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Abstract 

The principles and application examples of recently refined， computerized surface photovoltage (SPV) 

method are described. The SPV method was used to optimize cl巴aningefficiency and to monitor‘in-linぜ

heavy metal contamination and charge during critical processing steps for Statistical Process Control (SPC) 

Examples of the optimization of various cleaning steps， effects of the purity of virgin and reused chemicals， 

and the surface topology on cleaning efficiency will be given together with examples of SPC monitoring of 

real problems in processing lines. Cleanliness of incoming chemicals is not always a limiting factor and 

often is not related to the cleanliness of chemicals at the point of use (in the cleaning station). This new 

m巴thodis capable of waferscale， non← contact mapping of metal contaminants in the bulk and on the surface 

with sensitivities as high as 1010 atoms cm-3 

1. Introduction 

The continuing increase of IC circuit complexity， and the reduction of critical dimension 

that requires reduction of gate oxide thickness， generates a need for beUer control of heavy 

metal contamination. Detection of heavy metal contaminants in silicon wafers has recently 

gained a great deal of aUention as a critical task for cost-effective manufacturing of several 

Mb integrated circuits1，2). Employing surface photovoltage (SPV) characterization methods， 

quantitative relationships have been established between the. minority carrier diffusion 

length， the concentration of heavy metals added during processing and the IC yield 

degradation1，2). The minority carrier diffusion length， as measured directly by SPV， has 

become a standard parameter guiding the process engineer. 

The diffusion length value L helps one to make a quick， quantitative judgement of the 
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cleanliness of materials， tools and processes， Also， if the diffusion length drops below a 

critical value characteristic for a given IC process， the engineer receives a warning signal of 

the forthcoming yield degradation， 

There is an urgent need for a fast， inexpensive， high throughput measurement method that 

can be used as a QC method to qualify， in realtime， cleaning processes， incoming chemicals， 

chemicals at point-of-use， and performance of cleaning station， We explore the application 

of SPV to monitor chemical cleaning， Compared to other technologies such as TXRF or 

AAS， the application of SPV to monitor cleaning processes is rather new， although some 

impressive strides have already been made 

The diffusion lenght of the minority carriers and the surface recombination are determined 

independently from the spectral dependence of the SPV signal. Surface charge is obtained 

from the dependence of the SPV signal on light intensity， Quantitative identification of Fe 

and Cr (even in the presence of other recombination centers， e， g" oxygen precipitates) was 

measured via changes of the lifetime during dissociation of the Fe-B and Cr-B pairs， Due 

to the difference in the pairing energies， characteristic of each heavy metal， pair dissociation 

can be selectively performed in-situ for each of the metals by a combination of light and 

temperature， 

2. Principles of Surface Photovoltage 

2.1 [SPV principle] 

SPV formally belongs to 'carrier lifetime' methods. These methods are known to be very 

sensitive， but at the same time very ambiguous， difficult to interpret and very irreproducible. 

Early round-robin photoconductive decay experiments yielded two-orders-of-magnitude 

differences in lifetime values obtained in different laboratories on the same samples. These 

results constituted a clear warning of potential pitfalls4). The records of SPV were in this 

respect much better from the very beginning. The original SPV diffusion length method 

introduced by Goodman5) offered the measurement of true minority carrier bulk parameters 

free of contributions from surface recombination and from the majority carrier (these 

parameters are difficult to separate in photoconductive decay). Differences in early round 

robin SPV measurements were within 40%6). The methods， however， has a potential of 

absolute accuracy better than 3% and can detect relative changes of 1%. 

2.2 [Mehanisms of SPV] 

In the SPV method the minority carrier diffusion length is determined from a spectral 
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dependence of the surface photovoltageムVand specially from the dependence ofムVon the 

(or A depletion-light penetration depth αwhere αis the absorption coefficient. 

inversion-depletion-) type surface barrier (shown in Fig. 1 for an n-type semiconductor) is 

best suited for measurement6J • 

This assures preferable col1ection of 

minority carriers in the 

surface space charge， while the maior-

the excess Bulk 
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Figure 1 Energy band diagram n回 ran n-type semi 

conductor surface with a depletion layer in 
the dark (top) and under illumination (bot-
tom) approach8J they are suppressed using 

light-chopping frequencies in the 500 

600 Hz range， which is high in comparison to the inverse of the surface state time constant 

(N ote that only about 10 Hz was used in early Goodman approaches and is still erroneously 

On the high side the frequency is limited by a recommended in ASTM procedures5,6J• 

decreasing of the photovoltage whenωr> 1， where ωis the angular light-chopping frequency 

In the new SPV apparatus the hysteresis effects are addition-and r is the carrier lifetime. 

ally suppressed using a fast wavelength-changing cyc1e of the order of 1 s. 

