

ジャーナル軸受の最適設計に関する研究

メタデータ	言語: jpn
	出版者: 室蘭工業大学
	公開日: 2014-03-04
	キーワード (Ja):
	キーワード (En):
	作成者: 風間, 俊治, 藤原, 満
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/612

ジャーナル軸受の最適設計に関する研究

風間 俊治, 藤原 満

Optimum Design of Hydrodynamic Journal Bearings

Toshiharu Kazama and Mitsuru Fujiwara

Abstract

Optimum design of miniature hydrodynamic journal bearings at high speed of rotation is studied numerically. The critical speed due to oil-whip including the effects of viscous heating in the fluid film and elasticity of the journal is considered. The numerical parameters used in this paper are: the radius and the width of the bearings are 10 mm, the span between bearings is 100 mm and the viscosity of the lubricant is 27.2 mPa · s at 313 K (ISO VG 32). The load and the speed of rotation are varied from 1 to 10⁴ N and from 10 to 500 s ¹, respectively. The effects of the speed of rotation and the loads on the optimum radius of the bearings based on the maximum critical speed are presented. Moreover, the experiment was carried out and the pressure distribution, rise in temperature of the lubricant and leakage flow rate were measured. The theoretical results agreed with the experimental data.

I. 緒 言

ジャーナル軸受は,各種機械の回転軸の支持に広く用いられている。近年の機械の小形軽量化 および電動モータの高速回転化にともない,そこで使用される軸受に対しても,軸の高速回転に 対応した小形軽量化が強く求められている。

今日,ジャーナル軸受の設計法に関する資料¹⁰ はすでに公表されており,一般的な設計時の資料として利用されている。しかしながら,小形化および高速運転時における安定性を踏まえた実用性の高い設計資料はまだ十分ではない。

そこで、本研究では特に軸が小径で回転数が高い運転条件で使用される動圧形の真円ジャーナ ル軸受の最適設計法を提示することを目的として、軸受すき間における発熱の効果および軸の小 径化による剛性の低下に基因するオイル・ホイップの発生限界を考慮した理論解析を行う。ま た、実験により本研究で導入した熱モデルの妥当性を検討する。

