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1 INTRODUCTION 
 

For mechanical structures under high speed motion, 
induced vibration due to structural flexibility may need 
to be considered and accounted for in the actuation 
scheme. Disk drives(1)(2), spacecraft structures(3)(4), 
robots and cranes(5) are well-known examples where 
this issue comes to bear.  

There have been numerous research studies that 
focus on finding open-loop control solutions for a 
vibratory mechanical system that give minimum-time 
motion subject to limits of actuation effort(3)(6)(7)(8). 
Time-optimal motions are found to require ‘bang-bang’ 
actuation signals that involve multiple switches 
between two extreme values. For an undamped system 
(with applied force as the control input) the actuation 
signal required for rest-to-rest motion is anti-symmetric 
about the mid-point of the motion interval(3). Also, a 

single-mode structure usually requires only three 
switches of input value during the whole motion(6)(7). 

The general time-optimal control problem is hard to 
solve analytically. Various numerical algorithms have 
been proposed based on application of Pontryagin’s 
minimum principle to the time-optimal Hamiltonian 
function(3)(6)(7). For an undamped single-mode system, 
an analytical solution can be obtained(3). Usefully, 
certain time-optimal motions can also be obtained 
through a technique known as input shaping where a 
time-delay filter is applied to a step input signal in 
order to generate the optimal control input(2)(8). 

This paper considers two important cases of the 
time-optimal motion control problem where a 
geometric analysis of state variable trajectories allows a 
direct construction of the solution, thereby avoiding a 
multi-dimensional numerical search. In each section, 
we first consider a velocity-input system model and 
then move on to the more complex force-input model. 
Section 2 formulates the minimum-time control 
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problem and gives necessary conditions for optimality. 
The considered boundary conditions correspond to a 
rest-to-rest motion, meaning that the system is initially 
at rest and the final state is also a rest state involving no 
residual vibration of the structure. Section 3 outlines 
the method used to obtain the solution. Experimental 
results from applying time-optimal solutions on a 
typical motion control system are given in section 4. In 
section 5, the theoretical results are analyzed by 
considering how the achievable time of motion varies 
with actuator capacity. For these results, the overall 
speed of motion obtained with the time-optimal 
solution may be considered as a fundamental limit for 
achievable performance. It is therefore useful to know 
the exact manner in which this limit increases with 
actuator capacity. The final section provides 
conclusions. 
 

2   PROBLEM FORMULATION 
 

Motion of a flexible structure (Fig. 1) can be 
described by a linear model of the form: 

 
 ����� � ����� � �����, �1�
   
where � � blockdiag���, ��� and�� � ���� �����. The 
sub-matrix ��  models the rigid-body mode of the 
system while the sub-matrix ��  models the flexible 
mode(3)(6). In general there may be many sub-matrices 
�� , one for each flexible mode. This study considers 
only single-mode systems and thus � � 1.  

A time-optimal problem objective is to find the 
control input ���� that drives the system �1� from an 
initial position ��0�  to a desired final position ����� 
with minimum final time ��: 

 
 min���� ��. �2�
   
The control input must also satisfy the effort limit 
condition 
 
 ��� � � � �, �3�
   
For a rest-to-rest motion, the initial point may be 
chosen as the origin. We also impose that there is zero 
residual vibration (ZRV) after the final time. The 
required boundary conditions can be stated as 

 
 ��0� � �0…0��,�������� � ����0…0��, �4�
   
where ��  is the required travel distance. Thus, �1� �
�4� form a complete optimization problem. 
 
2.1 Velocity input model 

The system (Fig.1) may be considered with �� ����, �� as the input to be chosen. State variables are 
selected as 
 ���� � ��� ��� ���.  

 
 

Fig. 1 Rectilinear motion of a flexible structure 
 

 
Fig. 2 State trajectories of the velocity input model with 

damping �� � 0.0��. 
 
For the rigid body mode, we have 
 
 �� � �0�,����� � �1�,  
 
and for the vibratory mode we have 
 

�� � � 0 1
���� �2����,����� � � �1

�2����. 
 
Here, ��  is the natural frequency and �  the damping 
ratio. Using the scaled time variable � � ���, where 
�� � ���1 � �� , the model may be transformed to 
the dimensionless form 
 
 

����� � �
0 0 0
0 �� 1
0 �1 ��

� ���� � �
1
�1
�
� ����, �6�

 
where ���� � ��1,1�  is now the input scaled by the 
maximum value and � � ���1 � �� . The final 
condition �4� is also transformed to 
 
 ����� � ����0…0�� �7�
 
where �� � ������. The model is now independent 
of the natural frequency but still depends on the 
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damping ratio through �. Thus, solving the solution of 
for this model is applicable for the original model with 
any value of natural frequency. 

