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Abstract

In the theory of canonical induction formulae for Mackey functors, Boltje [4]
demonstrated that the plus constructions, together with the mark morphism,
are useful for the study of canonical versions of induction theorems analogous
to those in representation theory of finite groups. In this paper, we present a
short exact sequence for the plus constructions derived from Cauchy-Frobenius
lemma, and apply it to the proof of Boltje’s integrality result for canonical in-
duction formulae. The methods appearing in Boltje’s theory, combined with
the Dress construction for Mackey functors, are applicable to induction theo-
rems on representations of the twisted quantum double of a finite group. As
a sequel to such a research, we describe canonical versions of two induction
theorems whose origins are Artin’s induction theorem and Brauer’s induction
theorem on C-characters of a finite group.
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1 Introduction

The theory of canonical induction formulae for Mackey functors due to Boltje
[4] has been developed from Brauer’s induction theorem, which states that every C-
character of a finite group G can be expressed as a Z-linear combination of induced
linear C-characters from subgroups of G (cf. [7]), and its canonical versions (cf.
[3, 33]). A Mackey functor for G over a commutative ring k, denoted by a quadruple
X = (X, con, res, ind), is defined to be a family of k-modulesX(H),H ≤ G, together
with conjugation maps congH : X(H) → X( gH), where g ∈ G, restriction maps
resHK : X(H) → X(K), and induction maps indHK : X(K) → X(H), where K ≤ H
in both cases, satisfying certain axioms, which is a G-functor over k introduced by
Green [19]. A restriction functor and a conjugation functor, denoted by a triple
A = (A, con, res) and a couple A = (A, con), respectively, are defined in similar
fashion. Considering the corresponding categories, Boltje [4] has introduced two
functors −+ : Res(G)k → Mack(G)k and −+ : Con(G)k → Mack(G)k arising
from adjoints of forgetful functors; these functors are called the lower and upper
plus constructions. A canonical induction formula for a Mackey functor X from a
restriction subfunctor A is a morphism Ψ : X → A+ of restriction functors such
that ΘX,A ◦ Ψ = idX for a morphism ΘX,A : A+ → X of Mackey functors called
the induction morphism (cf. [4]). A canonical choice of Brauer’s induction theorem
comes from a certain canonical induction formula for the character ring functor R
from a restriction subfunctor Rab defined by the Z-span of all linear C-characters (cf.
[3, 4]). In this case Rab

+ (G) is isomorphic to the ring of monomial representations of
G introduced by Dress [15].

If X is a Mackey functor for G over Z (or the localization of Z at a prime p),
then one may attempt to find an induction theorem on X analogous to Brauer’s
induction theorem. Concerning the existence of such a theorem, Boltje [4] has given
an integrality criterion for canonical induction formulae. In this paper, we establish
a new fundamental theorem for the plus constructions, which ensures the existence
of a short exact sequence derived from Cauchy-Frobenius lemma (cf. Theorem 9.4),
and successfully apply it to an argument of the integrality of canonical induction
formulae under a suitable condition given in [4] (cf. Theorem 10.1).

For a normalized 3-cocycle ω : G×G×G→ C×, Dijkgraaf, Pasquier, and Roche

2010 Mathematics Subject Classification. Primary 19A22; Secondary 16G30, 16S35, 20C25, 57T05.
Keywords. Brauer’s induction theorem, Burnside ring, Green functor, representation ring, Mackey
functor, plus construction, twin functor, twisted group algebra, twisted quantum double.
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[14] have introduced a quasi-triangular quasi-Hopf algebra Dω(G) with underlying
vector space (CG)∗⊗CCG, where (CG)∗ is the Hopf algebra dual to the group algebra
CG. The algebra Dω(G) is called the twisted quantum double of G. If ω is trivial,
then it is the quantum double of G and is denoted by D(G). Given H ≤ G, we
denote by Dω

G(H) the subalgebra (CG)∗⊗CCH of Dω(G). The representation group
R(Dω

G(H)) of Dω
G(H) is defined to be the additive group consisting of all Z-linear

combinations of isomorphism classes of finitely generated left Dω
G(H)-modules with

direct sum for addition. With the standard definition of conjugation, restriction, and
induction maps (see, e.g., [2, 37]), the family of representation groups R(Dω

G(H)),
H ≤ G, becomes a Mackey functor for G over Z, which is denoted by RDω

G and
is called the Dω(G)-representation functor. If ω is trivial, then RDω

G is a Green
functor (cf. [37]), which is denoted by RDG. As for applications of the methods
given in [4], it is worth studying the existence of nice induction formulae for RDω

G.
The main purpose of this paper is to present a canonical induction formula for RDω

G

from a certain restriction subfunctor which brings Brauer’s induction theorem on
representations of Dω(G) (cf. Theorem 12.2, Corollary 12.3).

If α : G×G→ C× is a normalized 2-cocycle, then for each H ≤ G, the represen-
tation group R(CαH) of the twisted group algebra CαH is defined to be the additive
group consisting of all Z-linear combinations of isomorphism classes of finitely gen-
erated left CαH-modules with direct sum for addition. The family of representation
groups R(CαH), H ≤ G, together with suitable conjugation, restriction, and induc-
tion maps, defines a Mackey functor for G over Z, which is denoted by Rα and is
called the CαG-representation functor. If α is trivial, then Rα is a Green functor,
which is called the CG-representation functor. For each s ∈ G, there exists a normal-
ized 2-cocycle θs : Gs×Gs → C× given by θs(g, r) = ω(s, g, r)ω(g, r, s)/ω(g, s, r) for
all g, r ∈ Gs, whereGs is the centralizer of s inG, and then the CθsGs-representation
functor Rθs is a Mackey functor for Gs over Z assigning R(CθsH) to each H ≤ Gs.
Every finitely generated left Dω(G)-module is characterized by a family of certain
left CθsGs-modules, s running over the elements of G (cf. [38]). We introduce a
new concept, namely, the Mackey bundle composed of CθsGs-representation functors
Rθs , s ∈ G, and employ it to investigate RDω

G. This concept, which adapts suc-
cessfully the Dress construction for Mackey functors (cf. [5, 30]), defines a crucial
Mackey functor for the study of R(Dω(G)) (cf. Theorem 8.4, Corollary 8.6).

If X = (X, con, res, ind) is a Mackey functor for G over k, then X denotes the
conjugation functor for G over k such that

X(H) = X(H) := X(H)/
∑
K<H

indHK(X(K))

for all H ≤ G, and the conjugation maps are determined by those of X. The twin
functor TX of X introduced by Thévenaz [35] is just the Mackey functor X

+
(cf.

[9]). Under the assumption that |G| is invertible in k, Thévenaz [35] has given an
induction formula for X based on a result of Puig [32], which is deduced from the
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inverse of an isomorphism β : X → TX of Mackey functors defined to be the family
of k-module isomorphisms βH : X(H) → TX(H), x 7→ (resHK(x))K≤H for H ≤ G
(cf. Remark 5.7). In this context, we emphasize that

Q⊗Z R(D
ω(G)) ∼=

∏
H∈Cl(G,Cyc)

Q⊗Z

 ∏
s∈CG(H)

R(CθsH)

NG(H)

(I)

as Q-spaces, where Cl(G,Cyc) is a full set of nonconjugate cyclic subgroups of G and
the action of NG(H) is defined by the conjugation maps of the Dω(G)-representation
functor (cf. Corollary 8.8). If ω is trivial, then this is a Q-algebra isomorphism (cf.
[37]). Using idempotent formulae for the crossed Burnside ring, Oda [28] has shown
Artin’s induction theorem on representations of D(G). Regarding such a result, we
present a canonical choice of Artin’s induction theorem on representations of Dω(G)
(cf. Corollary 8.9), which is concerned with (I) and is described by using a canonical
induction formula of a minimal type due to Boltje [4].

In Section 2, we recall the lower and upper plus constructions, together with
the mark morphism and the induction morphism, from [4]. Section 3 contains the
study of the Burnside ring functor and the crossed Burnside ring functor associated
to a finite G-monoid S, which are Green functors obtained by the lower plus con-
struction. In Section 4, we introduce the notion of a crossed Mackey functor on a
Mackey bundle composed of Xs ∈ Mack(Gs)k, s ∈ S, which generalizes the Dress
construction for Mackey functors associated to S or the crossing by S. The Green
functor obtained by the ordinary Dress construction from the Burnside ring functor
is isomorphic to the crossed Burnside ring functor. This fact is worth examining in
our research, because we see that the isomorphism is deduced from a certain induc-
tion morphism. In Section 5, we recall a fundamental fact for canonical induction
formulae from [4], and explain Thévenaz’s results on the twin functor of a Mackey
functor. Section 6 is devoted to some results for the crossed Mackey functors.

In Section 7, we turn to the study of the CαG-representation functor Rα, and
then provide two lemmas about finitely generated CαG-modules, which are essential
to a canonical choice of Brauer’s induction theorem on representations of CαG.
Section 8 is devoted to representation theory of Dω(G). We show that the Dω(G)-
representation functor RDω

G is isomorphic to the crossed Mackey functor on the
Mackey bundle composed of CθsGs-representation functors Rθs , s ∈ G, and then
show that the Green functor RDG is isomorphic to the Green functor obtained by
the ordinary Dress construction from the CG-representation functor associated to
the G-monoid G on which G acts by conjugation. Some important consequences of
such results are also given, including (I) and a canonical choice of Artin’s induction
theorem on representations of Dω(G). Section 9 contains two fundamental theorems
for the plus constructions, which are generalizations of fundamental theorems for
the Burnside ring of a finite group. In Section 10, we give an alternative proof of
Boltje’s integrality result for canonical induction formulae, and show an integrality
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condition for the crossed Mackey functors, too. Section 11 describes a canonical
choice of Brauer’s induction theorem on representations of CαG. In Section 12, we
study canonical induction formulae for RDω(G), and present a canonical choice of
Brauer’s induction theorem on representations of Dω(G).

Notation Throughout the paper, let G be a finite group, k a commutative ring with
unity, Z the rational integers, Q the rational numbers, and C the complex numbers.
We denote by ϵ the identity of G. The subgroup generated by an element g of G
is denoted by ⟨g⟩. We write K ≤ H if H and K are subgroups of G with K ⊆ H.
Let H ≤ G. Given K ≤ H, we write K < H if K ̸= H, and write K ⊴ H if
K is a normal subgroup of H. The Möbius function of the poset (S(H),≤) of all
subgroups of H is denoted by µ (see, e.g., [1]). We set rH = rHr−1 and rg = rgr−1

for all g, r ∈ G, and denote by Cl(H) a full set of nonconjugate subgroups of H.
For each K ≤ H, NH(K) denotes the normalizer of K in H, and CH(K) denotes
the centralizer of K in H. Given K ≤ H, we denote by H/K the set of left cosets
hK, h ∈ H, of K in H. For each pair (K, U) of subgroups K and U of H, K\H/U
denotes the set of (K,U)-double cosets KhU , h ∈ H, in H. We denote by G-set
the category of finite left G-sets and G-maps. Let S ∈ G-set. Given g ∈ G and
s ∈ S, gs denotes the effect of g on s. We view S as an H-set via the restriction of
operations from G to H, and denote by CS(H) the set of all elements s of S such
that hs = s for all h ∈ H. For each s ∈ S, Hs denotes the stabilizer of s in H.
We set Stab(G;S) = {Gs | s ∈ S}. A semigroup with identity is called a monoid.
A monoid on which G acts as monoid homomorphisms is called a G-monoid. We
denote by G-mon the category of finite G-monoids and G-maps. For an object
M of a category, [M ] denotes the isomorphism class containing M . Given a ring
R, we denote by R-mod the category of finitely generated left R-modules, and set
R-mod = {[M ] | M ∈ R-mod}. The identity map on a set Σ is denoted by idΣ. We
denote by Λ(G) the set of all primes dividing |G|, and denote by Λ the set consisting
of all primes and the symbol ∞. Let p be a prime. For each Z-module M , we set
M(p) = Z(p) ⊗Z M , where Z(p) is the localization of Z at p, and set M(∞) = M .
The expression ‘ ∞-group’ means only ‘group’. We denote by Op(H) the smallest
normal subgroup of H such that H/Op(H) is a p-group, and set O∞(H) = {ϵ}. For
each natural number n, np denotes the p-part of n, and n∞ denotes n.

2 The plus constructions

We start with the following definition which is given in [4] (see also [19, 35, 40]).

Definition 2.1 (a) A conjugation functor for G over k is a couple A = (A, con)
consisting of a family of k-modules A(H), H ≤ G, and a family of k-module
homomorphisms

congH : A(H) → A( gH),
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the conjugation maps, for H ≤ G and g ∈ G, satisfying the axioms

(G.1) congrH ◦ conrH = congrH , conhH = idA(H)

for all H ≤ G, g, r ∈ G, and h ∈ H. An algebra conjugation functor for G over
k is a conjugation functor A = (A, con) for G over k such that A(H), H ≤ G,
are k-algebras and the conjugation maps are k-algebra homomorphisms.

(b) A restriction functor for G over k is a triple A = (A, con, res) consisting of a
conjugation functor (A, con) for G over k and a family of k-module homomor-
phisms

resHK : A(H) → A(K),

the restriction maps, for K ≤ H ≤ G, satisfying the axioms

(G.2) resKL ◦ resHK = resHL , resHH = idA(H),

(G.3) congK ◦ resHK = res
gH
gK ◦ congH

for all L ≤ K ≤ H ≤ G and g ∈ G. An algebra restriction functor for
G over k is a restriction functor A = (A, con, res) for G over k such that
(A, con) is an algebra conjugation functor and the restriction maps are k-
algebra homomorphisms.

(c) A Mackey functor for G over k is a quadruple A = (A, con, res, ind) consisting
of a restriction functor (A, con, res) for G over k and a family of k-module
homomorphisms

indHK : A(K) → A(H),

the induction maps, for K ≤ H ≤ G, satisfying the axioms

(G.4) indHK ◦ indKL = indHL , indHH = idA(H),

(G.5) congH ◦ indHK = ind
gH
gK ◦ congK ,

(G.6) (Mackey axiom)

resHK ◦ indHU =
∑

KhU∈K\H/U

indKK∩ hU ◦ res hU
K∩ hU ◦ conhU

for all L ≤ K ≤ H ≤ G, U ≤ H, and g ∈ G. A Green functor for G over k is
a Mackey functor A = (A, con, res, ind) for G over k such that (A, con, res) is
an algebra restriction functor and

(G.7) (Frobenius axioms)

σ · indHK(τ) = indHK(res
H
K(σ) · τ), indHK(τ) · σ = indHK(τ · resHK(σ))

for all K ≤ H, σ ∈ A(H), and τ ∈ A(K).
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A morphism f : X → Y of Green functors for G over k is a family of k-algebra
homomorphisms fH : X(H) → Y (H), H ≤ G, commuting with conjugation, re-
striction, and induction maps. A morphism of conjugation, algebra conjugation,
restriction, algebra restriction, or Mackey functors for G over k is defined in similar
fashion. For a morphism f : X → Y of Mackey functors for G over k, we require that
fH : X(H) → Y (H), H ≤ G, are k-module homomorphisms. The others are defined
by omitting unnecessary terminology. We now obtain the categories of conjugation,
algebra conjugation, restriction, algebra restriction, Mackey, and Green functors for
G over k, denoted by Con(G)k, Conalg(G)k, Res(G)k, Resalg(G)k, Mack(G)k, and
Green(G)k, respectively. The sets of morphisms f : X → Y of conjugation, restric-
tion, Mackey, and Green functors are denoted by Con(G)(X,Y )k, Res(G)(X,Y )k,
Mack(G)(X,Y )k, and Green(G)(X,Y )k, respectively.

Following [4], we define plus constructions −+ : Res(G)k → Mack(G)k and
−+ : Con(G)k → Mack(G)k, and state some basic facts concerned with them.

Let A ∈ Con(G)k. For each H ≤ G, set

M(H) =
∏
U≤H

A(U), (II)

and view it as a left kH-module with the action given by

h.(xU )U≤H = (conhU (xU )) hU≤H

for all h ∈ H and (xU )U≤H ∈M(H). We define

A+ = (A+, con+, res+, ind+) ∈ Mack(G)k

by

A+(H) = {(xU )U≤H ∈M(H) | h.(xU )U≤H = (xU )U≤H for all h ∈ H},

con+gH((xU )U≤H) = (congH(xU )) gU≤ gH ,

res+HK((xU )U≤H) = (xU )U≤K ,

ind+HK((yU )U≤K) =
∑

hK∈H/K

(chL)L≤H

for all K ≤ H ≤ G, g ∈ G, (xU )U≤H ∈ A+(H), and (yU )U≤K ∈ A+(K), where

chL =

{
conhU (yU ) if L = hU with U ≤ K,

0 otherwise.

In short, A(H)+ is just the set of H-invariants on M(H).
If A is an algebra conjugation functor, then A+(H), H ≤ G, are k-algebras with

obvious multiplication and A+ is a Green functor.
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Given H ≤ G, we define I(M(H)) to be the smallest kH-submodule of M(H)
such that H acts trivially on the factor module M(H)/I(M(H)), and denote by
(xU )U≤H an element (xU )U≤H + I(M(H)) of M(H)/I(M(H)).

Suppose next that A ∈ Res(G)k. We define

A+ = (A+, con+, res+, ind+) ∈ Mack(G)k

by
A+(H) =M(H)/I(M(H)),

con g
+H((xU )U≤H) = (congH(xU )) gU≤ gH ,

res H
+K((xU )U≤H) =

∑
U≤H

∑
KhU∈K\H/U

(dhL)L≤K ,

ind H
+K((yU )U≤K) = (y′U )U≤H

for all K ≤ H ≤ G, g ∈ G, (xU )U≤H ∈M(H), and (yU )U≤K ∈M(K), where

dhL =

{
res

hU
K∩ hU

◦ conhU (xU ) if L = K ∩ hU,

0 otherwise,

and

y′U =

{
yU if U ≤ K,
0 otherwise.

In short, A(H)+ is just the set of H-coinvariants on M(H).
Given K ≤ H ≤ G and σ ∈ A(K), we set

[K,σ] = (δKUσ)U≤H ∈ A+(H),

where δKUσ = 0 if K ̸= U and δKKσ = σ.
If A is an algebra restriction functor, then multiplication on A+(H) with H ≤ G

is defined by

[K,σ] · [U, τ ] =
∑

KhU∈K\H/U

[K ∩ hU, resKK∩ hU (σ) · res
hU
K∩ hU ◦ conhU (τ)],

extended to A+(H) by k-linearly. This k-algebra structure of A+(H) forces A+ to
be a Green functor.