Ⅱ.主な記号

C _p	潤滑油の定圧比熱	
C ₁	油膜の減衰係数 =ðωc ŋ/(gm)	
D	ジャーナル直径 =2R	
е	偏心量	
f	摩擦係数 =T/(RW)	
\overline{F}	油膜力 = ð[°]F/(6µωLR [°])	
ħ	すき間 =h/ð	
k ,	軸のばね係数	
\boldsymbol{K}_{ij}	剛性係数 =δk _u /(gm)	
l,	ジャーナル軸受間の距離	
m	質量	
N	回転数	
p	圧力 =p/[6µω(R/ð) ²]	
p _m	W/(DL)	
Q	流量 =Q/(ðωLR)	
Q R	流量 =Q/(δωLR) ジャーナル半径	
Q R S,	流量 =Q/(δωLR) ジャーナル半径 ゾンマーフェルト(Sommerfeld)数 =μω(R/δ) ² /J) m
Q R S _o t _{c in}	流量 =Q/(δωLR) ジャーナル半径 ゾンマーフェルト(Sommerfeld)数 =µω(R/δ) ² /J 潤滑油の供給温度	7 m
Q R So t _{c in} t _{c s}	流量 =Q/(δωLR) ジャーナル半径 ゾンマーフェルト (Sommerfeld)数 =µω(R/δ) ² / <u>J</u> 潤滑油の供給温度 潤滑油の漏れ温度) m
Q R So tcin tcs W	流量 =Q/(δωLR) ジャーナル半径 ゾンマーフェルト(Sommerfeld)数 =µω(R/δ) ² / 潤滑油の供給温度 潤滑油の漏れ温度 荷重) m
Q R So tcin tcs W x*, y*	流量 =Q/(δωLR) ジャーナル半径 ゾンマーフェルト(Sommerfeld)数 =µω(R/δ) ² /µ 潤滑油の供給温度 潤滑油の漏れ温度 荷重 軸受の座標 =x/δ, y/δ	7 m
Q R S _o t _{c in} t _{c s} W x [*] , y [*] X [*] , Y [*]	流量 =Q/(δωLR) ジャーナル半径 ゾンマーフェルト (Sommerfeld) 数 =µω(R/δ) ² /µ 潤滑油の供給温度 潤滑油の漏れ温度 荷重 軸受の座標 =x/δ, y/δ ロータ質点の座標 =X/δ, Y/δ	7 m
Q R S _o t _{c in} t _{c s} W x [*] , y [*] X [*] , Y [*] a	流量 =Q/(δωLR) ジャーナル半径 ゾンマーフェルト(Sommerfeld)数 =µω(R/δ) ² /µ 潤滑油の供給温度 潤滑油の漏れ温度 荷重 軸受の座標 =x/δ, y/δ ロータ質点の座標 =X/δ, Y/δ 角度	7 m
Q R S _o t _{c in} t _{c s} W x [*] , y [*] X [*] , Y [*] α β _μ	流量 =Q/(δωLR) ジャーナル半径 ゾンマーフェルト (Sommerfeld)数 =µω(R/δ) ² /µ 潤滑油の供給温度 潤滑油の漏れ温度 荷重 軸受の座標 =x/δ, y/δ ロータ質点の座標 =X/δ, Y/δ 角度 粘度 - 温度係数	7 m
$egin{array}{c} egin{array}{c} egin{array}$	流量 =Q/(δωLR) ジャーナル半径 ゾンマーフェルト(Sommerfeld)数 =µω(R/δ) ² /J 潤滑油の供給温度 潤滑油の漏れ温度 荷重 軸受の座標 =x/δ, y/δ ロータ質点の座標 =X/δ, Y/δ 角度 粘度 - 温度係数 密度 - 温度係数	7 m
Q R S _o t _{c in} t _{c s} W x [*] , y [*] X [*] , Y [*] α β _μ β _ρ δ	流量 =Q/(δωLR) ジャーナル半径 ゾンマーフェルト(Sommerfeld)数 =µω(R/δ) ² /µ 潤滑油の供給温度 潤滑油の漏れ温度 荷重 軸受の座標 =x/δ, y/δ ロータ質点の座標 =X/δ, Y/δ 角度 粘度 - 温度係数 密度 - 温度係数 半径すき間	7 m
$egin{array}{c} m{Q} \\ m{R} \\ m{S}_o \\ m{t}_{c \ in} \\ m{t}_{c \ s} \\ m{W} \\ m{x}^*, \ m{y}^* \\ m{X}^*, \ m{Y}^* \\ m{a} \\ m{eta}_{\mu} \\ m{eta}_{\rho} \\ m{\delta} \\ m{\Delta}ar{t}_c \end{array}$	流量 = $Q/(\delta\omega LR)$ ジャーナル半径 ゾンマーフェルト(Sommerfeld)数 = $\mu\omega(R/\delta)^2/\mu$ 潤滑油の供給温度 潤滑油の漏れ温度 荷重 軸受の座標 = x/δ , y/δ ロータ質点の座標 = X/δ , Y/δ 角度 粘度 - 温度係数 密度 - 温度係数 半径すき間 = $(t_{c,s}-t_{cin})/t_{cin}$	7 m

θ :角度

84

 $= gm / (\delta k_s)$ κ : 潤滑油の粘度 μ : 潤滑油の密度 p : 時間 =ωt τ ø : 偏心角 : 熱パラメータ χ : すき間比 =ð/R Ý : ジャーナルの角速度 =2**πN** ω : オイル・ホイップ発生の限界角速度 ω Ω $=\omega/\omega_{c}$ 添字 0 : 静的平衡点 記号 • = $\partial/\partial \tau$

Ⅲ. 理 論

1. 基礎方程式

図-1にジャーナル軸受の模式図を示す。非定常項を考慮した無次元レイノルズ (Reynolds) 方 程式は

$$\frac{\partial}{\partial \theta} \left[\overline{h}_{3} \frac{\partial \overline{p}}{\partial \theta} \right] + \left[\frac{R}{L} \right]^{2} \frac{\partial}{\partial \overline{z}} \left[\overline{h}_{3} \frac{\partial \overline{p}}{\partial \overline{z}} \right] = \frac{\partial \overline{h}}{\partial \theta} + 2\dot{\varepsilon} \cos\theta + 2\varepsilon \dot{\phi} \sin\theta$$

(1)

