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Abstract 

This paper addresses a new design of a four-legged mobile robot with a double-spiral mobile 
architecture. The double-spiral mobile architecture has been proposed with the intention of use for 
environmental surveys in wetlands, where reed-like plants grow densely. It consists of two pairs of 
spirals and one mobile robot. Each pair of spirals plays the role of footholds for the mobile robot. By 
traveling at a higher place from the ground, the robot can avoid strong resistance force from the dense 
and hard-stemmed plants. In addition, the spirals intermediate between the robots and the muddy 
ground to avoid sinking. The proposed leg mechanism does not have any vertical movement. It 
contributes to energy saving in the robot. Also it provides the arbitrary motion of the body platform 
while the legs grip the spirals tightly. We derive the robot’s kinematics and statics and show the 
validity of the design mathematically. 
 
Keywords: Mobile robot, Legged robot, Wetland, Environmental survey, Robot motion  

                                                                       

 

 
 

1  INTRODUCTION 
 

The problem regarding the reduction of wetlands 
areas has come to occupy an important position in 
environmental conservation. In Kushiro Mire, which is 
the largest wetland in Japan, the distribution areas of 
alder forests or Sasa (veitchii) are increasing and a 
nature restoration project has been started. To 
investigate the mechanisms of its degradation trend, 
much effort is put into field surveys. 

If we use a remote-sensing system, we can obtain 
spatially wide data, such as radar images or visible 
images from satellites. However, if we need more 
precise physical data, a field survey is mandatory. In 
field surveys, researchers must bring large quantities of 
tools into the field. Since entering into wetlands in 
vehicles is restricted, researchers find it difficult to 

walk around huge areas in the muddy soil of the 
wetlands. Therefore, a technical support system for 
field survey in the wetlands is required. 

Recently there are increasing developments in 
outdoor applications such as agriculture robots(1), 
automatic driving cars(2) rescue robots(3) and so on. 
However, in wetland applications, conventional 
locomotion mechanisms may cause serious problems. 
For example, wheel mechanisms may easily become 
stuck in the mud. Crawler mechanisms may tread on 
vegetation in the wetlands or turn over on 
hard-stemmed plants like Phragmites. Some special 
mechanisms using screws, which are called marsh 
screw amphibians, were developed and tested(4) in the 
wetlands(5). The size is about that of a passenger car, 
and very deep tracks like a ditch are left behind the 
screws that damage the surface of the earth severely. 
The other robots which have the same mechanism 
using screws were found in the literature(6). New 
locomotion mechanisms suitable for the wetlands, 
which suppress damage to the vegetation and do not 
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sink in the mud, should be developed. 
The double-spiral mobile architecture has been 

proposed with the intention of use for environmental 
surveys in the wetland where reed-like plants grow 
densely(7) . It consists of two pairs of spirals and one 
mobile robot. Each pair of spirals plays the role of 
footholds for the mobile robot. By traveling at a higher 
distance from the ground, the robot can avoid strong 
resistance force from the dense and hard-stemmed 
plants. In addition, since the spiral is supported by 
several contact points on the ground and intermediates 
between the robot and the muddy ground, the robot 
never touches the ground and barely sinks. 

The mobile robot proposed in this paper has four 
legs for static walking on the spirals. A pair of spirals is 
aligned on a central axis and meshes with each other. 
Two pairs of the spirals are horizontally aligned on the 
ground side by side. In stance phase of the robot’s gait, 
the mobile robot stands on the spirals so that two legs 
on one side of the robot are placed on one of the spirals 
on the same side. The other spirals, which do not 
support the robot, rotate and thread their way through 
dense, tall plants with hard stems. After that, the robot 
steps forward. In swing phase of the robot gait, the 
robot moves its legs to the rotated spirals. 

The main features of the proposed robot in this paper 
are in the design of the mechanism of the legs. First of 
all, one mechanism on the end portion of each leg is in 
a gantry shape. Unlike a typical legged robot, this 
mechanism realizes the swing phase without any 
vertical motion. This contributes simple mechanisms 
and energy savings for the robot. 

