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This paper concerns the estimation of percolation prabability for oriented boad percolation in two dimen-
sions. First we present a more general class of processes (discrete-time growth models) which contains the
oriented bood percolation as a special case, We then recall a result due to Ted Harris, which atlows one to
obtain an upper bound #{Y)(p) on the percolation probability starting from the origin for processes from
this class {here p is a parameter whose meaning is the probability of a bond to ba open in the considered
models). We then present a method based on the Harris' result, which gives a sequence 807}{p) {n > 1)
that converges monotonicaly to the true value of this percolation probability, from above. Furthermore we
cbatin explicit forms of 0(“)(17) form = 1,...,9. In particular, these bounds indicate a particular property
of the percolation probability starting [rom the origin when considered as a function of p, exactly te say,
they indicate a presence of an inllection poiot close to p = 0.561821.
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1 INTRODUCTION

In this paper we will construct a sequence of upper
bounds on percolation probability in oriented bond percola-
tion by using a new method based on the Harris lernma.
First we consider a class of discrete-time growth models
which contains oriented bond percolation as a spetial case as
we will show below. The discrete-time growth model start-
ing from A C Z!, is the name for the discrete-time Markov
chain 5,‘11, n € N, whose state space on Y, the collection of
all finite subsets of Z’', such that the initial state is A, that
is £f' = A, and the dynamics is given by the follwoing Tule.
Write f,‘}, the state of the process at time n, as a union of
maximal subintervals

\ &
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where [; = {m; 4+ L,m: 4+ 2,. .. ;) and my < ng < mayy.
Then £}, | is obtained by choosing points in {m; +1,m; +
2,...,m; — 1} each with probability ¢, and points m; and
n; each with probability p. The choices are made indepen-
dently. Throughout this paper, we assume that

0<p=qg=1,

so this process is attractive; that is; if 5;‘: C E,‘? , then we
can guarantee that £, C 5,18.;.1 by using an appropriate
coupling. Note that if ¢ = p(2 ~ p) (resp. g = p} then this
process becomes what is called the oriented bond {resp. siie)
percolation model in two dimensions. Concerning oriented
percolation models, see Durrett,!Y for example.

We define percolation (or survival) probability starting
fromAeY by

oAy = P(E} £ ¢ for all n> 0).

Furthermore, ¢{{0}), the percolation probability starting
from the origin 0, will be denoted by p(p, ¢). For given q,
define the critical value p.(q) by

pe(g) = inf{p > 0: p(p, q) > 0}
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Concerning bounds on percolation probability and critical
values for discrete-time growth models, see Chapter 7 of
Konno,@ for example.

The main purpose of this paper is (1) to present a new
method which gives a systematic sequence of rigorous up-
per bounds (™ (p) (which are independent of q) for percola-
tion probability of the discrete-time growth models by using
the Harris lemma and (2) to give an explicit form of these
bounds forn=1,...,0.

This paper is organized as follows. Irn Chapter 2, we will
give a version of the Harris lemma for the type of processes
considered in this paper. This lernma is a basic ingredient
for our method. Chapter 3 treats our new results. Chapter
4 is devoted to conclusions.

2 HARRIS LEMMA

Here we present a discrete-time version of the Harris
lemma® whose presentation here follows Konno. @) Let Y7
denote the set, of all {0,1}-valued mensurable functions on Y.

Lemma 2.1. (Harris lemma) Let h € Y* with

(1) 1) =0,

(2) 0<h(A) £l forany AcY with A # g,

Assume that for any € > 0, there is an N > 1 such that if
jA] = N, then

(3) EhEM) 2 1-e

Assume also that for any A€ Y,

(4) B (h(ED)) < h(A).
Then
(" g{A) < h(4) forany AeY.

In particular,

(6) Al < h{{0}),

where 0 is the origin.

The proof of Lemma 2.1 will give us a systematic se-
quence of upper bounds for percolation probability starting
from A of discrete-time growth models. So, for the conve-
nience of readers, we review the proof of this lemma, In the
rest of this section, we assume that p < ¢ < 1. When g =1,
the proof is almost trivial, so we will omit it.