 $\boxtimes -1$ Coordinate systems of hydrodynamic journal bearings

となる。ここに、 \overline{h} : 軸受すき間 =1+ $\varepsilon \cos \theta$ である。偏心方向およびそれに直角方向の負荷容 量 F_{ϵ} , F_{\bullet} は、それぞれ

$$\overline{F}_{\epsilon} = -\int_{-1/2}^{1/2} \int_{\theta_{1}}^{\theta_{2}} \overline{p} \, \overline{r} \, \cos\theta \, d\theta d\overline{z}$$

$$\overline{F}_{\epsilon} = \int_{-1/2}^{1/2} \int_{\theta_{1}}^{\theta_{2}} \overline{p} \, \overline{r} \, \sin\theta \, d\theta d\overline{z}$$
(2)

で求まる。本研究では、負圧領域ではキャビテーションが生じるものとして、その領域は負荷容量に算入しないこととする。したがって、 θ_1 , θ_2 はそれぞれ、油膜の開始角度および破断角度に対応する。

ジャーナル軸受の安定性を議論するにあたり、本報では、図-2に示すような、この軸受を両端にもつジェフコット (Jeffcott) ロータ² を考える(式の展開は附録 A を参照)。軸の剛性を考慮した安定限界角速度(危険速度) ω_c は

$$\boldsymbol{\omega}_{c}\sqrt{\frac{\boldsymbol{\delta}}{\boldsymbol{g}}} = \sqrt{\frac{\boldsymbol{A}_{1}\boldsymbol{A}_{3}\boldsymbol{A}_{5}^{2}}{(\boldsymbol{A}_{1}^{2} + \boldsymbol{A}_{2}\boldsymbol{A}_{5}^{2} - \boldsymbol{A}_{1}\boldsymbol{A}_{4}\boldsymbol{A}_{5})(\boldsymbol{\kappa}\boldsymbol{A}_{1} + \boldsymbol{A}_{5})}}$$
(3)

で与えられる。いま,安定限界パラメータとして

$$\Omega = \omega / \omega_{\rm c} \tag{4}$$

を導入すれば、 $\Omega < 1$ で安定である ($\Omega \ge 1$ でオイルホイップの発生により不安定となる)。一方、荷重 $\overline{W} = \overline{F}_{s_0}^2 + \overline{F}_{s_0}^2$ に対して油膜の運動方程式は次式で与えられる。

⊠-2 Schematic diagrams of Jeffcott rotor

86

$$\begin{bmatrix} \overline{F}_{x} \\ \overline{F}_{y} \end{bmatrix} = \begin{bmatrix} \overline{F}_{x_{0}} \\ \overline{F}_{y,0} \end{bmatrix} + \begin{bmatrix} \mathbf{\Delta} \mathbf{x}^{*} \\ \mathbf{\Delta} \mathbf{y}^{*} \end{bmatrix} + \begin{bmatrix} \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{\Delta} \mathbf{\dot{x}}^{*} \\ \mathbf{\Delta} \mathbf{\dot{y}}^{*} \end{bmatrix}$$

さて、式(1)を無限小幅軸受の取扱いのもとに解くと、圧力分布pは

$$\overline{\boldsymbol{p}} = \frac{(\boldsymbol{L}/\boldsymbol{R})^2}{2\boldsymbol{\omega}} \Big[\frac{1}{4} - \overline{\boldsymbol{z}}^2 \Big] \frac{(\boldsymbol{\omega} - 2\dot{\boldsymbol{\varphi}})\boldsymbol{\varepsilon}\boldsymbol{\sin}\boldsymbol{\theta} - 2\dot{\boldsymbol{\varepsilon}}\boldsymbol{\cos}\boldsymbol{\theta}}{(1 + \boldsymbol{\varepsilon}\boldsymbol{\cos}\boldsymbol{\theta})^3}$$
(6)

となる。したがって,式(6)を式(2)に代入して解けば,式(5)の[K],[C] が求まる(附録B参照)。なお,偏心角 ϕ は

$$\boldsymbol{\phi} = \arctan(\overline{\boldsymbol{F}}_{\ast \circ}/\overline{\boldsymbol{F}}_{\ast \circ}) \tag{7}$$

周方向流量 $\overline{Q}_{c}(\theta)$ ならびに側面方向(漏れ)流量 \overline{Q}_{r} は、それぞれ次式で求まる。

$$\overline{Q}_{c}(\theta) = \frac{(L/R)^{2}}{48} \varepsilon \frac{3\varepsilon + \cos\theta - 2\varepsilon \cos\theta}{1 + \varepsilon \cos\theta}$$

$$\overline{Q}_{s} = \varepsilon \left[\frac{(L/R)^{2}}{24} + 1 \right]$$
(8)
(9)