Let H ≤ G. The mark homomorphism ρAH : A+(H) → A+(H) is defined by

ρAH((xU )U≤H) =
∑
U≤H

 ∑
hU∈H/U,K≤ hU

res
hU
K ◦ conhU (xU )


K≤H
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for all (xU )U≤H ∈ M(H), where the sum
∑

hU∈H/U,K≤ hU is taken over all cosets

hU , h ∈ H, of U in H such that K ≤ hU . We define a morphism ρA : A+ → A+ of
Mackey functors to be the family of mark homomorphisms ρAH , H ≤ G, and call it
the mark morphism. If A is an algebra restriction functor, then ρA is a morphism
of Green functors. We define a map ηAH : A+(H) → A+(H) by

ηAH((yK)K≤H) =
∑
K≤H

∑
U≤K

|U |µ(U,K)[U, resKU (yK)]

for all (yK)K≤H ∈ A+(H).
The following proposition is [4, Proposition 2.4].

Proposition 2.2 Let A ∈ Res(G)k. For each H ≤ G,

ηAH ◦ ρAH = |H|idA+(H) and ρAH ◦ ηAH = |H|idA+(H).

A stable k-basis B of A is defined to be a family of k-bases B(H) of A(H),
H ≤ G, such that

B( gH) = {congH(σ) | σ ∈ B(H)}

for all H ≤ G and g ∈ G (see [4, Definition 7.1]). Suppose that B is a stable k-basis
of A. Let H ≤ G, and set

S(H,B) = {(K,σ) | K ≤ H and σ ∈ B(K)}.

Then S(H,B) is a left H-set with the action given by

h.(K,σ) = ( hK, conhK(σ))

for all h ∈ H and (K,σ) ∈ S(H,B). We denote by R(H,B) a complete set of rep-
resentatives of H-orbits in S(H,B) such that K ∈ Cl(H) for all (K,σ) ∈ R(H,B).

The following lemma is the second statement of [4, Lemma 7.2].

Lemma 2.3 Let A ∈ Res(G)k, and let B be a stable k-basis of A. For each H ≤ G,
the elements [K,σ] for (K,σ) ∈ R(H,B) form a k-basis of A+(H).

Suppose that X = (X, con, res, ind) ∈ Mack(G)k. Let A be a restriction sub-
functor of X, that is, each A(H) with H ≤ G is a submodule of the k-module X(H),
and the conjugation and restriction maps of A are the restriction of congH and resHK
for K ≤ H ≤ G and g ∈ G. We define ΘX,A : A+ → X to be a family of k-module
homomorphisms ΘX,A

H : A+(H) → X(H), H ≤ G, such that

ΘX,A
H ([K,σ]) = indHK(σ)

for all [K,σ] ∈ A+(H), and call it the induction morphism (cf. [4, 3.1]).
The next lemma is due to Boltje [4].
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Lemma 2.4 Let X ∈ Mack(G)k, and let A be a restriction subfunctor of X. Then
ΘX,A ∈ Mack(G)(A+, X)k. If X is a Green functor and if each A(H) with H ≤ G
is a subalgebra of the k-algebra X(H), then ΘX,A ∈ Green(G)(A+, X)k.

Proof. Obviously, ΘX,A ∈ Con(G)(A+, X)k. By the Mackey axiom,

ΘX,A
K ◦ res H

+K([U, τ ]) =
∑

KhU∈K\H/U

indKK∩ hU ◦ res hU
K∩ hU ◦ conhU (τ)

= resHK ◦ indHU (τ)

for all K ≤ H ≤ G and [U, τ ] ∈ A+(H). Moreover,

ΘX,A
H ◦ ind+HK([U, τ ]) = indHU (τ) = indHK ◦ΘX,A

K ([U, τ ])

for all K ≤ H ≤ G and [U, τ ] ∈ A+(K). Thus ΘX,A ∈ Mack(G)(A+, X)k. Suppose
that X is a Green functor and each A(H) with H ≤ G is a subalgebra of the
k-algebra X(H). Using the Mackey and Frobenius axioms, we have

indHK(σ) · indHU (τ) = indHK(σ · resHK ◦ indHU (τ))

= indHK

σ ·
∑

KhU∈K\H/U

indKK∩ hU ◦ res hU
K∩ hU ◦ conhU (τ)


=

∑
KhU∈K\H/U

indHK∩ hU (res
K
K∩ hU (σ) · res

hU
K∩ hU ◦ conhU (τ))

for all K ≤ H ≤ G, U ≤ H, σ ∈ X(K), and τ ∈ X(U) (cf. [19, Proposition 1.84],
[35, Proposition 1.10]). Hence the k-module homomorphisms ΘX,A

H for H ≤ G are k-
algebra homomorphisms, and thereby, ΘX,A ∈ Green(G)(A+, X)k. This completes
the proof. 2

3 The Burnside ring functor

We explore the lower plus construction from an algebra restriction functor for G
over k in terms of H-sets with H ≤ G (see also [27, Section 3]).

Suppose that A ∈ Resalg(G)k. Let H ≤ G, and view the left kH-module M(H)
(see (II)) as an H-monoid with obvious multiplication. Given K ≤ H, we regard
A(K) as a k-submodule ofM(H) via the obvious embedding A(K) ↪→M(H). Given
J, J ′ ∈ H-set, we denote by MapH(J, J

′) the set of H-maps from J to J ′. There
exists a contravariant functor T = TAH : H-set → Mon, where Mon is the category
of monoids, such that T (J) with J ∈ H-set is defined to be the monoid

{π ∈ MapH(J,M(H)) | π(x) ∈ A(Hx) for all x ∈ J}
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with pointwise multiplication, where Hx is the stabilizer of x, and the morphism
T (f) : T (J) → T (J ′) with J, J ′ ∈ H-set and f ∈ MapH(J

′, J) is defined by

T (f)(π) : J ′ →M(H), x 7→ res
Hf(x)

Hx
(π(f(x)))

for all π ∈ T (J). This functor is additive, that is, for any J1, J2 ∈ H-set with
inclusions ιi : Ji → J1∪̇J2, the induced map

T (ι1)× T (ι2) : T (J1∪̇J2) → T (J1)× T (J2)

is an isomorphism (cf. [21, Section 2]). Following [21], we set

π1+̇π2 = (T (ι1)× T (ι2))
−1(π1, π2)

for all (π1, π2) ∈ T (J1) × T (J2). A pair (J, π) with J ∈ H-set and π ∈ T (J) is
called an element of T . A morphism f : (J ′, π′) → (J, π) of elements of T is defined
to be an H-map f : J ′ → J such that T (f)(π) = π′. We now obtain the category
El(H-set, T ) of elements of T (cf. [29, (2.10)]).

The Burnside ring Ω(H) is the commutative ring consisting of all Z-linear com-
binations of isomorphism classes of finite left H-sets with disjoint union for addition
and cartesian product for multiplication (see, e.g., [11, §80]). We give a generaliza-
tion of Ω(H) associated with El(H-set, T ).

For each (J, π) ∈ El(H-set, T ), we denote by (J, π) the isomorphism class of
elements of T containing (J, π). Let F(H,T ) be the free abelian group on the
isomorphism classes of elements of T , and let F(H,T )0 be the subgroup of F(H,T )

generated by all expressions (J1∪̇J2, π1+̇π2)− (J1, π1)− (J2, π2). Multiplication on
F(H,T ) is defined by

(J1, π1) · (J2, π2) = (J1 × J2, T (Pr1)(π1) · T (Pr2)(π2)),

extended to F(H,T ) by Z-linearly, where Pri : J1 × J2 → Ji are projections. Then
F(H,T ) is a ring, and F(H,T )0 is a two sided ideal of F(H,T ). We now define
Ω(H,T ) to be the quotient F(H,T )/F(H,T )0. This ring is the F -Burnside ring with
F = T introduced by Jacobson [21] (see also [27]). For each (J, π) ∈ El(H-set, T ),
an element (J, π) + F(H,T )0 of Ω(H,T ) is denoted by [J, π]0. By an argument
analogous to the proof of [11, Lemma 80.4], we can show that [J1, π1]0 = [J2, π2]0
if and only if (J1, π1) = (J2, π2). By definition, addition and multiplication of two
elements [J1, π1]0 and [J2, π2]0 of Ω(H,T ) are given by

[J1, π1]0 + [J2, π2]0 = [J1∪̇J2, π1+̇π2]0 and [J1, π1]0 · [J2, π2]0 = [J1 × J2, π1 · π2]0

with

π1+̇π2 : J1∪̇J2 →M(H), x 7→ π1(x) if x ∈ J1, x 7→ π2(x) if x ∈ J2



Induction formulae for Mackey functors/ Yugen Takegahara 12

and
π1 · π2 : J1 × J2 →M(H),

(x1, x2) 7→ res
Hx1
Hx1∩Hx2

(π1(x1)) · res
Hx2
Hx1∩Hx2

(π2(x2)).

Given K ≤ H and σ ∈ A(K), define an H-map πσ : H/K →M(H) by

πσ(hK) = h.σ

for all h ∈ H. Then Ω(H,T ) is the ring consisting of all Z-linear combinations of the
elements [H/K, πσ]0 for K ≤ H and σ ∈ A(K). Moreover, k ⊗Z Ω(H,T ) is the ring
consisting of all k-linear combinations of the elements 1 ⊗ [H/K, πσ]0 for K ≤ H
and σ ∈ A(K) such that the Z-module homomorphism

Ω(H,T ) → k ⊗Z Ω(H,T ), [H/K, πσ]0 7→ 1⊗ [H/K, πσ]0

is a ring homomorphism. Suppose that π ∈ T (H/K) and π′ ∈ T (H/U), where
K, U ≤ H. Then [H/K, π]0 = [H/U, π′]0 ∈ Ω(H,T ) if and only if there exists an
element r of H such that K = rU and π′ is the H-map

T (f rU )(π) : H/U →M(H), hU 7→ π(hr−1K),

where f rU is an H-map from H/U to H/K defined by f rU (hU) = hr−1K for all
h ∈ H. From this, we know that [H/K, π]0 = [H/U, π′]0 ∈ Ω(H,T ) if and only
if [K,π(K)] = [U, π′(U)] ∈ A+(H). Hence there exists a k-module epimorphism
Υ = ΥA

H : k ⊗Z Ω(H,T ) → A+(H) given by

Υ(1⊗ [H/K, π]0) = [K,π(K)]

for all K ≤ H and π ∈ T (H/K). Let υAH be the k-module isomorphism from
(k ⊗Z Ω(H,T ))/KerΥ to A+(H) determined by Υ. We denote by [H/K, π] the
element 1⊗ [H/K, π]0 +KerΥ of the factor module (k ⊗Z Ω(H,T ))/KerΥ.

Let K ≤ H. For each J ∈ H-set, we denote by resHK(J) the restriction of J to
K. Suppose that V ∈ K-set. We consider the cartesian product H × V to be a left
K-set with the action given by

r(h, x) = (hr−1, rx)

for all r ∈ K and (h, x) ∈ H×V . Given (h, x) ∈ H×V , let h⊗x denote the K-orbit
containing (h, x). We denote by indHK(V ) the set of K-orbits in H × V , and view it
as a left H-set with the action given by

h(h′ ⊗ x) = hh′ ⊗ x

for all h ∈ H and (h′, x) ∈ H × V . This H-set is called an induced H-set (cf. [11,
§80]). We define conhK(V ) ∈ hK-set with h ∈ H to be the subset

h⊗ V := {h⊗ x | x ∈ V }
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of indHK(V ) with the action given by

hr(h⊗ x) = h⊗ rx

for all r ∈ K and x ∈ V . This hK-set is called a conjugate hK-set.
We now define

ΩA = (ΩA, con, res, ind) ∈ Green(G)k

by
ΩA(H) = (k ⊗Z Ω(H,TAH ))/KerΥA

H ,

congH([J, π]) = [congH(J),
gπ],

resHK([J, π]) = [resHK(J), π|K ],

indHK([V,ϖ]) = [indHK(V ), ϖH ]

for all K ≤ H ≤ G, g ∈ G, (J, π) ∈ El(H-set, TAH ), and (V,ϖ) ∈ El(K-set, TAK),
where gπ, π|K , and ϖH are defined by

( gπ)(g ⊗ x) = congHx
(π(x)), π|K(x) = resHx

Kx
(π(x)), ϖH(h⊗ y) = conhKy

(ϖ(y))

for all x ∈ J , y ∈ V , and h ∈ H. This Green functor is a G-functor version of the
F -Burnside ring functor with F = TAG defined in [21, 27].

Proposition 3.1 Let A ∈ Resalg(G)k. Then the Green functor ΩA is isomorphic
to A+. Really, the family of k-algebra isomorphisms υAH : ΩA(H) → A+(H), H ≤ G,
defines an isomorphism υA : ΩA → A+ of Green functors.

Proof. Let K ≤ H ≤ G, and let g ∈ G. Obviously, the diagrams

ΩA(H)
υAH−−−−→ A+(H)

congH

y ycon g
+H

ΩA( gH) −−−−→
υAgH

A+(
gH)

and

ΩA(H)
υAH−−−−→ A+(H)

indHK

x xind H
+K

ΩA(K) −−−−→
υAK

A+(K)

are commutative, because

congH([H/U, π]) = [ gH/ gU, gπ] and indHK([K/L,ϖ]) = [H/L,ϖH ]

for all U ≤ H, π ∈ TAH (H/U), L ≤ K, and ϖ ∈ TAK(K/L). Let U ≤ H, and

let π ∈ TAH (H/U). For each h ∈ K\H/U , where K\H/U is a complete set of
representatives of K\H/U , we define π|(K,h) ∈ TAK(K/K ∩ hU) by

π|(K,h)(r(K ∩ hU)) = res
rhU
K∩ rhU (π(rhU))
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for all r ∈ K. The map

resHK(H/U) →
∪̇

h∈K\H/U

K/K ∩ hU, h′U 7→ r(K ∩ hU)

is an isomorphism of K-sets, where h′U = rhU with r ∈ K and h ∈ K\H/U . Hence

resHK([H/U, π]) =
∑

h∈K\H/U

[K/K ∩ hU, π|(K,h)].

Since π|(K,h)(K ∩ hU) = res
hU
K∩ hU

◦ conhU (π(U)) for all U ≤ H and h ∈ K\H/U , it
turns out that the diagram

ΩA(H)
υAH−−−−→ A+(H)

resHK

y yres H
+K

ΩA(K) −−−−→
υAK

A+(K)

is commutative. Thus it suffices to verify that υAH is a ring homomorphism. We
know that the map

(H/K)× (H/U) →
∪̇

h∈K\H/U

H/K ∩ hU, (h1K,h2U) 7→ h1r(K ∩ hU)

is an isomorphism of H-sets, where h−1
1 h2U = rhU with r ∈ K and h ∈ K\H/U .

Suppose that π1 ∈ TAH (H/K) and π2 ∈ TAH (H/U). For each h ∈ K\H/U , we define
π3 ∈ TAH (H/K ∩ hU) by

π3(r(K ∩ hU)) = res
rK
rK∩ rhU (π1(rK)) · res rhU

rK∩ rhU (π2(rhU))

for all r ∈ H. Observe that

[H/K, π1]0 · [H/U, π2]0 =
∑

h∈K\H/U

[H/K ∩ hU, π3]0.

Then we have

ΥA
H([H/K, π1]0 · [H/U, π2]0) = ΥA

H([H/K, π1]0) ·ΥA
H([H/U, π2]0).

Consequently, υAH is a ring homomorphism. Hence we conclude that υA is an iso-
morphism of Green functors. This completes the proof. 2
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Let S ∈ G-mon, and set CS(H) = {s ∈ S | hs = s for all h ∈ H}, where hs
denotes the effect of h on s. We define

k⊗S = (k⊗S , con⊗S , res⊗S) ∈ Resalg(G)k

by
k⊗S(H) = kCS(H), con g

⊗S H(s) =
gs, res H

⊗S K (s) = s

for all K ≤ H ≤ G, s ∈ CS(H), and g ∈ G, where kCS(H) is the monoid ring. For
each H ≤ G, the k-module A⊗S(H) := A(H)⊗k kCS(H) has an obvious k-algebra
structure. The family of k-algebras A⊗S(H), H ≤ G, together with the k-algebra
homomorphisms

con g
⊗S H : A⊗S(H) → A⊗S(

gH), x⊗ s 7→ congH(x)⊗ gs,

res H
⊗S K : A⊗S(H) → A⊗S(K), x⊗ s 7→ resHK(x)⊗ s

for K ≤ H and g ∈ G, defines an algebra restriction functor for G over k, which is
a generalization of k⊗S , and is denoted by A⊗S = (A⊗S , con⊗S , res⊗S).

Set CΩ(−, S) = ΩZ⊗S and Ωk = (k⊗{ϵ})+, where {ϵ} denotes the G-monoid
consisting of only the identity ϵ. We consider the Green functor CΩ(−, {ϵ}) as the
Burnside ring functor Ω (cf. [35, Section 6], [40, Example 2.11]). For each H ≤ G,
the element [H/K, ϵ] ∈ CΩ(H, {ϵ}) is denoted by [H/K]. The ring CΩ(H,S) with
H ≤ G is the crossed Burnside ring defined by Oda and Yoshida [29] (see also [6]),
and the Green functor CΩ(−, S) is the crossed Burnside ring functor defined by Oda
and Yoshida [30].

By Proposition 3.1, the family of Z-lattice isomorphisms

ΩZ(H)
∼→ Ω(H), [K, ϵ] 7→ [H/K],

where H ≤ G, defines an isomorphism between Green functors ΩZ and Ω, which
induces an isomorphism between Green functors Ωk and k⊗Ω (cf. [4, Section 2]). We
identify Ωk with k⊗Ω, and regard [K, ϵ] ∈ Ωk(H) as [H/K] := 1⊗[H/K] ∈ k⊗ZΩ(H)
for all K ≤ H ≤ G. If |G| is invertible in k, then it follows from Proposition 2.2
that for any K ≤ H ≤ G,

e
(H)
K :=

1

|H|
η
k⊗{ϵ}
H ((xK(L))L≤H) =

1

|NH(K)|
∑
U≤K

|U |µ(U,K)[H/U ],

where xK(L) = ϵ if L = hK for some h ∈ H, and xK(L) = 0 otherwise, is an
idempotent of Ωk(H) (cf. [4, Remark 2.5]).

