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Abstract

In the theory of canonical induction formulae for Mackey functors, Boltje [4]
demonstrated that the plus constructions, together with the mark morphism,
are useful for the study of canonical versions of induction theorems analogous
to those in representation theory of finite groups. In this paper, we present a
short exact sequence for the plus constructions derived from Cauchy-Frobenius
lemma, and apply it to the proof of Boltje’s integrality result for canonical in-
duction formulae. The methods appearing in Boltje’s theory, combined with
the Dress construction for Mackey functors, are applicable to induction theo-
rems on representations of the twisted quantum double of a finite group. As
a sequel to such a research, we describe canonical versions of two induction
theorems whose origins are Artin’s induction theorem and Brauer’s induction
theorem on C-characters of a finite group.
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1 Introduction

The theory of canonical induction formulae for Mackey functors due to Boltje
[4] has been developed from Brauer’s induction theorem, which states that every C-
character of a finite group G can be expressed as a Z-linear combination of induced
linear C-characters from subgroups of G (cf. [7]), and its canonical versions (cf.
[3, 33]). A Mackey functor for G over a commutative ring k, denoted by a quadruple
X = (X, con,res, ind), is defined to be a family of k-modules X (H), H < G, together
with conjugation maps cony, : X(H) — X (9H), where g € G, restriction maps
resf : X(H) — X(K), and induction maps indf : X(K) — X(H), where K < H
in both cases, satisfying certain axioms, which is a G-functor over k introduced by
Green [19]. A restriction functor and a conjugation functor, denoted by a triple
A = (A,con,res) and a couple A = (A, con), respectively, are defined in similar
fashion. Considering the corresponding categories, Boltje [4] has introduced two
functors —; : Res(G)r — Mack(G); and —1 : Con(G);, — Mack(G) arising
from adjoints of forgetful functors; these functors are called the lower and upper
plus constructions. A canonical induction formula for a Mackey functor X from a
restriction subfunctor A is a morphism ¥ : X — A of restriction functors such
that ©X4 o ¥ = idy for a morphism %4 : A, — X of Mackey functors called
the induction morphism (cf. [4]). A canonical choice of Brauer’s induction theorem
comes from a certain canonical induction formula for the character ring functor R
from a restriction subfunctor R*" defined by the Z-span of all linear C-characters (cf.
3, 4]). In this case R%P(G) is isomorphic to the ring of monomial representations of
G introduced by Dress [15].

If X is a Mackey functor for G over Z (or the localization of Z at a prime p),
then one may attempt to find an induction theorem on X analogous to Brauer’s
induction theorem. Concerning the existence of such a theorem, Boltje [4] has given
an integrality criterion for canonical induction formulae. In this paper, we establish
a new fundamental theorem for the plus constructions, which ensures the existence
of a short exact sequence derived from Cauchy-Frobenius lemma (cf. Theorem 9.4),
and successfully apply it to an argument of the integrality of canonical induction
formulae under a suitable condition given in [4] (cf. Theorem 10.1).

For a normalized 3-cocycle w : G x G x G — C*, Dijkgraaf, Pasquier, and Roche

2010 Mathematics Subject Classification. Primary 19A22; Secondary 16G30, 16535, 20C25, 57T05.
Keywords. Brauer’s induction theorem, Burnside ring, Green functor, representation ring, Mackey
functor, plus construction, twin functor, twisted group algebra, twisted quantum double.
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[14] have introduced a quasi-triangular quasi-Hopf algebra D“(G) with underlying
vector space (CG)*®@cCG, where (CG)* is the Hopf algebra dual to the group algebra
CG@. The algebra D¥(G) is called the twisted quantum double of G. If w is trivial,
then it is the quantum double of G and is denoted by D(G). Given H < G, we
denote by D¢ (H) the subalgebra (CG)* ®@cCH of D¥(G). The representation group
R(D¢g(H)) of DE(H) is defined to be the additive group consisting of all Z-linear
combinations of isomorphism classes of finitely generated left Dg(H )-modules with
direct sum for addition. With the standard definition of conjugation, restriction, and
induction maps (see, e.g., [2, 37]), the family of representation groups R(Dg(H)),
H < G, becomes a Mackey functor for G over Z, which is denoted by RD¢ and
is called the D¥(G)-representation functor. If w is trivial, then RDg is a Green
functor (cf. [37]), which is denoted by RD¢. As for applications of the methods
given in [4], it is worth studying the existence of nice induction formulae for RDg.
The main purpose of this paper is to present a canonical induction formula for RD¢,
from a certain restriction subfunctor which brings Brauer’s induction theorem on
representations of D*(G) (cf. Theorem 12.2, Corollary 12.3).

If o : G x G — C* is a normalized 2-cocycle, then for each H < G, the represen-
tation group R(C“H) of the twisted group algebra C*H is defined to be the additive
group consisting of all Z-linear combinations of isomorphism classes of finitely gen-
erated left C* H-modules with direct sum for addition. The family of representation
groups R(C*H), H < G, together with suitable conjugation, restriction, and induc-
tion maps, defines a Mackey functor for G over Z, which is denoted by R, and is
called the C*G-representation functor. If « is trivial, then R, is a Green functor,
which is called the CG-representation functor. For each s € G, there exists a normal-
ized 2-cocycle 05 : G5 x G5 — C* given by 6(g,7) = w(s, g,7)w(g,,s)/w(g, s, r) for
all g, 7 € G, where Gy is the centralizer of s in G, and then the C% G-representation
functor Ry, is a Mackey functor for G5 over Z assigning R((CGS H) to each H < G.
Every finitely generated left D“(G)-module is characterized by a family of certain
left C%G-modules, s running over the elements of G (cf. [38]). We introduce a
new concept, namely, the Mackey bundle composed of C% G-representation functors
Ry, s € G, and employ it to investigate RD¢. This concept, which adapts suc-
cessfully the Dress construction for Mackey functors (cf. [5, 30]), defines a crucial
Mackey functor for the study of R(D¥(G)) (cf. Theorem 8.4, Corollary 8.6).

If X = (X, con,res,ind) is a Mackey functor for G over k, then X denotes the
conjugation functor for G over k such that

X(H) = X(H) == X(H)/ Y ind(X(K))
K<H

for all H < G, and the conjugation maps are determined by those of X. The twin
functor TX of X introduced by Thévenaz [35] is just the Mackey functor X" (cf.
[9]). Under the assumption that |G| is invertible in k, Thévenaz [35] has given an
induction formula for X based on a result of Puig [32], which is deduced from the
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inverse of an isomorphism 5 : X — T'X of Mackey functors defined to be the family
of k-module isomorphisms By : X(H) — TX(H), z — (rest(z))k<y for H < G
(cf. Remark 5.7). In this context, we emphasize that

Ng(H)

QezRD*(G)= [ @ez| [] RC*H) (1)

HeCl(G,Cyc) s€Cq(H)

as Q-spaces, where Cl(G, Cyc) is a full set of nonconjugate cyclic subgroups of G and
the action of Ng(H) is defined by the conjugation maps of the D“(G)-representation
functor (cf. Corollary 8.8). If w is trivial, then this is a Q-algebra isomorphism (cf.
[37]). Using idempotent formulae for the crossed Burnside ring, Oda [28] has shown
Artin’s induction theorem on representations of D(G). Regarding such a result, we
present a canonical choice of Artin’s induction theorem on representations of D¥(G)
(cf. Corollary 8.9), which is concerned with (I) and is described by using a canonical
induction formula of a minimal type due to Boltje [4].

In Section 2, we recall the lower and upper plus constructions, together with
the mark morphism and the induction morphism, from [4]. Section 3 contains the
study of the Burnside ring functor and the crossed Burnside ring functor associated
to a finite G-monoid S, which are Green functors obtained by the lower plus con-
struction. In Section 4, we introduce the notion of a crossed Mackey functor on a
Mackey bundle composed of X € Mack(Gs), s € S, which generalizes the Dress
construction for Mackey functors associated to S or the crossing by S. The Green
functor obtained by the ordinary Dress construction from the Burnside ring functor
is isomorphic to the crossed Burnside ring functor. This fact is worth examining in
our research, because we see that the isomorphism is deduced from a certain induc-
tion morphism. In Section 5, we recall a fundamental fact for canonical induction
formulae from [4], and explain Thévenaz’s results on the twin functor of a Mackey
functor. Section 6 is devoted to some results for the crossed Mackey functors.

In Section 7, we turn to the study of the C*G-representation functor R, and
then provide two lemmas about finitely generated C*G-modules, which are essential
to a canonical choice of Brauer’s induction theorem on representations of C*G.
Section 8 is devoted to representation theory of D¥(G). We show that the D¥(G)-
representation functor RDY is isomorphic to the crossed Mackey functor on the
Mackey bundle composed of C% G-representation functors Ry,, s € G, and then
show that the Green functor RD¢ is isomorphic to the Green functor obtained by
the ordinary Dress construction from the CG-representation functor associated to
the G-monoid G on which G acts by conjugation. Some important consequences of
such results are also given, including (I) and a canonical choice of Artin’s induction
theorem on representations of D“(G). Section 9 contains two fundamental theorems
for the plus constructions, which are generalizations of fundamental theorems for
the Burnside ring of a finite group. In Section 10, we give an alternative proof of
Boltje’s integrality result for canonical induction formulae, and show an integrality
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condition for the crossed Mackey functors, too. Section 11 describes a canonical
choice of Brauer’s induction theorem on representations of C*G. In Section 12, we
study canonical induction formulae for RD“(G), and present a canonical choice of
Brauer’s induction theorem on representations of D“(G).

