

重希土類を含む充填スクッテルダイト化合物の高圧 合成と物性

メタデータ	言語: jpn
	出版者: 室蘭工業大学
	公開日: 2007-05-16
	キーワード (Ja):
	キーワード (En): High-pressure synthesis, electrical and
	magnetic property, new filled skutterudites with heavy
	lanthanide, powder neutron diffraction
	作成者: 木方, 邦宏, 関根, ちひろ, 城谷, 一民, 李, 哲虎,
	伊藤, 英司
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/71

重希土類を含む充填スクッテルダイト化合物の高圧 合成と物性

その他(別言語等)	High-pressure Synthesis and Physical			
のタイトル	Properties of New Filled Skutterudites with			
	Heavy Lanthanide			
著者	木方 邦宏,関根 ちひろ,城谷 一民,李 哲虎			
	,伊藤 英司			
雑誌名	室蘭工業大学紀要			
巻	54			
ページ	109-117			
発行年	2004-11			
URL	http://hdl.handle.net/10258/71			

重希土類を含む充填スクッテルダイト化合物の 高圧合成と物性

木方 邦宏^{*1}、 関根 ちひろ^{*1}、 城谷 一民^{*1}、 李 哲虎^{*2}、
 伊藤 英司^{*3}

High-pressure Synthesis and Physical Properties of New Filled Skutterudites with Heavy Lanthanide

Kunihiro KIHOU^{*1}, Chihiro SEKINE^{*1}, Ichimin SHIROTANI^{*1}, Chul-Ho LEE^{*2}, Eiji ITO^{*3}

(原稿受付日 平成16年 5月 17日 論文受理日 平成16年 8月 31日)

abstract

Using the cubic anvil-type and the Kawai-type high-pressure apparatuses, new filled skutterudites with heavy lanthanide, LnT_4P_{12} (Ln= Gd, Tb, Dy, Ho and Y, T= Fe, Ru and Os) have been prepared at high temperatures and high pressures. Electrical and magnetic properties of these compounds have been studied at low temperatures. GdFe₄P₁₂ and TbFe₄P₁₂ show the ferromagnetic transition at around 23 and 10 K, respectively. On the other hand, the antiferromagnetic transition of GdRu₄P₁₂ and TbRu₄P₁₂ is observed at around 20 K. The magnetic property of TbRu₄P₁₂ is studied with powder neutron diffraction at low temperatures, and the magnetic structure in this compound is refined. DyOs₄P₁₂ does not show the magnetic transition down to 2 K. However, a small electrical anomaly is found at around 10 K. New compound HoOs₄P₁₂ is prepared with Kawai-type high-pressure apparatus at 7GPa. YFe₄P₁₂ and YOs₄P₁₂ exhibit the superconducting transition at around 7 K and 3 K, respectively. The physical properties of new filled skutterudites LnT_4P_{12} (Ln= heavy lanthanide, T= Fe, Ru and Os) are discussed.

Keywords: High-pressure synthesis, electrical and magnetic property, new filled skutterudites with heavy lanthanide, powder neutron diffraction

1 序論

1.1 スクッテルダイト化合物

スクッテルダイトとはノルウェーのコバルト鉱 山から産出された鉱石(化学式:CoAs₃)に産出 地の地名をとって名付けられた事に由来する。ス クッテルダイト化合物は CoAs₃ に代表されるよう に一般式 TX₃(T= 遷移金属、X=プニコゲン)で 表せる 2 元系の化合物と、LnT₄X₁₂(Ln=希土類な ど、T= 遷移金属、X=プニコゲン)で表すことの できる 3 元系の化合物の存在が知られている。2

*3 岡山大学固体地球研究センター

元系スクッテルダイト化合物の空きサイトに希土 類を充填した3元系化合物を特に充填スクッテル ダイト化合物と呼ぶ。2元系スクッテルダイト化 合物のTにはNi、Co、Rh、Ir等の遷移金属元素、 XにはP、As、Sbのプニコゲン元素が入る、充填 スクッテルダイト化合物ではTにFe、Ru、Os等 が入る。充填スクッテルダイト化合物は構成元素 の組み合わせの自由度が高く、その組み合わせは 100 種類を超える。