Remark 3.2 The idempotents e
(H)
K , K ∈ Cl(H), of ΩQ(H) are the primitive idem-

potents of ΩQ(H). This fact was given by Gluck [18] and Yoshida [41].



Induction formulae for Mackey functors/ Yugen Takegahara 16

4 The crossed Mackey functor

We introduce the crossed restriction and Mackey functors. Let S ∈ G-set.
For each s ∈ S, Gs denotes the stabilizer of s in G. To begin with, we define a
restriction bundle A for Stab(G;S) := {Gs | s ∈ S} over k to be a collection of
restriction functors

As = (As, con, res) ∈ Res(Gs)k, s ∈ S,

equipped with a family of k-module homomorphisms

con g
sH : As(H) → A gs(

gH),

the crossed conjugation maps, for s ∈ S, H ≤ Gs, and g ∈ G, satisfying the axioms

(C.0) con t
sH = contH ,

(C.1) con g
rs rH ◦ con r

sH = con gr
sH ,

(C.2) con g
sK ◦ resHK = res

gH
gK ◦ con g

sH

for all s ∈ S, K ≤ H ≤ Gs, g, r ∈ G, and t ∈ Gs. In this case, A is called the
restriction bundle composed of As ∈ Res(Gs)k, s ∈ S. Morphisms of restriction
bundles for Stab(G;S) over k are defined in a usual way. We now obtain the category
Res(G;S)k of restriction bundles for Stab(G;S) over k. If A ∈ Res(G)k, then we
naturally view A as a restriction functor for each Gs ∈ Stab(G;S), and identify A
with the restriction bundle composed of

As := A = (A, con, res) ∈ Res(Gs)k, s ∈ S,

such that the crossed conjugation maps are the conjugation maps of A.
Let A ∈ Res(G;S)k. We define

AS = (AS , conS , resS) ∈ Res(G)k

by

AS(H) =

{
(x(s))s∈S ∈

∏
s∈S

As(Hs)

∣∣∣∣∣ x(s) ∈ As(H) if s ∈ CS(H), and

x(s) = 0 otherwise

}
,

con g
S H((x(s))s∈S) = (con g

sH(x(s))) gs∈S ,

res H
SK((x(s))s∈S) = (resHs

Ks
(x(s)))s∈S

for allK ≤ H ≤ G, g ∈ G, and (x(s))s∈S ∈ AS(H), and call it the crossed restriction
functor on A. If A is a restriction functor, then this construction of AS is called the
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crossing of A by S. If A is an algebra restriction functor and if S ∈ G-mon, then
AS denotes the algebra restriction functor with multiplication on AS(H) given by

(x(s))s∈S(y(t))t∈S =

 ∑
(s,t)∈CS(H)×CS(H), st=r

x(s)y(t)


r∈S

,

where the sum is taken over all pairs (s, t) for s, t ∈ CS(H) such that st = r. In
this case, the algebra restriction functor AS is isomorphic to A⊗S .

We next define a Mackey bundle X for Stab(G;S) over k to be a collection of
Mackey functors

Xs = (Xs, con, res, ind) ∈ Mack(Gs)k, s ∈ S,

equipped with a family of k-module homomorphisms

con g
sH : Xs(H) → X gs(

gH),

the crossed conjugation maps, for s ∈ S, H ≤ Gs, and g ∈ G, satisfying the axioms
(C.0)–(C.2) and

(C.3) con g
sH ◦ indHK = ind

gH
gK ◦ con g

sK

for all s ∈ S, K ≤ H ≤ Gs, and g ∈ G. In this case, X is called the Mackey bundle
composed of Xs ∈ Mack(Gs)k, s ∈ S. Morphisms of Mackey bundles for Stab(G;S)
over k are defined in a usual way. We now obtain the category Mack(G;S)k of
Mackey bundles for Stab(G;S) over k. If X ∈ Mack(G)k, then we naturally view
X as a Mackey functor for each Gs ∈ Stab(G;S), and identify X with the Mackey
bundle composed of

Xs := X = (X, con, res, ind) ∈ Mack(Gs)k, s ∈ S,

such that the crossed conjugation maps are the conjugation maps of X.
Let X ∈ Mack(G;S)k. We define

XS = (XS , conS , resS , indS) ∈ Mack(G)k

by

XS(H) =

{
(x(s))s∈S ∈

∏
s∈S

Xs(Hs)

∣∣∣∣∣ con h
sHs

(x(s)) = x( hs) for all h ∈ H

}
,

con g
S H((x(s))s∈S) = (con g

sHs
(x(s))) gs∈S ,

res H
SK((x(s))s∈S) = (resHs

Ks
(x(s)))s∈S ,

ind H
SK((y(s))s∈S) =

 ∑
HshK∈Hs\H/K

indHs

( hK)s
◦ con h

h−1sKh−1
s

(y( h
−1
s))


s∈S
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for all K ≤ H ≤ G, g ∈ G, (x(s))s∈S ∈ XS(H), and (y(s))s∈S ∈ XS(K) (cf. [30,
3.11]), and call it the crossed Mackey functor on X. If X is a Mackey functor, then
this construction of XS is the G-functor version of the Dress construction associated
to S, and is called the crossing of X by S. Verification of the axioms is analogous
to that in the case where X is a Mackey functor. If X is a Green functor and if
S ∈ G-mon, then XS denotes the Green functor with multiplication on XS(H)
given by

(x(s))s∈S(y(t))t∈S =

 ∑
(s,t)∈Hr\S×S, st=r

indHr
Hs,t

(resHs
Hs,t

(x(s)) · resHt
Hs,t

(y(t)))


r∈S

,

where Hr\S × S is a complete set of representatives of Hr-orbits of the diagonal
action on S × S, the sum is taken over all (s, t) ∈ Hr\S × S such that st = r, and
Hs,t = Hs ∩Ht (cf. [5, Theorem 6.1], [30, 3.14]).

We show the commutativity between the construction −+ and the crossing −S .

Proposition 4.1 Let S ∈ G-set, and let A ∈ Res(G)k. Then the Mackey functor
AS+ is isomorphic to A+S.

Proof. Define a restriction subfunctor Ã of A+ = (A+, con+, res+, ind+) by

Ã(H) = {[H,σ] ∈ A+(H) | σ ∈ A(H)}

for all H ≤ G. Then the restriction functor AS is isomorphic to ÃS . Hence it suffices
to verify that the Mackey functor ÃS+ is isomorphic to A+S . Obviously, ÃS is a
restriction subfunctor of A+S = (A+S , con+S , res+S , ind+S). For each H ≤ G, the

k-module ÃS+(H) consists of all k-linear combinations of

[K,σ]s := ((δ(s,K)(t,U)[K,σ])t∈S)U≤H ∈ ÃS+(H)

for K ≤ H, σ ∈ A(K), and s ∈ CS(K), where δ(s,K)(t,U)[K,σ] = 0 ∈ A+(U)
if s ̸= t or if K ̸= U , and δ(s,K)(s,K)[K,σ] = [K,σ] ∈ A+(K). By definition, the

induction morphism ΘA+S ,ÃS : ÃS+ → A+S is a family of k-module homomorphisms

Θ
A+S ,ÃS

H : ÃS+(H) → A+S(H), H ≤ G, such that

Θ
A+S ,ÃS

H ([K,σ]s) = ind H
+S K((δ(s,K)(t,K)[K,σ])t∈S) = (xK,s(t))t∈S

for all K ≤ H, σ ∈ A(K), and s ∈ CS(K), where xK,s(t) = ind Ht

+ hK
◦ con h

+K([K,σ])

if t = hs for some h ∈ H, and xK,s(t) = 0 otherwise. For each H ≤ G, it is obvious

that Θ
A+S ,ÃS

H is a bijection. This, combined with Lemma 2.4, shows that ΘA+S ,ÃS

is an isomorphism of Mackey functors. We have thus proved the proposition. 2

By an analogous argument to the proof of Proposition 4.1, the next proposition
follows from Lemma 2.4.
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Proposition 4.2 Let S ∈ G-mon, and let A ∈ Resalg(G)k. Then the Green func-
tor AS+ is isomorphic to A+S.

We show a generalization of [28, Lemma 3.5] or part of [31, Theorem 3.4].

Corollary 4.3 Let S ∈ G-mon. The Green functor CΩ(−, S) is isomorphic to ΩS.

Proof. Define Z = (Z, con, res) ∈ Resalg(G)Z by Z(H) = Z and congH = resHK = idZ
for all K ≤ H ≤ G and g ∈ G. Then the Green functor Ω is isomorphic to Z+.
Hence the Green functor ΩS is isomorphic to Z+S . By Proposition 3.1, the Green
functor ZS+ is isomorphic to CΩ(−, S). Hence it follows from Proposition 4.2 that
the Green functor ΩS is isomorphic to CΩ(−, S). This completes the proof. 2

Remark 4.4 Keep the notation of Proposition 3.1 and the proofs of Proposition 4.1
and Corollary 4.3. Given K ≤ H ≤ G and s ∈ CS(K), there exists an H-map
πs : H/K →

∏
U≤H ZCS(U) given by

πs(hK) = (δ hKU
hs)U≤H

for all h ∈ H, where δ is the Kronecker delta. The family of Z-lattice homomor-
phisms

ΘH : CΩ(H,S) → ΩS(H), [H/K, πs] 7→ (xK,s(t))t∈S

for H ≤ G, where xK,s(t) = [Ht/
hK](= [h ⊗ Hs/K]) if t = hs for some h ∈ H,

and xK,s(t) = 0 otherwise, defines an isomorphism Θ : CΩ(−, S) → ΩS of Green
functors such that the diagram

ZS+
q1−−−−→ Z̃S+

ΘZ+S,Z̃S
−−−−−→ Z+S

q2

y yq3
Z⊗S+ −−−−−→

υZ⊗S−1
CΩ(−, S) −−−−→

Θ
ΩS

is commutative, where qi, i = 1, 2, 3, are obvious isomorphisms of Green functors,

because υZ⊗S : CΩ(−, S) → Z⊗S+ and ΘZ+S ,Z̃S : Z̃S+ → Z+S are isomorphisms of
Green functors (see also Lemma 2.4).

There exists a bijective correspondence between G-functors introduced by Green
[19], for which we mean Mackey functors for G in this paper, and Mackey functors
on G-set introduced by Dress [16] (cf. [5, Remarks 2.2 and 2.3], [30, Lemma 3.7]).
The rest of this section is devoted to the description of the restriction and Mackey
bundles, together with the crossed Mackey functors, from Dress point of view on
Mackey functors, using finite left G-sets instead of evaluations on subgroups.

Let S ∈ G-set. The category G-set↓S of G-sets over S is defined as follows:

(i) Objects are pairs (J,w) consisting of J ∈ G-set and w ∈ MapG(J, S).
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(ii) Morphisms f : (J1, w1) → (J2, w2) are defined to be G-maps f : J1 → J2 such
that w1 = w2 ◦ f .

A contravariant functor A : G-set↓S → k-mod, (J,w) 7→ A(J,w) is said to
be additive if the two canonical embeddings ι1 : (J1, w1) → (J1∪̇J2, w1+̇w2) and
ι2 : (J2, w2) → (J1∪̇J2, w1+̇w2) with (J1, w1), (J2, w2) ∈ G-set↓S , where the G-
map w1+̇w2 : J1∪̇J2 → S is defined by x 7→ wi(x) for all x ∈ Ji with i = 1, 2,
induce an isomorphism

A(ι1)⊕A(ι2) : A(J1∪̇J2, w1+̇w2)
∼→ A(J1, w1)⊕A(J2, w2).

We denote by k-Fun(G;S) the functor category with objects the additive con-
travariant functors A : G-set↓S → k-mod and morphisms the natural transfor-
mations between two such functors. For each A ∈ k-Fun(G;S), there exists a
restriction bundle A = ARes composed of

As = (As, con, res) ∈ Res(Gs)k, s ∈ S,

given by
(B.0) As(H) = A(G/H, ♮s),

(B.1) con g
sH = A(G/ gH → G/H, r gH 7→ rgH),

(B.2) resHK = A(G/K → G/H, rK 7→ rH)

for all s ∈ S, K ≤ H ≤ Gs, and g ∈ G, where ♮s : G/H → S is defined by
♮s(rH) = rs for all r ∈ G. Conversely, for each restriction bundle A composed of

As = (As, con, res) ∈ Res(Gs)k, s ∈ S,

together with the crossed conjugation maps con g
sH for s ∈ S, H ≤ Gs, and g ∈ G,

there exists a contravariant functor A = AFun : G-set↓S → k-mod given by

(F.0) A(J,w) =

(∏
x∈J

Aw(x)(Gx)

)G

=

{
(σx)x∈J ∈

∏
x∈J

Aw(x)(Gx)

∣∣∣∣∣ con
g

w(x)Gx
(σx) = σ gx

for all x ∈ J and g ∈ G

}
,

(F.1) A(f) : A(J,w) → A(J ′, w′), (σx)x∈J 7→ (res
Gf(x′)
Gx′

(σf(x′)))x′∈J ′

for all objects (J,w) and morphisms f : (J ′, w′) → (J,w) of G-set↓S , which is
additive. Moreover, the categories k-Fun(G;S) and Res(G;S)k are equivalent.

A bifunctor X = (X ∗,X∗) : G-set↓S → k-mod, (J,w) 7→ X (J,w), which
consists of a contravariant functor X ∗ : G-set↓S → k-mod, (J,w) 7→ X ∗(J,w)
and a covariant functor X∗ : G-set↓S → k-mod, (J,w) 7→ X∗(J,w) such that
X (J,w) = X ∗(J,w) = X∗(J,w) for all (J,w) ∈ G-set↓S, is called a Mackey functor
on G-set↓S if the following two conditions are fulfilled by X :



Induction formulae for Mackey functors/ Yugen Takegahara 21

(i) For each pull back diagram in G-set↓S

(J,w)
f1−−−−→ (J1, w1)

f2

y yf13
(J2, w2) −−−−→

f23
(J3, w3)

the diagram

X (J,w)
X∗(f1)−−−−→ X (J1, w1)

X ∗(f2)

x xX ∗(f13)

X (J2, w2) −−−−−→
X∗(f23)

X (J3, w3)

is commutative.

(ii) The contravariant functor X ∗ : G-set↓S → k-mod is additive.

Given Mackey functors X1 = (X1
∗,X1∗) and X2 = (X2

∗,X2∗) on G-set↓S, a
family of k-module homomorphisms f(J,w) : X1(J,w) → X2(J,w), (J,w) ∈ G-set↓S ,
is called a natural transformation of Mackey functors on G-set↓S if this family is a
natural transformation X1

∗ → X2
∗ and X1∗ → X2∗.

Let k-Fun∗(G;S) be the functor category with objects the Mackey functors
on G-set↓S and morphisms the natural transformations of Mackey functors on
G-set↓S . For each X = (X ∗,X∗) ∈ k-Fun∗(G;S), there exists a Mackey bundle
X = XMack composed of

Xs = (Xs, con, res, ind) ∈ Mack(Gs)k, s ∈ S,

such that the collection of restriction functors Xs = (Xs, con, res) ∈ Res(Gs)k,
s ∈ S, is the restriction bundle defined to be X ∗

Res and the induction maps are
given by

(B.3) indHK = X∗(G/K → G/H, rK 7→ rH)

for all s ∈ S and K ≤ H ≤ Gs. Conversely, for each Mackey bundle X composed of

Xs = (Xs, con, res, ind) ∈ Mack(Gs)k, s ∈ S,

there exists a Mackey functor X = XFun∗ = (X ∗,X∗) on G-set↓S such that the
contravariant functor X ∗ : G-set↓S → k-mod is defined to be XFun for the restric-
tion bundle X composed of Xs = (Xs, con, res) ∈ Res(Gs)k, s ∈ S, arising from X
by forgetting induction maps and the covariant functor X∗ : G-set↓S → k-mod is
given by

(F.2) X∗(f) : X (J ′, w′) → X (J,w), (σx′)x′∈J ′ 7→

 ∑
x′∈Gx\f−1(x)

indGx
Gx′

(σx′)


x∈J
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for all morphisms f : (J ′, w′) → (J,w) of G-set↓S, where Gx\f−1(x) is a com-
plete set of representatives of Gx-orbits in the inverse image f−1(x) of x under f .
Moreover, the categories k-Fun∗(G;S) and Mack(G;S)k are equivalent.

Let • be the one-point G-set. When S = •, we write k-Fun(G) = k-Fun(G; •)
and k-Fun∗(G) = k-Fun∗(G; •) for shortness’ sake. Obviously, k-Fun(G) and
k-Fun∗(G) are regarded as the categories of the contravariant and Mackey functors
on G-set, respectively. Moreover, the categories k-Fun(G) and Res(G)k are equiv-
alent, and so are the categories k-Fun∗(G) and Mack(G). There exists a unique
G-map S → •. We define a functor Fun∗(S → •) : k-Fun∗(G) → k-Fun∗(G;S) by

Fun∗(S → •)(X ) : G-set↓S → k-mod, (J,w) 7→ X (J, (S → •) ◦ w)

for all X ∈ k-Fun∗(G). Given X ∈ k-Fun∗(G), we write XS
↓ = (Fun∗(S → •))(X ).

We turn to the Dress construction from Mackey functors on G-set↓S . For each
J ∈ G-set, let PrS be the projection J × S → S. Given a G-map f : J ′ → J with
J, J ′ ∈ G-set, we denote by fS : (J ′ × S,PrS) → (J × S,PrS) the morphism of
G-set↓S induced from f × idS : J ′×S → J ×S. Let X = (X ∗,X∗) ∈ k-Fun∗(G;S).
We define XS = (XS∗,XS∗) ∈ k-Fun∗(G) by

XS(J) = X (J × S,PrS),

XS∗(f) = X ∗(fS) : X (J × S,PrS) → X (J ′ × S,PrS),

XS∗(f) = X∗(fS) : X (J ′ × S,PrS) → X (J × S,PrS)

for all J ∈ G-set and f ∈ MapG(J
′, J) with J, J ′ ∈ G-set. If X ∈ Mack(G;S)k

and if X = XFun∗ , then XS
∼= (XS)Mack. Simultaneously, if X ∈ k-Fun∗(G;S)

and if X = XMack, then XS ∼= (XS)
Fun∗ . Given X ∈ k-Fun∗(G), the construction

X 7→ (XS
↓ )S is called the Dress construction associated to S (see [5, 30]).