For a system with damping �� � 0�, state trajectories 
of �6� are logarithmic spirals with an exponential decay 
in radius given by ����  (Fig. 2). When � � �  the 
trajectory converges to ���, ��� � �0,1� for � � 1 and 
���, ��� � �0,�1�  for � � �1 . For an undamped 
system �� � 0� , trajectories become helical paths 
around the same pair of axis. 

Trajectories shown in Fig. 2 have the origin as the 
initial point. However the complete set of possible 
trajectories can be generated by translating, rotating or 
scaling, with the helix axis as a fixed line. 

 
2.2 Force input model 

Mechanical actuation often leads to a system model 
where force or torque is considered as the input(1-8). For 
the model in Fig. 1, we now have the constrained input 
� � ���, ��. Compared with the velocity-input case, an 
additional state variable (usually overall velocity) must 
be included in the model so that 
  
 �� � �0 10 0�,����� � �01�. 

 

 
The model of the vibratory states has the same form as 
previous and thus, the force input model is  
 
 

����� � �
0 1 0 0
0 0 0 0
0 0�� 1
0 0 �1 ��

� ���� � �
0
1
�1
�
� ����. �8�

 
The final condition is the same as �7�, except in this 
case �� � �������� where � is the total mass. 
 

3   SOLVING METHOD 
 

To apply Pontryagin’s minimum principle(9)(10), we 
first define the Hamiltonian for �1� � �4� as 

 
 � � 1 � ����������� � ������, �9�

 
where ���� is a co-state vector that satisfies 
 

 ����� � ����� � �������. �10�
 
According to the minimum principle, the necessary 
conditions along with equations �1� � �4� are 
 

 ����� � �sgn�������� �11�
 

 ���� � 0,������� � �0, ��� �12�
 
where sgn��� � 1 if � � 0 and sgn��� � �1 if � � 0. 
This implies that the optimal control is ‘bang-bang’ in 
character(9),(10), i.e. ����  switches between extreme 

values. It is straightforward to show that the optimal 
control exists and is unique(9),(10). The essence of the 
problem here is to establish an initial value of the co-
states ��0�  such that the corresponding control input 
given by �11� is consistent with the required boundary 
conditions �4�. If such a ��0� exists then the control 
input given by �11� is the unique solution to the time-
optimal problem. 
 
3.1 Solution for velocity input model 

Without damping �� � 0� , applying �9� � �12�  to 
the model �6�, leads to the switching condition 

 

����� � ��1 �� � �����
1 �� � �����, �13�

 
where, according to �10�, the co-state ��  is constant. 
To obtain the optimal control from �13�, the initial co-
state ��0� must be determined. This leads to a binary 
value problem class which is hard to solve analytically.  

By considering the switching condition �13� 
together with co-state trajectories from equation �10� 
we can determine that the form of the optimal control is 
symmetric around the mid-point of the time interval. 
An example solution is shown in Fig. 3a that also 
satisfies the ZRV condition. The optimal control is 1 
for time �� then switches to �1 for time �� and finally 
back to 1 for time ��. For this undamped case �� � ��. 
The three branches of the state trajectory that make up 
the optimal motion are shown in Fig. 3b. The trajectory 
starts at the origin and involves:  

 
I   An arc of unit radius about the helix axis 

���, ��� � �0,1� through angle �� (when � � 1). 
II   An arc about the helix axis ���, ��� � �0,�1� 

through angle �� (when � � �1). 
III An arc of unit radius about the helix axis 

���, ��� � �0,1�  through angle ��  to return to 
���, ��� � �0,0�  (when � � 1). 

 
The final value of ��  is the distance of motion �� �
2�� � �� . The projection of I-III on the �� -��  plane 
(Fig. 3c) may be considered as rotations of vectors on 
the complex plane. This leads to the geometric 
constraint 
 

������ � 2����� � ������� � 2�. �14�
 
If the distance satisfies 2�� � 1�� � �� �
2��,����� � 2,3, � �, then � � 1�forward intervals with 
duration �2� � ���  and �  backward intervals with 
duration ��  must be included in the motion. When 
�� � 2��,����� � 1,2,3, � � , then �� � 0 , i.e. no 
backward interval is required. 