Notation Throughout the paper, let G be a finite group, k a commutative ring with
unity, Z the rational integers, Q the rational numbers, and C the complex numbers.
We denote by € the identity of G. The subgroup generated by an element g of G
is denoted by (g). We write K < H if H and K are subgroups of G with K C H.
Let H < (. Given K < H, we write K < H if K # H, and write K < H if
K is a normal subgroup of H. The Mobius function of the poset (S(H), <) of all
subgroups of H is denoted by u (see, e.g., [1]). Weset "H = rHr~! and "g = rgr—*
for all g, r € G, and denote by CI(H) a full set of nonconjugate subgroups of H.
For each K < H, Ny (K) denotes the normalizer of K in H, and Cy(K) denotes
the centralizer of K in H. Given K < H, we denote by H/K the set of left cosets
hK, h € H, of K in H. For each pair (K, U) of subgroups K and U of H, K\H/U
denotes the set of (K,U)-double cosets KhU, h € H, in H. We denote by G-set
the category of finite left G-sets and G-maps. Let S € G-set. Given g € G and
s € S, 9 denotes the effect of g on s. We view S as an H-set via the restriction of
operations from G to H, and denote by Cg(H) the set of all elements s of S such
that "s = s for all h € H. For each s € S, H, denotes the stabilizer of s in H.
We set Stab(G;S) = {Gs | s € S}. A semigroup with identity is called a monoid.
A monoid on which G acts as monoid homomorphisms is called a G-monoid. We
denote by G-mon the category of finite G-monoids and G-maps. For an object
M of a category, [M] denotes the isomorphism class containing M. Given a ring
R, we denote by R-mod the category of finitely generated left R-modules, and set
R-mod = {[M] | M € R-mod}. The identity map on a set ¥ is denoted by idy,. We
denote by A(G) the set of all primes dividing |G|, and denote by A the set consisting
of all primes and the symbol co. Let p be a prime. For each Z-module M, we set
M) = Z,) @z M, where Z,) is the localization of Z at p, and set M) = M.
The expression ¢ oo-group’ means only ‘group’. We denote by OP(H) the smallest
normal subgroup of H such that H/OP(H) is a p-group, and set O (H) = {¢}. For
each natural number n, n, denotes the p-part of n, and n., denotes n.

2 The plus constructions
We start with the following definition which is given in [4] (see also [19, 35, 40]).

Definition 2.1 (a) A conjugation functor for G over k is a couple A = (A, con)
consisting of a family of k-modules A(H), H < G, and a family of k-module
homomorphisms

cony; : A(H) — A(‘H),
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the conjugation maps, for H < G and g € G, satisfying the axioms

(G.1) cony o con}; = conyy, con = id
forall H < G, g, r € G,and h € H. An algebra conjugation functor for G over
k is a conjugation functor A = (A, con) for G over k such that A(H), H < G,
are k-algebras and the conjugation maps are k-algebra homomorphisms.

A restriction functor for G over k is a triple A = (A, con, res) consisting of a
conjugation functor (A, con) for G over k and a family of k-module homomor-
phisms

restt 1 A(H) — A(K),

the restriction maps, for K < H < G, satisfying the axioms

(G.2) resf orestl =vest, resll = idacm),

g H _ 9H g
(G.3) conf} oresy = resgp o cony;

forall L < K < H < G and g € G. An algebra restriction functor for
G over k is a restriction functor A = (A, con,res) for G over k such that
(A,con) is an algebra conjugation functor and the restriction maps are k-
algebra homomorphisms.

A Mackey functor for G over k is a quadruple A = (A, con, res, ind) consisting
of a restriction functor (A, con,res) for G over k and a family of k-module
homomorphisms

ind : A(K) — A(H),

the induction maps, for K < H < G, satisfying the axioms
(G4) ind oindff =indf, indjf =idagr),
(G.5) con¥; oind% = ind g5 o con%,
(G.6) (Mackey axiom)
resg oind = Z indgm hy © res[h(% hy © con}(‘]
KhUEK\H/U

forall L< K< H<G,U<H,and g € G. A Green functor for G over k is
a Mackey functor A = (A, con,res,ind) for G over k such that (A, con,res) is
an algebra restriction functor and

(G.7) (Frobenius axioms)

o -indfl(7) = indfl(resf(0) - 7). indfl(r) o = mdfl(r - resfl(o))

forall K < H, o0 € A(H), and 7 € A(K).
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A morphism f: X — Y of Green functors for G over k is a family of k-algebra
homomorphisms fy : X(H) — Y(H), H < G, commuting with conjugation, re-
striction, and induction maps. A morphism of conjugation, algebra conjugation,
restriction, algebra restriction, or Mackey functors for G over k is defined in similar
fashion. For a morphism f : X — Y of Mackey functors for G over k, we require that
fu: X(H)—Y(H), H <G, are k-module homomorphisms. The others are defined
by omitting unnecessary terminology. We now obtain the categories of conjugation,
algebra conjugation, restriction, algebra restriction, Mackey, and Green functors for
G over k, denoted by Con(G)i, Conge(G)k, Res(G)y, Res,s(G)r, Mack(G)y, and
Green(G)y, respectively. The sets of morphisms f : X — Y of conjugation, restric-
tion, Mackey, and Green functors are denoted by Con(G)(X,Y)x, Res(G)(X,Y ),
Mack(G)(X,Y), and Green(G)(X,Y ), respectively.

Following [4], we define plus constructions —; : Res(G)r — Mack(G), and
—T: Con(G); — Mack(G)j, and state some basic facts concerned with them.

Let A € Con(G). For each H < G, set

MH) =[] A©), (II)
U<H

and view it as a left kH-module with the action given by
h.(xv)v<m = (conds(xv)) ny<p
for all h € H and (xy)y<y € M(H). We define
AT = (AT con™, res™, indT) € Mack(G);
by

A+(H) = {(xU)USH S M(H) ‘ h.(xU)USH = (xU)USH for all h € H},

con ™ ((zv)u<n) = (confy(zv)) su<om,

res T ((xp)v<m) = (vv)v<K,

ind+?(((yu)U§K)= Z (c})r<m
hKeH/K

forall K < H <G, g€G, (zy)u<y € AT(H), and (yu)v<k € AT(K), where

Cr, =

N conf(yy) if L= "U with U < K,
0 otherwise.

In short, A(H)* is just the set of H-invariants on M (H).
If A is an algebra conjugation functor, then A*(H), H < G, are k-algebras with
obvious multiplication and AT is a Green functor.
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Given H < G, we define I(M(H)) to be the smallest kH-submodule of M (H)
such that H acts trivially on the factor module M (H)/I(M(H)), and denote by
(xv)u<m an element (zy)y<g + [(M(H)) of M(H)/I(M(H)).

Suppose next that A € Res(G),. We define

Ay = (Aq,con,,res ., ind,) € Mack(G)y

A (H) = M(H)/I(M(H)),

con, 3 ((zv)u<nm) = (confy(zv)) sv< o,

res+§{<(($U)U§H) = Z Z (d%)LSIﬂ

U<H KhUeK\H/U

ind, % ((yo)v<r) = Wy )u<n
forall K < H <G, g€, (zv)u<uy € M(H), and (yv)v<x € M(K), where

g - { res[h(%hU ) con’(}(xU) if L=Kn hu,

0 otherwise,
and

/o ?JU lf U S K7
YU=31 0  otherwise.

In short, A(H)4 is just the set of H-coinvariants on M (H).
Given K < H < G and 0 € A(K), we set

[K,0] = (0kvo)u<n € AL(H),

where 0gpyo =0if K #2U and 0xgo = 0.
If A is an algebra restriction functor, then multiplication on Ay (H) with H < G
is defined by

[K,0]-[U7]= > [KN"Uresk p(0) vesi ;o confi(r)],
KhUEK\H/U

extended to Ay (H) by k-linearly. This k-algebra structure of Ay (H) forces A4 to
be a Green functor.
Let H < G. The mark homomorphism p% : A (H) — A*(H) is defined by

pi(@o)v<m) = > ST resy o conly(ap)

U<H \hUecH/U K<hU K<H
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for all (zy)u<ny € M(H), where the sum ¢/, k<ny is taken over all cosets

hU, h € H, of U in H such that K < "U. We define a morphism p? : A, — A of
Mackey functors to be the family of mark homomorphisms pg, H < @G, and call it
the mark morphism. If A is an algebra restriction functor, then p# is a morphism
of Green functors. We define a map 74 : A¥(H) — A4 (H) by

mi(w)k<m) = Y Y U0, K)[U,vesfs (yx)]
K<HU<K

for all (yx)x<m € AT (H).
The following proposition is [4, Proposition 2.4].

Proposition 2.2 Let A € Res(G)y. For each H < G,
niro pip = [Hlida, () and  pfy o njy = |H|id g+ (-

A stable k-basis B of A is defined to be a family of k-bases B(H) of A(H),
H < @G, such that
B(H) = {cony;(0) | o € B(H)}
for all H < G and g € G (see [4, Definition 7.1]). Suppose that B is a stable k-basis
of A. Let H < G, and set

S(H,B)={(K,o0) | K<H and o€ B(K)}.
Then &(H, B) is a left H-set with the action given by
h.(K,o) = ("K,con (o))

for all h € H and (K,0) € 6(H,B). We denote by R(H, B) a complete set of rep-
resentatives of H-orbits in &(H, B) such that K € CI(H) for all (K,0) € R(H, B).
The following lemma is the second statement of [4, Lemma 7.2].

Lemma 2.3 Let A € Res(G)g, and let B be a stable k-basis of A. For each H < G,
the elements [K, o] for (K,o) € R(H, B) form a k-basis of AL (H).

Suppose that X = (X, con,res,ind) € Mack(G);. Let A be a restriction sub-
functor of X, that is, each A(H) with H < G is a submodule of the k-module X (H),
and the conjugation and restriction maps of A are the restriction of con?, and res%
for K < H < G and g € G. We define ©%4 : A, — X to be a family of k-module

homomorphisms @ﬁ’A Ay (H) —» X(H), H < G, such that
O} (K 0]) = indf (0)

for all [K, 0] € AL (H), and call it the induction morphism (cf. [4, 3.1]).
The next lemma is due to Boltje [4].
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Lemma 2.4 Let X € Mack(G)g, and let A be a restriction subfunctor of X. Then
0%X4 ¢ Mack(G)(Ay, X). If X is a Green functor and if each A(H) with H < G
is a subalgebra of the k-algebra X (H), then ©%4 € Green(G)(AL, X).

Proof. Obviously, %4 € Con(G)(A,, X);. By the Mackey axiom,
h

@i’A o res+%([U, T]) = Z imdgm hy © reslh(% ny © congy(T)
KhUEK\H/U

= restl o indf (1)
for all K < H < G and [U, 7] € A4 (H). Moreover,
On? oind*([U, 7)) = indf (1) = indl o O (U, 7))

for all K < H < G and [U,7] € A, (K). Thus %4 € Mack(G)(A4, X);. Suppose
that X is a Green functor and each A(H) with H < G is a subalgebra of the
k-algebra X (H). Using the Mackey and Frobenius axioms, we have

ind® (o) - indfl (1) = ind¥ (o - rest o indfl (1))

. . h
= ind# | o- E ind ., ores; 7, o conl’(7)

KhUeK\H/U

. h
- Z mdgm hU(resgm ny(0) - resthU o conf (7))
KhUEK\H/U

foral K <H<G,U<H,oe X(K),and 7 € X(U) (cf. [19, Proposition 1.84],
[35, Proposition 1.10]). Hence the k-module homomorphisms @)}g’A for H < G are k-
algebra homomorphisms, and thereby, X4 € Green(G)(A, X)i. This completes
the proof. O

3 The Burnside ring functor

We explore the lower plus construction from an algebra restriction functor for G
over k in terms of H-sets with H < G (see also [27, Section 3]).