Let A ∈ k-Fun(G). Set A+S = (((ARes+)
Fun∗)S↓ )S and AS+ = (AResS+)

Fun∗ .
Then for each J ∈ G-set,

A+S(J) =

 ∏
(x,s)∈J×S

ARes+(G(x,s))

G

,

where the superscript G denotes the set of G-invariants with respect to the action
induced by the conjugation maps G/ gG(x,s) → G/G(x,s), r

gG(x,s) 7→ rgG(x,s) for
g ∈ G and (x, s) ∈ J × S. Likewise,

AS+(J) =

(∏
x∈J

AResS+(Gx)

)G
for each J ∈ G-set. By Proposition 4.1, we know that the family of k-module
homomorphisms A+S(J) → AS+(J), J ∈ G-set, given by

([U(x,s), σ(x,s)])(x,s)∈J×S 7→

 ∑
s∈Gx\S

[U(x,s), (δstσ(x,s))t∈S ]


x∈J

,
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where U(x,s) ≤ G(x,s), σ(x,s) ∈ A(G(x,s)/U(x,s)), and Gx\S is a complete set of
representatives of Gx-orbits in S, defines an isomorphism A+S → AS+ of Mackey
functors on G-set.

5 Induction formulae for Mackey functors

Let X, Y, Z ∈ Mack(G)k. A pairing X ⊗k Y → Z is defined to be a family of
k-module homomorphisms

X(H)⊗k Y (H) → Z(H), x⊗ y 7→ x · y

for H ≤ G, satisfying the axioms

(P.1) congH(x · y) = congH(x) · con
g
H(y),

(P.2) resHK(x · y) = resHK(x) · resHK(y),
(P.3) (Frobenius axioms)

x · indHK(y′) = indHK(res
H
K(x) · y′), indHK(x

′) · y = indHK(x
′ · resHK(y))

for all K ≤ H ≤ G, g ∈ G, x ∈ X(H), y ∈ Y (H), x′ ∈ X(K) and y′ ∈ Y (K) (cf.
[4, 16, 35, 40]).

We need to quote [4, Proposition 1.5(i)] (see also [16, Proposition 4.2] and [35,
Proposition 6.1]).

Proposition 5.1 For any X ∈ Mack(G)k, the family of k-module homomorphisms

Ωk(H)⊗k X(H) → X(H), [H/K]⊗ x 7→ indHK ◦ resHK(x)

for H ≤ G is a pairing, and makes k-modules X(H) for H ≤ G into Ωk(H)-modules.

Suppose that X ∈ Mack(G)k. Let H ≤ G. We can consider X(H) to be a left
Ωk(H)-module with the action given by∑

K≤H
ℓK [H/K]

 · x =
∑
K≤H

ℓK indHK ◦ resHK(x)

for all ℓK ∈ k with K ≤ H and x ∈ X(H). If |G| is invertible in k, then the primitive

idempotent e
(H)
K of Ωk(H) with K ∈ Cl(H) (cf. Remark 3.2) acts on X(H) by

e
(H)
K · x =

1

|NH(K)|
∑
U≤K

|U |µ(U,K)indHU ◦ resHU (x) (III)

for all x ∈ X(H). Moreover, since the identity of Ωk(H) is expressed as a sum of

orthogonal idempotents
∑

K∈Cl(H) e
(H)
K , it follows that

x =
∑

K∈Cl(H)

1

|NH(K)|
∑
U≤K

|U |µ(U,K)indHU ◦ resHU (x)

for all x ∈ X(H), which is reduced to the formula in Corollary 5.4.
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Lemma 5.2 Let X ∈ Mack(G)k. If |G| is invertible in k, then the following state-
ments hold.

(a) For any K < H ≤ G and x ∈ X(H), resHK(e
(H)
H · x) = 0.

(b) For any K < H ≤ G and y ∈ X(K), e
(H)
H · indHK(y) = 0.

(c) Suppose that f ∈ Res(G)(X,X)k. If e
(K)
K · (fK(x)−x) = 0 for all K ≤ G and

x ∈ X(K), then f = idX , that is, fH = idX(H) for all H ≤ G.

Proof. Let H ≤ G. For any K < H, it follows from Proposition 2.2 that

ρ
k⊗{ϵ}
K (res H

+K(e
(H)
H )) = res+HK(ρ

k⊗{ϵ}
H (e

(H)
H ))

=
1

|H|
res+HK(ρ

k⊗{ϵ}
H ◦ η

k⊗{ϵ}
H ((xH(L))L≤H)) = 0,

which, together with Proposition 2.2, shows that res H
+K(e

(H)
H ) = 0. Hence (a) follows

from Proposition 5.1 and the axiom (P.2) of a pairing. Moreover, (P.3) yields

e
(H)
H · indHK(y) = indHK(res

H
+K(e

(H)
H ) · y) = 0

for all K < H and y ∈ X(K). Thus (b) holds. (The statements (a) and (b) are
proved in the proof of [4, Proposition 6.2].) To prove (c), we argue by induction
on |H|. Suppose that |H| > 1, and let x ∈ X(H). By the inductive assumption,
fU (res

H
U (x)) = resHU (x) for all U < H. This, combined with (III), shows that

e
(H)
H · (fH(x)− x) =

1

|H|
∑
U≤H

|U |µ(U,H)indHU ◦ resHU (fH(x)− x)

=
1

|H|
∑
U≤H

|U |µ(U,H)indHU (fU (res
H
U (x))− resHU (x))

= fH(x)− x.

Since e
(H)
H · (fH(x)−x) = 0, it follows that fH(x) = x. This completes the proof. 2

We define a restriction subfunctor KX = (KX , con, res) of X by

KX(H) =
∩
K<H

{x ∈ X(H) | resHK(x) = 0}

for all H ≤ G. A subgroup H of G is said to be coprimordial for X if KX(H) ̸= {0}
(cf. [4]). We denote by C(X) the set of coprimordial subgroups for X.

Suppose now that A is a restriction subfunctor of X. A canonical induction
formula for X from A is defined to be a morphism Ψ : X → A+ of restriction
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functors with ΘX,A ◦ Ψ = idX , where ΘX,A : A+ → X is the induction morphism
defined in Section 2 (cf. [4, Definition 3.3]).

Let λ ∈ Con(G)(X,A)k. Then (λK ◦ resHK(x))K≤H ∈ A+(H) for all H ≤ G and
x ∈ X(H). We define ΨX,A,λ : X → A+ to be a family of k-module homomorphisms

ΨX,A,λ
H : X(H) → A+(H), H ≤ G, such that

ΨX,A,λ
H (x) =

1

|H|
ηAH((λK ◦ resHK(x))K≤H)

for all x ∈ X(H), provided |G| is invertible in k. For any H ≤ G and x ∈ X(H),

ΨX,A,λ
H (x) =

1

|H|
∑
K≤H

∑
U≤K

|U |µ(U,K)[U, resKU ◦ λK ◦ resHK(x)]. (IV)

The following result is due to Boltje [4, Proposition 6.4].

Proposition 5.3 Let X ∈ Mack(G)k, and let A be a restriction subfunctor of X.
Suppose that |G| is invertible in k. Let λ ∈ Con(G)(X,A)k. Then ΨX,A,λ is a
morphism of restriction functors, and the following conditions are equivalent :

(1) ΨX,A,λ is a canonical induction formula for X from A;

(2) e
(H)
H · (λH(x)− x) = 0 for all H ∈ C(X) and x ∈ X(H).

Proof. Obviously, ΨX,A,λ is a morphism of conjugation functors. Since ρA is a
morphism of restriction functors, it follows that

ηAU ◦ ρAU ◦ res H
+U ◦ ηAH = ηAU ◦ res+HU ◦ ρAH ◦ ηAH

for all U ≤ H ≤ G. This, combined with Proposition 2.2, shows that

res H
+U ◦ΨX,A,λ

H (x) =
1

|H|
res H

+U ◦ ηAH
(
(λK ◦ resHK(x))K≤H

)
=

1

|U |
ηAU ((λK ◦ resUK ◦ resHU (x))K≤U )

= ΨX,A,λ
U ◦ resHU (x)

for all U ≤ H ≤ G and x ∈ X(H), and thereby, ΨX,A,λ is a morphism of restriction
functors. We next prove the equivalence between the conditions (1) and (2). By
using Lemma 5.2(b) and (IV), we have

e
(H)
H · (ΘX,A

H ◦ΨX,A,λ
H (x)− λH(x)) = 0

for all H ≤ G and x ∈ X(H). Hence (1) implies (2). Suppose that the condition of

(2) holds. By Lemma 5.2(a) and hypothesis, e
(H)
H · (λH(x)− x) = 0, and hence

e
(H)
H · (ΘX,A

H ◦ΨX,A,λ
H (x)− x) = 0
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for all H ≤ G and x ∈ X(H). This, combined with Lemma 5.2(c), shows that
ΨX,A,λ is a canonical induction formula for X from A. We have thus proved the
proposition. 2

We next define λX : X → KX to be a family of k-module homomorphisms
λXH : X(H) → KX(H), H ≤ G, such that

λXH(x) = e
(H)
H · x (V)

for all x ∈ X(H), provided |G| is invertible in k. By Lemma 5.2(a), this definition

makes sense. Clearly, λX ∈ Con(G)(X,KX)k. We write ΨX,KX
= ΨX,KX ,λX for the

sake of simplicity. By Proposition 5.3, ΨX,KX
is a canonical induction formula for

X from KX , which is said to be minimal (cf. [4, Example 6.9]).
The following corollary, which is part of [4, Example 6.9], generalizes Brauer’s

explicit version of Artin’s induction theorem for virtual C-characters of G (cf. [3,
Corollary 3.3], [8, Satz 2], [41, Corollary 4.5]) and Witherspoon’s explicit version of
Conlon’s induction theorem (cf. [36, Proposition 3.7]).

Corollary 5.4 Let X ∈ Mack(G)k, and suppose that |G| is invertible in k. Then

x =
∑

K∈Cl(H)∩C(X)

1

|NH(K)|
∑
U≤K

|U |µ(U,K)indHU ◦ resHU (x)

for all H ≤ G and x ∈ X(H).

Proof. Let H ≤ G and x ∈ X(H). Then by (III), Lemma 5.2(a), and (IV), we have

ΨX,KX

H (x) =
1

|H|
∑
K≤H

∑
U≤K

|U |µ(U,K)[U, resKU (e
(K)
K · resHK(x))]

=
∑

K∈Cl(H)∩C(X)

|K|
|NH(K)|

[K, e
(K)
K · resHK(x)]

=
∑

K∈Cl(H)∩C(X)

1

|NH(K)|
∑
U≤K

|U |µ(U,K)[K, indKU ◦ resHU (x)].

Hence the corollary follows from the fact that ΨX,KX
is a canonical induction formula

for X from KX . This completes the proof. 2

For each H ≤ G, we set

T X(H) =
∑
K<H

{indHK(y) | y ∈ X(K)}.

A subgroup H of G is said to be primordial for X if T X(H) ̸= X(H) (cf. [35]). We
denote by P(X) the set of primordial subgroups for X.

The following proposition is part of [4, Proposition 6.2]. (This is a special case
of a much more general result of Dress [16, Theorems 2 and 3].)
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Proposition 5.5 Let X ∈ Mack(G)k, and suppose that |G| is invertible in k. Then

KX(H) = {e(H)
H · x | x ∈ X(H)},

T X(H) = {x− e
(H)
H · x | x ∈ X(H)},

X(H) = KX(H)⊕ T X(H)

for all H ≤ G. Moreover C(X) = P(X).

Proof. The first two assertions follow from (III) and Lemma 5.2(a), (b). The
remaining assertions are straightforward. This completes the proof. 2

We define
X = (X, con) ∈ Con(G)k

by
X(H) = X(H) := X(H)/T X(H) and congH(x) = congH(x)

for all H ≤ G, g ∈ G, and x ∈ X(H), where x = x + T X(H) for all x ∈ X(H). If
X is a Green functor, then X is an algebra conjugation functor.

Following [35], we define a morphism β : X → X
+
of Mackey functors by

βH(x) = (resHK(x))K≤H

for all H ≤ G and x ∈ X(H). If X is a Green functor, then β is a morphism
of Green functors. By virtue of Lemma 5.2(b) and Proposition 5.5, there exists

an isomorphism ∆ : X
+ → (KX)+ of Mackey functors defined to be a family of

k-module isomorphisms ∆H : X
+
(H)

∼→ (KX)+(H), H ≤ G, such that

∆H((xK)K≤H) = (e
(K)
K · xK)K≤H

for all (xK)K≤H ∈
∏
K≤H X(K). From Proposition 2.2, we know that the diagram

X(H)
βH−−−−→ X

+
(H)

ΨX,KX

H

y y∆H

(KX)+(H) −−−−→
ρK

X
H

(KX)+(H)

with H ≤ G is commutative, where ΨX,KX
= ΨX,KX ,λX (see (IV) and (V)).

The next proposition is due to Thévenaz [35, Corollary 4.4, Theorem 12.3], which
is explored on the basis of [32, Proposition 3.4(iii)].

Proposition 5.6 Let X ∈ Mack(G)k, and suppose that |G| is invertible in k.
Then β is an isomorphism of Mackey functors. If X is a Green functor, then β is
an isomorphism of Green functors.



Induction formulae for Mackey functors/ Yugen Takegahara 28

Proof. By Proposition 2.2, it suffices to verify that ΨX,KX
is an isomorphism of

restriction functors. Recall that ΨX,KX
is a canonical induction formula for X from

KX . Using the Mackey axiom, Lemma 5.2(a), (b), (IV), (V), and Proposition 5.5,
we have

ΨX,KX

H ◦ΘX,KX

H ([L, x])

=
1

|H|
∑
K≤H

∑
U≤K

|U |µ(U,K)[U, resKU (e
(K)
K · resHK ◦ indHL (x))]

=
∑

K∈Cl(H)∩C(H)

|K|
|NH(K)|

[K, e
(K)
K · resHK ◦ indHL (x)]

=
∑

K∈Cl(H)∩C(H)

|K|
|NH(K)|

∑
KhL∈K\H/L

[K, e
(K)
K · indKK∩ hL ◦ res hL

K∩ hL ◦ conhL(x)]

=
|L|

|NH(L)|
∑

hL∈NH(L)/L

[ hL, e
( hL)
hL

· conhL(x)]

= [L, x]

for all H ≤ G and [L, x] ∈ (KX)+(H) with L ∈ Cl(H)∩C(H). Consequently, ΨX,KX

is the inverse of ΘX,KX
. This completes the proof. 2

Remark 5.7 By Proposition 2.2, Lemma 5.2(a), and the proof of Proposition 5.6,

β−1
H ((xK)K≤H) = ΘX,KX

H ◦ 1

|H|
ηK

X

H ◦∆H((xK)K≤H)

=
1

|H|
∑

K∈P(X)

∑
U≤K

|U |µ(U,K)indHU ◦ resKU (e
(K)
K · xK)

=
∑

K∈Cl(H)∩P(X)

|K|
|NH(K)|

indHK(e
(K)
K · xK)

for all (xK)K≤H ∈ X
+
(H) (cf. [35, Proposition 12.5]). Hence

x =
∑

K∈Cl(H)∩P(X)

|K|
|NH(K)|

indHK(e
(K)
K · resHK(x))

for all x ∈ X(H) (see also the final statement of [35, Section 7]). This, combined
with (III), yields the induction formula given in Corollary 5.4.

6 Induction formulae for crossed Mackey functors

Let S ∈ G-set, and let X ∈ Mack(G;S)k. A subgroup H of G is said to
be primordial for X if T Xs(H) ̸= Xs(H) for some s ∈ CS(H), and is said to be
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coprimordial for X if KXs(H) ̸= {0} for some s ∈ CS(H). Let P(X) be the set of
primordial subgroups of G, and let C(X) be the set of coprimordial subgroups of G.

We denote by KX the restriction bundle for Stab(G;S) over k composed of
KXs ∈ Res(Gs)k, s ∈ S, such that the crossed conjugation maps are the restriction
of those of X. Recall that (KX)S denotes the crossed restriction functor on KX .

We now define
XS = (XS , conS) ∈ Con(G)k

by

XS(H) =
∏

s∈CS(H)

Xs(H) and con g
S H((x(s))s∈CS(H)) = (con g

sH(x(s))) gs∈CS( gH)

for all H ≤ G and g ∈ G. If X is a Green functor and if S ∈ G-mon, then XS

denotes the algebra conjugation functor with multiplication on XS(H) given by

(x(s))s∈CS(H)(y(t))t∈CS(H) =

 ∑
(s,t)∈CS(H)×CS(H), st=r

x(s)y(t)


r∈CS(H)

.

Moreover, if X is a Green functor and if S ∈ G-mon, then we also define

X⊗S = (X⊗S , con⊗S) ∈ Conalg(G)k

by
X⊗S(H) = X(H)⊗k kCS(H) and con g

⊗S H(x⊗ s) = congH(x)⊗
gs

for all H ≤ G, x ∈ X(H), s ∈ CS(H), and g ∈ G. In this case, each k-module
X⊗S(H) with H ≤ G is considered to have an obvious k-algebra structure, so that
the algebra conjugation functor X⊗S is isomorphic to XS .

Proposition 6.1 Let S ∈ G-set, and let X ∈ Mack(G;S)k. If |G| is invertible in
k, then for any H ≤ G, KXS (H) = (KX)S(H), and the map

XS(H) → XS(H), (x(s))s∈S 7→ (x(s))s∈CS(H)

is a k-module isomorphism. In particular, C(XS) = C(X) and P(XS) = P(X).

Proof. Let H ≤ G. If (x(s))s∈S ∈ KXS (H) and if Ht ̸= H with t ∈ S, then clearly
res H

SHt
((x(s))s∈S) = 0, whence x(t) = resHt

Ht
(x(t)) = 0. This, combined with (III)

and Proposition 5.5, shows that

KXS (H) = {e(H)
H · (x(s))s∈S | (x(s))s∈S ∈ XS(H)}

=

{
(e

(H)
H · x(s))s∈S ∈ XS(H)

∣∣∣∣∣ x(s) ∈ Xs(H) if s ∈ CS(H), and

x(s) = 0 if s ̸∈ CS(H)

}

=

{
(x(s))s∈S ∈ XS(H)

∣∣∣∣∣ x(s) ∈ KXs(H) if s ∈ CS(H), and

x(s) = 0 if s ̸∈ CS(H)

}
= (KX)S(H).
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Thus the first assertion holds. Moreover, by Proposition 5.5,

XS(H) = KXS (H)⊕ T XS (H) = (KX)S(H)⊕ T XS (H)

for all H ≤ G, which, together with Proposition 5.5, yields the second assertion.
This completes the proof. 2

Given A = (A, con) ∈ Con(G)k and K ≤ H ≤ G, we set

A(K)NH(K) = {x ∈ A(K) | conhK(x) = x for all h ∈ NH(K)}.