1.2 スクッテルダイト化合物の結晶構造⁽¹⁾

図1に充填スクッテルダイト化合物の結晶構造 を示す。この構造は立方晶系で、空間群はIm3で ある。希土類元素Lnは体心立方格子の位置をとり、 遷移金属元素Tは(1/4、1/4、1/4)に位置する。

^{*1} 室蘭工業大学 電気電子工学科

^{*2} 産業技術総合研究所

さらにプニコゲン元素Xは遷移金属元素Tを取り 囲むようにやや歪んだ8面体を形成するように位 置する。図2に希土類Lnを中心とした場合の結 晶構造を示す。プニコゲン元素Xは希土類元素を 取り囲むようにやや歪んだ20面体のクラスター を形成している。このように充填スクッテルダイ ト化合物はプニコゲン元素が共有結合性の3次元 構造を持ち、希土類元素はプニコゲン元素によっ て形作られる大きな空隙の中に周囲の元素と緩く 結合した状態で存在する。スクッテルダイトの結 晶構造は、ペロブスカイト化合物(一般式 ABO₃) の酸素が形作る8面体クラスターとそのクラスタ ーの中に存在する小さなB元素の関係に似ている。

図1 充填スクッテルダイト化合物の結晶構造

図2 希土類を中心にした場合の充填スクッテル ダイト化合物の結晶構造

1.3 スクッテルダイト化合物の物性

スクッテルダイト化合物は希土類元素を含む。 希土類元素は4f電子を持つ上、ランタニド収縮 と呼ばれる原子番号の増加に伴うイオン半径の減 少により格子定数は系統的に変化する。これらは スクッテルダイト化合物の物性に大きな影響を与 える。また遷移金属やプニコゲン元素を置換して 構成元素を変える事により、多様な物性の発現が 期待できる。表1にこれまでに合成され、その物 性が報告されている充填スクッテルダイト化合物 の物理的性質の一部を示す。LaFe₄P₁₂⁽²⁾では強磁 性元素を含むにも関わらず4.1K で超伝導転移を 示す。4f電子を持つ PrOs₄Sb₁₂ では異方的超伝導

が観測されるなど非常に興味深い超伝導体が多数 発見されている。超伝導体以外でも反強磁性体で ある PrFe₄P₁₂⁽²⁾ や強磁性体である NdFe₄P₁₂⁽²⁾ な ど磁気転移を示すものが存在する。PrRu₄P₁₂⁽³⁾で は金属から絶縁体に転移することが発見されて いる。このように多様な物性を示す事から充填ス クッテルダイト化合物は非常に注目されている。 CeFe₄Sb₁₂⁽⁴⁾⁽⁵⁾は比熱測定から y =180mJ/molK² と 大きな値を持ち、重い電子系として振る舞う。重 い電子系である事と、緩く結合した希土類がフォ ノンを散乱する事により低い格子熱伝導率を示し 熱電材料として有望である。充填スクッテルダイ ト化合物は興味深い物性を示す事から様々な研究 が行われてきたが、その殆どは軽希土類を含む化 合物である。重希土類を含む充填スクッテルダイ ト化合物は殆ど研究されていない。7個のf軌道 全てに電子が1つずつ入っている Eu を中心とし て電子が減ってゆく軽希土類に対して、電子が増 えていく重希土類でどのような物性が現れるかを 系統的に研究することは非常に興味深い。