Second, each leg has two prismatic joints orthogonal 
to each other and one rotational joint for 3 DOF 
(degrees of freedom) motion in a plane. This provides 
the body platform with arbitrary planar motion in its 
own plane.  

In the rest of this paper, we show the conceptual 
design of the robot. Next, we derive the kinematics of 
the robot. Then, we show the validity of the design 
mathematically. 
 

2  MATERIALS AND METHODS  
 

Figure 1 shows the conceptual image of the robot 
that we propose in this paper. As mentioned in the 
introductory part, it consists of two pairs of spirals and 
one mobile robot. In this section, we explain the 
requirements for the robot to walk on the spiral 
properly. Then we show how the proposed robot 
satisfies the requirements and its step motion to the 
next footing. Next, we define the coordinate systems 
for each link of the robot to prepare for a formulation 
of kinematics of the robot. Practical sizes of the robot 
are discussed from the point of view of the resistance 
received from the plants. 
 

2.1  Requirements for walking on the spirals 
In order to carry burdens on the robot securely, the 

robot needs to maintain its posture while walking. The 
robot walking on the spirals is required not to tumble 
over in gait, not to slip off the spirals, not to lose its 
footing, not to roll over together with a gripping spiral, 
and to move in the desired direction. However, it is not 
required to move rapidly. These five requirements 
contribute to realizing secure walking.  

 
2.2  Four-legged locomotion and the gait 

We adopt four-legged locomotion and a creep gait 
for our walking robot. Generally a legged robot should 
have more than four legs for static locomotion since 
static walking needs, at minimum, three supporting legs 
to form a supporting polygon and one swing leg for a 
gait. A large number of legs enhance stability by 
making the area of the supporting polygon larger. On 
the other hand, an increase in the number of legs claims 
complex mechanisms and control. We choose a 
minimum number of legs for static walking. 

A tetrapod, by nature, walks or runs with several 
gaits. A creep gait is a well-known static gait and is 
allowed to lift only one leg in any case(8) . We will 
implement the creep gait with our robot. 

The first requirement, not to tumble over in gait, will 
be satisfied by the above guideline. 
 
2.3  Grippers at the end of the legs  

As shown in Figure1, the end link of each leg has a 
gantry-shaped mechanism. A pair of vertical links 
stands on the spiral in parallel. The distance between 
them is adjustable. A gripper is mounted on the lower 
end of every vertical link. Each gripper requires special 
mechanisms to grip the rounded rim of the spiral stably 
so as not to slide down in the stance phase. This 
gripping property fulfills the second requirement, not to 
slip off the spirals. 

Once the gripper holds the spiral, the leg needs to 
maintain its foot position even if the robot body moves 
toward a different posture. 

Figure 1  Conceptual design of the proposed robot 
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2.4  Positioning property of the grippers  

Each gripper at the end of a leg must be placed 
precisely upon the rounded rim of the spiral. Otherwise, 
it must lose its footing since the periphery of the spirals 
provides discrete footholds to the walking robot. 
Therefore, to fulfill the third requirement, each gripper 
needs to be controlled to a specific position respectively. 
The leg mechanism should have enough DOF to 
control it. 

 
2.5  Balancing of the body platform  

The spiral is essentially easy to roll over on the plane 
ground due to its own cylindrical shape. If the robot 
and the spirals are tightly united and move together, it 
is possible that they might roll over on the steep slope 
of the ground due to a center-of-gravity imbalance. To 
maintain its balance, the body of the robot needs to be 
able to move freely in the horizontal plane even though 
the positions of the grippers continue to hold the same 
places on the spirals. The balancing property would 
fulfill the fourth requirement, not to roll over together 
with a gripping spiral. 
 
2.6  Required DOF of the robot and the legs  

The robot needs to have enough DOF in its own 
mechanism in order to move in the desired direction. 
Generally, 6 DOF is required for a mechanism to 
control arbitrary position and posture in 3-dimensional 
space. If we limit working space of the leg from 
3-dimensional space to a 2-dimensional plane, we can 
reduce the DOF of each leg mechanism to three. 
Further we can suppress the vehicle motion of the robot. 
Well-coordinated motion of the four legs would 
produce locomotive motion toward the desired motion 
of the robot body. 
 