軸受すき間における潤滑油のせん断に基づくジャーナルおよびブシュに作用する摩擦トルク \overline{T} は、 \overline{p} <0 の領域において $\partial \overline{p}/\partial \theta$ =0 として

$$\overline{\boldsymbol{T}} = \frac{\boldsymbol{\pi}\boldsymbol{\delta}}{\boldsymbol{6}\boldsymbol{R}} \frac{1}{(1-\boldsymbol{\varepsilon}^2)^{1/2}} \left[1 \pm \frac{(\boldsymbol{L}/\boldsymbol{R})^2}{16} \frac{\boldsymbol{\varepsilon}^2}{1-\boldsymbol{\varepsilon}^2} \right]$$
(10)

で与えられる (複号同順)。

2. 熱潤滑モデル

ジャーナルが高速回転する場合,軸受すき間における潤滑油のせん断に基づく発熱の影響を考 慮する必要がある。軸受に対するこの種の問題は熱流体潤滑(Thermo-Hydrodynamic Lubrication)問題として,近年,高速計算機を積極的に活用して解析が進められている³⁻⁴。し かしながら,THL は非線形性の強いレイノルズ方程式,エネルギー方程式および熱伝導方程式 を潤滑油の物性値ならびに周囲との熱伝達を考慮しながら数値的に解かねばならない。したがっ

(5)

て,必然的に1ケースの計算量が多くなることから,パラメトリック・スタディが余儀なくされ る最適化問題に対して直接的に THL 理論を適用することは,現状では現実的ではない。

よって、本研究では実用的な簡便な熱モデルを導入することにする。いま、しゅう動部における発熱に対して、潤滑油の漏れ流量とすき間内の循環流量との関係から熱パラメータ $\chi = \overline{Q}_c / (\overline{Q}_c + \overline{Q}_s)$ を導入すると、しゅう動部の温度 *t* は

 $t = t_{in} + \chi \Delta t$

$$= t_{in} + \frac{6\mu \chi \omega}{\rho c_p} \Big[\frac{R}{\delta} \Big]^3 \frac{\overline{T}}{\overline{Q}}$$

で与えることができる。ここに、 ρ : 潤滑油の密度、 c_s : 定圧比熱、 t_{in} : 供給温度である。なお、潤滑油の粘度 μ および密度 ρ はそれぞれ温度 t の関数として

 $\boldsymbol{\mu} = \boldsymbol{\mu}_{0} \boldsymbol{e}^{\beta_{\mu}(t-t_{0})}$

 $\rho = \rho_0 [1 + \beta_{\rho} (t - t_0)]$

で与える。ここに、 β_{μ} 、 β_{ρ} はそれぞれ潤滑油の粘度 – 温度、密度 – 温度係数である。

Ⅳ. 熱モデルの検証実験

図-3に実験装置の模式図を示す。供試軸受は動圧形の真円ジャーナル軸受である。測定上, 軸受部の寸法は直径 2R=50 mm, 幅 L=50 mm, 直径すき間 2 δ =0.112 mm とした。ジャーナ ルは機械構造用炭素鋼鋼材で、ブシュは黄銅で製作した。潤滑油には ISO VG 32 を使用した。 実験パラメータには、荷重 W(=55~545 N)および回転数 N(=1~30 s⁻¹)を採用した。

本実験では、ウエイトによる懸垂式で荷重を、インバータと定トルク形3相電動機で回転数を 設定し、軸受すき間の圧力分布(計13箇所)、漏れ流量、給油および排油温度を測定した。

(11)

(13)

(12)

⊠-3 Experimental apparatus

図-4 に荷重 W をパラメータとして、しゅう動部の圧力分布 p を示す(回転数 N=25 s⁻¹ 一定)。図中の曲線は、本研究の潤滑モデルによる計算値(AV)である。荷重 W に対するしゅ

う動部の圧力 p の理論値は、実験値とよく一致した。

図-5 に、回転数 N をパラメータとした場合の排出側 t, と供給側 t_{in} との潤滑油の温度差 $\Delta t_c \varepsilon$, 図-6 に漏れ流量 Q_s に対する本潤滑モデルによる計算値 (AV)と従来の温度を一定と した計算値 (等粘度理論: IV) との比較を示す (W=349 N 一定)。Nの増大にともない、流体 のせん断に基づく発熱により Δt_c は上昇した(図-5). Δt_c の上昇は、潤滑油の粘度低下の要 因となったため、 Q_s は増加した(図-6)。特に N の大きな条件において、その影響は顕著と なり、計算値 AV は実験値を比較的よく近似した。