表1充填スクッテルダイト化合物の物理的性質

化合物	物理的性質	特徴
$LaFe_4P_{12}$	超伝導	$T_{\rm c} = 4.1 \ {\rm K}$
$LaRu_4P_{12}$	超伝導	$T_{\rm c}$ = 7.2 K
$LaOs_4P_{12}$	超伝導	$T_{\rm C} = 1.8 \ {\rm K}$
$CeFe_4P_{12}$	半導体	<i>E</i> g =0.26 eV
CeFe ₄ As ₁₂	半導体	<i>E</i> g =0.01 eV
PrFe ₄ P ₁₂	反強磁性	$T_{\rm N} = 6.2 {\rm K}$
$NdFe_4P_{12}$	強磁性	$T_{\rm C}$ = 2.0 K
CeFe ₄ Sb ₁₂	重い電子系	γ = 180mJ/mol K ²
YbFe ₄ Sb ₁₂	重い電子系	γ = 140mJ/mol K ²

1.4 本研究の目的

スクッテルダイト化合物はこれまで一般的には フラックス法による試料作成がなされてきたが、 大きな単結晶を得にくい事、軽希土類以外では合 成できない難点がある。我々の研究室ではキュー ビックアンビルを用いた高温高圧合成法により多 くの新スクッテルダイト化合物を合成してきた。 高温高圧合成法を用いた場合においても、重希土 類を含む充填スクッテルダイト化合物の合成は困 難である。 我々は充填スクッテルダイト化合物の更なる合 成可能な範囲の拡大のために、温度や保持時間を 変化させて高温高圧合成法を試みた。またキュー ビックアンビル型装置で用いていた合成時の圧力 を上げる事も試みた。合成圧力を上げるために、 我々はこれまで用いてきたキュービックアンビル 型装置だけでなく、川井式2段アンビル型高圧発 生装置を用いて合成を行い 4GPa から 7GPa へと 合成圧力を上昇させた。

高温高圧合成法が中~重希土類の入った充填ス クッテルダイト化合物の合成に有効である理由と しては、プニコゲンクラスターによる大きな隙間 と、ランタニド収縮により減少してゆく希土類の 小さな原子半径との差を、高圧環境により縮める 事が出来るからであると考える。

このようにして我々は重希土類を含む新充填ス クッテルダイト化合物の合成を成功させ、それら の電気的、磁気的特性の系統的研究を行った。

2 実験

2.1 高圧合成

重希土類を含む充填スクッテルダイト化合物は 大気圧の環境下ではほとんど合成されていない。 我々はこれら重希土類の含まれた充填スクッテル ダイト化合物を合成するために高温高圧合成を行 った。高圧を発生させるにはいくつかの方式が存 在しているが、我々はキュービックアンビル型装 置と川井式2段アンビル型装置の2方式の装置を 用いて合成を行った。これらの装置の詳細は以下 に述べるが、リン等の蒸気圧の高い物質を含む化 合物は化学量論比で合成が可能である。

2.2 キュービックアンビル型高温高圧発生装置

我々はキュービックアンビル型装置として、東 大物性研にある斜面駆動式キュービックアンビル 型高温高圧発生装置と、室蘭工業大学 CRD セン ターに新たに導入されたダイア式キュービックア ンビル型高温高圧発生装置の2つの装置を用いて 充填スクッテルダイト化合物の合成を試みた。こ の2つの装置は圧力の伝達方式がわずかに異なる が、油圧ピストンの1軸加圧力を6つのタング ステンカーバイド製アンビルに均等に分散し、立 方体の6面すべてを同時に加圧して行くのは同じ である。図3は斜面駆動式キュービックアンビル 型高温高圧発生装置のシステム概観図である。油 圧プレスによりサンプルを含むパイロフィライト キューブを加圧し、油圧を制御して圧力を一定値 に保ちながら、キューブに通電しキューブ内部の