The following corollary is concerned with (I) (see Section 1 and Corollary 8.8).

Corollary 6.2 Let S ∈ G-set, and let X ∈ Mack(G;S)k. Suppose that |G| is
invertible in k. Then the Mackey functor XS is isomorphic to (XS)

+, and the map

XS(H) →
∏

K∈Cl(H)∩P(X)

XS(K)NH(K),

(x(s))s∈S 7→
((

resHs
K (x(s))

)
s∈CS(K)

)
K∈Cl(H)∩P(X)

with H ≤ G is a k-module isomorphism. Moreover, if X is a Green functor and if
S ∈ G-mon, then the Green functor XS is isomorphic to (X⊗S)

+, and the map

XS(H) →
∏

K∈Cl(H)∩P(X)

X⊗S(K)NH(K),

(x(s))s∈S 7→

 ∑
s∈CS(K)

resHs
K (x(s))⊗ s


K∈Cl(H)∩P(X)

with H ≤ G is a k-algebra isomorphism.

Proof. The corollary follows from Propositions 5.6 and 6.1. 2

We next state an induction formula for XS .

Corollary 6.3 Let S ∈ G-set, and let X ∈ Mack(G;S)k. If |G| is invertible in k,
then

(x(s))s∈S =
∑

K∈Cl(H)∩C(X)

1

|NH(K)|
∑
U≤K

|U |µ(U,K)ind H
S U ◦ res H

S U ((x(s))s∈S)

for all H ≤ G and (x(s))s∈S ∈ XS(H).

Proof. The assertion follows from Corollary 5.4 and Proposition 6.1. 2
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7 The twisted group algebra CαG

From now on, we assume that k = Z and F is an algebraically closed field.
Let E(G) be a finite dimensional F -algebra, and suppose that there exists a

collection {Eg}g∈G of subspaces of E(G) which satisfy EgEr = Egr for all g, r ∈ G
and E(G) = ⊕g∈GEg. Such an F -algebra E(G) is called a fully G-graded F -algebra
(see [2, Definition 1.1]). We call {Eg}g∈G a fully G-graded system on E(G). Note
that the identity of E(G) is contained in Eϵ (cf. [12]).

LetH ≤ G, and set E(H) = ⊕h∈HEh. Then E(H) is a subalgebra of E(G) with a
fullyH-graded system {Eh}h∈H . LetK ≤ H. For eachM ∈ E(H)-mod, EresHK(M)
denotes the restrictionM |E(K) ofM to E(K). For each N ∈ E(K)-mod, EindHK(N)
denotes the induced E(H)-module E(H) ⊗E(K) N . Given N ∈ E(K)-mod and

h ∈ H, we define a conjugate E( hK)-module EconhK(N) to be the component

Eh ⊗E(K) N = {u⊗ v | u ∈ Eh and v ∈ N}

of EindHK(N) with the action given by left multiplication in the first factor.
For each H ≤ G, let R(E(H)) be the additive group consisting of all Z-linear

combinations of isomorphism classes of finitely generated left E(H)-modules with
direct sum for addition. There exist conjugation, restriction, and induction maps

EcongH : R(E(H)) → R(E( gH)), [M ] 7→ [EcongH(M)],

EresHK : R(E(H)) → R(E(K)), [M ] 7→ [EresHK(M)],

EindHK : R(E(K)) → R(E(H)), [N ] 7→ [EindHK(N)]

for K ≤ H ≤ G and g ∈ G, where M ∈ E(H)-mod and N ∈ E(K)-mod. These
maps are simply denoted by Econ, Eres, and Eind.

We are now ready to quote Mackey’s theorem (cf. [2, Theorem 2.2]).

Theorem 7.1 Let E(G) be a fully G-graded F -algebra with a fully G-graded system
{Eg}g∈G, and let K, U ≤ H ≤ G. Then for any x ∈ R(E(U)),

EresHK ◦ EindHU (x) =
⊕

KhU∈K\H/U

EindKK∩ hU ◦ Eres hU
K∩ hU ◦ EconhU (x).

By Theorem 7.1, the family of Z-modules RE(H) := R(E(H)), H ≤ G, together
with Econ, Eres, and Eind, defines RE = (RE,Econ,Eres,Eind) ∈ Mack(G)Z. We
call this Mackey functor the E(G)-representation functor.

Let α : G×G→ F× be a normalized 2-cocycle, that is,

α(rs, t)α(r, s) = α(r, st)α(s, t)

for all r, s, t ∈ G, and α(s, t) = 1 whenever either s or t is equal to ϵ. Given H ≤ G,
we denote by FαH the F -algebra with a basis {s}s∈H and multiplication given by

s t = α(s, t)st
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for all s, t ∈ H, and call it the twisted group algebra. Observe that FαG is a
fully G-graded F -algebra with a fully G-graded system {Fs}s∈G. We now write
Rα(H) = R(FαH) for all H ≤ G, and denote by

Rα = (Rα, con, res, ind) (∈ Mack(G)Z)

the FαG-representation functor.
Given H ≤ G and M ∈ CαH-mod, we define a map χM : H → C by

χM (h) = Tr(h,M)

for all h ∈ H, and call it the α-character of H afforded by M , where Tr(h,M) is
the trace of the action of h on M (cf. [22, p. 351]).

If the characteristic of F does not divide |G|, then FαH with H ≤ G is semisim-
ple (see, e.g., [22, Theorem 3.2.10]).

We prove directly, via the representation theory of CαG, the following general-
ization of a well-known fact for the CG-representation functor.

Lemma 7.2 Suppose that F = C. Then C(Rα) is the set of cyclic subgroups of G.

Proof. Let H ≤ G. Suppose that M ∼= N with M, N ∈ CαH-mod. Then it
follows from [22, Proposition 7.1.9] that χM = χN . By [22, Theorem 7.1.10], the α-
characters of H afforded by all nonisomorphic irreducible CαH-modules are linearly
independent. This means that, if H is not cyclic, then KRα(H) = {0}. Thus every
coprimordial subgroup for Rα is cyclic. Suppose now that H = ⟨r⟩. We prove
H ∈ C(Rα). By the proof of [22, Lemma 5.8.13], there exists a map δ : H → C such
that the map

CαH → CH, h 7→ δ(h)h

is a C-algebra isomorphism. Hence χM (r) ̸= 0 for some M ∈ CαH-mod. Suppose
now that Rα is extended to QRα ∈ Mack(G)Q by Q-linearly. Then [M ] ̸∈ T QRα(H),
and thereby, H ∈ P(QRα). Obviously, C(QRα) = C(Rα). Moreover, it follows from
Proposition 5.5 that P(QRα) = C(QRα). Thus H ∈ C(Rα), completing the proof.
2

We provide another lemma (cf. [4, Example 9.7], [34, Lemma 8.2]).

Lemma 7.3 Suppose that F = C. Let U ⊴ K ≤ G, and suppose that K/U is
cyclic. Let N ∈ CαU -mod with dimC(N) = 1, and suppose that for each r ∈ K, N
is isomorphic to conrU (N). Let M ∈ CαK-mod, and suppose that M is irreducible.
If N is an irreducible constituent of resKU (M), then N is isomorphic to resKU (M).

Proof. By [22, Theorem 6.2.4], N is extensible to a left CαK-module. This, com-
bined with [22, Corollary 6.4.4], shows that there exist precisely e = |K : U | non-
isomorphic left CαK-modules Mi, i = 1, . . . , e, extending N . Thus it follows from
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[22, Theorem 5.6.2] that indKU (N) = ⊕e
i=1Mi. Moreover, if N is an irreducible con-

stituent of resKU (M), then M is an irreducible constituent indKU (N), and thereby,
M ∼=Mi for some i. This completes the proof. 2

8 The twisted quantum double Dω(G) of a finite group

Let (FG)∗ be the F -algebra consisting of all F -linear maps from the group
algebra FG to F with pointwise addition and multiplication. For each s ∈ G, we
define an element ϕs of (FG)

∗ by

ϕs(g) =

{
1 if s = g ∈ G,

0 if s ̸= g ∈ G.

The elements ϕs, s ∈ G, form an F -basis of (FG)∗.
Let ω : G×G×G→ F× be a normalized 3-cocycle, that is,

ω(g, r, s)ω(g, rs, t)ω(r, s, t) = ω(gr, s, t)ω(g, r, st)

for all g, r, s, t ∈ G, and ω(g, r, s) = 1 whenever one of g, r or s is equal to ϵ. Given
g, r, s ∈ G, we define

θs(g, r) =
ω(s, g, r)ω(g, r, (gr)

−1
s)

ω(g, g−1s, r)

and

γs(g, r) =
ω(g, r, s)ω(s, s

−1
g, s

−1
r)

ω(g, s, s−1r)
.

The twisted quantum doubleDω(G) of G with respect to ω (cf. [14, 23, 26, 38]) is
the quasi-triangular quasi-Hopf algebra with underlying vector space (FG)∗⊗F FG,

multiplication (ϕs ⊗ g)(ϕt ⊗ r) = θs(g, r)ϕsϕ gt ⊗ gr,

unit 1Dω(G) =
∑
s∈G

ϕs ⊗ ϵ,

comultiplication ∆(ϕr ⊗ g) =
∑

s, t∈G, st=r
γg(s, t)(ϕs ⊗ g)⊗ (ϕt ⊗ g),

counit ε(ϕs ⊗ g) = δsϵ,

Drinfel’d associator Φ =
∑

r, s, t∈G
ω(r, s, t)−1(ϕr ⊗ ϵ)⊗ (ϕs ⊗ ϵ)⊗ (ϕt ⊗ ϵ),

universal R-matrix R =
∑
s, t∈G

(ϕs ⊗ ϵ)⊗ (ϕt ⊗ s),

antipode S(ϕs ⊗ g) = θs−1(g, g−1)−1γg(s, s
−1)−1ϕ g−1s−1 ⊗ g−1.
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For verification, we need to apply the identities

θs(g, r)θs(gr, t) = θ g−1
s
(r, t)θs(g, rt),

θst(g, r)γgr(s, t) = γg(s, t)γr(
g−1
s, g

−1
t)θs(g, r)θt(g, r),

γg(rs, t)γg(r, s)ω(
g−1
r, g

−1
s, g

−1
t) = γg(r, st)γg(s, t)ω(r, s, t)

for all g, r, s, t ∈ G. We denote by R(Dω(G)) the representation ring of Dω(G),
which is the commutative ring consisting of all Z-linear combinations of isomorphism
classes of finitely generated left Dω(G)-modules with direct sum for addition and
tensor product for multiplication.

Let H ≤ G. We define a subalgebra Dω
G(H) of Dω(G) to be

Dω
G(H) =

∑
s∈G, h∈H

Fϕs ⊗ h.

We view each h ∈ H as
∑

s∈G ϕs ⊗ h ∈ Dω
G(H). Each ϕs ∈ (FG)∗ where s ∈ G is

identified with ϕs ⊗ ϵ ∈ Dω
G(H).

We consider Dω(G) to be a fully G-graded F -algebra with a fully G-graded
system {

∑
s∈G Fϕs ⊗ g}g∈G, and denote by

RDω
G = (RDω

G,Dcon,Dres,Dind) (∈ Mack(G)Z)

the Dω(G)-representation functor.
Let H ≤ G and s ∈ G. If g, r, t ∈ Hs, then

θs(g, r) = γs(g, r) =
ω(s, g, r)ω(g, r, s)

ω(g, s, r)

and
θs(tg, r)θs(t, g) = θs(t, gr)θs(g, r).

Thus we obtain a normalized 2-cocycle

θs : Hs ×Hs → F×, (g, r) 7→ θs(g, r).

We denote by Gc the G-monoid G on which G acts by conjugation rs with
r, s ∈ G, and denote by H\Gc a complete set of representatives of H-orbits in Gc.

For each s ∈ Gc, there exists a two-sided ideal Dω
s (H) of Dω

G(H) defined by

Dω
s (H) =

∑
rHs∈H/Hs

∑
h∈H

Fϕ rs ⊗ h.

Obviously, Dω
G(H) is expressed as a direct sum of Dω

s (H), s ∈ H\Gc, and thereby,
every left Dω

G(H)-module M is decomposed into a direct sum of the submodules

Dω
s (H)M , s ∈ H\Gc. Moreover, every left Dω

s (H)-module with s ∈ Gc is naturally
viewed as a left Dω

G(H)-modules.
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Let s ∈ Gc, and define a left ideal Eωs (H) of Dω
s (H) by

Eωs (H) =
∑

rHs∈H/Hs

∑
h∈rHs

Fϕ rs ⊗ h =
∑
h∈H

Fϕ hs ⊗ h.

We identify the twisted group algebra F θsHs with
∑

h∈Hs
Fϕs⊗h which is a subspace

of the F -space Eωs (H), and identify h ∈ F θsHs for h ∈ Hs with ϕs ⊗ h ∈ Eωs (H). In
this context, Eωs (H) is considered as a right F θsHs-module with the action given by
right multiplication.

Given M ∈ Dω
G(H)-mod and s ∈ Gc, we set ϕsM = {ϕsx | x ∈M} and view it

as a left F θsHs-module with the action given by left multiplication.
We state a fundamental lemma about representations of Dω

G(H) with H ≤ G,
which is similar to [38, Lemma 1.1].

Lemma 8.1 Let H ≤ G, and let s ∈ Gc. Then there exists an equivalence between
the categories F θsHs-mod and Dω

s (H)-mod given by the functors

ζ1H,s : F
θsHs-mod → Dω

s (H)-mod, N 7→ Eωs (H)⊗F θsHs
N

and
ζ2H,s : D

ω
s (H)-mod → F θsHs-mod, M 7→ ϕsM,

where Dω
s (H) acts on Eωs (H)⊗F θsHs

N by left multiplication in the first factor.

Proof. Let M ∈ Dω
s (H)-mod, and let N ∈ F θsHs-mod. The map

N → ϕsE
ω
s (H)⊗F θsHs

N, x 7→ ϕs ⊗ x

is an F θsHs-module isomorphism. We define a map f : M → Eωs (H) ⊗F θsHs
ϕsM

by

f(x) =
∑

rHs∈H/Hs

1

θ rs(r, r−1)
(ϕ rs ⊗ r)⊗ (ϕs ⊗ r−1)x

for all x ∈M . This map is independent of the choice of representatives r of H/Hs,
because

θ rs(rt, (rt)
−1)θs(t

−1, r−1) = θ rs(r, r
−1)θ rs(rt, t

−1)

for all r ∈ H and t ∈ Hs. Let h, h
′, r ∈ H, and suppose that hs = h′rs. Then

ϕ hs ⊗ h′ =
1

θ hs(h, tr
−1)

(ϕ hs ⊗ h)(ϕs ⊗ tr−1)

for some t ∈ Hs. We have

θ hs(h, h
−1) = θs(h

−1, h) and θs(tr
−1, r)θs(t, r

−1) = θ rs(r, r
−1).
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Hence

(ϕ hs ⊗ h)f(x) = (ϕ hs ⊗ h)⊗ ϕsx

=
1

θs(h−1, h)
(ϕ hs ⊗ h)⊗ (ϕs ⊗ h−1)(ϕ hs ⊗ h)x

= f((ϕ hs ⊗ h)x)

and

(ϕs ⊗ tr−1)f(x) =
θs(tr

−1, r)

θ rs(r, r−1)
(ϕs ⊗ t)⊗ (ϕs ⊗ r−1)x

=
θs(tr

−1, r)θs(t, r
−1)

θ rs(r, r−1)
ϕs ⊗ ϕs(ϕs ⊗ tr−1)x

= f((ϕs ⊗ tr−1)x)

for all x ∈ M . This implies that f is a Dω
s (H)-module homomorphism. Moreover,

the inverse f−1 : Eω
s (H)⊗F θsHs

ϕsM →M of f is given by

f−1((ϕ hs ⊗ h)⊗ ϕsx) = (ϕ hs ⊗ h)x

for all h ∈ H and x ∈M . Thus the lemma holds. 2

Keep the notation of Lemma 8.1. Let s ∈ Gc and g ∈ G. Given H ≤ Gs and
N ∈ F θsH-mod, we define an F θgsgH-module con g

sH(N) to be

con g
sH(N) = ζ2gH, gs ◦DcongH ◦ ζ1H,s(N) = (ϕ gs ⊗ g)⊗Dω

G(H) (E
ω
s (H)⊗F θsH N),

where DcongH ◦ ζ1H,s(N) is viewed as a left Dω
gs(

gH)-module. Given H ≤ G and
M ∈ Dω

G(H)-mod, the map

ϕ gsDcongH(M)(= (ϕ gs ⊗ g)⊗Dω
G(H) M) → con g

sHs
(ϕsM),

(ϕ gs ⊗ g)⊗ x 7→ (ϕ gs ⊗ g)⊗ (ϕs ⊗ ϕsx)

is an F θgsgHgs-module isomorphism.
To study Dω(G)-representation functor, we also require the next lemma.

Lemma 8.2 Let H ≤ G, s ∈ Gc, and h ∈ H. The following statements hold.

(a) For any N ∈ F θsHs-mod,

ζ1H,s(N) ∼= ζ1H, hs ◦ con
h

sHs
(N)

as Dω
G(H)-modules.

(b) For any M ∈ Dω
G(H)-mod,

ϕ hsM
∼= con h

sHs
(ϕsM)

as F θhsHhs-modules.
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Proof. (a) Observe that ζ1H,s(N) = Eωs (H)⊗F θsHs
N and

ζ1
H, hs

◦ con h
sHs

(N) = ζ1
H, hs

◦ ζ2
Hhs

, hs
◦DconhHs

◦ ζ1Hs,s
(N)

= Eωhs(H)⊗
F

θhsHhs

((ϕ hs ⊗ h)⊗Dω
G(Hs) (E

ω
s (Hs)⊗F θsHs

N)).