To prove Lemma 2.1 we shall need Lemmas 2.2 and 2.3
which we shall now present. Write A as a union of maximal

subintervals
A= Uk [i: (1)

=1

where I; = {m; + 1,m; +2,...,n;} and m; < n; < myu1.

Define

L={m+1,...,n1 - Lmz+1,
ceng— Lo me 41,0 v — 1Y,

M = {my,ny,ma,na, ..., mp, 01}

The definitions of L and M give

L+M=|A| +k @

M =2k, (3)

Then the following is easily shown by the property of bino-
mial distribution.

Lemma 2.2. Forany A€ Y andn e {0,1,...,]A| + &},

P(eEd =)
LE M
=% ttrm)(} e -a
1=0 =0
x (M) — e,

where 1, (y) = 1 if y = x, and =0 otherwise and
i it . .
= for 0<j<i.
(3) JHE -~ )

Furthermore, we shall need the following result.

Lemma 2.8. Forany A€Y and N > 1,

Jim PO < |63 < N) =0,

Proof. It is enough to show that for any A€ ¥ and r 2 1,

lim P{ig}| =r) =0.

N—+ 0o
By the Markov property,

PR =7 —1) = S B(P(ER | =7 — 1) : 5] = m)

m=0
A

> E(P(g =r — D611 =7)

2 e(r) P = 1),
where

e(r) = B=|iﬁf=rp(|§18| =r—1)>0.

Note that the positivity of ¢(r) follows from Lemma 2.2.
Therefore it suffices to prove that for any A € Y,

lim P([E4] =1)=0.

n—eo

To do so, we will show that

> Pgl =1) < co.
FESS|
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By the Markov property,

(l n+]i = 0) (lgAi — 0)
— I)“‘Sni i| G 0) P(!g’f‘ — 0 IlEnFl; )
= S P = ky Je ] = 0)
k=1

> P&l = 1,160 = 0)
= E(P(ef) = 01 jgd = 1)
= (1-p)*P(I&)] = 1).

Then we see that p < 1 gives

Al = < 0O,
;P(Ie |=1) _(1 o7

Thus the proof is complete,

Proof of Lemma 2.1, Forany A€ Y and N > 1, Lemma
2.3 gives

o(A) = lim P(E # ¢)
hm P{ie! |>N)+limP0<|E Ny @
= ,3_1530 P& > N).

From the Markov property and condition (1),

E(h{gA )
= E(E(M(E))
= B(E(RER)) 1 162] > )
+E(ERER)) 0 < E1] < ).

(8)

By using h(A) < 1 for any 4 € ¥ and Lemma 2.3, we have
lim B(E(A(ES)) -0 < 6] < N) =0
Using this result and Eq,(5), we have
limin F(h(4)1)) = lminf BE(AET) : 21> M), (6)

Therefare combination of Eqs.(4), (6) and condition (3) im-
plies that for any £ > 0, there is an NV > 1 such that

liminf 2(h(3:1)) 2 (1 - &) liminf PEY > N)

7)
= (1—¢&)o(A). (

By using Eq.(7), h{¢} = 0, h{A) < 1 for any A € Y and the
definition of g{A), we see that for any ¢ > 0,

(1~ &)o(4) < liminf E(h(E))
=liminf B(MER) : €1 # ¢)
< limsup E(R(E]) : &2 # )
< g:ms;‘ # )
= :;(A).

Thus it follows that
o(A) = lim BE(h(E])). (8)
From the Markov property and condition (4), we obtain

E(W(E)) = B(BOKES ) < B(h(ER) < h(A).

Using a similar argument repeatedly, we see that for any
n>1,

E(h(gD)) < h(A). (9)
Combining Egs.(8) and (9) gives

o (A) < h{4),

for any A € ¥. Thus the proof of part (5} in Lemma 2.1 is
complete. Part (6) follows from taking A = {0} in part (5).

3 RESULTS

In this chapter we give our mew results. First we see
that the following main theorem comes from the last part
of proof of the Harris lemma. This result is important in
our paper. BDecause if we find a suitable ) which satisfies
conditions (1)-(4) in the Harris lemma, then we can obtain
a new systematic sequence of upper bounds E(A{£2)) on
percolation probability o(A4) starting from 4 € ¥ for the
discrete-time growth models. Furthermore, as a special case,
this sequence gives upper bounds on percolation probability
a{A) starting from A for oriented bond percolation.