Suppose that A € Res,,(G)i. Let H < G, and view the left kH-module M (H)
(see (II)) as an H-monoid with obvious multiplication. Given K < H, we regard
A(K) as a k-submodule of M (H) via the obvious embedding A(K) — M (H). Given
J, J' € H-set, we denote by Mapy(J,J') the set of H-maps from J to J'. There
exists a contravariant functor T' = Tﬁ : H-set — Mon, where Mon is the category
of monoids, such that T'(J) with J € H-set is defined to be the monoid

{m € Mapy(J,M(H)) | n(z) € A(H,) for all z € J}
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with pointwise multiplication, where H, is the stabilizer of x, and the morphism
T(f):T(J)— T(J") with J, J' € H-set and f € Mapy(J', J) is defined by

T(f)(r): I = M(H), @ resy’@ (x(f(x)))

for all # € T'(J). This functor is additive, that is, for any Ji, J» € H-set with
inclusions ¢; : J; — J1UJs, the induced map

T(Ll) X T(Lg) : T(JlUJQ) — T(Jl) X T(JQ)
is an isomorphism (cf. [21, Section 2]). Following [21], we set
7'('1-5—7'('2 = (T(Ll) X T(Lg))_l(ﬂ'l,ﬂ'g)

for all (mi,m2) € T(J1) x T(J2). A pair (J,m) with J € H-set and = € T'(J) is
called an element of 7. A morphism f : (J',7’) — (J,m) of elements of T is defined
to be an H-map f : J' — J such that T(f)(7r) = /. We now obtain the category
El(H-set,T) of elements of T' (cf. [29, (2.10)]).

The Burnside ring Q(H) is the commutative ring consisting of all Z-linear com-
binations of isomorphism classes of finite left H-sets with disjoint union for addition
and cartesian product for multiplication (see, e.g., [11, §80]). We give a generaliza-
tion of Q(H) associated with El(H-set,T).

For each (J,m) € El(H-set,T), we denote by (J,m) the isomorphism class of
elements of T containing (J, 7). Let F(H,T) be the free abelian group on the
isomorphism classes of elements of T, and let F(H,T')y be the subgroup of F(H,T')
generated by all expressions (J;UJy, m1+ms) — (J1,m1) — (J2,m2). Multiplication on
F(H,T) is defined by

(Jl,ﬂ'l) . (J2,7T2) = (Jl X JQ,T(PI‘l)(Trl) . T(PI“Q)(WQ)),

extended to F(H,T) by Z-linearly, where Pr; : J; x Jy — J; are projections. Then
F(H,T) is a ring, and F(H,T)o is a two sided ideal of F(H,T). We now define
Q(H,T) to be the quotient F(H,T')/F(H,T)o. This ring is the F-Burnside ring with
F = T introduced by Jacobson [21] (see also [27]). For each (J, ) € El(H-set,T),
an element (J,7) + F(H,T)o of Q(H,T) is denoted by [J,7|p. By an argument
analogous to the proof of [11, Lemma 80.4], we can show that [Ji,m1]o = [J2, m2])o
if and only if (Jy,71) = (J2,m2). By definition, addition and multiplication of two
elements [J1, m1]o and [Ja, m2]o of Q(H,T') are given by

[J1, m1]o + [J2, m2)o = [J1Ud2, mi4ma)o and [J1, 7)o - [Ja2, m2)o = [J1 X J2, ™1 - m2o
with

mtme: JJUJe — M(H), xw— m(z)ifz e Ji, x> m(z)ifxe o
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and
Ty~ T2 & Jl X J2 —)M(H),
H, H,
(w1, 29) = resy oy (mi(21)) -resy 2y, (ma(22)).

Given K < H and o € A(K), define an H-map 7, : H/K — M(H) by
7o (hK) = h.o

forall h € H. Then Q(H,T) is the ring consisting of all Z-linear combinations of the
elements [H/K,7,]o for K < H and 0 € A(K). Moreover, k ®z Q(H,T) is the ring
consisting of all k-linear combinations of the elements 1 ® [H/K, m,]o for K < H
and o € A(K) such that the Z-module homomorphism

Q(H,T)—)k@zQ(H,T), [H/K,?TJ]O'—)1®[H/K,7TU]0

is a ring homomorphism. Suppose that 7 € T(H/K) and «' € T(H/U), where
K,U < H. Then [H/K,7|y = [H/U,n'lp € Q(H,T) if and only if there exists an
element r of H such that K = "U and 7 is the H-map

T(fi;)(x): H/U = M(H), hU s n(hr 'K),

where f{; is an H-map from H/U to H/K defined by f};(hU) = hr~'K for all
h € H. From this, we know that [H/K,rn]|o = [H/U,7'|o € Q(H,T) if and only
if [K,n(K)] = [U,7'(U)] € Ay(H). Hence there exists a k-module epimorphism
T =74k QH,T)— A (H) given by

T(1® [H/K, o) = [K,7(K)]

for all K < H and 7 € T(H/K). Let vi} be the k-module isomorphism from
(k ®z Q(H,T))/KerY to A4 (H) determined by Y. We denote by [H/K,n| the
element 1 ® [H/K,x]p + Ker T of the factor module (k ®z Q(H,T))/Ker Y.

Let K < H. For each J € H-set, we denote by resf(J) the restriction of J to
K. Suppose that V' € K-set. We consider the cartesian product H x V to be a left
K-set with the action given by

r(h,x) = (hr~ L, rz)

for all 7 € K and (h,x) € HxV. Given (h,z) € HxV,let h@x denote the K-orbit
containing (h,z). We denote by ind® (V) the set of K-orbits in H x V, and view it
as a left H-set with the action given by

h(h ®z) = hh @ x

for all h € H and (W/,z) € H x V. This H-set is called an induced H-set (cf. [11,
§80]). We define con’ (V) € "K-set with h € H to be the subset

heV ={h@z|xzeV}
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of ind® (V) with the action given by
hr(h@x) =h@re

for all € K and = € V. This "K-set is called a conjugate "K-set.
We now define

04 = (94, con, res, ind) € Green(Q);

OA(H) = (k@7 Q(H, Tj)) /Ker T,
cond, (17, 7)) = [con?, (J), %],

resit ([, 7)) = [res(J), 7],
ind7([V, @]) = [indf£(V), "]

forall K < H < G, g € G, (J,n) € El(H-set, T};), and (V,w) € El(K-set, T}),
where 91, 7|k, and ! are defined by

(9r)(9 ® &) = confy (n(2)), 7|k (x) =resy? (n(2)), @ (h®y)= conf, (w(y))

forallz € J, y € V, and h € H. This Green functor is a G-functor version of the
F-Burnside ring functor with F' = T4 defined in [21, 27].

Proposition 3.1 Let A € Res,z(G)i. Then the Green functor 04 s isomorphic
to Ay. Really, the family of k-algebra isomorphisms viy : QA (H) — Ay (H), H < G,
defines an isomorphism v : Q4 — A, of Green functors.

Proof. Let K < H < (G, and let g € G. Obviously, the diagrams

v LA
arm) s A, Ay s A, (m)
con?; l lconﬁ’[ and ind T Tind+%
OA(9H) —— A4(°H) QAE) —— Ap(K)
Yoy UK

are commutative, because
cony, ([H/U,x|) = [9H/9U, %] and ind?}([K/L,w]) = [H/L,w"]

for all U < H, 7 € T{(H/U), L < K, and w € T#(K/L). Let U < H, and
let 7 € Tf(H/U). For each h € K\H/U, where K\H/U is a complete set of
representatives of K\H /U, we define 7| ) € TA4(K/K N "U) by

7l e (F(K 0 U)) = ves o Uy, (m(rhU))
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for all r € K. The map

resf (H/U) » | ) K/Kn"U, WU~ r(En")
he K\H/U

is an isomorphism of K-sets, where h'U = rhU with r € K and h € K\H/U. Hence

resi ((H/U,n)) = Y [K/K N "Uw|n).
he K\H/U

Since 7|k py (K N "U) = res;(%hU

turns out that the diagram

o conf,(w(U)) for all U < H and h € K\H/U, it

A

O (H) — Ay (H)

resgl res+§
ONEK) —— AL(K)
Uk

is commutative. Thus it suffices to verify that vf, is a ring homomorphism. We
know that the map

(H/K) x (H/U) — U H/KN"U, (MK, hU)— hyr(K N "0)
he K\H/U

is an isomorphism of H-sets, where hy 'holl = rhU with r € K and h € K\H/U.
Suppose that 1 € T{}(H/K) and 9 € T# (H/U). For each h € K\H/U, we define
T3 € TH(H/K N hU) by

m3(r(K N ")) = res o (m1(rK)) - res il g (ra(rhU))
for all »r € H. Observe that

[H/K,mo- [H/Umlo= > [H/KN"U ns.
heK\H/U

Then we have
Yo ([H/K, mo - [H/U,mlo) = Y ([H/ K, m]o) - Y ([H/U, ws]o).

Consequently, UI‘} is a ring homomorphism. Hence we conclude that v is an iso-
morphism of Green functors. This completes the proof. O
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Let S € G-mon, and set Cg(H) = {s € S| s = s for all h € H}, where "s
denotes the effect of h on s. We define

kgs = (kgg,congg, resgg) € Res, s (G)g

by
kgs(H) = kCs(H), conggf(s) =%, resggii(s)=s

forall K < H <G, se€ Cs(H), and g € G, where kCs(H) is the monoid ring. For
each H < G, the k-module Agg(H) := A(H) ®j kCs(H) has an obvious k-algebra
structure. The family of k-algebras Ags(H), H < G, together with the k-algebra
homomorphisms

cong gy Ags(H) = Ags(H), =& s confy(z) ® %,
res@SII}I cAgs(H) = Ags(K), x®8|—>resg(m)®s

for K < H and g € G, defines an algebra restriction functor for G over k, which is
a generalization of kgg, and is denoted by Aggs = (Ags,congg,resgg).