2.7  Fulfillment of the requirements  

The robot shown in Figure 1 possesses four legs. A 
gantry-shaped mechanism is mounted upon each leg, 
each of which is designated by Link13, Link14, and 
Link15. The gripper does not appear in Figure 1, but it 
will be attached at the lower end of the gantry-shaped 
mechanism. In the creep gait, a pair of vertical links in 
the gantry-shaped portion, Link 14 and Link15, takes 
the opening motion in the swing phase and the closing 
motion in the stance phase, as shown in Figure 2. In the 
stance phase, the grippers must hold the spiral tightly. 
Throughout the gait, only one leg takes the swing phase 
to achieve static walking. 

Each leg has two prismatic joints orthogonal to each 
other and one rotational joint for 3 DOF motion in a 
plane. The prismatic joints translate Link11 in a 
front-back direction and Link12 in a right-left direction. 
The rotational joint turns Link13. Therefore, the 
position and posture angle of Link13 can be decided 
arbitrarily in the plane parallel to the body platform. We 

call this plane Link13’s working space. In the 
gantry-shaped mechanism, there is one additional DOF 
of the opening/closing motion of Link14 and Link15. 
The working space of the grippers mounted on Link14 
and Link15 forms the plane parallel to the body 
platform as well. When a position of the spiral and the 
working space of the grippers are given, a pair of the 
points to be gripped is derived from their intersections. 
By aligning Link13 to the projection of the line 
segment joining a pair of the points on the Link13 
working space, each the gripper does not lose its 
footing on the spiral. In total, the leg mechanism should 
have enough DOF for the gripper to control to a 
specific position.  

Since the four legs provide the same property, the 
position and posture angle of the robot’s body can be 
decided within the plane parallel to the grippers’ 
working space independently of any gripper’s position. 
In total, the robot has enough DOF for its body to move 
in the desired direction.  

As stated above, we can show that the conceptual 
design of the four-legged robot satisfies the five 
requirements in the previous section. 
 
2.8  Coordinate systems  

For the sake of mathematical consideration, we need 
to define a coordinate system at each link of the robot. 
Figure 3 shows the coordinate systems of the robot. 
The body is mounted on four legs. We denote a left 
front leg, a left rear leg, a right front leg, and a right 
rear leg as Leg1, Leg2, Leg3, and Leg4, respectively. 
Here we explain the coordinate systems of Leg1 as a 
representative of the other legs, since each leg has the 
same structure. 

Leg1 consists of Links 11 to 15 and Grippers 14 to 
15. Links 11 and 12 translate along the y1 and x1 
direction by their respective prismatic joints. Link13 
rotates around the center axis of Link12. Links 14 and 
15 slide along Link13 symmetrically. Grippers 14 and 
15 are attached at the lower end of Links 14 and 15, 
respectively. 

The coordinate systems are set to the body and each 
link. The center of mass for each link is supposed to be 
at the link’s center position. We define the origin of 
each coordinate system at the center of mass of the link. 
The x, y, and z axes are defined according to the 
right-handed coordinate system, as shown in Figure 3. 

Figure 2  Leg motion to support the spiral  
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a gantry shape. Unlike a typical legged robot, this 
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vertical motion. This contributes simple mechanisms 
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Second, each leg has two prismatic joints orthogonal 
to each other and one rotational joint for 3 DOF 
(degrees of freedom) motion in a plane. This provides 
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design of the robot. Next, we derive the kinematics of 
the robot. Then, we show the validity of the design 
mathematically. 
 

2  MATERIALS AND METHODS  
 

Figure 1 shows the conceptual image of the robot 
that we propose in this paper. As mentioned in the 
introductory part, it consists of two pairs of spirals and 
one mobile robot. In this section, we explain the 
requirements for the robot to walk on the spiral 
properly. Then we show how the proposed robot 
satisfies the requirements and its step motion to the 
next footing. Next, we define the coordinate systems 
for each link of the robot to prepare for a formulation 
of kinematics of the robot. Practical sizes of the robot 
are discussed from the point of view of the resistance 
received from the plants. 
 

