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The study of damage pattern growth in brittle material is of fundamental importance for
understanding the gestation mechanism and occurring conditions of catastrophe of the great structures.
It is especially important in understanding the dynamic catastrophe in rock, such as seismic, rock
burst, shock bump, and the three kinds of outburst which are the outburst of water, gas and coal in
coal underground mining. In the paper, damage pattern growth in a 2-D sample of heterogeneous
brittle material is simulated, which is based on the principle that the damage evolution is irreversible,
and the lattice finite element is used for the numeric model. The simulation showed that the complex
damage pattern was formed by deduction, which was controlled by the simple dynamic law of the
individual element and the strong interaction between elements. The damage pattern grows from dots
to lines and to a fractal of which geometry dimension is between lines and a plane.

Keywords : damage pattern, numeric simulation, heterogeneous brittle material, lattice finite element,

catastrophe prediction

1 INTRODUCTION

Failure in solids is a problem of scientific and
technological importance and is a complex and
fundamental problem dealing with a wide range of
disciplines including mechanics, physics, and nonlinear
science. Especially, the research of damage evolution
induced catastrophe in brittle materials has great
importance in disaster mitigation. And it is the theory
foundation of prediction of dynamic disasters in great
civil structures. In mechanics, damage evolution
induced catastrophe was known as a problem that
involves multi-scale mechanical problem. In the paper,
a numerical method was suggested to simulate the
course of damage evolution in a rock sample, and the
damage pattern was displayed for a whole course which
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from the micro-damages distributed in random mode to
fracture bands. We hope it could give some help in
understanding the course of disaster gestated in the
engineering structures.

Pattern can be regarded as a kind of space structure,
such as geometry feature and symmetry. It was used in
all kinds of physical phenomenon. In the paper, pattern
was used to represent a time-space structure. The
complicated mechanism of damage evolution can be
described with pattern growth and formation,
competition and choosing, gradual change and
catastrophe. According to the principle of irrepressible
damage evolution, the growth of damage pattern of a
2-D plate made of rock was simulated on the model
of lattice finite elements, which was loaded in a
self-adaptive mode. The result showed that the damage
pattern grows in fractal which began with spotted damage
and ended with run-through cracks. The mechanism of
damage of meso-elements is based on the rule of max
tensile strain, and numerical program was developed on
the platform of ANSYS.
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2 MESCOPIC DISORDER AND LATTICE
FINITE ELEMENT MODEL

The complicated and variable pattern of damage in
brittle materials is rooted on the two fundamental
factors!™):

(1)The system of structure of brittle materials is
disordered, trans-scale inhomogeneous and
discontinuity, that is it’s a multi-scale disordered
structure.

(2)The system with damage and fracture usually is
non-equilibrium, especially when external forces were
loaded.

So the growth of the damage pattern in dynamic
mode can be done by irreversible and non-equilibrium
iterations of a disordered system. The disorder in
mesoscopic is introduced like this: The plate was
scattered into discrete elements of very small size
(Fig.1), which was regarded as a RVE(Representive
Volume Element) of the material. The elastic modulus
E of the RVEs satisfied Weibull probability distribution
function:

m(E " —(E/EYm
f(E)zf f e (D

In which £ is scale parameter, m is shape factor of
Weibull. The random values of the elastic modulus
were produced by the method of Monte Carlo
simulation.

Far

-

‘(13)‘
Fig. 1. (a)2-D sample of rock under uniaxial
compression test , (b) the lattice finite model

3 CRITERION OF MESOSCOPIC DAMAGE
AND IRREVERSIBLE EVOLUTION

Thought in macroscopic, the mode of fracture and
post peak curve of elastic-plasto are variable, and so
they are the whole behavior of the system. In
mesoscopic, the damage mechanism of each element is
simple. As for rock, the damage mechanism of
maximum tensile strain should be reasonable. Consider
a mesoscopic element under complex stress state of
o( g1, s, 03), the stress state can be divided into two
cases according to twin-shear strength theory™:
WhenO_ < Otao, , the elements was in a state of

. ° +a .
tensile deformation, the damage law is:

0 g, 56,
Ag
_ 10
D=J1-—- 0S8, <¢, (2)
&
1 g, 2¢&,
_ otao,
When 0, l+a the elements was in a state

of compression, and the maximum strain is also still the
variable controlling the damage development, the
damage law is:

0 g, >¢&,

D=1, A&,

. 3)

£, <&,
&

In which, & is the maximum principal strain of the
element ; &, is the strain threshold of damage ; A is the
factor of remain strength in tensile state ; &, is the limit
tensile strain.

Here, we assumed that the effect of the
micro-damage on elastic modulus of the element is
same in all directions, so the elastic modulus of the
element after k steps iterative calculations is written as:

E(1-D")=E(1-Dy))(1= D)) (1=D,)
“4)

The irreversible damage evolution is written as:

D" =1-(1-D,))1=Dy))---(1=Dy,) ©®

In which D" represents the accumulated damage after
k steps iterative calculation;

Dy, represents the relative damage at step k, is
determined by formula (3) and (4).