Set CQ(—,S) = Q%ss and Q = (kggey)+, where {e} denotes the G-monoid
consisting of only the identity e. We consider the Green functor CQ2(—, {e}) as the
Burnside ring functor 2 (cf. [35, Section 6], [40, Example 2.11]). For each H < G,
the element [H/K,e| € CQ(H,{e}) is denoted by [H/K]. The ring CQ(H,S) with
H < G is the crossed Burnside ring defined by Oda and Yoshida [29] (see also [6]),
and the Green functor CQ(—, S) is the crossed Burnside ring functor defined by Oda
and Yoshida [30].

By Proposition 3.1, the family of Z-lattice isomorphisms

Qz(H) = Q(H), [K,e— [H/K],

where H < @, defines an isomorphism between Green functors €27 and €2, which
induces an isomorphism between Green functors Qj, and k®€Q (cf. [4, Section 2]). We
identify Q with £k®€Q, and regard [K, €] € Qi(H) as [H/K] := 1Q[H/K] € k®zQ(H)
for all K < H < G. If |G| is invertible in k, then it follows from Proposition 2.2
that for any K < H < G,

() _ L kg — 1
eff = WnH D (er(DL)p<m) = NH(K)\UZ;(’UW(U’ K)[H/U],

where zx (L) = € if L = "K for some h € H, and xx(L) = 0 otherwise, is an
idempotent of Qi (H) (cf. [4, Remark 2.5]).

Remark 3.2 The idempotents e%{), K € CI(H), of Qg(H) are the primitive idem-
potents of Qg (H). This fact was given by Gluck [18] and Yoshida [41].
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4 The crossed Mackey functor

We introduce the crossed restriction and Mackey functors. Let S € G-set.
For each s € S, G5 denotes the stabilizer of s in G. To begin with, we define a
restriction bundle A for Stab(G;S) := {Gs | s € S} over k to be a collection of
restriction functors

As = (As,con,res) € Res(Gy)g, s€ S,
equipped with a family of k-module homomorphisms
con ¥, : Ag(H) — Ag(°H),
the crossed conjugation maps, for s € S, H < Gs, and g € G, satisfying the axioms

(C.0) con,t; = conly,
(C.1) con,, THocon 7 =con, ¥,

H 9 9
(C.2) con, ¥ oresy = resgy ocon,y,

forall s € S, K < H <G, g,7 € G, and t € GG5. In this case, A is called the
restriction bundle composed of A; € Res(Gs)i, s € S. Morphisms of restriction
bundles for Stab(G; S) over k are defined in a usual way. We now obtain the category
Res(G; S) of restriction bundles for Stab(G; S) over k. If A € Res(G)y, then we
naturally view A as a restriction functor for each G5 € Stab(G;.S), and identify A
with the restriction bundle composed of

As:= A= (A, con,res) € Res(Gs)i, s€S8,

such that the crossed conjugation maps are the conjugation maps of A.
Let A € Res(G;S),. We define

Ag = (Ag,cong,resg) € Res(G)y

B x(s) € As(H) if s € Cg(H), and
As(H) = { ))ses € SggA x(s) = 0 otherwise } ’
cong ¥, ((x(s))ses) = (con, ¥, (z(s))) sses,

resg H((x(s))ses) = (resy* (x(s)))ses

forall K < H <G, g€ G,and (2(s))ses € As(H), and call it the crossed restriction
functor on A. If A is a restriction functor, then this construction of Ag is called the
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crossing of A by S. If A is an algebra restriction functor and if S € G-mon, then
Ag denotes the algebra restriction functor with multiplication on Ag(H) given by

(2(s))ses(y(t))res = > z(s)y(t) ;
(s,t)eCs(H)xCg(H), st=r res

where the sum is taken over all pairs (s,t) for s, t € Cg(H) such that st = r. In
this case, the algebra restriction functor Ag is isomorphic to Agg.

We next define a Mackey bundle X for Stab(G;S) over k to be a collection of
Mackey functors

Xs = (X5, con,res,ind) € Mack(Gs)k, s€ S,
equipped with a family of k-module homomorphisms
con, ¥, : Xo(H) — X os(9H),

the crossed conjugation maps, for s € S, H < G, and g € G, satisfying the axioms
(C.0)-(C.2) and
(C.3) con, ¥ oindf = indgf o con, ¥

forall s € §, K < H < Gy, and g € G. In this case, X is called the Mackey bundle
composed of X, € Mack(Gy), s € S. Morphisms of Mackey bundles for Stab(G; .S)
over k are defined in a usual way. We now obtain the category Mack(G; S) of
Mackey bundles for Stab(G;S) over k. If X € Mack(G)y, then we naturally view
X as a Mackey functor for each G € Stab(G;.S), and identify X with the Mackey
bundle composed of

Xs:= X = (X, con,res,ind) € Mack(G;),, se€S,

such that the crossed conjugation maps are the conjugation maps of X.
Let X € Mack(G; S),. We define

Xg = (Xg,cong,resg,indg) € Mack(G)

Xs(H) = {(w(s))ses € H Xs(Hs) COHS;LIS(JZ(S)) =xz("s) for all h € H} )
ses

cong ¥ ((x(s))ses) = (con, ils (x())) sses,
resg L ((2(s))ses) = (rest (x(s)))ses,

ind 5 ((y(5))ses) = > indfly econ, b (y(" )

HshKeH\H/K scS
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forall K < H < G, g € G, (2(5))ses € Xs(H), and (y(s))ses € Xs(K) (cf. [30,
3.11]), and call it the crossed Mackey functor on X. If X is a Mackey functor, then
this construction of Xg is the G-functor version of the Dress construction associated
to S, and is called the crossing of X by S. Verification of the axioms is analogous
to that in the case where X is a Mackey functor. If X is a Green functor and if
S € G-mon, then Xg denotes the Green functor with multiplication on Xg(H)
given by

((5))ses(y(t))res = > indgy (vesyy  (x(s)) -resy (1)) |

(s,t)EH,\SXS, st=r res

where H,\S x S is a complete set of representatives of H,-orbits of the diagonal
action on S x S, the sum is taken over all (s,t) € H,\S x S such that st = r, and
H,y = Hs; N Hy (cf. [5, Theorem 6.1}, [30, 3.14]).

We show the commutativity between the construction —; and the crossing —g.

Proposition 4.1 Let S € G-set, and let A € Res(G). Then the Mackey functor
Agy is isomorphic to Ayg.
Proof. Define a restriction subfunctor A of Ay = (Ay,con,res,,ind, ) by

A(H) ={[H,0] € A (H) | 0 € A(H)}

for all H < G. Then the restriction functor Ag is isomorphic to AS Hence it suffices
to verify that the Mackey functor AS+ is isomorphic to A;g. Obviously, Agis a
restriction subfunctor of A, g = (A+S,con+s,res+s,1nd+s). For each H < G, the

k-module Ag, (H) consists of all k-linear combinations of

1K, 0]s = ((3s 1yt LK 0 ies)u<n € Asy (H)

for K < H, 0 € A(K), and s € Cg(K), where 6. gy, i)[K,0] = 0 € A4 (U)
it s#torif K # U, and 5(3 K)(s x|K,0] = [K,0] € A, (K). By definition, the
induction morphism ©4+s As A5+ — AL g is a family of k-module homomorphisms

@?{+S7AS :AS+< )_> A+S( ), H < G, such that

O (K, 0]e) = ind, g 7 (8 1) 1,10 [, 0)tes) = (2(8) ees

forall K < H, 0 € A(K), and s € Cs(K), where zk s(t) = 1nd+,LK
if t = "s for some h € H, and zk +(t) = 0 otherwise. For each H < @, it is obvious

that @ffs’AS is a bijection. This, combined with Lemma 2.4, shows that QA+sAs
is an isomorphism of Mackey functors. We have thus proved the proposition. O

o con, % ([K,0])

By an analogous argument to the proof of Proposition 4.1, the next proposition
follows from Lemma 2.4.
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Proposition 4.2 Let S € G-mon, and let A € Res,,(G);. Then the Green func-
tor Agy is isomorphic to Ayg.

We show a generalization of [28, Lemma 3.5] or part of [31, Theorem 3.4].

Corollary 4.3 Let S € G-mon. The Green functor CQ(—, S) is isomorphic to Qg.

Proof. Define Z = (Z, con, res) € Res,y(G)z by Z(H) = Z and cony; = resil =idy
for all K < H < G and g € G. Then the Green functor €2 is isomorphic to Z, .
Hence the Green functor {2g is isomorphic to Z, g. By Proposition 3.1, the Green
functor Zg, is isomorphic to CQ(—, S). Hence it follows from Proposition 4.2 that
the Green functor Qg is isomorphic to C2(—,S). This completes the proof. O

Remark 4.4 Keep the notation of Proposition 3.1 and the proofs of Proposition 4.1
and Corollary 4.3. Given K < H < G and s € Cg(K), there exists an H-map
ms: H/K — [y« ZCs(U) given by

ms(hK) = (dngy hS)USH

for all h € H, where § is the Kronecker delta. The family of Z-lattice homomor-

phisms
®H : CQ(Hv S) — QS(H)v [H/Kv 7rs] = ($K,s(t))t65

for H < G, where xk «(t) = [H;/"K|(= [h ® Hs/K]) if t = "s for some h € H,
and zg s(t) = 0 otherwise, defines an isomorphism © : CQ2(—,S) — Qg of Green
functors such that the diagram

q1 jod GZJrS’ZS
Zs, —— Lgy —— Lyg

| I

Lgg, — CQ(—,9) — Qs

is commutative, where ¢;, i = 1, 2, 3, are obvious isomorphisms of Green functors,
because vZes : CQ(—, S) — Zgyg, and ©Z+sLs . Ly, — 7. ¢ are isomorphisms of
Green functors (see also Lemma 2.4).

There exists a bijective correspondence between G-functors introduced by Green
[19], for which we mean Mackey functors for G in this paper, and Mackey functors
on G-set introduced by Dress [16] (cf. [5, Remarks 2.2 and 2.3], [30, Lemma 3.7]).
The rest of this section is devoted to the description of the restriction and Mackey
bundles, together with the crossed Mackey functors, from Dress point of view on
Mackey functors, using finite left G-sets instead of evaluations on subgroups.

