

アルミニウムの分極曲線に及ぼす分極履歴の影響

メタデータ	言語: jpn
	出版者: 軽金属学会
	公開日: 2016-01-27
	キーワード (Ja):
	キーワード (En):
	作成者: 河原, 義拓, 佐々木, 大地, 新井田, 要一, 世利, 修美
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/3842

アルミニウムの分極曲線に及ぼす分極履歴の影響

その他(別言語等)	Effect of Polarization Hysteresis on				
のタイトル	Polarization Curve for Aluminum and its Alloy				
著者	河原 義拓,佐々木 大地,新井田 要一,世利 修美				
雑誌名	軽金属学会大会講演概要				
巻	129				
号	137				
ページ	273-274				
発行年	2015-10-21				
URL	http://hdl.handle.net/10258/3842				

アルミニウムの分極曲線に及ぼす分極履歴の影響

Effect of Polarization Hysteresis on Polarization Curve for Aluminum and its Alloy

室蘭工業大学 ○(学)河原 義拓, 佐々木 大地, 新井田 要一, 世利 修美

Yoshihiro KAWAHARA, Undergraduate student, Muroran Institute of Technology Daichi SASAKI, Muroran Institute of Technology Yoich NIIDA, Muroran Institute of Technology Osami SERI, Muroran Institute of Technology

1. 緒言

アルミニウムは中性の水環境では安定的な酸化皮膜を形成し 耐食性に優れた金属材料の一つとして知られている.しかし環 境中に塩化物イオンが存在するとその皮膜は弱体化あるいは破 壊され,いわゆる局部腐食を起こすこともよく知られている.

食孔内の環境はほぼ塩化アルミニウム水溶液で近似できるため、塩化アルミニウム水溶液中の電気化学的挙動を知ることは アルミニウムの局部腐食を理解する上で重要な検討項目の一つ となっている.アルミニウムのアノード分極曲線は、ステンレ スやチタンのような複雑な挙動、すなわち活性溶解/不活性溶解 (不動態)等の挙動はせず、比較的単純な挙動を示すことに着 目し、分極曲線の測定とその解析を試みてきた.しかし、カソ ード分極の程度により、アノードの分極履歴に変化が見られた. 分極の程度によって分極曲線が変化した場合、分極曲線を基礎 にした解析手法の信憑性が損なわれる危険性が生じる.

本実験ではアルミニウムとその合金の分極曲線に及ぼすカソ ード部の大小が分極抵抗曲線のどこにどのように影響を及ぼす かを調べた.

2. 実験方法

2.1 供純材

供試材の化学分析値を Table 1 に示す。

Al-Fe 合金試片(試料番号 F1~F4)の作製は,高純度アルミニ ウム (99.97 %Al) に鉄を添加し,溶解,鋳造後,均質化処理 (540 ℃で160時間保持,後炉冷)を経て,熱間および冷間圧 延を行い,厚さ1mmの板としたものを使用した.試料番号 F0 は高純度アルミニウム (99.999 %Al)を用いた.供試材は,幅 15 mm,長さ160 mm に切り取り実験に供した.

試験片 (F1~F4) には前処理を施した. すなわち約 343 K の 10 mass% NaOH 水溶液に 60 s 間浸漬し水洗後, 室温の 30 mass%HNO₃水溶液に 60 s 間浸漬した後, 水洗, 風乾後実験に 供した.

2.2 試験液

試験液はイオン交換水と特級の塩化アルミニウム(III) 六水 和物(和光純薬(株))を用い、0.1 moldm⁻³AlCl₃水溶液とした. 液量はすべて1 dm³とした.測定時における試験液の状態は、 大気開放,液静止,液温は室温(約 298 K)とした.実験前の 0.1 mol dm⁻³AlCl₃水溶液のpH実測値は 3.1~3.2,電気伝導度は 3.1~3.2 Sm⁻¹,大気開放下での溶存酸素(DO)は 4~6 ppm であ った.

2.3 测定方法

分極曲線の測定は通常の動電位法を採用した. 照合電極は飽 和塩化カリウム水溶液中の Ag/AgCl 電極(本文では以下特にこ とわらない限り, V vs.SSE を略して V と表わす)を用いた. 分 極曲線の測定には電気化学測定システム(北斗電工株式会社, HZ-5000)を使用した. 電位掃引速度は0.1 mV S⁻¹とした. 分極 の手順は開路電位からまずカソード分極し, 試料 F3, F4 にお いては-1.2 V で反転させ, F0, F1, F2 においてはそれぞれ-1.8V, -1.6 V, -1.4 V で反転させ, アノード方向に-0.2 V まで分極した 後, 自然電位に戻す. いわゆるサイクリックボルタンメトリー 法を採用した.

3. 実験考察および結果

Al-Fe 合金試片 (試料番号 Fl~F4) と高純度アルミニウム (試 料番号 F0) の分極曲線を測定した. Fig.1 に F0, F1, F2 を, Fig.2 に F3, F4 の結果を示す. なお, 測定で得られた電流密度は平 滑化 (スムージング) した値を用いた. F1, F2, F3, では-0.7V 付近で屈曲点 (孔食電位) が観察され, F0, F4 からは観察され なかった.

Fig.1, 2 で示した分極曲線を微分し、分極抵抗h(*i*)を求めた. Fig3, 4 にそれぞれの分極抵抗曲線を示す.なお、分極抵抗、 電流密度ともに平滑化(スムージング)した値を用いた.十分 カソード分極したときの状態($i = i_a + i_c \approx i_c$)では観察され る $i_i t_i_c$ だけとなり分極抵抗曲線上に、

$$\frac{d\log h(l)}{d\log |l|} = -1 \tag{1}$$

を満足する領域が現れる.この領域は非可逆系として取り扱い, そのときの分極抵抗は,

$$h(l)(-l) = \frac{\mathrm{RT}}{\beta n \mathrm{F}} = \frac{0.026}{\beta n}$$
$$\beta n = \frac{0.026}{h(l)(-l)} \tag{2}$$

が成り立つと考えられる.ここでβは律速素反応,

 $ox^+ + ne^{n-} \rightarrow red$

の移動係数,nは価数を表す。

式(1)の条件を満足する直線部分はFig.3,4のカソード領域 に存在し、その電流範囲はおよそ-0.4~-0.0 lmA cm²と読み取る ことができる.その間の*l*とh(i)と式(2)を用い、 βn を計算した. βn の平均値と試料に含まれる鉄の含有量と 0.3~0.45 との関係 を示したものを Fig.5 に示す. βn は鉄の含有量に伴い、増加す る結果を得た.

Fig.1 Polarization curves of aluminum alloys (F1 and F2) and pure aluminum (F0) in 0.1 mol dm⁻³ AlCl₃ solution (Open-to-air).

Fig.2 Polarization curves of aluminum alloys (F3 and F4) in 0.1 mol dm⁻³ AlCl₃ solution (Open-to-air).

Fig.3 Polarization resistance-current density plots which are obtained by differentiated by using date of Fig. 1.

Fig.4 Polarization resistance-current density plots which are obtained by differentiated by using date of Fig.2.

Fig.5 Relationship between the βn and Iron content in Al-Fe alloys.

Table 1 Chemical composition of specimens

Sp ecimen No.	Chemical composition (wt%)				
	Fe	Si	Cu	Al	
FO	tr.	tr.	tr.	99.999 %A	
F1	0.31	0.10	0.02	bai.	
F2	0.60	0.09	0.02	bal.	
F3	0.97	0.10	0.02	bal.	
F4	1.43	0.11	0.01	bid.	