We define a map f1 : ζ
1
H,s(N) → ζ1

H, hs
◦ con h

sHs
(N) by

f1((ϕ rs ⊗ r)⊗ x) =
1

θ rs(rh−1, h)
(ϕ rs ⊗ rh−1)⊗ ((ϕ hs ⊗ h)⊗ (ϕs ⊗ x))

for all r ∈ H and x ∈ N . Let r ∈ H and x ∈ N . For any t ∈ Hs,

θ hs(h, t)θs(h
−1, hth−1)θs(th

−1, h) = θs(h
−1, h)θ hs(hth

−1, h)

and
θ rs(r, th

−1)θ rs(rth
−1, h) = θ rs(r, t)θs(th

−1, h),

whence

f1((ϕs ⊗ tx)) =
1

θs(h−1, h)
(ϕs ⊗ h−1)⊗ ((ϕ hs ⊗ h)⊗ (ϕs ⊗ tx))

=
θ hs(h, t)

θs(h−1, h)
(ϕs ⊗ h−1)⊗ ((ϕ hs ⊗ ht)⊗ (ϕs ⊗ x))

=
θ hs(h, t)θs(h

−1, hth−1)

θs(h−1, h)θ hs(hth
−1, h)

(ϕs ⊗ th−1)⊗ ((ϕ hs ⊗ h)⊗ (ϕs ⊗ x))

= f1((ϕs ⊗ t)⊗ x)

and

(ϕ rs ⊗ r)f1((ϕs ⊗ t)⊗ x) =
θ rs(r, th

−1)

θs(th−1, h)
(ϕ rs ⊗ rth−1)⊗ ((ϕ hs ⊗ h)⊗ (ϕs ⊗ x))

=
θ rs(r, t)

θ rs(rth−1, h)
(ϕ rs ⊗ rth−1)⊗ ((ϕ hs ⊗ h)⊗ (ϕs ⊗ x))

= f1(θ rs(r, t)(ϕ rs ⊗ rt)⊗ x)

= f1((ϕ rs ⊗ r)(ϕs ⊗ t)⊗ x).

Thus
f1((ϕ rs ⊗ r)(ϕs ⊗ t)⊗ x) = (ϕ rs ⊗ r)f1((ϕs ⊗ t)⊗ x)

= (ϕ rs ⊗ r)f1((ϕs ⊗ tx))

= f1((ϕ rs ⊗ r)⊗ tx)

for all t ∈ Hs, and thereby, f1 is well-defined. Obviously, f1 is a bijection. Let
h′, h′′, r ∈ H, and suppose that h′s = h′′rs. Then

ϕ h′s ⊗ h′′ =
1

θ h′s(h
′, tr−1)

(ϕ h′s ⊗ h′)(ϕs ⊗ tr−1)
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for some t ∈ Hs. By the preceding argument,

(ϕ h′s ⊗ h′)f1((ϕs ⊗ t)⊗ x) = f1((ϕ h′s ⊗ h′)(ϕs ⊗ t)⊗ x).

Moreover, since

θs(tr
−1, rh−1)θs(th

−1, h) = θs(tr
−1, r)θ rs(rh

−1, h),

it follows that

(ϕs ⊗ tr−1)f1((ϕ rs ⊗ r)⊗ x)

=
θs(tr

−1, rh−1)

θ rs(rh−1, h)
(ϕs ⊗ th−1)⊗ ((ϕ hs ⊗ h)⊗ (ϕs ⊗ x))

=
θs(tr

−1, r)

θs(th−1, h)
(ϕs ⊗ th−1)⊗ ((ϕ hs ⊗ h)⊗ (ϕs ⊗ x))

= f1(θs(tr
−1, r)(ϕs ⊗ t)⊗ x)

= f1((ϕs ⊗ tr−1)(ϕ rs ⊗ r)⊗ x).

This means that f1 is a Dω
G(H)-module isomorphism. Consequently, (a) holds.

(b) Since DconhH(M) ∼=M as Dω
G(H)-modules, it follows that

ϕ hsM
∼= ϕ hsDconhH(M) ∼= con h

sHs
(ϕsM)

as F θhsHhs-modules. Thus (b) holds.
We give an alternative proof of (b). Observe that

con h
sHs

(ϕsM) = ϕ hsDconhHs
◦ ζ1Hs,s

(ϕsM)

= (ϕ hs ⊗ h)⊗Dω
G(Hs) (E

ω
s (Hs)⊗F θsHs

ϕsM).

We define a map f2 : ϕ hsM → con h
sHs

(ϕsM) by

f2(ϕ hsx) =
1

θ hs(h, h
−1)

(ϕ hs ⊗ h)⊗ (ϕs ⊗ (ϕs ⊗ h−1)x)

for all x ∈ M . Since θ hs(h, h
−1) = θs(h

−1, h), it follows that f2 is a bijection. Let
r ∈ H hs. Then

θ hs(r, h)θs(h
−1rh, h−1) = θ hs(h, h

−1rh)θs(h
−1, r),

and thereby,

rf2(ϕ hsx) =
θ hs(r, h)

θ hs(h, h
−1)

(ϕ hs ⊗ rh)⊗ (ϕs ⊗ (ϕs ⊗ h−1)x)

=
θ hs(r, h)θs(h

−1rh, h−1)

θ hs(h, h
−1)θ hs(h, h

−1rh)
(ϕ hs ⊗ h)⊗ (ϕs ⊗ (ϕs ⊗ h−1r)x)

=
1

θ hs(h, h
−1)

(ϕ hs ⊗ h)⊗ (ϕs ⊗ (ϕs ⊗ h−1)rϕ hsx)

= f2(rϕ hsx)
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for all x ∈ M . Hence f2 is an F θhsHhs-module isomorphism, completing the proof.
2

There exists a family of Z-lattice homomorphisms

con g
sH : R(F θsH) → R(F θgsgH)

for s ∈ Gc, H ≤ Gs, and g ∈ G such that

con g
sH([N ]) = [con g

sH(N)] = [ζ2gH, gs ◦DcongH ◦ ζ1H,s(N)]

for all N ∈ F θsH-mod, which is called the crossed conjugation maps. The following
lemma asserts that this family satisfies the axioms of crossed conjugation maps.

Lemma 8.3 Let s ∈ Gc, and suppose that Rθs = (Rθs , con, res, ind) is the F θsGs-
representation functor. Then

(C.0) con t
sH = contH ,

(C.1) con g
rs rH ◦ con r

sH = con gr
sH ,

(C.2) con g
sK ◦ resHK = res

gH
gK ◦ con g

sH ,

(C.3) con g
sH ◦ indHK = ind

gH
gK ◦ con g

sK

for all K ≤ H ≤ Gs, g, r ∈ G, and t ∈ Gs.

Proof. Let H ≤ Gs. Observe that Dω
s (H) = Eωs (H) =

∑
h∈H Fϕs ⊗ h. Then

contH([M ]) = [ζ2tH,s ◦DcontH ◦ ζ1H,s(M)],

resHK([M ]) = [ζ2K,s ◦DresHK ◦ ζ1H,s(M)],

indHK([N ]) = [F θsH ⊗F θsK N ] = [ζ2H,s ◦DindHK ◦ ζ1K,s(N)]

for all t ∈ Gs,K ≤ H,M ∈ F θsH-mod, andN ∈ F θsK-mod, where DresHK◦ζ1H,s(M)

is viewed as a left Dω
s (K)-module, and DindHK ◦ ζ1K,s(N) is viewed as a left Dω

s (H)-
module. Hence (C.0)–(C.3) follow from Lemma 8.1. This completes the proof. 2

By Lemma 8.3, the Mackey functors

Rθs := Rθs = (Rθs , con, res, ind) ∈ Mack(Gs)Z, s ∈ Gc,

together with the crossed conjugation maps con g
sH : R(F θsH) → R(F θgsgH) for

s ∈ Gc, H ≤ Gs, and g ∈ G, defines a Mackey bundle for Stab(G;Gc) over Z, where
Rθs is the F θsGs-representation functor. We denote this Mackey bundle by Rθ.

Recall that RθGc denotes the crossed Mackey functor on Rθ. Let H ≤ G. We
now define Z-lattice homomorphisms

ΓH : RDω
G(H) → RθGc(H), [M ] 7→ ([ϕsM ])s∈Gc = ([ζ2H,s(D

ω
s (H)M)])s∈Gc
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and
Γ′
H : RθGc(H) → RDω

G(H), ([N(s)])s∈Gc 7→
∑

s∈H\Gc

[ζ1H,s(N(s))].

By virtue of Lemma 8.2, this definition makes sense. From Lemma 8.1, we know
that ΓH ◦ Γ′

H = idRθ
Gc (H) and Γ′

H ◦ ΓH = idRDω
G(H). Thus Γ

−1
H = Γ′

H .

The following theorem is a key to induction formulae for RDω
G.

Theorem 8.4 The Mackey functor RDω
G is isomorphic to RθGc. Really, the family

of Z-lattice isomorphisms ΓH : RDω
G(H) → RθGc(H), H ≤ G, defines an isomor-

phism Γ : RDω
G → RθGc of Mackey functors.

Proof. Let K ≤ H ≤ G, and let g ∈ G. Obviously, the diagrams

RDω
G(H)

ΓH−−−−→ RθGc(H)

DcongH

y ycon g
Gc H

RDω
G(

gH) −−−−→
Γ gH

RθGc( gH)

and

RDω
G(H)

ΓH−−−−→ RθGc(H)

DresHK

y yres H
Gc K

RDω
G(K) −−−−→

ΓK

RθGc(K)

are commutative. Let N ∈ Dω
G(K)-mod. Then DindHK(N) = Dω

G(H) ⊗Dω
G(K) N .

Let s ∈ Gc, and let {h1, . . . , hℓ} be a complete set of representatives of Hs\H/K.
For each integer i with 1 ≤ i ≤ ℓ, let {ri1, · · · , rini} be a left transversal of Hs∩ hiK
in Hs. Obviously, {ri1hi, · · · , rinihi | i = 1, . . . , ℓ} is a left transversal of K in H.
We now obtain

DindHK(N) = Dω
G(H)⊗Dω

G(K) N =

ℓ∑
i=1

ni∑
j=1

Frijhi ⊗Dω
G(K) N.

Set ti =
h−1
i s, i = 1, . . . , ℓ. Then

con hi
tiKti

(ϕtiN) = (ϕs ⊗ hi)⊗Dω
G(Kti )

(Eω
ti(Kti)⊗F

θtiKti

ϕtiN)

for all i, and the map

ϕsDindHK(N) →
ℓ∑
i=1

F θsHs ⊗F θs( hiK)s
con hi

tiKti
(ϕtiN),

(ϕs ⊗ rijhi)⊗ x 7→ rij ⊗ ((ϕs ⊗ hi)⊗ (ϕti ⊗ ϕtix))

is an F θsHs-module isomorphism. We now conclude that the diagram

RDω
G(H)

ΓH−−−−→ RθGc(H)

DindHK

x xind H
Gc K

RDω
G(K) −−−−→

ΓK

RθGc(K)

is commutative. This completes the proof. 2
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Remark 8.5 Suppose that F = C. Let conj(G) be a full set of nonconjugate elements
in G, which is regarded as G\Gc. By the proof of [38, Theorem 2.2], the map

C⊗Z R
θ
Gc(G) →

∏
s∈conj(G)

Z(CθsGs), ([Ms])s∈Gc 7→

∑
g∈Gs

Tr(s,Mg)g


s∈conj(G)

,

where Z(CθsGs) is the center of CθsGs, is a C-space isomorphism. Moreover, from
Theorem 8.4 and the proof of [38, Lemma 2.1], we know that the map

C⊗Z R(D
ω(G)) →

∏
s∈conj(G)

Z(CθsGs), [M ] 7→

∑
g∈Gs

Tr(s, ϕgM)g


s∈conj(G)

is a C-algebra isomorphism, which was proved by Witherspoon [38, Theorem 2.2]
(see also [24, 2.2(g)] and [37, p. 316]).

If ω is trivial, that is, ω(g, r, s) = 1 for all g, r, s ∈ G, then we simply write
D(G) = Dω(G), DG(H) = Dω

G(H) with H ≤ G, and RDG = RDω
G. The C-algebra

D(G) is called the quantum double of G (cf. [14, 25, 37]).
For each H ≤ G, R(DG(H)) denotes the ring consisting of all Z-linear combi-

nations of isomorphism classes of finitely generated left DG(H)-modules with di-
rect sum for addition and tensor product for multiplication. Given K ≤ H ≤ G,
M ∈ DG(H)-mod, and N ∈ DG(K)-mod, the maps

M ⊗ (DG(H)⊗DG(K) N) → DG(H)⊗DG(K) (M |DG(K) ⊗N),

u⊗ (h⊗ v) 7→ h⊗ (h−1u⊗ v)

and
(DG(H)⊗DG(K) N)⊗M → DG(H)⊗DG(K) (N ⊗M |DG(K)),

(h⊗ v)⊗ u 7→ h⊗ (v ⊗ h−1u),

where h ∈ H, are DG(H)-module isomorphisms. These facts mean that Frobenius
axioms hold for RDG. Thus RDG is a Green functor (cf. [37, Section 5]).

Let a(G) be the representation ring of FG, that is, the commutative ring con-
sisting of all Z-linear combinations of isomorphism classes of finitely generated left
FG-modules with direct sum for addition and tensor product for multiplication (see,
e.g., [11, §80D]). We define

a = (a, con, res, ind) ∈ Green(G)Z

to be the family of Z-algebras a(H), H ≤ G, with usual conjugation, restriction,
and induction maps, and call it the FG-representation functor. If ω is trivial, then
Rθ is the FG-representation functor. Recall that aGc denotes the crossed Mackey
functor on a, which is obtained by the crossing of a by Gc.

There is an important consequence of Theorem 8.4 (cf. [30, Theorem 5.5]).
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Corollary 8.6 The Green functor RDG is isomorphic to aGc. Really, the family of
Z-algebra isomorphisms ΓH : RDG(H) → aGc(H), H ≤ G, defines an isomorphism
Γ : RDG → aGc of Green functors.

Proof. Let H ≤ G, and let r ∈ Gc. Given M1, M2 ∈ DG(H)-mod, the map∑
(s,t)∈Hr\Gc×Gc, st=r

indHr
Hs,t

(resHs
Hs,t

(ϕsM1)⊗F resHt
Hs,t

(ϕtM2))

=
∑

(s,t)∈Hr\Gc×Gc, st=r

FHr ⊗FHs,t (res
Hs
Hs,t

(ϕsM1)⊗F resHt
Hs,t

(ϕtM2))

→
∑

(s,t)∈Gc×Gc, st=r

ϕsM1 ⊗F ϕtM2
∼= ϕr(M1 ⊗M2),

h⊗ (ϕsx1 ⊗ ϕtx2) 7→ (ϕ hs ⊗ h)x1 ⊗ (ϕ ht ⊗ h)x2

is an FHr-modules isomorphism. Thus ΓH is a Z-algebra isomorphism. Conse-
quently, the corollary follows from Theorem 8.4. This completes the proof. 2

Remark 8.7 Keep the notation of Section 3, and assume further that S = Gc. We

view each (J, π) ∈ El(G-set, T
Z⊗Gc

G ) as the set of all pairs (x, π) for x ∈ J , and call
(J, π) a crossed G-set (cf. [6, Definition 2.1], [17, Definition 4.2.1], [29, (1.2)]). Let
H ≤ G, and let s ∈ CG(H). The G-map πs : G/H →

∏
U≤G ZCG(U) is defined by

πs(rH) = (δ rHU
rs)U≤G

for all r ∈ G (see Remark 4.4). The F -span ⟨(G/H, πs)⟩F of the crossed G-set
(G/H, πs) is viewed as a left D(G)-module with the action given by

(ϕt ⊗ g)(rH, πs) = δt grs(grH, πs)

for all g, r, t ∈ G (cf. [39, p. 18]), and the F -span ⟨Gs/H⟩F of the Gs-set Gs/H is
naturally is viewed as a left FGs-module. Assume now that ω is trivial. Then

ζ1(⟨Gs/H⟩F ) =

(∑
r∈G

Fϕ rs ⊗ r

)
⊗FGs ⟨Gs/H⟩F ,

and the map

ζ1(⟨Gs/H⟩F ) → ⟨(G/H, πs)⟩F , (ϕ rs ⊗ r)⊗H 7→ (rH, πs)

is a D(G)-module isomorphism. The isomorphism Θ : CΩ(−, Gc) → ΩGc of Green
functors is defined in Remark 4.4, and the isomorphism Γ : RDG → aGc of Green
functors is defined in Corollary 8.6. We define Ξ : ΩGc → aGc to be a family of
Z-algebra homomorphisms ΞH : ΩGc(H) → aGc(H), H ≤ G, such that

ΞH(([J(t)])t∈Gc) = ([⟨J(t)⟩F ])t∈Gc ,
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where J(t) ∈ Ht-set and ⟨J(t)⟩F is the F -span of J(t) viewed as a left FHt-module.
Clearly, Ξ ∈ Green(G)(ΩGc , aGc)Z. We now conclude that

[⟨(G/H, πs)⟩F ] = [ζ1(⟨Gs/H⟩F )] = Γ−1
G ◦ ΞG ◦ΘG([G/H, πs]).

We obtain another important consequence of Theorem 8.4, which includes (I)
stated in Section 1 (see also [37, Theorem 5.5]).

Corollary 8.8 Suppose that F = C. Then the map

Q⊗Z R(D
ω(G)) →

∏
H∈Cl(G,Cyc)

Q⊗Z

 ∏
s∈CG(H)

R(CθsH)

NG(H)

,

[M ] 7→
((

resGs
H (ϕsM)

)
s∈CG(H)

)
H∈Cl(G,Cyc)

is a Q-space isomorphism. Moreover, the map

Q⊗Z R(D(G)) →
∏

H∈Cl(G,Cyc)

Q⊗Z

(
a(H)⊗Z ZCG(H)

)NG(H)
,

[M ] 7→

 ∑
s∈CG(H)

resGs
H (ϕsM)⊗ s


H∈Cl(G,Cyc)

is a Q-algebra isomorphism.

Proof. Suppose that Rθ is extended to QRθ ∈ Mack(G)Q by Q-linearly, and sup-
pose that a is extended to Qa ∈ Mack(G)Q by Q-linearly. Then it follows from
Proposition 5.5 and Lemma 7.2 that both P(QRθ) and P(Qa) are the set of cyclic
subgroups of G. Hence the first assertion is a consequence of Corollary 6.2 with
X = QRθ and Theorem 8.4, and the second one is a consequence of Corollary 6.2
with X = Qa and Corollary 8.6. This completes the proof. 2

We end this section with a canonical version of [28, Theorem 4.1], which states
a generalization of Artin’s induction theorem.

Corollary 8.9 Suppose that F = C. Then for any M ∈ Dω(G)-mod,

[M ] =
∑

H∈Cl(G,Cyc)

1

|NG(H)|
∑
K≤H

|K|µ(K,H)[Dω(G)⊗Dω
G(K) (M |Dω

G(K))].