Let S € G-set. The category G-setl.g of G-sets over S is defined as follows:

(i) Objects are pairs (J, w) consisting of J € G-set and w € Mapg(J, S).
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(ii) Morphisms f : (J1,w1) — (J2,we) are defined to be G-maps f : J; — J3 such
that w1, = Wy © f

A contravariant functor A : G-setls — k-mod, (J,w) — A(J,w) is said to

be additive if the two canonical embeddings ¢ : (Jy,w1) — (J1UJa, wi+ws) and

1y 2 (Jo,we) — (J1UJo, witwe) with (Ji,wy), (Jo2,we) € G-setls, where the G-

map wi+wy @ J1UJe — S is defined by x — w;(z) for all x € J; with i = 1, 2,
induce an isomorphism

A1) @ A(ee) - A(Jlojg,wl-;-wg) 5 A(Jy,wr) @ A(J2, we).

We denote by k-Fun(G; S) the functor category with objects the additive con-
travariant functors A : G-setls — k-mod and morphisms the natural transfor-
mations between two such functors. For each A € k-Fun(G;S), there exists a
restriction bundle A = Ages composed of

As = (As,con,res) € Res(Gg), s€S,

given by
(BO) Ay(H) = A(G/H, %),
(B.1) con, ¥, = A(G/%H — G/H, r°H ~ rgH),
(B.2) resfl = A(G/K — G/H, rK ~— rH)
forall s € S, K < H < Gy, and g € G, where s : G/H — S is defined by
bs(rH) = s for all r € G. Conversely, for each restriction bundle A composed of

As = (As,con,res) € Res(Gs)g, s€ S,

together with the crossed conjugation maps Conslgq for s € S, H < G, and g € G,
there exists a contravariant functor 4 = A™ : G-set]g — k-mod given by

G
(F.0) A(J,w) = (H Aw(z)(G:c))

zeJ

con,, gz (0z) = 0g
forallz € Jand g € G ’

= {(Ux)mGJ € H Aw(x)(Gx)

zeJ
Gyt
(F.1) A(f) : A(J,w) — A(J',w'"), (04)zes (rescifz )(af(m,)))x/e]

for all objects (J,w) and morphisms f : (J,w') — (J,w) of G-setlg, which is
additive. Moreover, the categories k-Fun(G; S) and Res(G; S) are equivalent.

A bifunctor X = (X*,X,) : G-setls — k-mod, (J,w) — X(J,w), which
consists of a contravariant functor X* : G-setls — k-mod, (J,w) — X*(J,w)
and a covariant functor X, : G-setls — k-mod, (J,w) — X.(J,w) such that
X(J,w) = X*(J,w) = Xu(J,w) for all (J,w) € G-setlg, is called a Mackey functor
on G-setl g if the following two conditions are fulfilled by A’
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(i) For each pull back diagram in G-setlg

(Jw) —s (Jy,w1)

| [

(J2,w2) —— (J3,w3)
23

the diagram

X(Jw) Y v wn)
X*(f2)T TX*(fm)
X(J2,w2) _— X(Jg,wg)

X (f23)

is commutative.
(ii) The contravariant functor X* : G-setls — k-mod is additive.

Given Mackey functors X} = (X", X1,) and Ay = (AL*, Xy,) on G-setlg, a
family of k-module homomorphisms f( ) : X1(J, w) = Xa(J,w), (J,w) € G-setls,
is called a natural transformation of Mackey functors on G-setl g if this family is a
natural transformation X;* — X5* and X, — Xo,.

Let k-Fun,(G;S) be the functor category with objects the Mackey functors
on G-setlgs and morphisms the natural transformations of Mackey functors on
G-setlg. For each X = (X* X,) € k-Fun,(G;S), there exists a Mackey bundle
X = XMack composed of

Xs = (Xg, con,res,ind) € Mack(Gs)g, s€ S,

such that the collection of restriction functors X = (X, con,res) € Res(Gy)y,
s € S, is the restriction bundle defined to be X*res and the induction maps are
given by
(B.3) ind¥ = X,(G/K — G/H, rK — rH)
for all s € S and K < H < GG5. Conversely, for each Mackey bundle X composed of
Xs = (X5, con,res,ind) € Mack(Gs)g, s€ S,

there exists a Mackey functor X = X" = (X* X,) on G-setlg such that the
contravariant functor X* : G-setlg — k-mod is defined to be X' for the restric-
tion bundle X composed of X; = (X, con,res) € Res(Gs)k, s € S, arising from X
by forgetting induction maps and the covariant functor X, : G-setls — k-mod is
given by

(F'2) X*(f) : X(J/,u),) — X(va)a (Ux’):(:’EJ’ = Z indgx, (Jx’)
AV e ved
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for all morphisms f : (J',w') — (J,w) of G-setls, where G,\f~!(z) is a com-
plete set of representatives of G -orbits in the inverse image f~!(z) of = under f.
Moreover, the categories k-Fun,(G; S) and Mack(G; S)y are equivalent.

Let o be the one-point G-set. When S = e, we write k-Fun(G) = k-Fun(G;e)
and k-Fun,(G) = k-Fun.(G;e) for shortness’ sake. Obviously, k-Fun(G) and
k-Fun, (G) are regarded as the categories of the contravariant and Mackey functors
on G-set, respectively. Moreover, the categories k-Fun(G) and Res(G)j, are equiv-
alent, and so are the categories k-Fun,(G) and Mack(G). There exists a unique
G-map S — e. We define a functor Fun,(S — e) : k-Fun,(G) — k-Fun,(G; S) by

Fun, (S — e)(&X) : G-setls — k-mod, (J,w) — X(J,(S — o) ow)

for all X € k-Fun,(G). Given X € k-Fun,(G), we write X} = (Fun.(S — ))(X).
We turn to the Dress construction from Mackey functors on G-setlg. For each
J € G-set, let Prg be the projection J x S — S. Given a G-map f : J' — J with
J, J' € G-set, we denote by fg : (J' x S,Prg) — (J x S,Prg) the morphism of
G-setlg induced from f xidg:J' xS — Jx S. Let X = (X*, X,) € k-Fun,(G;S).
We define Xg = (Xs*, Xsi) € k-Fun,(G) by
XS(J) = X(J X S, Prs),
Xs*(f) = X*(fs) : X(J x S,Prg) = X(J' x S, Prg),
Xsi(f) = Xfs) : X(J' x S, Prg) = X(J x S, Prg)
for all J € G-set and f € Mapq(J',J) with J, J' € G-set. If X € Mack(G;S)
and if X = XT then Xg = (Xg)Mack. Simultaneously, if X € k-Fun.(G;9)
and if X = Xyfack, then Xg = (Xg)". Given X € k-Fun,(G), the construction
X — (X7)s is called the Dress construction associated to S (see [5, 30]).
Let A € k-Fun(G). Set Ars = (((ARest)™)7)s and Agi = (Aressy )™
Then for each J € G-set,
G

A+S(J) = H ARes+(G(x,s)) )
(z,s)€T XS
where the superscript G denotes the set of G-invariants with respect to the action
induced by the conjugation maps G/9G(, ) — G/Gz), TIG (1) > 79G55 for
g € G and (z,s) € J x S. Likewise,

G
./45'+(J) = (H AResS—i—(Gm))

zeJ
for each J € G-set. By Proposition 4.1, we know that the family of k-module
homomorphisms A1 g(J) = Ag4(J), J € G-set, given by

([U(z,s)a U(m,s)])(:p,s)eJXS = Z [U(:p,s)v (6sta(x,s))t€S] )

s€EGL\S v
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where Uy ) < Gos)s O(as) € AlGa,6)/Ua,s)); and Gz \S is a complete set of
representatives of G -orbits in S, defines an isomorphism A,g — Ag, of Mackey
functors on G-set.

5 Induction formulae for Mackey functors

Let X, Y, Z € Mack(G)j. A pairing X ®; Y — Z is defined to be a family of
k-module homomorphisms
X(H)©x Y(H) = Z(H), z@y—x-y
for H < G, satisfying the axioms
(P.1) con;(z - y) = con¥;(z) - con¥;(y),
(P.2) resf(z - y) = resti(z) - restl(y),
(P.3) (Frobenius axioms)
z-indf(y') = ind¥ (vest(x) - y/), indf(2') -y = indf (2’ - resti(y))
foral K <H<G,geG rxeXH),ycY(H), 2 € X(K)and ¢y € Y(K) (cf.
[4, 16, 35, 40]).
We need to quote [4, Proposition 1.5(i)] (see also [16, Proposition 4.2] and [35,
Proposition 6.1]).

Proposition 5.1 For any X € Mack(G)y, the family of k-module homomorphisms
Q(H) @ X(H) = X(H), [H/K]® x> indf orest(z)
for H < G is a pairing, and makes k-modules X (H) for H < G into Q(H)-modules.

Suppose that X € Mack(G)y. Let H < G. We can consider X (H) to be a left
Ok (H)-module with the action given by

Z lk[H/K] | -z = Z (iind® o resth(x)
K<H K<H
forall /i € k with K < H and z € X(H). If |G| is invertible in k, then the primitive

idempotent eg]) of Qi (H) with K € CI(H) (cf. Remark 3.2) acts on X(H) by

(H) 1 < aH H
e T = g Ulp(U, K)ind;; o resyr (z IIT
K ‘7\7 (K)‘ = | ‘ ( ) U U( ) ( )

for all x € X(H). Moreover, since the identity of Q(H) is expressed as a sum of
orthogonal idempotents > KeCI(H) e%{), it follows that

1
x = E —_— E \U|u(U, K)ind# o rest! (z)
KeCI(H) [N (K| U<K y g

for all z € X(H), which is reduced to the formula in Corollary 5.4.
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Lemma 5.2 Let X € Mack(G)g. If |G| is invertible in k, then the following state-
ments hold.

(a) Forany K < H<G andx € X(H), resg(egf) -x) =0.
(b) Forany K < H<G andy € X(K), g{) indf(y) = 0.

(c) Suppose that f € Res(G)(X, X)k. Ife%() (fx(z)—x) =0 for all K < G and
r € X(K), then f =idx, that is, fg = idx ) for all H < G.

Proof. Let H < G. For any K < H, it follows from Proposition 2.2 that

kgre H
P (res, B (ef1))) = rest L (5,21 (1))

1 k P
= 1] ——resT L (p, 719 "7H®{ "(zu (L) <)) =0,

which, together with Proposition 2.2, shows that res +§{<(egf)) = 0. Hence (a) follows
from Proposition 5.1 and the axiom (P.2) of a pairing. Moreover, (P.3) yields

egf) -indf (y) = indf (ves 2 (e} ( )) y)=0

for all K < H and y € X(K). Thus (b) holds. (The statements (a) and (b) are
proved in the proof of [4, Proposition 6.2].) To prove (c), we argue by induction
on |H|. Suppose that |[H| > 1, and let x € X(H). By the inductive assumption,
fu(resH (z)) = resf () for all U < H. This, combined with (III), shows that

eﬁf) (fu(z) —z) = ;I| Z U (U, H)ind{f o resf (fu(z) — )

| U<H

=T Z |U|p(U, H)ind{j (fu(ves (z)) — vesi) (x))
U<H

= fu(x) —z.
Since eH (fu(x) —x) =0, it follows that fr(z) = . This completes the proof. O

We define a restriction subfunctor KX = (KX, con,res) of X by

K¥(H) = () {z € X(H) | resf(z) = 0}
K<H

for all H < G. A subgroup H of G is said to be coprimordial for X if K~ (H) # {0}
(cf. [4]). We denote by C(X) the set of coprimordial subgroups for X.