The Dember voltage created by the different diffusivities of photoexcited electron and 
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holes (40 and 10 cm2c1 respectively) is negligible in the linear SPV range， where the excita-

tion level d.n/no is extremely low (10-L 10-5). 

2.3 [Quantitative SPV equations] 

The theoretical calculation of the surface photovoltage is carried out in two independent 

steps. First， the excess carrier distribution d.p(x) is derived from a steady state solution of 

the continuity equation. For SPV， only the value of d.p just outside the space charge region 

(at x equal to the space charge width W) is required. This value is given by the standard 

expression9l 

d.p 
生ffaL

(S+ D/L) (1 +αL) 
(1) 

where φeff= (1-R)φ，φis the incident photon flux， R is the reflectivity，αis the absorption 

coefficient， S is the surface recombination velocity on the illuminated front surface and D is 

the minority carrier diffusivity. It is assumed that the light penetration depth α-1 and the 

diffusion lenght L are much smaller than the wafer thickness d but much larger tha，n W. 

The first requirement can often be relaxed to L < d/2. The second requirement concerning 

W is a very stringent one. 

In the second calculation step， d. V(d.p) is derived using the surface-bulk electrical neutral-

ity condition Qsc十Qss= 0， where Qsc and Qss are the the space charge density and the surface 

state charge density respectively10l. It is assumed that under illumination Qss =const and 

thus Qsc=const also. However， under illumination Qsc would tend to increase due to a 

accumulation of excess holes. Therefore， to maintain Qsc unchanged， the width and also the 

height of the surface potential barrier must decrease， which leads to the surface 

photovoltage. d. V increases with increasing d.p and tends to saturate for d.p →∞(when， at 

the surface， bands become virtually flat). The new SPV approach8l uses very low excitation 

and a linear relationship between d. V and d.p is fully satisfied (in practice d. V should be about 

1 m V or less). The corresponding analytical expressions have especially simple forms for 

depleted and inversion surface layers of primary interest here. Using equation(1) and d. V 

(d.p)10l， one gets explicit expressions valid forムV< < kt/ q: for the surface depletion layer 

(2a) 

and for the inversion layer 

kT nn 
ムV=φe 一一一・ U 

qnj2 (S+ D/L) (1 +αL) 
(2b) 
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where kT is the thermal energy， q is the elementary charge and no and nj are the free electron 

concentration in the bulk (no illumination) and the intrinsic free carrier concentration 

respectively. 

Equations (2a) and (2b) have the general form 

fE11 =A(S十旦)(l+~丁)ムV .，，~， L' ，. La (3) 

where A=qno/kTeXp(qV /kT) for depletion layer and Aニ qnNkTnofor an inversion layer. 

The last term on the right side of equation (3) is used for determination of L， while the other 

terms may provide information on the surface parameters S and V. 

2.4 [Diffusion length measurements] 

(3)， the diffusion According to equation 

length value can be determined from the 

linear plot of φeff/ムVversus α-1 as L二 αintl，
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In practice， second-order cor-(see Fig. 2). 

rections are used in computation to account 

In the for slight difference in φeff values. 

data of Fig. 2 these correction are incorpo-

original The parameter the m rated 

method proposed by Goodman5) was based on 

Figure 2 SPV plots， I/ムVversus a-1， 

measured on the same wafer 
before and after surface con 
tamination with copper. The 
intercept value determines the 
diffusion length L， which 
remains unchanged. The slope 
of the line increases after con 
tamination owing to the high 
surface recombination (esti. 
mated as Sェ8x 10' cm-1) 

α.1 (μm) 

the constant magnitude surface photovoltage 

principle in which photon flux was adjusted 

Then during the measurements to obtain exactly the sameムVvalue for each wavelength. 