Proof. By an analogous argument to the proof of Corollary 8.8, the assertion follows
from Corollary 6.3 with X = QRθ and Theorem 8.4. This completes the proof. 2
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9 Fundamental theorems for the plus constructions

We continue to assume that k = Z. Throughout this section, A denotes a
restriction functor for G over Z and B a stable Z-basis of A. Let H ≤ G. We set

GA(H) =
⨿

(K,σ)∈R(H,B)

Z.

For each (K,σ) ∈ R(H,B), NH(K,σ) denotes the stabilizer of (K,σ) in H, that is,

NH(K,σ) = {h ∈ NH(K) | conhK(σ) = σ}.

There exists a Z-module isomorphism κAH : GA(H)
∼→ A+(H) given by

κAH((δ(K,σ) (U,τ))(U,τ)∈R(H,B)) = (y
(K,σ)
L )L≤H ,

where

y
(K,σ)
L =


∑

hNH(K,σ)∈NH(K)/NH(K,σ)

conrhK (σ) if L = rK for some r ∈ H,

0 otherwise.

Given K ≤ H and χ ∈ A(K), there exist integers ⟨χ, σ⟩, σ ∈ B(K), such that

χ =
∑

σ∈B(K)

⟨χ, σ⟩σ.

We now define a Z-module homomorphism φA,H : A+(H) → GA(H) by

φA,H([K,σ]) =

 ∑
hK∈H/K,U≤ hK

⟨res hK
U ◦ conhK(σ), τ⟩


(U,τ)∈R(H,B)

for all (K,σ) ∈ R(H,B), and call it the Burnside homomorphism. Obviously, the
diagram

A+(H) GA(H)
φA,H

-

@
@
@
@R ?

ρAH κA
H

A+(H)

is commutative, and thereby, φA,H is a monomorphism (see Proposition 2.2).
For each (K,σ) ∈ R(H,B), we set

WH(K,σ) = NH(K,σ)/K.
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Remark 9.1 For each (K,σ) ∈ R(H,B), |WH(K,σ)| divides each component of
φA,H([K,σ]). By an argument analogous to the proof of [11, Proposition 80.15],
we can show that the elements (1/|WH(K,σ)|)φA,H([K,σ]) for (K,σ) ∈ R(H,B)
form a Z-basis of GA(H), that is,

GA(H) =
⊕

(U,τ)∈R(H,B)

1

|WH(U, τ)|
φA,H([U, τ ])Z.

The following lemma, which is similar to [43, Lemma 2.7 (Cauchy-Frobenius)]
(see also [34, Lemma 4.1]), plays a crucial role in the proof of Theorem 9.4.

Lemma 9.2 Let H ≤ G, and suppose that (K,σ), (U, τ) ∈ R(H,B). Then for any
Q ≤WH(U, τ),∑

rU∈Q

∑
hK∈H/K, ⟨r⟩U≤ hK

⟨res hK
U ◦ conhK(σ), τ⟩ ≡ 0 (mod |Q|).

Proof. We set

IU = {hK ∈ H/K | U ≤ hK and ⟨res hK
U ◦ conhK(σ), τ⟩ ̸= 0}

and set
IrU = {hK ∈ IU | ⟨r⟩U ≤ hK}

for each rU ∈ Q. View IU as a left Q-set with the action given by

rUhK = rhK

for all rU ∈ Q and hK ∈ IU . Then

IrU = {hK ∈ IU | rUhK = hK}

for each rU ∈ Q. Hence∑
rU∈Q

∑
hK∈IrU

⟨res hK
U ◦ conhK(σ), τ⟩ =

∑
hK∈IU

∑
rU∈QhK

⟨res hK
U ◦ conhK(σ), τ⟩

=
∑

hK∈IU

|QhK | · ⟨res
hK
U ◦ conhK(σ), τ⟩,

where QhK is the stabilizer of hK in Q. Observe now that

⟨res hK
U ◦ conhK(σ), τ⟩ = ⟨conrU ◦ res hK

U ◦ conhK(σ), conrU (τ)⟩
= ⟨res rhK

U ◦ conrhK (σ), τ⟩
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for all rU ∈ Q and hK ∈ IU . Then∑
rU∈Q

∑
hK∈IrU

⟨res hK
U ◦ conhK(σ), τ⟩ =

∑
hK∈Q\IU

|O(hK)| · |QhK | · ⟨res
hK
U ◦ conhK(σ), τ⟩

≡ 0 (mod |Q|),

where Q\IU is a complete set of representatives of Q-orbits in IU and O(hK) is the
Q-orbit containing hK. This completes the proof. 2

We define an obstruction group of A+(H) by

ObsA(H) =
⨿

(U,τ)∈R(H,B)

Z/|WH(U, τ)|Z.

By Lemma 2.3,

ImφA,H =
⊕

(U,τ)∈R(H,B)

φA,H([U, τ ])Z.

Hence it follows from Remark 9.1 that

GA(H)/ImφA,H ∼= ObsA(H).

Let p be a prime. By Lemma 2.3, [K,σ], (K,σ) ∈ R(H,B), form a Z(p)-basis of
A+(H)(p), that is,

A+(H)(p) =
⊕

(K,σ)∈R(H,B)

Z(p)[K,σ].

We identify GA(H)(p) with ⨿
(K,σ)∈R(H,B)

Z(p),

and identify ObsA(H)(p) with

⨿
(K,σ)∈R(H,B)

Z(p)/|WH(K,σ)|pZ(p)

∼=
⨿

(K,σ)∈R(H,B)

Z/|WH(K,σ)|pZ

 .

Let φ
(p)
A,H be the monomorphism from A+(H)(p) to GA(H)(p) determined by φA,H .

Then by the preceding argument,

GA(H)(p)/Imφ
(p)
A,H

∼= ObsA(H)(p).

We write φ
(∞)
A,H = φA,H .

For each (K,σ) ∈ R(H,B),WH(K,σ)p denotes a Sylow p-subgroup ofWH(K,σ),
and WH(K,σ)∞ denotes WH(K,σ).
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We denote by Λ the set consisting of all primes and the symbol ∞. Assume
that p ∈ Λ. If (U, τ) ∈ R(H,B) and if (x(K,σ))(K,σ)∈R(H,B) ∈ GA(H)(p), then we
set xh.(U,τ) = x(U,τ) for all h ∈ H. There exists a Z(p)-module homomorphism

ψ
(p)
(U,τ) : GA(H)(p) → Z(p)/|WH(U, τ)|pZ(p) with (U, τ) ∈ R(H,B) given by

ψ
(p)
(U,τ)

(
(x(K,σ))(K,σ)∈R(H,B)

)
≡

∑
rU∈WH (U,τ)p,

ν∈B(⟨r⟩U)

x(⟨r⟩U,ν) · ⟨res
⟨r⟩U
U (ν), τ⟩ (mod |WH(U, τ)|p)

for all (x(K,σ))(K,σ)∈R(H,B) ∈ GA(H)(p). When p is a prime, ψ
(p)
(U,τ) is independent of

the choice of a Sylow p-subgroup WH(U, τ)p of WH(U, τ), because∑
rU∈WH (U,τ)p,

ν∈B(⟨r⟩U)

x(⟨r⟩U,ν) · ⟨res
⟨r⟩U
U (ν), τ⟩ =

∑
rU∈WH (U,τ)p,

ν∈B(⟨r⟩U)

x( h⟨r⟩U, hν) · ⟨res
h⟨r⟩U
U ( hν), τ⟩

=
∑

rU∈hUWH (U,τ)p,

ν∈B(⟨r⟩U)

x(⟨r⟩U,ν) · ⟨res
⟨r⟩U
U (ν), τ⟩

for all h ∈ NH(U, τ), where
hν = conh⟨r⟩U (ν).

We define a Z(p)-module homomorphism ψ
(p)
A,H : GA(H)(p) → ObsA(H)(p) by

ψ
(p)
A,H((x(K,σ))(K,σ)∈R(H,B)) = (ψ

(p)
(U,τ)((x(K,σ))(K,σ)∈R(H,B)))(U,τ)∈R(H,B)

for all (x(K,σ))(K,σ)∈R(H,B) ∈ GA(H)(p), and call it the Cauchy-Frobenius homomor-
phism.

Lemma 9.3 Assume that p ∈ Λ. For each H ≤ G, ψ
(p)
A,H is an epimorphism.

Proof. The proof is straightforward. See also the proof of [34, Lemma 4.3]. 2

The following theorem is a generalization of [43, Proposition 2.9] (see also [13,
Proposition 1.3.5], [29, Theorem 4.4], [34, Theorem 4.5], and [42, Lemma 2.1]).

Theorem 9.4 (Fundamental theorem) Assume that p ∈ Λ. For each H ≤ G,
the sequence

0 −→ A+(H)(p)
φ
(p)
A,H−→ GA(H)(p)

ψ
(p)
A,H−→ ObsA(H)(p) −→ 0

of Z(p)-modules is exact.
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Proof. By Proposition 2.2, φ
(p)
A,H is a monomorphism. Moreover, Lemma 9.3 states

that ψ
(p)
A,H is an epimorphism. Hence it remains to verify that Imφ

(p)
A,H = Kerψ

(p)
A,H .

By definition and Lemma 9.2,

ψ
(p)
(U,τ)

(
φ
(p)
A,H([K,σ])

)
= ψ

(p)
(U,τ)


 ∑
hK∈H/K,L≤ hK

⟨res hK
L ◦ conhK(σ), ν⟩


(L,ν)∈R(H,B)


≡

∑
rU∈WH (U,τ)p,

ν∈B(⟨r⟩U)

∑
hK∈H/K, ⟨r⟩U≤ hK

⟨res hK
⟨r⟩U ◦ conhK(σ), ν⟩ · ⟨res⟨r⟩UU (ν), τ⟩

≡
∑

rU∈WH(U,τ)p

∑
hK∈H/K, ⟨r⟩U≤ hK

⟨res hK
U ◦ conhK(σ), τ⟩

≡ 0 (mod |WH(U, τ)|p)

for all (K,σ), (U, τ) ∈ R(H,B). Hence we have Imφ
(p)
A,H ⊆ Kerψ

(p)
A,H . Suppose next

that x = (x(K,σ))(K,σ)∈R(H,B) ∈ Kerψ
(p)
A,H , and set

R(x) = {(K,σ) ∈ R(H,B) | x(K,σ) ̸= 0}.

We define a partially order ≤H of R(H,B) by

(U, τ) ≤H (K,σ) :⇐⇒ U ≤ hK and ⟨res hK
U ◦ conhK(σ), τ⟩ ̸= 0 for some h ∈ H,

and define R0(x) to be the set of maximal elements of R(x) with respect to ≤H . If
x ̸= 0, let ℓx be the smallest integer such that |K| ≤ ℓx for all (K,σ) ∈ R0(x). Set

ℓ0 = 0 for convenience’ sake. Using induction on ℓx, we show that x ∈ Imφ
(p)
A,H . If

ℓx = 0, then clearly, x = 0 ∈ Imφ
(p)
A,H . Assume that x ̸= 0. For each (U, τ) ∈ R0(x),

ψ
(p)
(U,τ)(x) ≡ x(U,τ) (mod |WH(U, τ)|p),

whence x(U,τ) = y(U,τ) · |WH(U, τ)|p for some y(U,τ) ∈ Z(p). Now set

y = x−
∑

(U,τ)∈R0(x)

y(U,τ) ·
|WH(U, τ)|p
|WH(U, τ)|

φ
(p)
A,H([U, τ ]).

Then by the definition of φ
(p)
A,H , we have ℓy < ℓx. Since y ∈ Kerψ

(p)
A,H , it follows from

the inductive assumption that y ∈ Imφ
(p)
A,H . This means that x ∈ Imφ

(p)
A,H . Thus we

have Imφ
(p)
A,H ⊇ Kerψ

(p)
A,H . This completes the proof. 2

For each (U, τ) ∈ R(H,B), we set

S(H,B)≥(U,τ) = {(K,σ) ∈ S(H,B) | U ≤ K and ⟨resKU (σ), τ⟩ ̸= 0}.
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Lemma 9.5 Let H ≤ G. For any (x(K,σ))(K,σ)∈R(H,B) ∈ GA(H),

ηAH ◦ κAH
(
(x(K,σ))(K,σ)∈R(H,B)

)
=

∑
(U,τ)∈R(H,B)

|H|
|WH(U, τ)|

∑
(K,σ)∈S(H,B)≥(U,τ)

µ(U,K)x(K,σ) · ⟨resKU (σ), τ⟩[U, τ ].

Proof. By definition,

ηAH ◦ κAH
(
(x(K,σ))(K,σ)∈R(H,B)

)
=

∑
(K,σ)∈R(H,B)

∑
rNH(K)∈H/NH(K)

∑
U≤ rK

|U |µ(U, rK)x(K,σ)

×
∑

hNH(K,σ)∈NH(K)/NH(K,σ)

[U, res
rK
U ◦ conrhK (σ)]

=
∑

(U,τ)∈S(H,B)

∑
(K,σ)∈S(H,B)≥(U,τ)

|U |µ(U,K)x(K,σ) · ⟨resKU (σ), τ⟩[U, τ ]

=
∑

(U,τ)∈R(H,B)

|H|
|WH(U, τ)|

∑
(K,σ)∈S(H,B)≥(U,τ)

µ(U,K)x(K,σ) · ⟨resKU (σ), τ⟩[U, τ ],

completing the proof. 2

There exists a Z-module homomorphism ξ(U,τ) : GA(H) → Z/|WH(U, τ)|Z with
(U, τ) ∈ R(H,B) given by

ξ(U,τ)
(
(x(K,σ))(K,σ)∈R(H,B)

)
≡

∑
(K,σ)∈S(H,B)≥(U,τ)

µ(U,K)x(K,σ) · ⟨resKU (σ), τ⟩ (mod |WH(U, τ)|).

We now define a Z-module homomorphism ξA,H : GA(H) → ObsA(H) by

ξA,H((x(K,σ))(K,σ)∈R(H,B)) = (ξ(U,τ)((x(K,σ))(K,σ)∈R(H,B)))(U,τ)∈R(H,B)

for all (x(K,σ))(K,σ)∈R(H,B) ∈ GA(H).
The next theorem is similar to [10, Corollary 4.2] (see also [20, Theorem 1.1],

[29, Corollary 5.3], and [43, Theorem 8.3]).

Theorem 9.6 (Second fundamental theorem) For each H ≤ G, the sequence

0 −→ A+(H)
φA,H−→ GA(H)

ξA,H−→ ObsA(H) −→ 0

of Z-modules is exact.

Proof. By Proposition 2.2, φA,H is a monomorphism. Moreover, it is easily verified
that ξA,H is an epimorphism. Combining Proposition 2.2 with Lemma 9.5, we have
ImφA,H = KerξA,H . This completes the proof. 2
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10 Integral canonical induction formulae

Let X ∈ Mack(G)Z, and let A be a restriction subfunctor of X. If E = Q or
E = Z(p) with p ∈ Λ, then X is extended to EX ∈ Mack(G)E by E-linearly, and
A is also extended to EA ∈ Res(G)E by E-linearly.

We assume that λ ∈ Con(G)(X,A)Z and B is a stable Z-basis of A. By Propo-
sition 5.3, there exists a morphism ΨX,A,λ : QX → QA+ of restriction functors
defined to be a family of Q-space homomorphisms ΨX,A,λ

H : QX(H) → QA+(H),
H ≤ G, such that

ΨX,A,λ
H (x) =

1

|H|
ηAH((λK ◦ resHK(x))K≤H)

for all x ∈ X(H). Given H ≤ G, x ∈ X(H) and (U, τ) ∈ R(H,B), we set

mτ (x) =
1

|WH(U, τ)|
∑

(K,σ)∈S(H,B)≥(U,τ)

µ(U,K)⟨λK ◦ resHK(x), σ⟩ · ⟨resKU (σ), τ⟩.

By (IV),

ΨX,A,λ
H (x) =

1

|H|
∑
K≤H

∑
U≤K

|U |µ(U,K)[U, resKU ◦ λK ◦ resHK(x)]

=
1

|H|
∑

(K,σ)∈S(H,B)

∑
U≤K

|U |µ(U,K)⟨λK ◦ resHK(x), σ⟩[U, resKU (σ)]

=
1

|H|
∑

(U,τ)∈S(H,B)

|NH(U, τ)| ·mτ (x)[U, τ ]

=
∑

(U,τ)∈R(H,B)

mτ (x)[U, τ ]

for all H ≤ G and x ∈ X(H).

If ΨX,A,λ
H (x) ∈ Z(p)A+(H) with p ∈ Λ for all H ≤ G and x ∈ X(H), then we

view ΨX,A,λ as a morphism ΨX,A,λ : Z(p)X → Z(p)A+ of restriction functors defined

to be a family of Z(p)-module homomorphisms ΨX,A,λ
H : Z(p)X(H) → Z(p)A+(H),

H ≤ G, such that

ΨX,A,λ
H (x) =

1

|H|
ηAH((λK ◦ resHK(x))K≤H)

for all x ∈ X(H).
The following theorem is part of [4, Corollary 9.4].

Theorem 10.1 Let X ∈ Mack(G)Z, and let A be a restriction subfunctor of X.
Assume that λ ∈ Con(G)(X,A)Z, B is a stable Z-basis of A, p ∈ Λ, and

⟨λU ◦ resHU (x), τ⟩ =
∑

σ∈B(K)

⟨λK ◦ resHK(x), σ⟩ · ⟨resKU (σ), τ⟩ (∗p)
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for all U ⊴ K ≤ H ≤ G, x ∈ X(H), and τ ∈ B(U) such that K/U is a cyclic
p-group and conrU (τ) = τ for all r ∈ K. Then∑

(U,τ)∈R(H,B)

mτ (x)[U, τ ] ∈ Z(p)A+(H)

for all H ≤ G and x ∈ X(H).

The condition (∗p) is the condition (∗π) in [4, Theorem 9.3, Corollary 9.4] with
π = {p}. We apply Theorem 9.4 to the proof of this theorem.

Proof of Theorem 10.1. By Proposition 2.2 and Lemma 9.5,

φ
(p)
A,H

|H|
∑

(U,τ)∈R(H,B)

mτ (x)[U, τ ]


= φ

(p)
A,H ◦ ηAH ◦ κAH((⟨λK ◦ resHK(x), σ⟩)(K,σ)∈R(H,B))

= |H|(⟨λK ◦ resHK(x), σ⟩)(K,σ)∈R(H,B).