ヒーターを発熱させることで高温高圧環境を作り だしている。図4はサンプルキューブの断面図で ある。キューブ本体は圧力媒体として試料空間ま で圧力を伝える事と、ヒーターの発熱を断熱する 断熱材としての機能が求められ、この要求を満た す材料としてパイロフィライトを用いている。サ ンプルキューブの大きさは油圧プレスの加圧能力 やアンビル先端サイズによって変化するが、東大 物性研の装置で21mm角、室蘭工業大学の装置 で 16mm 角のものを用いている。 試料は BN 製の カプセルを作成しその中に入れ、試料サイズは3 mm φ × 8mm 程度である。温度の測定のため、 アルミナの碍子で絶縁した熱電対をグラファイト ヒーターに接するように入れてある。キューブ内 の圧力の値はすでに圧力定点物質として確立して いる BiやTIの抵抗測定から決定した。試料の合 成は希土類元素、遷移金属元素、プニコゲン元素 の各々を1:4:12の化学量論比で混合した 物を BN のカプセルに封入し、圧力 4GPa、温度 1000℃~1150℃の条件で30分保持した後、急 冷することで作成した。

図3 斜面駆動式キュービックアンビル型高温高圧 発生装置の装置概要

図4キュービックアンビル型高温高圧発生装置用 サンプルアセンブリ

2.3 川井式2段アンビル型高温高圧発生装置

我々は LnOs₄P₁₂(Ln= 重希土類) に注目し、これ までに合成されている充填スクッテルダイト化合 物より重い重希土類を含む充填スクッテルダイト 化合物の合成を目指してより高い圧力での高温高 圧合成を試みた。そこで岡山大学固体地球研究セ ンターに設置されている川井式2段アンビル型装 置を用いて合成を行った。

この装置は、1段目のキュービックアンビルプ レスの加圧力を2段目のタングステンカーバイド 製アンビルに伝えてより高い圧力の発生を可能と する装置である。2段目のアンビルは立方体の角 を(111)面で面取りした物を8個組み合わせ てその中央に正八面体の圧力媒体を置いて加圧す るようになっている。つまりキュービックアンビ ルプレスの6方向からの力を8個の2段目アンビ ルに伝え、正八面体の圧力媒体にたいして8方向 からの力に変換して加圧している。図5は2段目 アンビルの配置を示したものであり、中心部分に あるのが圧力媒体で、手前上2個の2段目アンビ ルを取り外した状態である。

図6は試料合成のための圧力媒体他のパーツ構 成を示したものである。正八面体の圧力媒体は発 生圧力が高くなることに対応するために、材料を パイロフィライトからマグネシアにクロミアを添 加した物に変更した。クロミアの添加は熱伝導率 を下げるためであるが、それでもパイロフィライ トと比較して熱伝導率が高いためジルコニア製の 断熱スリーブをヒーターの外側に設置している。 ヒーターはタンタル箔を使用し、試料カプセルは BNを用いた。得られる試料サイズは2mm φ× 4mm である。温度および圧力の決定はキュービ ックアンビル型装置の場合と同様であり、合成時 の条件は圧力のみ7GPaと高くなっている。

図5川井式2段アンビル型装置の2段目アンビルアセンブリ

図6川井式2段アンビル型装置の2段目サンプル アセンブリ

2.2 評価

合成した試料は粉末 X 線回折法により評価を 行い、直流 4 端子法を用いて 2K から 300K まで の電気抵抗率の測定を行った。また QUANTUM DESIGN 社製 MPMS を用いて磁化率を測定した。 TbRu₄P₁₂ は粉末中性子回折実験を行った。中性子 回折実験には改 3 号炉、T1-3 ビームポートに設 置されている HERMES⁽¹⁰⁾ を用いた。HERMES で は原子炉から出た中性子はモノクロメーターを用 いて、波長 1.82 Åの熱中性子線としている。単 色化した中性子で角度分散法により粉末中性子回 折パターンを得た。

3 結果

我々は充填スクッテルダイト化合物の中で蒸気 圧が高い P を含むスクッテルダイトのうち、遷移 金属に主に Os が入った LnOs₄P₁₂ に注目して高温 高圧合成を行った。すでに我々の研究室において 合成に成功している LnFe₄P₁₂ との比較を交えなが らその物性を報告する。

3.1 GdT_4P_{12} (T=Fe, Ru, Os)

GdFe₄P₁₂は Jeitschko らのグループによってフラ ックス法を使った単結晶の合成がなされており、 キュリー温度 Tc=22K の強磁性体であると報告さ