4 ITERATIONS OF NON-EQUILIBRIUM AND
ADAPTIVE LOADING

At a certain load step, damage and fracture of
elements result in bearing capacity decreases, which
causes redistribution of stress in the structure. As a
result, the stress around the damage zones increase, and
further, the elements around the damage zones will
damage and crack under the increased stress. This is a
course of damage pattern and stress pattern coupling
with each other. They are alternatively expanding and
stopped. In numeric method, the stress redistribution is
carried out by non-equilibrium iterations, and adaptive
displacement load simulates the real load.

4. 1 Non-equilibrium Iterations
At the load of step k , the finite element equation is:

K®q® = pk 6)
In which ¢ is the displacement array of step k; P* is
node load array; K® is the overall stiffness matrix, it is
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assembled by element stiffness matrix:

K(k) — Z(K(e))(k) — ZJV BT(D(e))eBdV
e e ¢ (7)

In which B is strain matrix, (D) is element stiffness
matrix of stepk , it is expressed in tensor as:

(e) (k) _
(D) = (2G5ik5ﬂ + ﬁ“é‘gék/) (8)
In which G, A are Lamei constants.
The non-equilibrium load result of element damage
is
(K® — K 8)q® = Ap® )
In which g (¥ is the overall stiffness matrix because
of damage at step k
K® — K@y _ I BT (DO BV
g( ) Z , B (D7)
(10)
In which (D, ) is constitutive matrix of the
damaged element, it is written as in tensors:

(D(e)[jkl )(k) = (D(e)ijkl )(k)(l - D(k)) (11)
Keep the Load and boundary unchanged, approach
equilibrium by iterative calculation, the stress was
redistributed:

]Z(k)Aa(k) = AP® (12)
The displacements was resolved as g (k)
7% < a® 1 Aq® (13)

The accumulated displacement is c )
0 _ pg® (14)

Use formula (3) and (4) to each element, and
calculate their damage value, then enter the formula
(12) ~ (14). Repeat this course, until no damage
produces. Then the step k calculation ends and the
program enter the next step calculation.

4. 2 Determination the Step Size of Adaptive Load
In order to simulate fracture under quasi-static load,
adaptive load was used. In the step k, load is written as:

pl _ pO L ApH (15)

PO is the initial displacement determined for a linear
elastic phrase. APX)is the increment of displacement
load at step k. The method of adaptive load is to adjust
the increment A P automatically as the displacement
load increases so that the structure can not breakdown
rapidly because of a large increment of displacement
load, and also, the program will not do calculation
repeatedly because of too small increment of
displacement load.

The adaptive increment A P(X)of load is determined
as the followmg at step k, a small initial increment
AP( of load is given, substitute it to (15) and (6), the
1n1tlal stress corresponding to APO(/‘) is resolved, further,
calculate the maximum principal stress (g}e))(k) for

each element, then the load factor is defined as [11]

(e) (k)
® = maxd (T ) (16)

P i T
b

The increment of load at step k is expressed as
AR
(%)
Yo,

APH — (17)

In which o© represents the tensile strength of
element calculated by initial elastic modulus and limit
tensile strain.

5 RESULT OF SIMULATION

A plate made of brittle rock, which size is 10mx5m,
was divided by 120x60 into 7200 elements. The
position rate is 0.29. The plate was fixed at one end and
loaded at the other end (see Fig. 1). The damage
parameters are: 5,0=5><10'3, s}u=8><10'3, A=0.5, o=0.1.

5. 1 The Growth of Damage Pattern

The whole course of damage pattern growth is
shown in Fig. 2, in which the Webull parameters
are: = 45GPa » m =1.2. The damage element
was painted black. The whole course of pattern growth
can be divided into four phases:

The first phase is microdamage emerge and growth.
It is R6~R17 in the Fig. 2. The microdamage emerges
in the plate randomly. The difference between their size
is very small.

The second phase is the microdamage growth,
connection into large size damage. It was showed in
R18~R23 of Fig. 2. At this phase, multi-scale damages
coexist, and the large size damage is superior in
growth.

The third phase the crack is formed, and connected
quickly. It is R24~27 in the Fig. 2.

The fourth phase is the crack connection and
run-through. It is R28~R35 in the Fig. 2.

The correspondence between the number of
micro-damage and bearing stress during damage
evolution was shown in Fig. 3. Each microdamage
could be regarded as a sonic emission. The
correspondence between accumulated number of
micro-damage and bearing stress was shown in Fig. 4.

5. 2 The Affection of Disorder On Macro
Mechanical Quantity

The Fig. 5 showed that the bearing capacities are
greatly different because of the Weibull parameter m
difference, though the samples look the same.
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Fig. 2. Demonstration of the course of growth of damage pattern
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6 CONCLUSIONS

The simulation showed that the complex damage
pattern was formed by deduction, which was controlled
by the simple dynamic law of the individual element
and the strong interaction between elements. According
to the theory of complex system!"), the system
consisted of a great amount of mesoelements
spontaneously evolves to self-organized criticality.
Appropriate to the evolution, the growth of damage
pattern was called dynamics of fractal growth of
Laplace., which the boundary of damage pattern moves
outward in fractal.

The damage pattern grows from dots to lines and to a
fractal which its geometry dimension is between lines
and a plane. At the end of a large crack, the microcrack
distributes in clusters, and its domain direction controls
the direction of the large crack. At a certain mode of
load, the cracks parallel arrange just like the flying
array of wild gooses, this can be proved in many paper
such as Art"],
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Fig. 5. Curves of stress-strain on the top of the sample
at different parameter, m
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