Moreover,

ψ
(p)
(U,τ)((⟨λK ◦ resHK(x), σ⟩)(K,σ)∈R(H,B))

≡
∑

rU∈WH (U,τ)p,

ν∈B(⟨r⟩U)

⟨λ⟨r⟩U ◦ resH⟨r⟩U (x), ν⟩ · ⟨res
⟨r⟩U
U (ν), τ⟩

≡
∑

rU∈WH(U,τ)p

⟨λU ◦ resHU (x), τ⟩

≡ 0 (mod |WH(U, τ)|p)

for each (U, τ) ∈ R(H,B). Hence the assertion follows from Theorem 9.4. This
completes the proof. 2

The following corollary is crucial to a canonical choice of Brauer’s induction
theorem on X (cf. [4, Corollary 9.5]).

Corollary 10.2 Keep the hypothesis of Theorem 10.1, and assume further that

e
(H)
H · (λH(x)− x) = 0

for all H ∈ C(QX) and x ∈ X(H). Then ΨX,A,λ is a canonical induction formula
for Z(p)X from Z(p)A, and

ΨX,A,λ
H (x) =

∑
(U,τ)∈R(H,B)

mτ (x)[U, τ ]

for all H ≤ G and x ∈ X(H).
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Proof. By Proposition 5.3, ΨX,A,λ is a canonical induction formula for QX from
QA. Hence the corollary follows from Theorem 10.1. This completes the proof. 2

In the remaining part of this section, we assume the following situation.

Hypothesis 10.3

(i) S ∈ G-set.

(ii) X ∈ Mack(G;S)Z.

(iii) A ∈ Res(G;S)Z such that for each s ∈ S, As is a restriction subfunctor of
Xs and the crossed conjugation maps con g

sH for H ≤ Gs and g ∈ G are the
restriction of those of X.

(iv) λs ∈ Con(Gs)(Xs, As)Z, s ∈ S, which satisfy

con g
sH ◦ λsH = λ gs gH ◦ con g

sH

for all s ∈ S, H ≤ Gs, and g ∈ G.

(v) For each s ∈ S, Bs is a stable Z-basis of As such that

B gs(
gH) = {con g

sH(σs) | σs ∈ Bs(H)}

for all H ≤ Gs and g ∈ G.

Obviously, the crossed restriction functor AS on A is a restriction subfunctor of
the crossed Mackey functor XS on X. We define λS : XS → AS to be a family of
Z-module homomorphisms λS H : XS(H) → AS(H), H ≤ G, such that

λS H((x(s))s∈S) = (yH(s))s∈S

for all (x(s))s∈S ∈ XS(H), where yH(s) = λsH(x(s)) if s ∈ CS(H), and yH(s) = 0
otherwise. Clearly, λS ∈ Con(G)(XS , AS)Z.

We define a stable Z-basis BS of AS to be a family of Z-bases BS(H) of AS(H),
H ≤ G, such that

BS(H) = {(δstσs)t∈S ∈ AS(H) | s ∈ CS(H) and σs ∈ Bs(H)}

for all H ≤ G, where δstσs = 0 if s ̸= t and δssσs = σs.

Lemma 10.4 Let U ≤ K ≤ H ≤ G. Assume that τs ∈ Bs(U) with s ∈ CS(H) and

⟨λsU ◦ resHU (x), τs⟩ =
∑

σs∈Bs(K)

⟨λsK ◦ resHK(x), σs⟩ · ⟨resKU (σs), τs⟩
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for all x ∈ Xs(H). Set τ = (δstτs)t∈S ∈ BS(U). Then

⟨λS U ◦ res H
S U ((x(t))t∈S), τ⟩ =

∑
σ∈BS(K)

fσ,τ ((x(t))t∈S)

for all (x(t))t∈S ∈ XS(H), where

fσ,τ ((x(t))t∈S) = ⟨λS K ◦ res H
SK((x(t))t∈S), σ⟩ · ⟨res K

S U (σ), τ⟩.

Proof. Let (x(t))t∈S ∈ XS(H). If σs ∈ Bs(K) and if σ = (δstσs)t∈S ∈ BS(K), then

fσ,τ ((x(t))t∈S) = ⟨λsK ◦ resHK(x(s)), σs⟩ · ⟨resKU (σs), τs⟩.

Hence ∑
σ∈BS(K)

fσ,τ ((x(t))t∈S) =
∑

σs∈Bs(K)

⟨λsK ◦ resHK(x(s)), σs⟩ · ⟨resKU (σs), τs⟩

= ⟨λsU ◦ resHU (x(s)), τs⟩
= ⟨λS U ◦ res H

S U ((x(t))t∈S), τ⟩,

completing the proof. 2

We are now in position to show a result about an integral canonical induction
formula for XS from AS .

Proposition 10.5 Assume that p ∈ Λ and

⟨λsU ◦ resHU (x), τs⟩ =
∑

σs∈Bs(K)

⟨λsK ◦ resHK(x), σs⟩ · ⟨resKU (σs), τs⟩

for all U ⊴ K ≤ H ≤ G, s ∈ CS(H), x ∈ Xs(H), and τs ∈ Bs(U) such that K/U is
a cyclic p-group and con r

sU (τs) = τs for all r ∈ K. Assume further that

e
(H)
H · (λsH(x)− x) = 0

for all H ∈ C(QX), s ∈ CS(H), and x ∈ Xs(H). Then ΨXS ,AS ,λS is a canonical
induction formula for Z(p)XS from Z(p)AS, and

ΨXS ,AS ,λS
H ((x(s))s∈S) =

∑
(U,τ)∈R(H,BS)

mτ ((x(s))s∈S)[U, τ ]

for all H ≤ G and (x(s))s∈S ∈ XS(H), where

mτ ((x(s))s∈S)

=
1

|WH(U, τ)|
∑

(K,σ)∈S(H,BS)≥(U,τ)

µ(U,K)

×⟨λS K ◦ res H
SK((x(s))s∈S), σ⟩ · ⟨res K

S U (σ), τ⟩.
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Proof. By Lemma 10.4, the condition (∗p) of Theorem 10.1 holds for X = XS ,
A = AS , λ = λS , and B = BS . Suppose that H ∈ C(QXS). Let (x(s))s∈S ∈ XS(H),
and set

(y(s))s∈S = e
(H)
H · (λS H((x(s))s∈S)− (x(s))s∈S).

Then Proposition 5.5 yields (y(s))s∈S ∈ KXS (H). Using an argument analogous to
the proof of Proposition 6.1, we have

y(s) =

{
e
(H)
H · (λsH(x(s))− x(s)) if s ∈ CS(H),

0 otherwise.

This implies that (y(s))s∈S = 0, because C(QXS) = C(QX) by Proposition 6.1.
Thus the proposition is a consequence of Corollary 10.2. This completes the proof.
2

11 Induction formulae for representations of CαG

Let α : G × G → C× be a normalized 2-cocycle, and keep the notation of
Section 7. For each H ≤ G, let Irrα(H) be the set of isomorphism classes of ir-
reducible left CαH-modules, and let Linα(H) be the set of isomorphism classes of
one-dimensional left CαH-modules. We denote by Rab

α the restriction subfunctor of
the CαG-representation functor Rα such that Rab

α (H) with H ≤ G is the Z-span of
Linα(H), and define a morphism λα : Rα → Rab

α of conjugation functors by

λαH(χ) =

{
χ if χ ∈ Linα(H),

0 otherwise

for all H ≤ G and χ ∈ Irrα(H). Obviously, there exists a stable Z-basis Bα of Rab
α

such that Bα(H) = Linα(H) for all H ≤ G. From Lemma 7.3, we know that the
condition (∗p) of Theorem 10.1 holds for X = Rα, A = Rab

α , λ = λα, B = Bα, and
p = ∞. Observe that by Lemma 7.2, C(QRα) is the set of cyclic subgroups of G.
Then for any H ∈ C(QRα), Rab

α (H) = Rα(H) and λαH = idRα(H) (see also the proof

of Lemma 7.2). Hence it follows from Corollary 10.2 that ΨRα,Rab
α ,λα is a canonical

induction formula for Rα from Rab
α and

Ψ
Rα,Rab

α ,λα

H (χ) =
∑

(U,τ)∈R(H,Bα)

mα
τ (χ)[U, τ ]

for all χ ∈ Rα(H), where

mα
τ (χ) =

1

|WH(U, τ)|
∑

(K,σ)∈S(H,Bα)≥(U,τ)

µ(U,K)⟨λαK ◦ resHK(χ), σ⟩.

Note that ⟨resKU (σ), τ⟩ = 1 for any (K,σ) ∈ S(H,Bα)≥(U,τ) with (U, τ) ∈ R(H,Bα).
Consequently, we have the following.



Induction formulae for Mackey functors/ Yugen Takegahara 55

Proposition 11.1 Under the above notation,

χ =
∑

(U,τ)∈R(G,Bα)

mα
τ (χ)ind

G
U (τ)

for all χ ∈ Rα(G).

If α is trivial, that is, α(s, t) = 1 for all s, t ∈ G, then Proposition 11.1 yields a
canonical choice of Brauer’s induction theorem on C-characters of G, which is due
to Boltje [3] (cf. [4, Examples 1.8(a), 6.13(a), 9.7]).

A subgroup H of G is said to be hyper-elementary if H has a cyclic normal
p-complement, or equivalently Op(H) is cyclic, for some prime p. Assume now that
p ∈ Λ, and define a morphism λp,α : Rα → Rab

α of conjugation functors by

λp,αH (χ) =

{
χ if Op(H) is cyclic and if χ ∈ Linα(H),

0 otherwise

for all H ≤ G and χ ∈ Irrα(H). (Note that λ∞,α = λα.) Then it follows from
Lemma 7.3 that the condition (∗p) of Theorem 10.1 holds for X = Rα, A = Rab

α ,
λ = λp,α, and B = Bα. Moreover, λp,αH = idRα(H) for any H ∈ C(QRα), because
C(QRα) is the set of cyclic subgroups of G. Hence it follows from Corollary 10.2

that ΨRα,Rab
α ,λp,α is a canonical induction formula for Z(p)Rα from Z(p)R

ab
α , and

Ψ
Rα,Rab

α ,λp,α

H (χ) =
∑

(U,τ)∈R(H,Bα)

mp,α
τ (χ)[U, τ ]

for all χ ∈ Rα(H), where

mp,α
τ (χ) =

1

|WH(U, τ)|
∑

(K,σ)∈S(H,Bα)≥(U,τ)

µ(U,H)⟨λp,αK ◦ resHK(χ), σ⟩.

In particular, Proposition 11.1 is reduced to the type of hyper-elementary groups.

Proposition 11.2 Let Λ(G) denote the set of all primes dividing |G|. Under the
above notation, if the condition ∑

p∈Λ(G)

ℓp
|G|
|G|p

= 1

holds for integers ℓp, p ∈ Λ(G), then

χ =
∑

(U,τ)∈H(G,Bα)

 ∑
p∈Λ(G)

ℓp
|G|
|G|p

mp,α
τ (χ)

 indGU (τ)

for all χ ∈ Rα(G), where

H(G,Bα) = {(U, τ) ∈ R(G,Bα) | Op(U) is cyclic}.
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If α is trivial, then Proposition 11.2 is [34, Theorem 8.7].

Remark 11.3 A subgroup H of G is said to be elementary if H is the direct product
of a p-group and a cyclic group of order prime to p for some prime p. We denote
by E(G) the set of elementary subgroups of G. By [22, Theorem 7.5.3], every
α-character is expressed as a Z-linear combination of α-characters induced from α-
characters of degree 1 of elementary subgroups of G (see also [11, Brauer Induction
Theorem 15.9]). Hence it follows from [22, Proposition 7.1.1, Theorem 7.1.11] that
each χ ∈ Rα(G) is expressed as a Z-linear combination of the elements indGU (τ) for
(U, τ) ∈ R(G,Bα) with U ∈ E(G).

12 Induction formulae for representations of Dω(G)

Let ω : G × G × G → C× be a normalized 3-cocycle, and keep the notation of
Section 8. Recall that Rθ is the Mackey bundle composed of Rθs ∈ Mack(Gs)Z,
s ∈ Gc, equipped with the crossed conjugation maps con g

sH for s ∈ Gc, H ≤ Gs,
and g ∈ G. Given s ∈ Gc, the restriction subfunctor Rab

θs
of Rθs , the morphism

λp,θs : Rθs → Rab
θs

of conjugation functors, where p ∈ Λ, and the stable Z-basis Bθs
such that Bθs(H) = Linθs(H) for all H ≤ Gs are defined in Section 11. Let Rabθ be
the restriction bundle composed of Rab

θs
∈ Res(Gs)Z, s ∈ Gc, such that the crossed

conjugation maps con g
sH for s ∈ Gc, H ≤ Gs, and g ∈ G are the restriction of those

of Rθ. The crossed Mackey functor

RθGc = (RθGc , conGc , resGc , indGc) ∈ Mack(G)Z

on Rθ and the crossed restriction functor

Rabθ
Gc = (Rabθ

Gc , conGc , resGc) ∈ Res(G)Z

on Rabθ are defined in Section 4. Suppose that the morphism λp,θGc : RθGc → Rabθ
Gc of

conjugation functors and the stable Z-basis BθGc of Rabθ
Gc are λGc and BGc defined in

Section 10 with S = Gc, X = Rθ, A = Rabθ, λs = λp,θs , and Bs = Bθs , respectively.

Lemma 12.1 Assume that p ∈ Λ. Then ΨRθ
Gc ,R

abθ
Gc ,λ

p,θ
Gc is a canonical induction

formula for Z(p)R
θ
Gc from Z(p)R

abθ
Gc such that

Ψ
Rθ

Gc ,R
abθ
Gc ,λ

p,θ
Gc

H ((x(s))s∈Gc) =
∑

(U,τ)∈R(H,Bθ
Gc )

mp,θ
τ ((x(s))s∈Gc)[U, τ ]

for all H ≤ G and (x(s))s∈Gc ∈ RθGc(H), where

mp,θ
τ ((x(s))s∈Gc)

=
1

|WH(U, τ)|
∑

(K,σ)∈S(H,Bθ
Gc )≥(U,τ)

µ(U,K)⟨λp,θGcK ◦ res H
GcK ((x(s))s∈Gc), σ⟩.
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Proof. The argument before Proposition 11.2 means that the assumptions of Propo-
sition 10.5 hold for s ∈ Gc, Xs = Rθs , As = Rab

θs
, λs = λp,θs , and Bs = Bθs . Hence

the lemma follows from Proposition 10.5. This completes the proof. 2

Keep the notation of Section 11. For each H ≤ G, we set

Irr(Dω
G(H)) =

[M ] ∈ Dω
G(H)-mod

∣∣∣∣∣∣∣
[ϕsM ] ∈ Irrθs(Hs) for some s ∈ H\Gc,
and ϕtM = {0} for any t ∈ H\Gc

with s ̸= t


and

Lin(Dω
G(H)) =

[N ] ∈ Dω
G(H)-mod

∣∣∣∣∣∣∣
dimC(ϕsN) = 1 for some s ∈ CG(H),

and ϕtN = {0} for any t ∈ Gc

with s ̸= t

 .

By Theorem 8.4, Dω
G(H) with H ≤ G is a semisimple algebra, and Irr(Dω

G(H)) is
the set of isomorphism classes of irreducible left Dω

G(H)-modules. Let RabDω
G be

a restriction subfunctor of RDω
G such that RabDω

G(H) with H ≤ G is the Z-span
of Lin(Dω

G(H)). For each p ∈ Λ, we define a morphism λp,ωG : RDω
G → RabDω

G of
conjugation functors by

λp,ωGH(χ) =

{
χ if Op(H) is cyclic and if χ ∈ Lin(Dω

G(H)),
0 otherwise

for all H ≤ G and χ ∈ Irr(Dω
G(H)). Obviously, there exists a stable Z-basis BωG

of RabDω
G such that BωG(H) = Lin(Dω

G(H)) for all H ≤ G. Given H ≤ G and
(U, τ) ∈ R(H,BωG), we set

WH(U, τ) = {hU ∈ NH(U)/U | DconhU (τ) = τ}.

Theorem 12.2 Assume that p ∈ Λ. Then ΨRDω
G,R

abDω
G,λ

p,ω
G is a canonical induction

formula for Z(p)RD
ω
G from Z(p)R

abDω
G such that

Ψ
RDω

G,R
abDω

G,λ
p,ω
G

H (χ) =
∑

(U,τ)∈R(H,Bω
G)

mp,ω
τ (χ)[U, τ ]

for all H ≤ G and χ ∈ RDω
G(H), where

mp,ω
τ (χ) =

1

|WH(U, τ)|
∑

(K,σ)∈S(H,Bω
G)≥(U,τ)

µ(U,K)⟨λp,ωGK ◦DresHK(χ), σ⟩.
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Proof. We define a morphism Γab : RabDω
G → Rabθ

Gc of restriction functors by

Γab
H : RabDω

G(H) → Rabθ
Gc (H), x→ ΓH(x)

for all H ≤ G, where ΓH is defined in Section 8. By Theorem 8.4, Γab is an
isomorphism of restriction functors. For each H ≤ G, the diagram

RDω
G(H)

ΓH−−−−→ RθGc(H)

λp,ωGH

y yλp,θGcH

RabDω
G(H) −−−−→

Γab
H

Rabθ
Gc (H)

is commutative, and Γab
H induces a one to one correspondence

BωG(H) ∋ σ 7→ ΓH(σ) ∈ BθGc(H).

Hence the theorem follows from Theorem 8.4 and Lemma 12.1. 2

We are now successful in finding an analogy of Brauer’s induction theorem on
C-characters of G.

Corollary 12.3 Keep the notation of Theorem 12.2, and let M ∈ Dω(G)-mod.
Then

[M ] =
∑

(U,[N ])∈R(G,Bω
G)

m∞,ω
[N ] ([M ])[Dω(G)⊗Dω

G(U) N ].

If the condition ∑
p∈Λ(G)

ℓp
|G|
|G|p

= 1

holds for integers ℓp, p ∈ Λ(G), then

[M ] =
∑

(U,[N ])∈H(G,Bω
G)

 ∑
p∈Λ(G)

ℓp
|G|
|G|p

mp,ω
[N ]([M ])

 [Dω(G)⊗Dω
G(U) N ],

where
H(G,BωG) = {(U, [N ]) ∈ R(G,BωG) | Op(U) is cyclic}.

Remark 12.4 By Lemma 8.1, there exists an equivalence between the categories
CH-mod and Dω

ϵ (H)-mod. Moreover, if α : G × G → C× is the trivial 2-cocycle,
then the statements of Propositions 11.1 and 11.2 are special cases of Corollary 12.3.
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