図7 4 GPa下の高温高圧合成法により得られた GdOs₄P₁₂のX線回折パターン

れている⁽⁶⁾。我々も GdFe₄P₁₂の高温高圧合成を行 い彼らと同様の結果を得ている⁽⁷⁾。また高温高圧 合成で大きなサンプルが得られるメリットを生か し、電気抵抗率の温度依存性の測定を行いキュリ 一温度付近で電気抵抗率が急激に減少することを 見出した。GdRu₄P₁₂⁽⁸⁾⁽⁹⁾はネール温度 T_N=22K の 反強磁性体であることをすでに報告している。図 7に新物質 GdOs₄P₁₂ のX 線回折パターンを示す。 図 8 は 2K から 300 K での電気抵抗率の温度依存 性を GdFe₄P₁₂ と GdOs₄P₁₂ についてプロットした ものである。

図 8 GdOs₄P₁₂ と GdFe₄P₁₂ の電気抵抗率

電気抵抗率は Fe と Os のどちらも温度の低下 とともに抵抗率が減少する金属的挙動を示してお り、Fe では 23 K 付近、Os では 5 K 付近に折れ 曲がりが存在し、抵抗率が急激に減少している。 図 9 は GdOs₄P₁₂ の磁化率の温度依存性を示した。 100K 以上の温度領域で逆磁化率の傾きから求め た有効ボーア磁子数は 8.54 $\mu_{\rm B}$ でありフントルー ルから求めた Gd³⁺ の理論値 7.94 $\mu_{\rm B}$ とよい一致を 示す。それ故 GdOs₄P₁₂ の Gd の価数状態は +3 で あると考えられる。図 10 は 0 から 1T までの磁 化過程を GdOs₄P₁₂ についてプロットしたもので ある。転移温度である 5 K 以下の温度で強磁性的

図9GdOs₄P₁₂の磁化率と逆磁化率の温度依存性

図 10 低温における GdOs₄P₁₂の磁化曲線

挙動を示しており、 $GdOs_4P_{12}$ はキュリー温度 T_c = 5K の強磁性体であることがわかった。

3.2 TbT_4P_{12} (T=Fe, Ru, Os)

TbFe₄P₁₂はキュリー温度 T_c= 10 K で強磁性体とな る。TbRu₄P₁₂は T_N= 20 K で反強磁性を示す。今 回新たに合成を行った TbOs₄P₁₂ ではキュリー温 度7Kで強磁性体となった。このことからTbを 含む充填スクッテルダイト化合物では遷移金属を Fe、Ru、Os と変化させて行くと強磁性体、反強 磁性体、強磁性体と磁性が変化することがわかっ た。Gd を含む充填スクッテルダイト化合物にお いても同じような変化を示しており興味深い。こ のような変化を示す理由としては RKKY 交換相互 作用の振動減衰項の影響などが考えられるが、Ru と Os のスクッテルダイト化合物では Fe を含むス クッテルダイト化合物と比較して格子定数の変化 量が少ない。そこで遷移金属のバンド構造への影 響など複雑な要因が加わっているのではないかと 考えられる。そこで磁気構造を直接的に観測する 手段として粉末中性子回折を行うこととした。Gd は中性子吸収断面積が非常に大きいため中性子回 折実験を行うのは困難である。そこで Tb を含む