2.1  Requirements for walking on the spirals 
In order to carry burdens on the robot securely, the 

robot needs to maintain its posture while walking. The 
robot walking on the spirals is required not to tumble 
over in gait, not to slip off the spirals, not to lose its 
footing, not to roll over together with a gripping spiral, 
and to move in the desired direction. However, it is not 
required to move rapidly. These five requirements 
contribute to realizing secure walking.  

 
2.2  Four-legged locomotion and the gait 

We adopt four-legged locomotion and a creep gait 
for our walking robot. Generally a legged robot should 
have more than four legs for static locomotion since 
static walking needs, at minimum, three supporting legs 
to form a supporting polygon and one swing leg for a 
gait. A large number of legs enhance stability by 
making the area of the supporting polygon larger. On 
the other hand, an increase in the number of legs claims 
complex mechanisms and control. We choose a 
minimum number of legs for static walking. 

A tetrapod, by nature, walks or runs with several 
gaits. A creep gait is a well-known static gait and is 
allowed to lift only one leg in any case(8) . We will 
implement the creep gait with our robot. 

The first requirement, not to tumble over in gait, will 
be satisfied by the above guideline. 
 
2.3  Grippers at the end of the legs  

As shown in Figure1, the end link of each leg has a 
gantry-shaped mechanism. A pair of vertical links 
stands on the spiral in parallel. The distance between 
them is adjustable. A gripper is mounted on the lower 
end of every vertical link. Each gripper requires special 
mechanisms to grip the rounded rim of the spiral stably 
so as not to slide down in the stance phase. This 
gripping property fulfills the second requirement, not to 
slip off the spirals. 

Once the gripper holds the spiral, the leg needs to 
maintain its foot position even if the robot body moves 
toward a different posture. 

Figure 1  Conceptual design of the proposed robot 
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We denote the coordinate system of the body as . We 
denote each coordinate system of Link  as  
respectively. 
 
2.9  Height for reducing the plant resistance 

Our previous studies suggest that the resistance force 
against a dense stand of tall plants with hard stems is so 
large that a short robot does not move forward(9). 
According to the result of an on-site experiment, when 
an L-shaped tapered angle of 0.1 m in width and 0.05 
m in height went through the plants at 0.25 m, 0.5m, 
and 1 m in ground height, it received about 18 N, 3 N, 
and 0 N of maximum resistance force, respectively. 
Therefore, the robot body needs to be kept at a height 
greater than 1 m. We determined the diameter of the 
spiral at 1 m. 

According to the result of another experiment, when 
a horizontal bar of 1 m in width went through the plants 
at 1 m, 1.25m, and 1.5 m in ground height, it received 
about 18 N, 9 N, and 7 N of maximum resistance force, 
respectively. Therefore we decided that the robot must 
maintain its body at 1.5 m in ground height to avoid 
resistance from a dense stand of tall plants with hard 
stems. Also, each leg needs to be long and thin and in 
an upright position. 
 
2.10  Step motion to the next footing on the spiral 

A pair of spirals on one side alternately supports the 
robot as footholds during its gait motion. An 
unsupportive spiral rotates and moves in the direction 
of travel for a subsequent foothold. Since the rotation 
mechanism has been discussed in the previous work(10), 
it does not appear in Figure 1. Because of the use of 

prismatic joints, the grippers slide parallel to the body 
platform; that is, the x1-y1 plane, which makes the 
pointing motion of the gripper easier. 

Typical walking robots have a mechanism to lift a 
foot in a swing phase, which corresponds to the gripper 
in our case. However as shown in Figure 2, a 
gantry-shaped mechanism can realize the swing phase 
through the opening motion instead of the lift motion. 
In addition, when elevation of the spiral changes from 
its nominal value, the vertical position of gripping the 
spiral can be adjusted by the distance between Link14 
and Link15. The distance is narrower for higher 
positions, wider for lower positions. 