 $\boxtimes -5$ Comparison of experiment and theory for rise in temperature Δt_c

 $\boxtimes -6$ Comparison of experiment and theory for leakage flow rate Q_s

以上の結果より、本研究の熱潤滑モデルは比較的簡単な取扱いであるにも関わらず、しゅう動 部における発熱の影響をよく表すことができるといえる。

V. 最適設計

Ⅳ編の結果を踏まえて、Ⅲ編で示した基礎式に基づいて、小径のジャーナルを高速で回転させることを前提としたジャーナル軸受の最適設計を行う。数値パラメータを表1 に示す。なお、本報では小径のジャーナル軸受を対象としていることから、軸受すき間内の流れは層流として取扱うことができる(本研究の数値条件において *Re=δρωR/μ*<10 である)。なお、表1 の数値パラメータに基づく基本的なしゅう動部特性を附録Cに記す。

さて,静圧軸受の場合にはジャーナル形およびスラスト形によらず,流量および摩擦に基づく 損失の和から損失動力が定義できるので,これを目的関数として取扱い,その最小値を最適設計 条件として採用することができる⁵⁰。ところが,動圧軸受の場合には流量に基づく損失動力が定 義できないために,最適設計において損失動力最小化の観点からの数学的な取扱いができない。

すべり軸受の設計に対しては、温度上昇および漏れ流量の両者の最小化を図ることが基本的な 最適設計指針となることから、従来、これらふたつのパラメータに重みを掛けて代数和を採った 値を目的関数とする方法⁶⁷が用いられている。しかし、ふたつの異なる物理量の和によるこの 目的関数の採用には問題が残る。

そこで、本報では数学的な取扱いができ、しかも物理的にも明確な危険速度 ω_c に、すなわ

C _p	Ξ	1.88	kJ/(kg•K)
E	=	206	GPa
ls	=	100	mm
\boldsymbol{L}	=	10	mm
L/D	=	0.5	
t_{in}	=	313	К
W	=	100	Ν
$\boldsymbol{\beta}_{\mu}$	=	-0.0483	\mathbf{K}^{-1}
β ,	=	-0.752×10^{-3}	\mathbf{K}^{-1}
μ	=	27.2	mPa∙s
ρ	=	850	kg/m ³
ψ	=	0.001	

Γable	1	Numerical	parameters

ち高速安定性に着目した最適設計法を提示する。いま,設計仕様として小形化を念頭においていることから, (l_s で無次元化した)軸半径 R/l_s に対する最適値を求めることとする。いいかえれば、本研究は設計変数として R/l_s を,目的関数として $\Omega(=\omega/\omega_c)$ を採用し、これを最小化(ω_c を最大化)することに、さらに最適化法の表現で定式化すれば

Find R/l_s to minimize $\Omega(=\omega/\omega_c)$

(14)

を解くことに帰着される。なお、熱の影響は式(5)の無次元荷重に算入される。

図-7 は回転数 N の影響を示す。ジャーナル半径 R/l_s に対して最小値 Ω_{\min} が存在する。 これは、基本的に R/l_s を小さくすることが ε を大きくさせるために、結果として軸受の安定 性を高めること、一方で、いまジャーナルの剛性を考慮していることから、 R/l_s を極端に小さ く採ると、系の剛性の低下を招き Ω を増大させることから説明できる。 N が大きくなると Ω_{\min} は大きくなる。また、最適寸法は N にはほとんどよらずに、この場合 $R/l_s \approx 0.1$ で与えら れる。なお、N=500 s⁻¹ では常に $\Omega>1$ となり、 R/l_s の選択のみでは安定な軸受は実現できな いことがわかる。

図-8は荷重 mg=W に対する影響を示す。 mg が増大すると Ω_{min} となる R/l_s は増加 し、 Ω_{min} の絶対値も増加する。特にmg=10 kN では R/l_s が小さい条件での剛性の低下が著しい ので、 Ω_{min} は表れない。

 \boxtimes -7 Effects of speed of rotation *N* on optimum bearing radius *R/ls* (*mg* = 100 N)

 $\boxtimes -8$ Effects of load *mg* on optimum bearing radius R/l_s ($N = 100 \text{ s}^{-1}$)