This method is more the diffusion length was determined from the plot ofφeff versus α 

However， the Goodman approach， time-consuming and less direct than the new approach. 

and his apparatus at the David Sarnoff Research Center， must be acknowledged as a 

pioneering tool which using the SPV techniquel). 
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3.1 [Experimental details] 

3.1.1 SPV apparatus 

A schematic of the SPV apparatus 

is shown in Fig. 3. The halogen 

light source is equipped with a com. 

puter-controlled iris for adjusting 

the photon flux to assure a low-

intensity， linear SPV region. Mono. 

chromatic light with up to seven 

pre-selected wavelengths from 1 to 

0.8μm is obtained using a narrow 

bandpass filter wheel driven by a 

stepping motor. Individual filters 

are preadjusted to obtain a constant 

value of the effective photon flux 

φeff at the output of the SPV probe. 

Typically，φeff is constant within :t 

3% for all wavelengths. Further 

corrections for ②eff are incorporated 

into data-processing software. The 

fillter wheel also incorporates neu. 

tral density filters which are used for 

automatic SPV linearity checking. 

SPV values (four-digit accuracy) 

3. Experimental 

NARROW BANDPASS 
FILTER WHEEL 

MOVING STAGE 

⑥ 

Figure 3 Schematic of the computerized apparatus 
for SPV mapping. 

i

T上
下
↓ $ilicon Wafer 

コE百一守

Figure 4 SPV transducer for non-contact measure. 
ments and correcsponding capacitive cou. 
pling. 

measured by a two-phase lock-in amplifier are processed in real time by the computer. 

Wafer mapping is performed digitally using a motor-driven (transiation plus rotary) wafer 

stage. A single-point measurement cycle takes 2-12s depending on the number of wave-

lengths employed and the lock-in time constant. Wafer mapping containing 177 points with 

all seven wavelengths and a typical 30ms time constant takes approximately 20 min. 

3.1.2 Non-contact SPV 

In the non-contact configuration the SPV pick-up probe is placed at a distance dpw， above 

6 



Surface Photovoltage Monitoring of Heavy Metal Contamination on 
Silicon During Chemical Cleaning in IC Manufacturing 

the silicon wafer， which rests on the supporting pins above the black anodized aluminum 

wafer chuck (as shown in Fig. 4). The front surface SPV signal is generated on the probe 

wafer capacitor Cpw・ Usinga unit-gain FET preamplifier with an input resistance greater 

than 10100， one can perform non-contact SPV measurements even when the probe is 1 cm 

from the wafer. However， the signal-to-noise ratio increases significantly when dpw is 

reduced to a fraction of a millimeter. A typical dpw value of 0.2 mm also assures effective 

blocking of the background light by the probe housing. The contribution from the back 

surface photovoltage generated on the wafer-chuck capacitor Cwe， is negligible since Cwe is 

typical1y three orders of magnitude larger than Cpw • (Note that dpw is comparable to dwe; 

however， the probe diameter of 1-6 mm is much smal1er than the silicon wafer diameter of 

several inches.) The SPV transducer shown in Fig. 4 contains a light-blocking disc which 

blocks stray light and enables one to carry out measurements with room light present without 

the need for the dark boxes used in previous SPV approaches. 

3.2 Measurement Technique 

Lifetime/ diffusion length was measured using the SPV method. The constant magnitude 

SPV method， first proposed by A. Goodman5l， was initial1y used to measure diffusion length 

values. Precision， reproducibility and speed of measurements were recently improved with 

the introduction of constant photon flux SPV. SPV measurements were performed with 

commercial Contamination Monitoring System (CMSIII)12)， manufactured by Semiconductor 

Diagnostics， Inc.， (a single point measurement cycle takes approximately 1 to 4 seconds) with 

a sensitivity for Fe detection of 108 cm-3 and were done on product as wel1 as monitor wafers. 

This al10ws evaluation of the effects from surface topology， characteristic for a given 

technology， on cleaning efficiency. 

The potential barrier at the surface of the silicon wafer is used as a detector for the 

photovoltaic effect which is sensed by a non-contact capacitive transducer. During Mea-

surements the SPV signaI13，14) is measured as a function of the light penetration depth 

(wavelength of light) and values of diffusion length and surface recombination are ca1culated 

from the spectral dependence of the SPV signal. Measurements are done in a linear range 

of SPV signal magnitude on light intensity. Since capacitance coupling between the silicon 

an 
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photon/cm2 per sec.ond. Under these conditions， measured values of lifetime are not affected 

by conditions of measurements and lifetime is inversely proportional to the concentration of 

heavy metals. 