Suppose now that A is a restriction subfunctor of X. A canonical induction
formula for X from A is defined to be a morphism ¥ : X — A, of restriction
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functors with X4 o ¥ = idyx, where %4 : A, — X is the induction morphism
defined in Section 2 (cf. [4, Definition 3.3]).

Let A € Con(G)(X, A). Then (Mg oresti(x))x<y € AT(H) for all H < G and
x € X(H). We define UX4A . X — A, to be a family of k-module homomorphisms
U4 X(H) — Ay (H), H < G, such that

1
AN ) = anl((/\l( o resyi(w)) <)

for all z € X(H), provided |G| is invertible in k. For any H < G and z € X (H),
X, AN 1 K H
UM @) = == Y D Uu(U, K)[U, resff 0 Ak o resii(x)]. A%
|H| K<HU<K

The following result is due to Boltje [4, Proposition 6.4].

Proposition 5.3 Let X € Mack(G)g, and let A be a restriction subfunctor of X.
Suppose that |G| is invertible in k. Let A € Con(G)(X,A)x. Then XA s g
morphism of restriction functors, and the following conditions are equivalent :

(1) TXAX s o canonical induction formula for X from A;
2) S (\g(z) = 2) =0 for all H € C(X) and x € X(H).

Proof. Obviously, ¥%4* is a morphism of conjugation functors. Since p* is a
morphism of restriction functors, it follows that

A A H A_ A +H A A
N} © Py OTeS 1y 0Ny = My Ores ' 7 0 prr O Ny

for all U < H < G. This, combined with Proposition 2.2, shows that

1
res_ ! o \Ilﬁ’A”\(x) = Wre&r}g oniy ((Ak o res%(x))KgH)

1
= mné‘((AK o res o res(] () k<)

= \I/()J(’A’”\ orest (x)

foral U < H < G and x € X(H), and thereby, PXAA is a morphism of restriction
functors. We next prove the equivalence between the conditions (1) and (2). By
using Lemma 5.2(b) and (IV), we have

egl) . (@ﬁ’A o \Il)é’A’A(a:) —Ag(z)) =0

for all H < G and x € X(H). Hence (1) implies (2). Suppose that the condition of
(2) holds. By Lemma 5.2(a) and hypothesis, eg{) -(Am(z) —z) =0, and hence

e (Ot o UM @) — ) =0
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for all H < G and x € X(H). This, combined with Lemma 5.2(c), shows that
UXAA s a canonical induction formula for X from A. We have thus proved the
proposition. O

We next define AX : X — KX to be a family of k-module homomorphisms
Ayt X(H) — KX(H), H < G, such that
(@) = ey -a V)
for all z € X(H), provided |G| is invertible in k. By Lemma 5.2(a), this definition
makes sense. Clearly, \X € Con(G) (X, KX)j. We write UXK = gXK5AY {61 the
sake of simplicity. By Proposition 5.3, PXKY g a canonical induction formula for
X from KX, which is said to be minimal (cf. [4, Example 6.9]).
The following corollary, which is part of [4, Example 6.9], generalizes Brauer’s
explicit version of Artin’s induction theorem for virtual C-characters of G (cf. [3,

Corollary 3.3], [8, Satz 2|, [41, Corollary 4.5]) and Witherspoon’s explicit version of
Conlon’s induction theorem (cf. [36, Proposition 3.7]).

Corollary 5.4 Let X € Mack(G)y, and suppose that |G| is invertible in k. Then
1
x = — Ulp(U, K)ind{} o res] (z
€CI(H)NC(X) U<K
forall H<G and x € X(H).

Proof. Let H < G and x € X(H). Then by (III), Lemma 5.2(a), and (IV), we have

v (@) = |§I| SN U, KU, vesf (e - resf ()]

K<HU<K
=Y K et (@]
KeCI(H)NC(X) [N (K)|
1
= Y Y [Uu(U, K)[K, indf; oresff ()].
KeCl(H)NC(X) I Ne (K| U<K

\IJX,ICX

Hence the corollary follows from the fact that is a canonical induction formula

for X from KX. This completes the proof. O
For each H < (G, we set

TX(H) = ) {indi{(y) | y € X(K)}.
K<H
A subgroup H of G is said to be primordial for X if TX(H) # X (H) (cf. [35]). We
denote by P(X) the set of primordial subgroups for X.
The following proposition is part of [4, Proposition 6.2]. (This is a special case
of a much more general result of Dress [16, Theorems 2 and 3].)
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Proposition 5.5 Let X € Mack(G), and suppose that |G| is invertible in k. Then

KX(H) = {ef - | = € X(H)},
TXH) = {z — i) 2 | 2 € X(H)},
X(H)=KX(H)® TX(H)

for all H < G. Moreover C(X) = P(X).

Proof. The first two assertions follow from (III) and Lemma 5.2(a), (b). The
remaining assertions are straightforward. This completes the proof. O

We define
X = (X,con) € Con(G)y

by

X(H)=X(H) =X (H)/TX(H) and con}(7) = con}(z)

forall H< G, g € G, and x € X(H), where T = x + TX(H) for all z € X(H). If
X is a Green functor, then X is an algebra conjugation functor.
Following [35], we define a morphism g : X — X T of Mackey functors by

Bu(z) = (resi(x))k<n

for all H < G and z € X(H). If X is a Green functor, then § is a morphism
of Green functors. By virtue of Lemma 5.2(b) and Proposition 5.5, there exists
an isomorphism A : X" - (KX)* of Mackey functors defined to be a family of
k-module isomorphisms A g :YJF(H) 5 (KX (H), H < G, such that

(K)

Ap((Tx)r<m) = (e " TK)K<H

for all (zx)rx<m € [[x<y X (K). From Proposition 2.2, we know that the diagram

with H < G is commutative, where UXKY = gXK5X% (oo (IV) and (V).
The next proposition is due to Thévenaz [35, Corollary 4.4, Theorem 12.3], which
is explored on the basis of [32, Proposition 3.4(iii)].

Proposition 5.6 Let X € Mack(G)i, and suppose that |G| is invertible in k.
Then B is an isomorphism of Mackey functors. If X is a Green functor, then 3 is
an isomorphism of Green functors.
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Proof. By Proposition 2.2, it suffices to verify that P g an isomorphism of
restriction functors. Recall that WXX” is a canonical induction formula for X from
KX, Using the Mackey axiom, Lemma 5.2(a), (b), (IV), (V), and Proposition 5.5,
we have

vy (L)
Z > Uln(U, KU, ress (e - resft o ind ()]
K<HU<LK
K K .
= Z \N|(K)\[K e( ) -rest o ind¥ (z)]
recimne) T H
K . h
- Z \NL(Z‘Q\ Z (K, e%{) -ind% ,; ores k., o con’? (x)]
KeCI(H)NC(H) KhLEK\H/L
Y L con (o)
~ INu(D)] hLENH(L)/L
= [L’ LE]

for all H < G and [L, z] € (KX),(H) with L € CI(H)NC(H). Consequently, BX-K"
is the inverse of ©XK™ . This completes the proof. O

Remark 5.7 By Proposition 2.2, Lemma 5.2(a), and the proof of Proposition 5.6,

e 1 _
B (@R)x<n) = @i?’cx o o An(ER) k<)

- |H| S S U, K)indff o resfS (el - 2k
KeP(X)ULK

K
KeCI(H)NP(X)

for all (Tk)rx<m € X (H) (cf. [35, Proposition 12.5]). Hence
e ————indi (e} ’ - resi(z
KGC](%):QP(X) |Np (K)| K (e k(7))

for all x € X(H) (see also the final statement of [35, Section 7]). This, combined
with (III), yields the induction formula given in Corollary 5.4.

6 Induction formulae for crossed Mackey functors

Let S € G-set, and let X € Mack(G;S)i. A subgroup H of G is said to
be primordial for X if 7%:(H) # Xs(H) for some s € Cs(H), and is said to be
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coprimordial for X if KXXs(H) # {0} for some s € Cs(H). Let P(X) be the set of
primordial subgroups of G, and let C(X) be the set of coprimordial subgroups of G.
We denote by KX the restriction bundle for Stab(G;S) over k composed of
KX € Res(Gs)k, s € S, such that the crossed conjugation maps are the restriction
of those of X. Recall that (KX*)g denotes the crossed restriction functor on KX.
We now define
YS = (Ys,ms) S COD(G)k

by

Xg(H)= ][] Xs(H) and wong((2(s))secs(m) = (con,§(2(5))) ssecs(om)
seCg(H)

for all H < G and g € G. If X is a Green functor and if S € G-mon, then Xg
denotes the algebra conjugation functor with multiplication on X g(H) given by

(@)secs(fl) (m)tecs(H) = z z(s)y(t)

(s,0)€Cs(H)xCs(H), st=r reCs(H)

Moreover, if X is a Green functor and if S € G-mon, then we also define
Xgs = (Xgs,0ngg) € Conag (G

by

Xes(H) = X(H) @ kCs(H) and congg{ (T ® s) = conf;(z) ® %

foral H < G,z € X(H), s € Cg(H), and g € G. In this case, each k-module
Xgs(H) with H < G is considered to have an obvious k-algebra structure, so that
the algebra conjugation functor X gg is isomorphic to Xg.