Theorem 3.1. If h € Y* satisfies conditions (1)-(4) in the
Harris lemma, then for any A €Y,

(1) B(h(EN1)) S B(RED)  (n>0),

(2) Eh(ED) N\ o(A)

Let | Aj be the cardinality of A € Y. In fact if we take

214
B(A) =1~ (1—;»2) ,

then this h satisfiles the conditions (1)-(4) in the Harris
lemma. The proof appeared in Konno, " so we will omit it
kere. From now on, we focus on the case of oriented. bond
percolation (ie. g = p(2 ~ p) for the discrete-time growth
models). We define the percolation probability starting from
the origin for oriented bond percolation as

plp) = o({0}) = P} # ¢ for all n > 0),

where 0 is the origin. Then by using Theorem 3.1, we have
the follwing result.
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Corollary 3.2. In the case of oriented bond percolation, A =1~ 1—p 24l
we define 079 (p} = E(h(f,{lo})). Then T P ’
0" (p) N\, p(p) as n— co, From Corollary 3.2, we get the following explicit forms

where

00 (w) =

0 (p) =

9% (p) =

0 (1) =

0 (p) =

07 (p) =

of upper bounds 80 (p) (n = 1,...9) for percolation proba-
bility p(p) of orlented bond preolation.

4
=5 + 14 — 18p - 9p* — 2p°,

~9 4 22p - 40p — 206p° 4 331p" — 282p°
+137p% — 36p -+ 4p5,

= —18p + 85p + 94p° — 215p" + 10p° — 805p°

+ 5122p" - 11983p% 4 15086p°13789p1° + 8022p1!
— 3148p'? + 802p"* — 120p™ -+ 8p'S,

~36p% 4 70p° - 146p" — 286p° 4 449pF - 328497
+7206p% — 6268p" 4+ 10789p'° — 11598p! ! — 122560p"2
+ §79570p'® — 1301118p™* -+ 1877202p'° — 1916921p'°
-+ 1444832p"7 — 817731p"® 4 347992p'° — 10995120

+ 25044p%" — 3888p%% 4 368p™ — 16p%,

~727% + 140p" + 310p° — 831p° 4 1708p7 — 5205° 4 6798p" — 14748p'°
+50904p — 34575p"? — 156762p'® + 532173p" — 1469866p"°

-+ 3181230p'% — 3337010p"7 + 2242520p'® — 20440868p'°

+ 10121042270 — 268024840p%" + 473241652p%% — £13170448p>

4 611682008p*! — 482133156p%° -+ 304413972p% — 154830240p%7

-+ 63387844p%%— 20747336p™ 4 5355799°° — 1066096p° !

+ 15780477 — 163449 + 1056p™ — 32p™,

~14dp* + 280p° + 656p° — 169697 + 2150p° — 5782p° + 17095p'Y - 62604p"!
4 108811p'? -+ 40228p'® — 476906p" + 1565028p'° — 4230840p1C

+ 7075054p"7 — 7352359p'% + 8415008p!? — 22096375p%°

+ 91177550p%" — 270871273p%2 4 3504144 14p™ 4 277783879p™

— 1500875352p%° + 2374616022p°° — 5019288596p%7 -+ 24342890976p°°

~ 86114724564p° - 204622753576p°° — 356124984550p° ! + 4811935108572
— 522896766360p°° -+ 467043587932p™% — 347574971704p°5 + 217285574008p°°
— 114583533678p°7 -+ 51020611974p°® — 191455176987 + 6025408815p"°