3.3 Sample Preparation 

First we measured Fe contamination in p-pype silicon. Fe concentration is quantitatively 

determined from two measurements of diffusion length: prior to and atter 200 'C annealing. 

CZ silicon wafers (p-type， 60-cm) were prepared by running them through RCA 1， HF dip， 

and RCA 2 cleaning procedures. The purpose of these steps is twofold. First， it is neces-

sary to remove any surface contamination on as received wafers， and secondly， since we are 

using aqueous Fe salt contamination solutions， the wafer surface must be hydrophilic. 

Wafers were then thoroughly rinsed with DI water and dried in centrifuge. Substates were 

then placed on a teflon spinner chuck. A solution of iron salts of various concentrations 

were spi1led on the surface， so that it covered the whole surface uniformly， and left on for 

several minutes. The substrate was then spun dry at 3000 rpm. This procedure is similar 

to that proposed15) to introduce a controlled amount of contamination into silicon. We have 

found that surface concentration is weakly dependent on absorption time for times longer 

than one minute. Iron was then driven in by rapid thermal processing (PT A) for 90 seconds 

at 1050 'C in an oxidizing atmosphere. The effectiveness of this procedure was tested by 

measuring the diffusion length at the front and back surfaces. If they are comparable， then 

el=11X1r[七一ヤ]

し

L 
2 

-3 
cm 

Figure 5 Determination of iron concentration using diffusion length measurements 
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the substrate is deemed uniformly ISO 

contaminated. Typically obtained radial 

uniformity of lifetime is between 8% for 

heavily contaminated and 25% for lightly 

contaminated samples. In the case of the 

highest contamination levels， exceeding 5 X 

1013 cm-2 (1015 cm-3)， drive temperature and 

time had to be extended to 1150 oC for 6 

minutes. Iron concentration was measured 

on all samples via diffusion length analysis. 

The iron concentration analysis procedure is 

outlined in Fig. 5 and discussed in detail by 

ZothI6). This SPV iron determination 

method provides an iron detection limit of 

1 X 1012 cm-3. 

4. Results and Discussion 

To establish optimum conditions for the 

measurement of Fe concentration， diffusion 

length changes were studied as a function of 

annealing temperatures， times and tempera. 

tures of recovery. 

Figure 6 shows diffusion length measured 

as a function of time in three samples boron 

concentration of 1 X 1015 cm-3) contaminated 

by 3 X 1013 cm-2 (6 X 1014 cm-3)， 4 X 1012 cm-2 

(8 X 1013 cm-3) and about 5 X 1011 cm-2 (1 X 1013 

cm-3) of Fe. The samples were annealed at 

2000C for 10 minutes and quenched in water 

to room temperature (21 OC) which resulted in 

a reduction of diffusion length of about three 

times. The recovery of the diffusion length 

took place at room temperature. The obser 
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ved reduction of diffusion length after the 200 'C annealing is caused by decomposition of the 

Fe-B pairs into interstitial Fe. Since interstitial Fe is in a metastable state at room 

temperature in p-type silicon， it recombines with boron to form Fe-B pairs which result in 

a recovery of diffusion length to the initial value. The time required to complete this process 

at room temperature is about 100 hours. These effects were not observed in either non 

contaminated control p-type silicon or in n-type samples. 

Figure 7 shows changes in diffusion length as a function of annealing temperature. It 

appears that Fe-B pairs start to decompose above 100 'C and total decomposition of Fe-B 

pairs takes place at about 180 'C. 