Proposition 6.1 Let S € G-set, and let X € Mack(G;S)x. If |G| is invertible in
k, then for any H < G, KXs(H) = (KX)s(H), and the map

Xg(H) = Xs(H), (2(5))ses = (2(s))secsm)
is a k-module isomorphism. In particular, C(Xg) = C(X) and P(Xs) = P(X).
Proof. Let H < G. If (2(s))ses € KX5(H) and if H; # H with t € S, then clearly

ressgt((x(s))ses) = 0, whence z(t) = resgz (z(t)) = 0. This, combined with (III)
and Proposition 5.5, shows that

KXs(H) = {8 - (2(5))ses | ((5))ses € Xs(H)}

_ (H) x(s) € Xg(H) if s € Cg(H), and
N {(eH 2(5))ses € Xs(H) xz(s)=0if s ¢ Cg(H) }
x(s) € KX(H) if s € Cs(H), and

x(s) =0if s ¢ Cg(H)

= {(x(S))ses € Xs(H)

= (K*)s(H).
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Thus the first assertion holds. Moreover, by Proposition 5.5,
Xs(H) = K¥s(H)® TS (H) = (K¥)s(H) ® T*5(H)

for all H < @, which, together with Proposition 5.5, yields the second assertion.
This completes the proof. O

Given A = (A,con) € Con(G); and K < H < G, we set
AK)YNEE) — {2 e A(K) | conly(z) = z for all h € Ny (K)}.
The following corollary is concerned with (I) (see Section 1 and Corollary 8.8).

Corollary 6.2 Let S € G-set, and let X € Mack(G;S),. Suppose that |G| is
invertible in k. Then the Mackey functor Xg is isomorphic to (Xg)*, and the map

Xs(H) _ H Ys(K)NH(K)7

KeCI(H)NP(X)

(w(sDses > ( (sl )

seCs(K)) KeCl(H)NP(X)

with H < G is a k-module isomorphism. Moreover, if X is a Green functor and if
S € G-mon, then the Green functor Xg is isomorphic to (Xgs)™, and the map

Xg(H) — 11 X g5 (K)Nu (K,
KeCl(H)NP(X)

(@(s))ses = | D resi(a(s) ®s
s€Cs(K) KeCI(H)NP(X)
with H < G is a k-algebra isomorphism.
Proof. The corollary follows from Propositions 5.6 and 6.1. O

We next state an induction formula for Xg.

Corollary 6.3 Let S € G-set, and let X € Mack(G; S)i. If |G| is invertible in k,
then

1 .
(7(5))ses = KECI(;)M(X) m U;{ \U|u(U, K)mdsg 0 ressg((x(s))seg)

for all H < G and (x(s))ses € Xs(H).

Proof. The assertion follows from Corollary 5.4 and Proposition 6.1. O
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7 The twisted group algebra C*G

From now on, we assume that £k = 7Z and F' is an algebraically closed field.

Let E(G) be a finite dimensional F-algebra, and suppose that there exists a
collection {Ey}4eq of subspaces of E(G) which satisfy E E, = Ey, for all g, r € G
and E(G) = ®g4eqly. Such an F-algebra E(G) is called a fully G-graded F-algebra
(see [2, Definition 1.1}). We call {Ey}4eq a fully G-graded system on E(G). Note
that the identity of E(G) is contained in E, (cf. [12]).

Let H < G, and set E(H) = ®pepgEy. Then E(H) is a subalgebra of E(G) with a
fully H-graded system {E} }nep. Let K < H. For each M € E(H)-mod, Eres (M)
denotes the restriction M|g k) of M to E(K). For each N € E(K)-mod, EindZ(N)
denotes the induced E(H)-module E(H) ®pk) N. Given N € E(K)-mod and

h € H, we define a conjugate E("K)-module Econ”.-(N) to be the component
Eh®E(K)N:{u®’U ‘ u € by, and v € N}

of Eind® (V) with the action given by left multiplication in the first factor.

For each H < G, let R(E(H)) be the additive group consisting of all Z-linear
combinations of isomorphism classes of finitely generated left F(H)-modules with
direct sum for addition. There exist conjugation, restriction, and induction maps

Econ}, : R(E(H)) — R(E(%H)), [M]w~ [Econ}, (M)],
Eresf : R(E(H)) — R(E(K)), [M]~ [Eresft(M)],
Eind? : R(E(K)) = R(E(H)), [N]+~ [EindZ(N)]
for K < H < G and g € G, where M € E(H)-mod and N € E(K)-mod. These

maps are simply denoted by Econ, Eres, and Eind.
We are now ready to quote Mackey’s theorem (cf. [2, Theorem 2.2]).

Theorem 7.1 Let E(G) be a fully G-graded F-algebra with a fully G-graded system
{Eg}gec, and let K, U < H < G. Then for any v € R(E(U)),

H o AH () — K hy h
Eresy o Eindy (z) = @ Eindy - ny; o Eres ./ ny; o Econgr ().
KhUEK\H/U

By Theorem 7.1, the family of Z-modules RE(H) := R(E(H)), H < G, together
with Econ, Eres, and Eind, defines RE = (RE, Econ, Eres, Eind) € Mack(G)z. We
call this Mackey functor the E(G)-representation functor.

Let o : G x G — F* be a normalized 2-cocycle, that is,

a(rs,t)a(r,s) = a(r, st)a(s,t)
for all r, s, t € G, and «a(s,t) = 1 whenever either s or ¢ is equal to €. Given H < G,

we denote by F*H the F-algebra with a basis {S}scy and multiplication given by

St =a(s,t)st
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for all s,t € H, and call it the twisted group algebra. Observe that F“G is a
fully G-graded F-algebra with a fully G-graded system {FS}scq. We now write
R.(H) = R(F*H) for all H < G, and denote by

Ry = (Rq, con,res, ind) (€ Mack(G)z)

the F'“G-representation functor.
Given H < G and M € C*H-mod, we define a map xps : H — C by

X (h) = T (h, M)

for all h € H, and call it the a-character of H afforded by M, where Tr(h, M) is
the trace of the action of h on M (cf. [22, p. 351]).

If the characteristic of F' does not divide |G|, then F*H with H < G is semisim-
ple (see, e.g., [22, Theorem 3.2.10]).

We prove directly, via the representation theory of C*G, the following general-
ization of a well-known fact for the CG-representation functor.

Lemma 7.2 Suppose that F = C. Then C(R,) is the set of cyclic subgroups of G.

Proof. Let H < G. Suppose that M = N with M, N € C*H-mod. Then it
follows from [22, Proposition 7.1.9] that xas = xn. By [22, Theorem 7.1.10], the -
characters of H afforded by all nonisomorphic irreducible C* H-modules are linearly
independent. This means that, if H is not cyclic, then ¥ (H) = {0}. Thus every
coprimordial subgroup for R, is cyclic. Suppose now that H = (r). We prove
H € C(R,). By the proof of [22, Lemma 5.8.13], there exists a map 6 : H — C such
that the map
C*H — CH, hw~ d(h)h

is a C-algebra isomorphism. Hence xas(r) # 0 for some M € C*H-mod. Suppose
now that R, is extended to QR,, € Mack(G)g by Q-linearly. Then [M] ¢ TR (H),
and thereby, H € P(QR,). Obviously, C(QR,) = C(R,). Moreover, it follows from
Proposition 5.5 that P(QR,) = C(QR,). Thus H € C(R,), completing the proof.
(]

We provide another lemma (cf. [4, Example 9.7], [34, Lemma 8.2]).

Lemma 7.3 Suppose that F = C. Let U < K < G, and suppose that K/U is
cyclic. Let N € C*U-mod with dimc(N) = 1, and suppose that for each r € K, N
is isomorphic to cony;(N). Let M € C*K-mod, and suppose that M is irreducible.
If N is an irreducible constituent of resIU((M), then N is isomorphic to resIU((M).

Proof. By [22, Theorem 6.2.4], N is extensible to a left C*K-module. This, com-
bined with [22, Corollary 6.4.4], shows that there exist precisely e = |K : U| non-
isomorphic left C*K-modules M;, 1 = 1,..., e, extending N. Thus it follows from
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22, Theorem 5.6.2] that ind% (N) = @¢_, M;. Moreover, if N is an irreducible con-
stituent of resX (M), then M is an irreducible constituent indf; (N), and thereby,
M = M; for some ¢. This completes the proof. O

8 The twisted quantum double D“(G) of a finite group

Let (FG)* be the F-algebra consisting of all F-linear maps from the group
algebra F'G to F' with pointwise addition and multiplication. For each s € G, we
define an element ¢ of (FG)* by

1 ifs=ge€gaq,
¢s(g): .
0 ifs#gedG.

The elements ¢, s € G, form an F-basis of (FG)*.
Let w: G x G x G — F* be a normalized 3-cocycle, that is,

w(g,r, s)w(g,rs,t)w(r,s,t) = w(gr,s,t)w(g,r, st)

forall g, r, s, t € G, and w(g,r,s) = 1 whenever one of g, r or s is equal to e. Given
g, 1, s € G, we define

(97')71
w(s,g,m)w(g,r, s
93( ,7") ( g ) (g )

w(g, 97 's,7)

and

s 1

w(g,r,s)w(s, * g, *
w(g,s, ')

The twisted quantum double D*(G) of G with respect to w (cf. [14, 23, 26, 38]) is

the quasi-triangular quasi-Hopf algebra with underlying vector space (FG)*®p FG,

r).

78(977") =

multiplication (¢s @ g)(de @ 1) = 05(g,7) P59t @ gr,
unit Lpwia) = Z Ps D€,
seG
comultiplication Ao, ® g) = Z Y9(5, 1) (s ® g) ® (¢: @ g),
s, teqG, st=r

counit (s ® g) = Ises
Drinfel’d associator & = Z W(r,s,t) Hpr @ €) ® (s @ €) ® (¢ ® €),

r, s, teG
universal R-matrix R = Z (Ps @ €) @ (¢ ® ),

s, teG

antipode S(¢s@g) =05-1(9,97 ") Tg(s,s ) 1 @97
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For verification, we need to apply the identities

0s(g,7m)0s(gr, 1) —99715(7',t)05(g,7’t),
Ot 9 7)%0r (5, £) =Yy 0, " )bs(g. e (1),
Vo (r8, )vg(r, 8) (9, 95, 97 ) = (1, st) 74 (5, (1, 5, )
for all g, r, s, t € G. We denote by R(D“(G)) the representation ring of D¥(G),
which is the commutative ring consisting of all Z-linear combinations of isomorphism
classes of finitely generated left D“(G)-modules with direct sum for addition and

tensor product for multiplication.
Let H < G. We define a subalgebra Dg(H) of D¥(G) to be

DgH)= > F¢s®h.

se€G,heH

We view each h € H as ) .. ¢s ® h € DE(H). Each ¢ € (FG)* where s € G is
identified with ¢, ® € € DE(H).

We consider D“(G) to be a fully G-graded F-algebra with a fully G-graded
system { .. F¢s ® g}tgeq, and denote by

RD¢ = (RD¢, Dcon, Dres, Dind) (€ Mack(G)z)

the D“(G)-representation functor.
Let H<Gand seG. If g, r, t € Hg, then

60 = ) = LG

and
O5(tg,r)0s(t,g) = 0s(t, gr)0s(g,7).

