and was inde-
pendent of the smooth muscle tonus. In the actual human arterial system, the longitudinal strain
due to the pulsatile blood flow is small (0.1 < AL / L) because of the longitudinal tetehring of the
surrounding. That is far from the experimental artificial strain.

Dobrin, P. B. (1969) [11] used the canine carotid artery for the same experimental subject. In-
putting the step wise circumferential strain and he has measured the consequential longitudinal
and circumferential stress. Within the range of the circumferential strain Ar / r < 0.4, the cir-
cumferential stress — strain relation was almost linear. However for 0.4 < Ar /r < 1.2 which
corresponded to the transmural pressure about 50 — 200mmHg in his experimental instrument,
the circumferential relation showed marked nonlinearity. Contrary to Attingers results, the rela-
tion between the stress in the longitudinal direction and the strain in the circumferential direction
was nonlinear under the same circumferential strain. Yet when the strain Ar / r was smaller than
0.2, the relation was linear.

Dobrin, P. B. (1973) [12] measured the examined the contribution of the smooth muscle to the
arterial stress — strain relation. Utilyzig the KCI, he killed the smooth muscle and subtracted these
effects from the stress obtained under the condition of maximum constriction that had been in-
duced by Norepinephrine. Therefore the resultant stress — strain relation can be regarded as re-
flecting purely the effect of the smooth muscle. Under the isometric contraction of strain AD / D
< 0.7 which corresponded to the blood pressure 50 < BPmmHg < 150, the circumferential stress
— strain relation was linear.

Cox, R. H. (1975) [13] analyzed the stress — strain relation by employing the strain energy de-
nsity function for the canine carotid artery. In any direction for circumferential stress — strain,
longitudinal stress — circumferential strain, and radial stress — circumferential strain, these rela-
tions were all nonlinear. Nevertheless for the strain of Ar /r < 0.2, the relation could be treated
as linear. He also (1976) [14] studied the stress — strain relation of canine iliac or carotid artery
that was attributed exclusively to the mechanical property of the smooth muscle. The active stress
— strain relation was almost linear untill the strain was Ar / r < 0.56. He suggested the collage-
nous fiber would have participated in the nonlinearity of the stress — strain relation.

As for the nonlinear analysis of the arterial wall, many researchers used the strain energy de-
nsity function of variable type. Tanaka (1974)[15] studied the nonlinear stress — strain relation of
the canine arterial arch within the physiological range of input stress. He presented the mathema-
tical expression for the Tension (T) — strain (e) relation as T = Ke". This formula of course sug-

gest the nonlinearity. The e and r were small especially in the peripheral artery. In the case of the
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femoral artery, r = 1.23 for the longitudinal direction and r = 1.59 for the circumferential direc-
tion. These values were small comparing with the data of the aortic arch (1.75 < r < 2.05). Asso-
ciating these results, for the small range of e and r, one can regard the stress — strain relation is
linear. Althought above mentioned nonlinear analysis were based on the least square method, the
range which refered were beyond the physiological state. No one can apply the physiological sig-
nificance to the least square method. Vaishnav (1972) [16], Fung (1979) [17] also applied the non-
linear analysis. But their analyzing procedures were extremely complex and does not give a prac-
tical advantage.

Admitting the nonlinear stress — strain relation, Patel, D. J (1967) [18] divided the stress —
strain relation into two components in the canine descending aorta in Vivo. He measured the ratio
of the incremental stress — strain component to the average stress — strain component within the
physiological range. Under the static condition, the circumferential incremental stress was 19 —
20 per cent of the average stress, and for the longitudinal direction the incremental stress was 18
— 25% of the average stress. In addition, the incremental circumferential strain is 5.3 — 14% of
the average strain and for the longitudinal direction, it was 4.2 — 7.9% of the average strain. Ab-
out for the dynamic incremental stress — strain relation, the circumferential incremental stress
was 11 — 14.9% of the average stress, the longitudinal one was 3.7 — 4.8% of the average stress.
About for the strain for the circumferential direction, the incremental strain was 1 — 1.4% of the
average strain, for the longitudinal incremental strain was 0.5 — 0.57% of the average strain. He
concluded that the incremental components of the stress or strain are much small in comparison
with the average stress, strain in the either direction. He also said that the nonlinear component of
the stress — strain relation is small compared with linear one.

Conjoining these experimental results, one may be permitted to regard the stress — strain rela-
tion is linear in either direction within the physiological range of the pressure and strains. Thus
the linear mechanical dynamics is applicable for analyzing the static equilibrium problems of the
forces and moments. Althought the mathematical treatments were longsum, such process of analyz-
ing the minute and exact mechnical dynamical properties of the arterial wall is one of the core
part of the modeling of the arterial system. In the following paper, we expand the forces — dis-

placements relation for a paving stone of construction of the arterial wall movement equations.
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A Graph Stochastic Process
Tadasi YAMAGUCHI

Abstract

The graph G+ is defined recursively from G, by some stochastic rules. We call this sequence {GJ a graph
stochastic process.

The rules are described in the following two cases:
(1) an edge is chosen at random, and then its destination is changed at random, (2) some edges are cut with a prob-
ability and some edges occur between some vertices pairs with the same probability. In both cases, the processes are

characterized by finite Markov chains. In this paper, the way of deriving these transition matrices is reported.
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