図 12 TbRu₄P₁₂の 2K と 30K での中性子回折パターン

充填スクッテルダイト化合物で回折実験を行う事 とし、磁気散乱ピークの観測の容易な反強磁性体 である TbRu₄P₁₂の中性子回折実験を行った。図 11 は低温に於ける TbRu₄P₁₂の磁化率の温度依存 性を示したものである。TbRu₄P₁₂は T_N= 20 K で 反強磁性を示し、さらに電気抵抗率と磁化率の測 定結果よりT1=10Kで何らかの異常が有ることを すでに我々のグループで報告している⁽⁸⁾⁽⁹⁾。図 12 は T_N 温度よりも高い30Kと T_1 温度よりも低い 2.3 K での TbRu₄P₁₂ の中性子回折パターンを示 す。30 K のパターンでは h+k+l= 偶数となる核散 乱ブラッグピークのみ現れているが、2.3Kでは h+k+l= 奇数となる位置に磁気散乱ブラッグピーク が新たに観測された。磁気構造はTb(0.0.0)サ イトとTb(1/2,1/2,1/2)サイトでスピンの向き が反対になるというモデルが磁気散乱ピークとよ く一致する。図13は100ラインのピーク位置 における磁気散乱ピーク強度の温度変化を示す。 反強磁性転移温度である20K以下の温度で磁気 散乱ピークが大きくなっていることがわかる。し

図 13 TbRu₄P₁₂の 100 ラインのピーク強度の温度 変化

かしながら温度 $T < T_1$ に於ける磁気散乱ピークと $T_1 < T < T_N$ に於ける磁気散乱ピークの間には顕 著な違いは見られず、 $T_1 < T < T_N$ に於ける磁気 構造を決定するにはもっと詳細な実験を行う必要 があることがわかった。

3.3 DyT_4P_{12} (T=Fe, Os)

我々はすでに DyFe₄P₁₂ はキュリー温度 T_c=10K で強磁性体となることを報告している⁽¹¹⁾。 DyRu₄P₁₂ は未だ合成できていない。遷移金属に Ru が入る充填スクッテルダイト化合物では Dy 以 降の重希土類での 4GPa 下での合成はきわめて難 しい。図 14 に今回新たに合成された DyOs₄P₁₂の 電気抵抗率の温度依存性を示す。DyOs₄P₁₂は 10 K 付近に何らかの異常が現れている。しかし 2 K までの磁化率測定では磁気的な異常は現れておら ず DyFe₄P₁₂ の強磁性体とは異なっている。また GdOs₄P₁₂ や TbOs₄P₁₂ とも異なっており非常に興 味深い。逆磁化率より求めた有効ボーア磁子数は 10.70 μ_B であり、フントルールから求めた Dy³⁺ の理論値 10.63 μ_B とよい一致を示している。

図 14 DyOs₄P₁₂の電気抵抗の温度依存性

3.4 HoT₄ P_{12} (T=Fe, Os)

HoOs₄P₁₂はキュービックアンビル型高温高圧発 生装置による合成では単一相を得ることが出来な かった。そこで川井式2段アンビル型装置を用い て7GPaで1100℃という条件で単一相を得るこ とが出来た。しかし充填スクッテルダイトの単一 相となったのは試料の一部分であった。これはヒ ーターが熱伝導のよい金属箔であったために試料 カプセル中で温度勾配がついてしまったためであ ると考えられ、今後の改良が必要であると思われ る。しかし川井式2段アンビル型装置の効果は確 認できたので、今後、新たな充填スクッテルダイ トを合成する上で重要なツールを手に入れたと言 える。図 15 は HoOs₄P₁₂の磁化率の温度依存性 であり、逆磁化率より求めた有効ボーア磁子数は 10.07 μ_Bであり、フントルールから求めた Ho³⁺ の理論値 10.60 µ_B とよい一致を示している。

3.5 YT₄P₁₂ (T=Fe, Os)

Yは厳密には希土類ではないが広義には Yと Sc も希土類に含めることが出来る。Y は f 電子を持 たず原子半径は Dy とほぼ同じ値を持つ。YFe₄P₁₂ は初めてYが入った新スクッテルダイトであり、 強磁性元素 Fe を持つ新超伝導体である⁽¹²⁾。図 16 に YFe₄P₁₂の電気抵抗率の温度依存性を示す。温 度の低下とともに抵抗は低下し、7 K 付近で急激 に減少している。図 17 は YOs₄P₁₂ の電気抵抗率 の温度依存性を示す。YOs₄P₁₂は YFe₄P₁₂よりも 低い温度3Kで超伝導転移と見られる電気抵抗 の減少を観測した。強磁性元素である Fe を含む YFe₄P₁₂より超伝導転移温度が低くなっているこ とは興味深い。図 18 は YOs₄P₁₂の磁化率の温度 変化を示す。磁化率も電気抵抗率の測定結果と同 様に 3 K 付近で急激に変化して大きな反磁性を示 し、超伝導になった事を示している。転移温度よ りも低い温度で磁場を印可し、温度を上昇させる