Figure 8 shows the result of a series of 

diffusion length measurements performed 

after quenching from 200 'C as a function of 

recovery temperature. The fastest recovery 

of Fe-B pairs takes place at 85 'c. 
The original value of diffusion length was 

35μm and， after 200 'C annealing， was 

reduced to 12μm. The reduction of diffu-

sion length above 100 'C is caused by the 

beginning of decomposition of Fe-B pairs 

into interstitial Fe. The observed reduction 

of diffusion length after a 200 'C annealing is 

the signature of heavy metal contamination， 

while the characteristic parameters of the 

recovery process indicates that the particular 

40 

35 

s 
o 40 80 120 160 200 

Temperature [句]

Figure 8 Dipendence of diffusion length 
on sample annealing tempera. 
tur巴， after th巴 samplewas an. 
nealed and quenched. 

element involved in this case is iron. Next Fe contamination， introduced during c1eaning， 

were measured after a high-temperature treatment (a typical oxidation/annealing sequence 

used during processing or RT A at 1100 'C for 5 minutes) which was used to drive heavy metal 

left on the surface by the c1eaning into the bulk of the wafer. In the case of SPC (Statistical 

Process Control) of critical steps， e. g.， pre-gate c1eaning， wafers were measured after the 

gate oxidation. 

The result of various experiments， designed to compare contamination levels for various 

c1eanings， are shown in Fig. 9 through 11. The wafers used were p-type， 100 cm and， 

following c1eaning， they were oxidized at 900 'C for 20 minutes. Figure 9 compares various 
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The best results were obtained for c1eaning methods (MEGA grade chemicals were used). 

the modified SC-1 c1eaning (concentration of ammonia was reduced by five times) which also 

Figure 10 compares the results for SC-1 and SC-2 c1eans gives the best surface roughness. 

The MEGA grade chemicals gave about one to two for MEGA and SEMI grade chemicals. 

The results for the SEMI grade chemicals orders of magnitude lower Fe concentration. 

depend very strongly on the shipment since the contamination level in the SEMI grade 

chemicals exhibits large fluctuations as shown in Fig. 10. 
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Figure 10 The Fe concentration introduced from MEGA and SEMI grade 
chemicals as a function of the shipment 

Figure 11 shows the effect of c1eaning temperature on the efficiency of the SC-1， SC-2 

A decrease in temperature results in a reduction of the Fe concentration c1eaning process. 

(plating of heavy metals from chemicals decreases with temperature)， but also an increase in 
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There is an organic contamination which causes an increase of positive charge in the oxide. 

optimum temperature for SC-1， SC-2 cleaning ateps which is a trade-off between cleaning 

efficiency for heavy metals and organic contamination. 
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An example of the use of the SPV technique for SPC of pre-oxidation cleaning is shown 

The wafer (p-type， 10.0. cm) were cleaned in a wet chemical sink in which the in Fig.12. 

chemicals were not replaced after each cleaning cycle and oxidized at 900C for 30 minutes. 

Each point is an average of the Fe measurements after oxidation on two wafers from a 50-

The allowable Fe contamination threshold is shown as the dashed horizontalline. wafer lot. 

This SPC chart shows Above this lovel， Fe has a detrimental effect on gate oxide integrity. 

that about eight cleaning runs can be performed before the contamination in the liquid builds 

up to unacceptable levels and the chemicals have to be replaced. 
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5. Conclusion 

This paper presented SPV applications for the monitoring of chemical cleaning and purity 

of chemicals through mapping of minority carrier diffusion length， Fe concentration in the 

bulk， and surface contamination (surface charge and surface recombination). The non 

contact， wafer-scale character of the new SPV approach， and refined apparatus， make this 

technique uniquely suited for heavy metal monitoring. To our knowledge no other technique 

can match this characterization capability. This method was used to monitor Cu contamina-

tion in BHF by measurement of its effect on surface recombination and Fe contamination 

through it effect on bulk recombination after RT A step used to drive Fe depositted at the 

surface during cleaning into the bulk. Fe surface contamination was measured down to the 

1 X 109 cm-2 level while the detection limit of this approach is 2 X 108 cm-2 • 

The procedure was developed to monitor heavy metal contamination levels in liquid 

chemicals. Cleanliness of incoming chemicals is not always a limiting factor and often is not 

related to the cleanliness of chemicals at the point of use (in the cleaning station). Quite 

often equipment itself can impose serious limitations. 

It is apparent that equipment designers could benefit from a better understanding of their 

equipment performance limitations. The SPV approach is very new compared to more 

traditional methods such as TXRF and AAS， but has already proven its usefulness in 

monitoring problems with wet chemistry in IC processing lines. Compared to more tradi-

tional methods， the major advantage of SPV measurement is its measurement speed; infor 

mation is obtained a few minutes after completion of a process step， as well as the capability 

of carrying out contactless measurements in patterned product wafers. 
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