VI. 結 言

流体のせん断による発熱,軸の剛性およびオイルホイップの影響を含めて,高速安定性を重視 したジャーナル軸受の最適設計を行った。なお,実験には本学科 新井田 要一 技官ならびに当 時の学部生 諌早 亮 君,渡辺 恒 君の助力を得た。ここに記して謝意を表す。

参考文献

- 1) 日本機械学会:すべり軸受の静特性および動特性資料集,(日本工業出版, 1984).
- 2) 日本潤滑学会:潤滑ハンドブック,(丸善, 1987).
- 3) 三井 純一:日本機械学会論文集C, <u>50</u>, (450), 339, (1984).
- 4) 風間 俊治・山口 惇・清水 清二:油圧と空気圧, 21,(4), 392,(1990).
- 5) Kazama, T. and Yamaguchi, A. : Wear, <u>161</u>, 161,(1993).
- 6) Seireg, A. and Ezzat, H.: Trans. ASME, J. Lubrication Technology, 91, 516, (1969).
- 7) 橋本・加藤:日本機械学会論文集C, <u>52</u>, (482), 2702, (1986).

附 録

А.

図-2に示すジェフコット・ロータの運動方程式は、無次元形で

$$\begin{aligned} \ddot{\mathbf{X}}^{*} + \frac{G}{\kappa} (\mathbf{X}^{*} - \mathbf{x}^{*}) = 0 \\ \ddot{\mathbf{Y}}^{*} + \frac{G}{\kappa} (\mathbf{Y}^{*} - \mathbf{y}^{*}) = G \\ \frac{\mathbf{X}^{*} - \mathbf{x}^{*}}{\kappa} = 2(K_{xx}\mathbf{x}^{*} + K_{yy}\mathbf{y}^{*} + C_{xz}\dot{\mathbf{x}}^{*} + C_{yy}\dot{\mathbf{y}}^{*}) \\ \frac{\mathbf{Y}^{*} - \mathbf{y}^{*}}{\kappa} = 2(K_{yx}\mathbf{x}^{*} + K_{yy}\mathbf{y}^{*} + C_{yx}\dot{\mathbf{x}}^{*} + C_{yy}\dot{\mathbf{y}}^{*}) + 1 \end{aligned}$$
(A1)

1

となる。ここに

 $G=g/\delta\omega^2$ (A2)

$$\boldsymbol{\kappa} = \frac{g\boldsymbol{m}}{\delta\boldsymbol{k}_s} = \frac{g\,\boldsymbol{l}_s^3\boldsymbol{m}}{12\pi\delta\boldsymbol{E}\boldsymbol{R}^4} \tag{A3}$$

である。なお、 κ は軸のコンプライアンスを表すパラメータである。また K_u , C_u は, それぞれ

$$[K] = \begin{bmatrix} K_{xx} & K_{xy} \\ K_{yx} & K_{yy} \end{bmatrix}$$
(A4)

$$[C] = \begin{bmatrix} C_x & C_y \\ C_y & C_y \end{bmatrix}$$
(A5)

で定義される無次元化した油膜の剛性係数および減衰係数である。

いま,静的平衡点まわりの微小振動を考える。ラプラス (Laplace) 変換を用いて式(3)を解く と、*s*をラプラス演算子として,特性方程式は

$$c_0 s^6 + c_1 s^5 + c_2 s^4 + c_3 s^3 + c_4 s^2 + c_5 s + c_6 = 0$$
(A6)

 $CCIC c_{i}(i=1, 2, ..., 6)$ it

$$c_{0} = \frac{A_{3}}{\omega^{6}}$$

$$c_{1} = \frac{1}{\omega^{5}} \left[A_{1} + \frac{A_{5}}{\kappa} \right]$$

$$c_{2} = \frac{1}{\omega^{4}} \left[A_{2} + \frac{2GA_{3} + A_{4}}{\kappa} + \frac{1}{\kappa^{2}} \right]$$

$$c_{3} = \frac{1}{\omega^{3}} \frac{G}{\kappa} \left[2A_{1} + \frac{A_{5}}{\kappa} \right]$$

$$c_{4} = \frac{1}{\omega^{2}} \frac{G}{\kappa} \left[2A_{2} + \frac{GA_{3} + A_{4}}{\kappa} \right]$$

$$c_{5} = \frac{1}{\omega} \frac{G^{2}}{\kappa^{2}} A_{1}$$

$$c_{6} = \frac{G^{2}}{\kappa^{2}} A_{2}$$

(A7)