図 16 YFe₄P₁₂ の電気抵抗率の温度依存性

零磁場冷却磁化(ZFC)と磁場を印可後に転移温 度以下まで温度を下げる磁場中冷却磁化(FC)と ではヒステリシスが見られた。LaFe₄P₁₂⁽¹³⁾⁽¹⁴⁾の T_c は4.1KでYFe₄P₁₂では7Kなので、かなり T_c は上昇している。これはYFe₄P₁₂の分子量や格子 定数が減少したためか、バンド構造が変化したこ とによるのか、詳しい研究はまだこれからである。 単体のFeが高圧下で超伝導になることが報告さ れているが、Feの入った化合物超伝導体はまだあ まり発見されていない。YOs₄P₁₂も今回合成に成 功し、 T_c =3Kの超伝導体であることがわかった。

図 17 YOs₄P₁₂ の電気抵抗率の温度依存性

図 18 YOs₄P₁₂の磁化率の温度依存性

4 LnT₄P₁₂の格子定数と原子番号の関係と物性

図19に充填スクッテルダイト化合物の格子定 数と希土類の原子番号の関係をプロットしたもの を示す。重希土類を含む充填スクッテルダイト化 合物は比較的すなおにランタニド収縮に伴う格子 定数の減少が現れているのがわかる。CeやEuで はランタニド収縮に伴う格子定数の減少からはず れた挙動を示している。CeT₄P₁₂ではCeが+4価 を、EuT₄P₁₂ではEuが+2価をとっている事がわ かっている。+3価よりも小さなイオン半径を持 つ+4 価の Ce を含む充填スクッテルダイト化合物 は格子定数が小さくなっており、逆にイオン半径 の大きな +2 価をとる Eu を含む化合物では格子定 数が大きくなっている。重希土類を含むものでも YbFe₄P₁₂は格子定数が大きくなっており、+2価 の価数をとっていることが原因であると考えられ る。

表2には今回合成を行った充填スクッテルダ イト化合物の物性を示す。系統的に重希土類を含 む充填スクッテルダイト化合物を見てみると Gd や Tb を含む充填スクッテルダイトでは遷移金属 の置換にともない同様の磁気転移が現れていが、 TbRu₄P₁₂では反強磁性転移温度以下の温度 T₁で 何らかの磁気的転移があり、GdRu₄P₁₂とは異な っている。DyOs₄P₁₂やHoOs₄P₁₂では2Kまでの 温度領域で磁気転移が見られていないのが興味深 い。DyOs₄P₁₂は電気抵抗の測定結果より 10 K に 異常が見られるが、これがどの様な転移によるも のなのかは不明である。そこで DyOs₄P₁₂の転移 温度は便宜的にXとしてある。これは磁気転移温 度が 2K 以下に下がった為なのか本質的に磁気オ ーダーではない基底状態を取っているのかは今後 調べる必要がある。また DyOs₄P₁₂ では磁気転移 を伴わない電気抵抗率の異常が見えており興味深

図 19 LnT₄P₁₂の格子定数と希土類の原子番号

い。Y を含む充填スクッテルダイト化合物で新超 伝導体を発見した。Y と同じようにf 電子を持た ない La を含む超伝導体の Tc と比較すると Y を含 む方が Tc が高くなっている。現在充填スクッテ ルダイト化合物の中で最も高い Tc をもつ化合物 は LaRu₄As₁₂ であり T_c =10.3 K である。この事か らもし YRu₄As₁₂ を合成出来たならかなり高い T_c の超伝導体である可能性がある。