~ 1577565268p* ! + 339473740p1 — 53996004p"° + 80712361

— 8363845 + 61664p"% — 2880p"7 -+ 64p"8,
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6 (p) = --288p° -+ 560p° + 1384p" — 3460p° + 3868p7 — 15524p'® + 53168p"
— 108889p'? + 52680p'3 + 192708p™ — £19812p'° + 2875638p'°
— 8675434p'7 4- 13351166p'8 — 7513582p*Y — 12680870p>°
— 10012396p%! + 278226110p*% — 941463796p% + 16672922855
— 1753873054p%° - 1019405305p%° — 772624922p%7 — 2111379902p™°
4 37392590206p%° — 157992585684p°0 -+ 342323568232
— 471254137710p% + 709541249646 — 1809998049067p>
+ 4142720438866 — 6798468563004p° -+ 12086521793044p°
— 36652815053037p%% - 1165038391320305°° -- 288306749394660p¢
+ 550091436671168p1 — 841727999796970p%? +- 1058219144184362p"
— 1117741947587496p™ + 1008248814765202p"% — 7797748368191535°
— 523654041894484p"7 — 306050843087175p*% - 156041549645810p"7
~ 69453200574360p"0 + 269651220133565°1 — 9111200957004°2
+ 2669046993642p>° — 674061979608p™ -+ 145635281244p°°
— 26641324881p%° + 40692675987 — 500203296758 - 50823832p%Y
— 388920690 4 214176p% — 7552557 - 128p°°,

09 (p) = —576p% 4 1120p7 - 2912p° — 7056p° + 6836p'° — 30078p"!
-+ 87444p'% — 128996p'> + 141078p** — 287842p"°
— 699633p'¢ 4 6844326p'7 — 16471207p'® + 20608128p"'?
- 10847269p%° + 24751286p%! — 110601178p%2 + 512135230p™
— 1418494591 + 2067305734p%° + 471585995p° — 8053480128p%
+13316622691p%% — 15272814914p% 4 7123969689770 — 296358497876p>*
-+ 730459107448p2 — 1293303009656p° -+ 2328082200618p%*
— 4097784855240p%° -+ 8415233465845p°¢ — 66530945306268p°7
4 2452363328518p°% — 26039047621642p + 91897777627579p™°
— 04045741987764p"! — 84075175798288p"% -+ 342385059025806p*
— 899911472485776p™ + 37225287113270425"° — 12081847226227191p"°
4 26822305168376020p"" — 48484573188285044p"® 4+ 100692788994288998p"7
- 268660367389354934p7° + 706341834272616372p%"
— 1561889633883578957p°2 + 2840027488043618376p°°
— 4307289153557295499p°" - 5546720939028297690p°
- 6155559273486481443p°° + 5954433996273587632p°7
— 5063566849719437586p"% + 3809374638823206528p°°
- 2546952358208713564p + 1518273653906179274p"
— 808613850015164342p5 - 385186427098623550p°
— 164148233059897686p% - 62542571224061780p" .
— 21275254293806300p5% 4+ 64469197626479167°7 — 1734723829162845p%
-+ 412745518361084p°° — 86368160701648p™° + 15784982726428p" "
— 2497665186969p" - 338316580628y — 38656411584p™
+ 3653203264p" — 277877600p % + 16343488p""
— 697344p™® 4 19200p™ — 256p°°
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In Fig.1, we show the graphs of §0%)(p) as functions of
p, forn =1 and n = 9, Observe that 0(1)(-) is concave while
(.} possesses an inflection point, This motivated us to
study the second derivative of the functions §0®)(p), p €
(1/2,1], n=1,...,9. Their second derivatives are presented
in Fig.2. This figure shows that there is an inflection point
p™) between 1/2 and 1 for n =6,7,8,9. This fact suggests
that p(p} also has an inflection point between 1/2 and 1.
Our results provide the following estimates of its abscissa:

P =0.511774
P\ = 0.536078
p® = 0.553858
¥ = 0.561821

oty 1

0.6 ]

0.4 5% p)

hl

Fig.1. The graphs of 97} (p) for n.= { and n = 9.

Fig.2. The second derivative of 00 (p) for n = 1,2,...,9.

4 CONCLUSIONS

In this paper we study the percolation probability start-
ing from A € ¥, for a class of diserete-time growth models
which contains the oriented bond percolation as a particu-
lar case. We present a new method which gives a systematic
sequence of upper bounds 69 (p) (n > 1) for this probabil-
ity, basing on o corollary of the Harris lemma. The first of
these bounds was given by the Harris lemma directly. These
bounds converge to the true value, as n — co. We obtain
explicit forms of (") (p) for n = 1,2, ..., 9. These forms sug-
gest that the percolation probability in the oriented bond
percolation starting from the origin, possesses an inflection
point, for certain value of p € [1/2, 1] which we estimate.
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