さらに $A_i(i=1, 2, ..., 5)$ は

 $A_{1} = K_{xx} C_{yy} - K_{yy} C_{yx} - K_{yy} C_{yy} + K_{yy} C_{xx}$ $A_{2} = K_{xx} K_{yy} - K_{yy} K_{yx}$ $A_{3} = C_{xx} C_{yy} - C_{yy} C_{yx}$ $A_{4} = K_{xx} + K_{yy}$ $A_{5} = C_{xx} + C_{yy}$

である。フルヴィッツ (Hurwitz)の安定判別法を適用して

\boldsymbol{c}_1	c_{3}	C 5	0	0	
C 0	${m c}_{2}$	${\bf C}_{4}$	C 6	0	
0	c_{1}	C ₃	${m c}_{5}$	0	>0
0	c 0	C 2	C 4	C 6	
0	0	c_{1}	${\bf c}_{3}$	C 5	

なる条件より式(3)が求まる。

(A8)

(A9)

В.

いま, ギュンベル (Gümbel)の境界条件 ($\pi < \theta < 2\pi$ で p=0)のもとに解くと $K_{\parallel} = 3S_{\circ}K_{\parallel}^{*}$ および $C_{\parallel} = 3S_{\circ}C_{\parallel}^{*}$ は, それぞれ

$$K_{xx}^{*} = (\partial \overline{F}_{t} / \partial \varepsilon \cos a_{0} - \partial \overline{F}_{a} / \partial \varepsilon \sin a_{0}) \cos a_{0} + \overline{F}_{t} / \varepsilon_{0}$$

$$K_{xy}^{*} = (\partial \overline{F}_{t} / \partial \varepsilon \cos a_{0} - \partial \overline{F}_{a} / \partial \varepsilon \sin a_{0}) \sin a_{0} - \overline{F}_{a} / \varepsilon_{0}$$

$$K_{xx}^{*} = (\partial \overline{F}_{t} / \partial \varepsilon \sin a_{0} + \partial \overline{F}_{a} / \partial \varepsilon \cos a_{0}) \cos a_{0}$$

$$K_{yy}^{*} = (\partial \overline{F}_{t} / \partial \varepsilon \sin a_{0} + \partial \overline{F}_{a} / \partial \varepsilon \cos a_{0}) \sin a_{0}$$

$$C_{xx}^{*} = (\partial \overline{F}_{t} / \partial \varepsilon \cos a_{0} - \partial \overline{F}_{a} / \partial \varepsilon \sin a_{0}) \cos a_{0}$$

$$- (\partial \overline{F}_{t} / \partial \varepsilon \cos a_{0} - \partial \overline{F}_{a} / \partial \varepsilon \sin a_{0}) \sin a_{0} / \varepsilon_{0}$$

$$C_{xy}^{*} = (\partial \overline{F}_{t} / \partial \varepsilon \cos a_{0} - \partial \overline{F}_{a} / \partial \varepsilon \sin a_{0}) \cos a_{0}$$

$$+ (\partial \overline{F}_{t} / \partial \varepsilon \cos a_{0} - \partial \overline{F}_{a} / \partial \varepsilon \sin a_{0}) \cos a_{0}$$

$$- (\partial \overline{F}_{a} / \partial \varepsilon \cos a_{0} + \partial \overline{F}_{t} / \partial \varepsilon \sin a_{0}) \cos a_{0} / \varepsilon_{0}$$

$$C_{yx}^{*} = (\partial \overline{F}_{a} / \partial \varepsilon \cos a_{0} + \partial \overline{F}_{t} / \partial \varepsilon \sin a_{0}) \sin a_{0} / \varepsilon_{0}$$

$$C_{yy}^{*} = (\partial \overline{F}_{a} / \partial \varepsilon \cos a_{0} + \partial \overline{F}_{t} / \partial \varepsilon \sin a_{0}) \sin a_{0} / \varepsilon_{0}$$

$$C_{yy}^{*} = (\partial \overline{F}_{a} / \partial \varepsilon \cos a_{0} + \partial \overline{F}_{t} / \partial \varepsilon \sin a_{0}) \sin a_{0} / \varepsilon_{0}$$

$$C_{yy}^{*} = (\partial \overline{F}_{a} / \partial \varepsilon \cos a_{0} + \partial \overline{F}_{t} / \partial \varepsilon \sin a_{0}) \sin a_{0} / \varepsilon_{0}$$

$$C_{yy}^{*} = (\partial \overline{F}_{a} / \partial \varepsilon \cos a_{0} + \partial \overline{F}_{t} / \partial \varepsilon \sin a_{0}) \sin a_{0} / \varepsilon_{0}$$

$$C_{yy}^{*} = (\partial \overline{F}_{a} / \partial \varepsilon \cos a_{0} + \partial \overline{F}_{t} / \partial \varepsilon \sin a_{0}) \sin a_{0} / \varepsilon_{0}$$