For the case with damping (� � 0), the switching 
condition is 

 

����� � ��1 ����� � �� � ������
1 ����� � �� � ������. �15�
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Fig. 3 Elements of velocity-input solution 

 
A geometric constraint consistent with �1��  can be 
obtained by the same approach as for (14). However, 
the symmetry requirement does not apply in this case 
and the resulting condition is 
 

 ����������� � �����������
� ���������� � ��� �16�

 

 
Fig. 4 Elements of force-input solution 

 
Eliminating �� from �16� gives 
 

Re��� ����� ���� � � ����� ����� ���� � 0� �17�
 
where ����� ��� � ����������� � ����������� � � . For 
a given value of ��, we obtain �� from (17) by a root-
finding algorithm. ��  is then computed and the final 
time obtained as �� � �� � �� � �� . After switching 
times are found, co-state values can also be computed 
in order to verify the true time-optimality of the 
solution.  
 
3.2 Solution for force input model 

For the undamped case, a switching condition similar 
to �13�  can be derived. According to the co-state 
trajectory from �10�, the optimal solution must be anti-
symmetric about the midpoint of the motion(3). Thus, 
one additional switch is needed. An additional  
boundary condition must also be imposed to ensure no 
residual motion of the rigid body mode (zero final 
speed). This condition may be expressed 

 
�� � �� � �� � �� �18�
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By considering the arcs in Fig. 4b as rotations of 

complex vectors, the relation between switching times 
is obtained as the geometric constraint 

 
 ����������� � 2����������� 

� ��������� � 2��������� � 2� �19�
 
For the undamped case (� � 0), this is equivalent to the 
solution in (3), but expressed in complex form. Using 
�18�  to eliminate ��  from equation �19� , and then 
eliminating �� gives a similar expression to �17�. The 
value of �� may be obtained (again by  root-finding) for 
a given value of �� and the remaining switching times 
computed. In the undamped case, �� � �� and �� � �� 
and �19� is more easily reduced. 
 

4 EXPERIMENTS 
 

Optimal solutions for the force-input model have 
been tested on an experimental system (Fig. 5). The test 
rig consists of a flexible armature [a] driven by ball 
screw [b] and dc servo motor [c]. The control input is 
the torque generated by the dc motor with a current 
regulating electric drive. Strain gauges [d] are used to 
measure the deflection at the tip of the armature as a 
vibratory state of the system. Important parameters of 
the rig are natural frequency �� � ��7 rad/sec and 
damping ratio � � 0�0�2. 

Figure 6 compares two example cases of applying: 1) 
the rigid-body solution and 2) the time-optimal solution 
for the flexible structure. The distance travelled (6 cm) 
is the same for the two cases. For the flexible structure 
solution, the overall motion is seen to be slower than 
the rigid-body case but residual vibration at the end of 
motion is almost eliminated. 

 
5 ANALYSIS AND DISCUSSION 

 
It is fairly intuitive that, if velocity is controlled 

directly, the time-optimal motion for a rigid body 
involves driving it with maximum velocity until the 
final position is reached. Thus, the relationship between 
��  and ��  is a straight line (Fig. 7a). With structural 
flexibility taken into account, an interval with 
backward motion (negative input velocity) must be 
introduced. This yields a slower motion than for the 
rigid-body case, as evident in Fig 7a. However, for an 
undamped system, there are certain distances for which 
the total time of motion is equal to the rigid-body case. 
This occurs when the dimensionless distance is equal to 
2�, ��, ��, � etc. 

With applied force as the input, the fastest way to 
reach the final position is to accelerate at the maximum 
rate and then decelerate at the maximum rate after the 
mid-point of motion. This yields the relation between 
distance travelled and total time as 

 
 �� � 2√��, �20�

 

 
 

Fig. 5 Experimental rig 
 

 
Fig. 6 Experimental results: control input, position, and 

deflection profiles 
 
With structural flexibility taken into account, 

additional acceleration and deceleration intervals must 
be introduced that slow overall motion compared with 
the rigid-body case (Fig. 7b). Again, for an undamped 
system there are certain values for the dimensionless 
distance where no extra switches are needed and the 
speed of motion matches the rigid-body case, i.e. when  
�� � ��, 8�, 12�, �etc. 

When damping is present, extra switches are always 
required. In other words, there is no distance for which 
the same time of motion as the rigid body case can be 
achieved.  