Figure 4 shows a step motion procedure. The 
gantry-shaped mechanism moves from the present 
spiral, Sa, to the next spiral, Sb. In Figure 4(a), the end 
links stand on Sa. In Figure 4(b), Link14 and Link15 
open and leave Sa. The balance of the robot is 
maintained by the other three legs. In Figure 4(c), next 
positions to place graspers are searched by proximity 
sensors that detect the spiral. In Figure 4(d), Link14 
and Link15 close and the grippers hold the spiral 
tightly. 

 
3  RESULTS  

 
We defined the coordinate systems of each link in 

Coordinate systems. This section is devoted to deriving 
the kinematics and statics of the robot. 

 
3.1  Forward kinematics 

Forward kinematics of the robot is usually 
represented by homogeneous transformation. The 3×3 
block matrix, which consists of the first 3 rows and the 
first 3 columns of a homogeneous transform matrix, 
represents a rotation matrix. The 3×1 vector, which 
consists of the first 3 rows in the fourth column of a 
homogeneous transform matrix, represents a position 
vector. The position vector can be used to calculate the 
working space of a link.  

With reference to Figure 3, the homogeneous 
transform matrices between adjoining coordinate 
systems for Leg1 are as follows. 

Rotation 

Translation 

(a) 

Link15 

Opening Closing 

(b) (c) (d) 

Link14 

Sa 
Sb 

Figure 4  Procedure of a step motion to the next footing 

Figure 3  Coordinate systems of the robot 
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  (1) 

 (2) 

  (3) 

 (4) 

 (5) 

where  represents a homogeneous transform 
matrix from coordinate system  to coordinate 
system . The values of , , , and  are 
the offset distances in the  axis direction between 
the axis,  axis,  axis,  axis, and  
axis, respectively. The value of  is the offset 
distance in the  axis direction between axis and 

 axis. The variables of , , and  are the 
joint displacements in the direction of the  axis,  
axis, and  axis, respectively. The variable of  
is the joint angle around the  axis. The position 
vectors of grippers and , with respect to 

 and , are represented as follows, respectively. 
 

  (6) 

For the calculation of the working space of Link13, 
 is obtained by multiplying the successive 

homogeneous transform matrices.  
 

 

 (7) 

The position vector of the origin of , , is 
represented as follows. 

 (8) 

 

Similarly, for the calculation of the working space of 
grippers,  and  are obtained as follows.  

(9) 

 (10) 

The position vectors of grippers, and , 
with respect to , are represented as follows. 

 

 (11) 

 (12) 

3.2  Jacobi matrix 
The Jacobi matrix is used for statics analysis or 

singular configuration analysis. The Jacobi matrix, J, 
represents the relationship between the joint velocity, , 
and the velocity of the end-point v; i.e., . 
For example, in the case of Grippers 14 and 15, joint 
variable q would be , and 
the velocity of each gripper would be 

, where  and are the components 
of the gripper velocity in the direction of  and  
axes, respectively, and  represents the components 
of the gripper rotational velocity in the direction of  
axis. The Jacobi matrix of Gripper 14, , is obtained 
by calculating the partial differentiation of  and 
the corresponding rotating vectors. 

 

 (13) 

Similarly, the Jacobi matrix of Gripper 15, , is 
obtained as follows.   
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denote each coordinate system of Link  as  
respectively. 
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of travel for a subsequent foothold. Since the rotation 
mechanism has been discussed in the previous work(10), 
it does not appear in Figure 1. Because of the use of 

prismatic joints, the grippers slide parallel to the body 
platform; that is, the x1-y1 plane, which makes the 
pointing motion of the gripper easier. 

Typical walking robots have a mechanism to lift a 
foot in a swing phase, which corresponds to the gripper 
in our case. However as shown in Figure 2, a 
gantry-shaped mechanism can realize the swing phase 
through the opening motion instead of the lift motion. 
In addition, when elevation of the spiral changes from 
its nominal value, the vertical position of gripping the 
spiral can be adjusted by the distance between Link14 
and Link15. The distance is narrower for higher 
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Figure 4 shows a step motion procedure. The 
gantry-shaped mechanism moves from the present 
spiral, Sa, to the next spiral, Sb. In Figure 4(a), the end 
links stand on Sa. In Figure 4(b), Link14 and Link15 
open and leave Sa. The balance of the robot is 
maintained by the other three legs. In Figure 4(c), next 
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sensors that detect the spiral. In Figure 4(d), Link14 
and Link15 close and the grippers hold the spiral 
tightly. 
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We defined the coordinate systems of each link in 

Coordinate systems. This section is devoted to deriving 
the kinematics and statics of the robot. 