となる。ここに各微係数は

$$\frac{\partial \overline{F}_{\iota}}{\partial \varepsilon} = \frac{(L/R)^{2}}{3} \frac{\varepsilon(1-\varepsilon^{2})}{(1-\varepsilon^{2})^{3}}$$

$$\frac{\partial \overline{F}_{\iota}}{\partial \varepsilon} = \frac{\pi(L/R)^{2}}{12} \frac{1+2\varepsilon^{2}}{(1-\varepsilon^{2})^{5/2}}$$

$$\frac{\partial \overline{F}_{\iota}}{\partial a} = 0$$

$$\frac{\partial \overline{F}_{\iota}}{\partial \dot{a}} = \frac{(L/R)^{2}}{3} \frac{\varepsilon^{2}}{(1-\varepsilon^{2})^{2}}$$
(B3)

$$\frac{\partial \overline{F}_{\bullet}}{\partial \varepsilon} = \frac{\pi (L/R)^2}{24} \frac{1+2\varepsilon^2}{(1-\varepsilon^2)^{5/2}}$$

$$\frac{\partial \overline{F}_{\bullet}}{\partial \varepsilon} = \frac{(L/R)^2}{3} \frac{\varepsilon}{(1-\varepsilon^2)^2}$$

$$\frac{\partial \overline{F}_{\bullet}}{\partial a} = 0$$

$$\frac{\partial \overline{F}_{\bullet}}{\partial \dot{a}} = \frac{\pi (L/R)^2}{12} \frac{\varepsilon}{(1-\varepsilon^2)^{3/2}}$$
(B4)

静的平衡点の負荷容量 F₄₀, F₄₀は

$$\overline{F}_{\epsilon_0} = \frac{(L/R)^2}{6} \frac{\varepsilon^2}{(1-\varepsilon^2)^2}$$
$$\overline{F}_{\epsilon_0} = \frac{\pi (L/R)^2}{24} \frac{\varepsilon}{(1-\varepsilon^2)^{3/2}}$$

(B5)

である。なお、同様にゾンマーフェルト(Sommerfeld)の境界条件 ($\theta=0$, 2π でp=0) で解くと $\omega_c=0$ となることから、安定条件は存在しない (無条件に不安定となる)。

С.

表1 の数値パラメータに基づくジャーナル軸受のゾンマーフェルト数 S_{0in} (供給側の潤滑剤 の物性値で定義する)に対する偏心率 ε , 偏心角 ϕ , 油膜の弾性係数 K_{ii} および減衰係数 C_{ii} は 図-A1~A3となる。図-A2 より S_{0in} <0.2 において K_{zu} >0 であることから, この条件におい て軸受は不安定となることがわかる。さらに図-A4~A6 はその時の(ジャーナルに作用する摩 擦トルクで定義した)摩擦係数 f_i/ψ , 無次元化した潤滑油の温度上昇 $\Delta \bar{t}_c$ および無次元漏れ流 量 $\bar{Q}_s \varepsilon = \sigma_s S_{0in}$ の増加に伴い f_i/ψ が増加して $\Delta \bar{t}_c$ が上昇する。R が小さくなるほど周速 およびすき間の絶対値は小さくなる(ψ :一定)ので,漏れ流量の絶対値は小さくなるが,相対的 な(無次元)漏れ流量 \bar{Q}_s は増加する。

 \boxtimes - A1 Effects of Sommerfeld number $S_{o in}$ at inlet on eccentricity ratio ε and attitude angle ϕ

 \boxtimes - A2 Effects of Sommerfeld number S_{oin} on normalized bearing stiffness coefficients K_{ij}

 \boxtimes - A3 Effects of Sommerfeld number $S_{\theta_{in}}$ on normalized bearing damping coefficients C_{ij}

 \boxtimes - A4 Sommerfeld number S_{oin} vs. coefficient of friction f_i / ϕ

 \boxtimes - A5 Sommerfeld number S_{oin} vs. rise in temperature $\Delta \overline{t_c}$

 \boxtimes - A6 Sommerfeld number S_{oin} vs. leakage flow rate $\overline{Q_s}$