Each solution obtained corresponds to a pair of 
values for the dimensionless variables �� and ��. It is 
usual to interpret the set of solutions as being for fixed 
maximum input (� or �) and varying over the actual 
distance traveled ��. However, for the dimensionless 
model we have �� � ������  for the velocity input 
case and �� � ��������  for the force input case.  
Therefore, we may also interpret the solutions as being  

1 1.5 2 2.5 3

-1

0

1

time (sec)

de
fle

ct
io

n 
(c

m
)

 

 

(a) Applying rigid body input

1 1.5 2 2.5 3

0

2

4

6

po
si

tio
n 

(c
m

)

 

 

1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

 

 

1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

cu
rr

en
t (

A
m

p)
 

 

1 1.5 2 2.5 3

0

2

4

6

 

 

1 1.5 2 2.5 3

-1

0

1

time (sec)

 

 

(b) Applying flexible structure input 

b

a 

d c



－　12　－

Boonruk SUCHAITANAWANIT and Matthew O.T. COLE 

- 12 - 

 

 
Fig. 7 Set of time-optimal solutions 

 
for fixed �� and varying over � and �. With this idea, 
we define the following dimensionless measures of 
actuation capacity and overall speed of motion: 
 

(a) Relative actuation capacity (velocity input case) 
 

 �� � �
����

� 1
��  

 
(b) Relative actuation capacity (force input case) 

 
 �� � �

������
� 1

��   

 
(c) Overall ‘speed’ of motion 

 
 � � 1���   
 

The value of these parameters may be calculated for 
each solution. Clearly, the parameter �  is a main 
indicator of the overall performance of the system. The 
results from plotting � against ���� are shown in Fig. 8.  
 

 

 
Fig. 8 Overall speed vs actuation capacity  

 
For each value of ����, it is also possible to calculate 
the corresponding value of � for time-optimal motion 
of a rigid-body system. For the velocity input case, the 
input will then have no negative interval and  
 

��� � �
����

� ��. 
 
For the force-input case the input has equal positive 
and negative intervals and so 
 

��� � 1
2 � �

������
�

�
� � 1

2 ���.   
 
These two equations define the rigid-body lines seen in 
Fig. 8 and provide an absolute upper bound on the 
achievable speed of rest-to-rest motion. 

We can see from the results that, when the overall 
speed of motion is relatively slow, the overall speed for 
the flexible structure is close to the rigid-body case. 
However, when the actuation capacity is increased, the 
average speed can deviate significantly form the rigid-
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body line. This effect is most significant when the time 
interval of motion is of the order of the natural period 
of vibration of the system (i.e. when ��~1) or less. 

Also, there is a critical value of the actuation 
capacity above which speeds close to the rigid-body 
case can no longer be obtained. For a velocity-input 
system, this value is given by 

 

������ � �����
����

� 1
��. 

 
For a force input system, the critical value is 
 

������ � �����
������

� 1
��� 

 
Figure 9 shows speed of motion as a fraction of the 

rigid-body case versus actuation capacity. The results 
may be interpreted quantitatively as follows: For the 
velocity input case, the overall speed of motion is 
within 78% of the rigid body case if the actuation 
capacity is below the critical value �1���� . If the 
actuation capacity is raised beyond this value, speeds 
close to the rigid-body case can no longer be achieved. 
For the force input model, the critical actuation 
capacity is 1����. In this case, overall speed of motion 
is within 97% of the rigid-body case if actuation 
capacity is below the critical value. 

This knowledge on limits of performance may be 
helpful in the design process of actuator selection and 
sizing. According to the results, high capacity actuation 
might not give an adequate return, in terms of increased 
speed of motion, particularly as more powerful 
actuators tend to be more expensive. The curves in Fig. 
8 may be incorporated in an overall design optimization 
cost function in order to obtain the best solution. 
  

6 CONCLUSIONS 
 

The problem of time-optimal rest-to-rest motion of a 
single mode flexible structure has been considered. The 
main contributions of the present work are: 

1. The optimal control history is obtained by 
considering geometric constraints on state 
variable trajectories. 

2. Fundamental characteristics of the solutions, in 
terms of the relation between actuation effort and 
overall speed of motion have been presented. 

For low overall speed of motion (or relative actuation 
capacity) the time for motion is close to the case of a 
rigid body structure. However, if the time of motion is 
of the order of the natural period of vibration then 
significant reductions in overall speed are required if 
zero residual vibration is to be achieved. This 
fundamental result is explained by the extra intervals 
with negative input value that are required to cancel 
elastic vibration of the structure.  

Further work aims to extend the results to more 
general cases where multiple flexible modes and non- 

 

 
Fig. 9 Fractional speed vs actuation capacity 

 
linear characteristics of the system are taken into 
account. 
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