今回の研究では川井式2段アンビル型高温高圧 発生装置を用いた合成を試みた。この装置はまだ 課題があるとはいえ、重希土類を含む充填スクッ テルダイト化合物の物質開発を推し進める上で強 力な武器となりうることが確認できた。

表 2 今回合成した重希土類を含む充填スクッテ ルダイト化合物の格子定数と物理的性質

化合物	格子定数(Å)	物理的性質	転移温度 (K)
GdFe ₄ P ₁₂	7.7964	強磁性	<i>T</i> _c =23 K
GdRu ₄ P ₁₂	8.0375	反強磁性	<i>T</i> _N =22 K
GdOs ₄ P ₁₂	8.0657	強磁性	$T_{\rm C}$ =5 K
TbFe ₄ P ₁₂	7.7926	強磁性	<i>T</i> _c =10 K
TbRu ₄ P ₁₂	8.0338	反強磁性	$T_{\rm N} = 20 \text{ K},$ $T_1 = 10 \text{ K}$
TbOs ₄ P ₁₂	8.0631	強磁性	<i>T</i> _C =7 K
DyFe ₄ P ₁₂	7.7892	強磁性	<i>T</i> _C =10 K
DyOs ₄ P ₁₂	8.0601	常磁性	X=10 K
HoFe ₄ P ₁₂	7.7854	強磁性	<i>T</i> _c =9.5 K
HoOs ₄ P ₁₂	8.0579	常磁性	—
YFe ₄ P ₁₂	7.789	超伝導	<i>T</i> c=7 K
YOs ₄ P ₁₂	8.0615	超伝導	<i>T</i> c=3 K

文献

- W. Jeitschko and D. J. Braun, Acta Crystallogr. B 33 (1977) p3401
- (2) G. P. Meisner, Physica B 108 (1981) p763

- (3) C. Sekine, T. Uchiumi, I. Shirotani and T.Yagi, Phys.Rev. Lett. 79 (1997) p3218
- (4) D. T. Morlli and G. P. Meisner, J. Appl. Phys. 77 (1995) p3777
- (5) B. C. Sales, D. Mandrus and R. K. Williams, Science 272 (1996) p1325
- (6) W. Jeitschko, A. J. Foecker, D. Paschke, M. V. Dewalsky,
 C. B. H. Evers, B. Kunnen, A. Lang, G. Kotzyba, U. C.
 Rodewald and M. H. Moller, Z. Anorg. Allg. Chem. 626 (2000) p1112
- (7) K. Kihou, I. Shirotani, Y. Shimaya, C. Sekine and T. Yagi, Mater. Res. Bull. **39** (2004) p317
- (8) C. Sekine, T. Uchiumi, I. Shirotani, K. Matsuhira , T. Sakakibara, T. Goto and T. Yagi, Phys.Rev. B62 (2000) p11581

- (9) T.Uchiumi, C.Sekine and I.Shirotani, Jpn. J. Appl. Phys. 39 (Suppl. 39-1)(2000) p523
- (10) K. Ohyama, T. Kanouchi, K. Nemoto, M.Ohashi, T. Kajitani and Y. Yamaguchi: Jpn. J. Phys. 37 (1998) p3319
- (11) I. Shirotani, Y. Shimaya, K. Kihou, C.Sekine and T.Yagi,J.Solid. State Chem. 174 (2003) p32
- (12) I. Shirotani, Y. Shimaya, K. Kihou, C. Sekine, N. Takeda,M. Ishikawa and T. Yagi, J.Phys., Condens. Matter. 15 (2003)S2201

(13) M. S. Torikachvili, J. W. Chen, Y. Dalichaouch, R. P. Guertin, M.W.McElfresh, C.Rossel, M.B.Maple and G. P. Meisner, Phys. Rev. B 36 (1987) p8660

(14) I. Shirotani , T. Adachi, K. Tachi, S. Todo, K. Nozawa,T. Yagi and M. Kinoshita, J. Phys. Chem. Solids 57 (1996)p211