 
3.1  Forward kinematics 

Forward kinematics of the robot is usually 
represented by homogeneous transformation. The 3×3 
block matrix, which consists of the first 3 rows and the 
first 3 columns of a homogeneous transform matrix, 
represents a rotation matrix. The 3×1 vector, which 
consists of the first 3 rows in the fourth column of a 
homogeneous transform matrix, represents a position 
vector. The position vector can be used to calculate the 
working space of a link.  

With reference to Figure 3, the homogeneous 
transform matrices between adjoining coordinate 
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Translation 

(a) 

Link15 
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Link14 
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Sb 

Figure 4  Procedure of a step motion to the next footing 

Figure 3  Coordinate systems of the robot 
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 (14) 

The Jacobi matrix of Link 13, , is much simpler.  
 

 (15) 

 
3.3  Inverse kinematics 

Once the gripper positions are given, the joint 
parameters can be obtained through inverse kinematics. 
Suppose that  and 

. The following formulas can be 
derived from Eqs. (11) (12): 

 

 (16) 

  (17) 

  (18) 

  (19) 

These formulas provide the joint parameters for 
Leg1. The other joint parameters can be obtained in a 
similar manner.  
 
3.4  Statics 

Using a transposition of the Jacobi matrix, the 
following relationship is derived. 

 
 (20) 

Where  is a force/torque vector in the joint space 
and  is a force/torque vector in the working space. 
Suppose that force/torque vectors at Grippers 14 and 15 
are denoted as  and , respectively. The 
resultant force/torque vectors in the joint space,  
and , from  and  are respectively obtained 
as follows. 

 

 (21) 

 (22) 

 
The statics formulas, other than Leg1, can be 

obtained in a similar manner.  

 
4  DISCUSSION 

 
We qualitatively demonstrated the conceptual design 

of the robot and its validity. In this section, we confirm 
the validity through the formulas derived in kinematic 
and statics section.  

First of all, the positioning property of the grippers is 
easy to confirm through the inverse kinematics. We can 
calculate the joint parameters for any gripper positions 
of  and  using Eqs.(16), (17), 
(18), and (19). 

Secondly, the body movement property for the 
balancing capability of the body platform is verified. 
Since all grippers’ positions are fixed,  is a 
constant and . Therefore, each gantry-shaped 
mechanism is regarded as one link and as a part of the 
spiral that is gripped by the mechanism. It is enough to 
consider the movement of Link13 instead of the 
grippers for Leg1. Multiplying  by the velocity 
vector , we get  

 
This equation shows that, for Leg1,  at the origin 

of  is decided by , , and  
independently. The other legs supporting the body 
platform have the same properties. Hence, the body 
velocity can be arbitrarily decided by adjusting the joint 
velocities even if all the grippers’ positions are fixed.  

In addition, the  block matrix consisting of the 
first 3 columns of  is a nonsingular matrix. It 
means that the robot has no singular configuration. This 
is a desirable property in controlling the robot. 

Thirdly, it is verified that the robot has enough DOF 
in its own mechanism in order to move in the desired 
direction. In advance, we investigate whether the 
working space of Link13 or grippers is a plane parallel 
to the  plane in . The normal vector of the 

 plane can be denoted as . 
Suppose that there are two different pairs of values for 
the joint parameter ,  and 

, and the corresponding position vectors 

 and  using Eq. (8), respectively. Then, the 

following equation is satisfied. 
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. (
24

)
 

 
Therefore, it is proved that the space formed by  
is parallel to the  plane. In the same way, the 
space formed by or  is parallel to the  
plane. As mentioned above, in the working space of 
Link13, the body velocity can be arbitrarily decided by 
adjusting the joint velocities. Therefore, we can 
conclude that the robot has enough DOF.  

In addition, since the working space is parallel to the 
plane, it is understood that there is no vertical 

motion. 
Finally we deduce one characteristic property about 

the statics. Assuming that  is equal to  and 
adding  to , we get  

 

 . (25) 

If the external forces/torques  and  are 
exerted on a pair of the graspers in phase, its 
components are independently related to the 
forces/torques of Joint 11, 12, and 13, respectively. 
Subtracting  from , we get  

 

 
. (

26
)
 

If the external forces/torques  and  are 
exerted on a pair of the graspers in anti-phase, the 
resultant forces of Link11and Link12 became zero. In 
particular, the torque does not transmit to any joint.  

 
5  CONCLUSION 

 
We described the new conceptual design of a 

four-legged robot for a double-spiral mobile 
architecture. The robot consists of two pairs of spirals 
and one mobile robot. Based on the requirement for the 
secure walking motion, the concept of design was 
explained. Kinematics and statics of the robot were 
derived, and then the validity of the design was 
explained using the formulas. 

The main contribution of the new design is the use of 
a gantry-shaped mechanism for legs and the realization 
of a swing phase without any vertical motion. 
Employing a pair of prismatic joints orthogonal to each 
other limits the working space of the leg to a horizontal 
plane. These suppress vertical motion and enhance the 
walking security. The assembly of the robot and the 
experiment are left for future work  
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 (14) 

The Jacobi matrix of Link 13, , is much simpler.  
 

 (15) 

 
3.3  Inverse kinematics 

Once the gripper positions are given, the joint 
parameters can be obtained through inverse kinematics. 
Suppose that  and 

. The following formulas can be 
derived from Eqs. (11) (12): 

 

 (16) 

  (17) 

  (18) 

  (19) 

These formulas provide the joint parameters for 
Leg1. The other joint parameters can be obtained in a 
similar manner.  
 
3.4  Statics 

Using a transposition of the Jacobi matrix, the 
following relationship is derived. 

 
 (20) 

Where  is a force/torque vector in the joint space 
and  is a force/torque vector in the working space. 
Suppose that force/torque vectors at Grippers 14 and 15 
are denoted as  and , respectively. The 
resultant force/torque vectors in the joint space,  
and , from  and  are respectively obtained 
as follows. 

 

 (21) 

 (22) 

 
The statics formulas, other than Leg1, can be 

obtained in a similar manner.  

 
4  DISCUSSION 

 
We qualitatively demonstrated the conceptual design 

of the robot and its validity. In this section, we confirm 
the validity through the formulas derived in kinematic 
and statics section.  

First of all, the positioning property of the grippers is 
easy to confirm through the inverse kinematics. We can 
calculate the joint parameters for any gripper positions 
of  and  using Eqs.(16), (17), 
(18), and (19). 

Secondly, the body movement property for the 
balancing capability of the body platform is verified. 
Since all grippers’ positions are fixed,  is a 
constant and . Therefore, each gantry-shaped 
mechanism is regarded as one link and as a part of the 
spiral that is gripped by the mechanism. It is enough to 
consider the movement of Link13 instead of the 
grippers for Leg1. Multiplying  by the velocity 
vector , we get  

 
This equation shows that, for Leg1,  at the origin 

of  is decided by , , and  
independently. The other legs supporting the body 
platform have the same properties. Hence, the body 
velocity can be arbitrarily decided by adjusting the joint 
velocities even if all the grippers’ positions are fixed.  

In addition, the  block matrix consisting of the 
first 3 columns of  is a nonsingular matrix. It 
means that the robot has no singular configuration. This 
is a desirable property in controlling the robot. 

Thirdly, it is verified that the robot has enough DOF 
in its own mechanism in order to move in the desired 
direction. In advance, we investigate whether the 
working space of Link13 or grippers is a plane parallel 
to the  plane in . The normal vector of the 

 plane can be denoted as . 
Suppose that there are two different pairs of values for 
the joint parameter ,  and 

, and the corresponding position vectors 

 and  using Eq. (8), respectively. Then, the 

following equation is satisfied. 
 