Thus we obtain a normalized 2-cocycle
Os: Hs x Hs — F*,  (g,7) — 0s(g,7).

We denote by G¢ the G-monoid G on which G acts by conjugation "s with
r, s € G, and denote by H\G¢ a complete set of representatives of H-orbits in G°.
For each s € G, there exists a two-sided ideal D¥(H) of D&(H) defined by

D¢H)= Y Y Fér®h

rHseH/H; he H

Obviously, DE(H) is expressed as a direct sum of D¥(H), s € H\G¢, and thereby,
every left DE(H)-module M is decomposed into a direct sum of the submodules
D¥(H)M, s € H\G¢. Moreover, every left D¥(H)-module with s € G¢ is naturally
viewed as a left D& (H)-modules.
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Let s € G¢, and define a left ideal E¥(H) of D¥(H) by

ES(H)= > > F¢ru®h=)Y Fén@h.

rHs€H/Hs herHs heH

We identify the twisted group algebra F%H, with her, F'¢s®h which is a subspace
of the F-space E¥(H), and identify h € F%H, for h € H, with ¢p; @ h € E¥(H). In
this context, E¥(H) is considered as a right F%H,-module with the action given by
right multiplication.

Given M € Dg(H)-mod and s € G¢, we set ¢, M = {p,x | x € M} and view it
as a left FPH,-module with the action given by left multiplication.

We state a fundamental lemma about representations of D& (H) with H < G,
which is similar to [38, Lemma 1.1].

Lemma 8.1 Let H < G, and let s € G¢. Then there exists an equivalence between
the categories FPH,-mod and D (H)-mod given by the functors

(hs: FPHy-mod — D¥(H)-mod, N — E¥(H) ®po.y, N

and

(#.s s DY(H)-mod — F*H,-mod, M — ¢,M,
where D¢ (H) acts on EY(H) ®po.y, N by left multiplication in the first factor.
Proof. Let M € D¥(H)-mod, and let N € F*H,-mod. The map

N = ¢ B (H) @poy, N, =+ ¢s Q@
is an F%Hg-module isomorphism. We define a map f : M — E¥(H) ®po.y, ¢sM
by
1 -1
f(z) = Z 0rs(r,r1) (prs@1) @ (¢ @17 )

rHy€H/H,

for all x € M. This map is independent of the choice of representatives r of H/Hjg,
because
Ors(rt, (rt) D)0t 1, ™) = Org(r,r ™) rg(rt, t71)

for all » € H and t € Hy. Let h, b/, » € H, and suppose that "s = W'rs. Then

Grg@ N = (dny @ h)(ds @t 1)

v
O ng(h, tr=1)
for some t € H;. We have

Ong(h,h 1) =0,(h~ 1, h) and Oy(tr=t, r)0,(t,r™1) = Org(r, ).
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Hence
(¢hs ® h)f(l’) = (¢hs ® h) X ¢5$
= T e BN @ (6 ® h (o @ )
= f((¢ns ® h)z)
and
~1 Os(tr~",7) ~1
(¢s & tr )f(:l:) = (¢s ® t) (¢s T )x

Grs(r, 1)
Os(tr—,m)0s(t, ")
Ors(r,r1)
- f((¢s 029 tril)x)

for all x € M. This implies that f is a D¥(H )-module homomorphism. Moreover,
the inverse f~!: E¥(H) @pooyy, ¢sM — M of f is given by

fﬁl((qshs ® h) @ ¢Sx) = (¢hs ® h)x
for all h € H and x € M. Thus the lemma holds. O

¢s & ¢s(¢s & tT’il)x

Keep the notation of Lemma 8.1. Let s € G and g € G. Given H < G4 and
N € F%H-mod, we define an F%9H-module con ¥ (N) to be

con, §(N) = (iyy o 0 Deond; o gy ((N) = (¢9s ® g) ®pe ) (B (H) @posyy N),

where Dcon¥; o C}LL (V) is viewed as a left D%, (9H)-module. Given H < G and
M € D¢(H)-mod, the map

¢ 9sDeon (M)(= (¢9s ® g) @pe ) M) — con, § (¢sM),
(ngs ®g)®x'_>(¢gs ®g) (¢8®¢s )

is an F'%:9H,,-module isomorphism.
To study D¥(G)-representation functor, we also require the next lemma.

Lemma 8.2 Let H < G, s € G, and h € H. The following statements hold.
(a) For any N € F%H,-mod,
Cls(N) 2= Cpp g © cong gy, (N)
as DE(H )-modules.
(b) For any M € D¢(H)-mod,
¢ 1M = con, gy, (¢5M)

as FOrsHy,-modules.
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Proof. (a) Observe that (5 (N) = EY(H) @po.y, N and
C}{’hSOCOHSI}_LIS(N) CH hSOCH ODCOHH OgH S(N)
= E% (H) ®F9thhS ((¢prs® h) @ g (H,) (B¢ (Hs) ®@posp, N)).

We define a map f : C}{’S(N) — C}q h © conS%S(N) by

v
6rs(rh=1, 1)

forall r€ H and x € N. Let r € H and « € N. For any t € H,

hl(@rs@r)®@z) = (¢rs @R ") & (s ® h) @ (65 ® 7))

Ong(h, t)0s(h™ 1, hth™)0s(th™ 1 h) = O(h™ 1, h)0n,(hth™ ', h)

and
Ors(r,th™ )0 g (rth ™1 h) = Org(r, )05 (th ™1, h),
whence
Fl(6. 9T)) = gy 6 9 h) 8 (1, 91) @ (6, 9Ta)
Ong(h,t) _
BuhLp) PN D@ ((¢n @ ht) @ (¢s @ x))
~1 ~1
= Pl DI ) (6, 017 & (6 © 1) (60 2)
= fl(((lss ®t) ®CL’)
and
97'3(7“, thil) -1
(prs@7)fi((ds @) @) = m(ﬁbrs Qrth™") @ ((dns @ h) ® (¢s @ T))
 On(r,t) _
= m(ﬂ% ®Rrth™") @ ((¢n, ® h) @ (¢s @ 1))
= f1(Ors(r,t)(drs @ 7t) ® T)

= fi((¢rs @7)(ds @ 1) @ T).

Thus
fil(grs @7)(0s @ 1) @) = (75 @ 7) f[1((ds ® ) ® )
= (gb% & T)fl((qbs ®¥$))
= fi((¢r @ 1) @ tx)

for all t € H,, and thereby, f; is well-defined. Obviously, f; is a bijection. Let
R, h", r € H, and suppose that "s = "'7s. Then

1

, h// - -
¢hs® ehls(hljtrfl)

(dny @ H) (05 @tr)
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for some t € Hs. By the preceding argument,

(@, @ W) [i((ds @ 1) ® ) = fi(($w, ® D)(ds @ 1) @ ).
Moreover, since
Os(tr—1, rh )0, (th ™ h) = O5(tr™ ", 7)0rg(rh ™1, ),
it follows that

(¢s @tr~ 1) fi((¢rs @ 1) ® 2)
_ es(tr_larh_l) —1
= st ®th™") ® ((¢r, ® h) @ (¢s ® 7))
B Hs(tr_l, T) 1
= m(% ®th™") ® ((¢ns ®h) ® (95 ® 7))
= fl (es(tr_la r)(¢s & t) (%9 l’)
= fllgs@tr ) (¢ @ 1) @ 2).
This means that f; is a D& (H)-module isomorphism. Consequently, (a) holds.
(b) Since Dcon’y (M) =2 M as D¥(H)-modules, it follows that

¢rgM =2 ¢n,Deon (M) = con, [y (¢sM)

as FOsH,,-modules. Thus (b) holds.
We give an alternative proof of (b). Observe that

con 7 (6sM) = ¢r.Deony o Cpy (6sM)
= (¢ns ® h) @pg,(m,) (B (Hs) @pospr, ¢sM).

We define a map fa: ¢pn, M — consl'}S(%M) by

fa(Prsx) (Pre ® 1) @ (s @ (s ® B 1))

_ 1
N (ghs(h, h_l)

for all z € M. Since Ons(h,h™1) = O5(h~1, h), it follows that f is a bijection. Let
r € Hn,. Then

Ony(r, h)0s(htrh, h™Y) = 04, (h, R 1rh)0s(h 1, 1),

and thereby,

o) = m(% ®7h) @ (¢s ® (¢s @ h~ 1))
_ Ong(r )0 (h " rh )
— Oug(h,h=1)8ng(h, h=Lrh)
_ 1 -
- W(% @ h) @ (s ® (¢s ® h™ T ngz)

= fQ(?(bhsx)

(Pns @ h) @ (65 @ (65 @ h~'r)a)
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for all x € M. Hence f5 is an Fethhs—module isomorphism, completing the proof.
O

There exists a family of Z-lattice homomorphisms
con, %, : R(F**H) — R(F"s9H)
for s € G¢, H < G, and g € G such that
con, §(INY) = fcon, (V)] = (2,5 © Deony o Gl (V)]

for all N € F%H-mod, which is called the crossed conjugation maps. The following
lemma asserts that this family satisfies the axioms of crossed conjugation maps.

Lemma 8.3 Let s € G°, and suppose that Ry, = (Rg,,con,res,ind) is the F% G-
representation functor. Then

(C.0) con,j; = conly,

(C.1) con,, ?; ocon,f; =con ¥,
(C.2) con, ¥ orestl =resgl ocon Y,
(C.3) con, ¥ oindf = indg o con, ¥

forall K < H<Gg, g, 7€ G, and t € Gg.

Proof. Let H < Gs. Observe that D¢ (H) = EY(H) = .y F'és ® h. Then
conjy ([M]) = [¢%y , o Deonly o Cy (M),

resii ([M]) = [C% , o Dresig o (jy (M),
indi ([N]) = [F*H ®po.c N] = [Cfy, o Dindj o (i ((N)]

forallt € Gs, K < H, M € F’H-mod, and N € F%K-mod, where Dres%og‘}is(M)
is viewed as a left D¥(K)-module, and Dind% o (}(’S(N) is viewed as a left D¥(H)-
module. Hence (C.0)—(C.3) follow from Lemma 8.1. This completes the proof. O

By Lemma 8.3, the Mackey functors
RY := Ry, = (Ry,, con, res,ind) € Mack(Gy)z, s e G,

together with the crossed conjugation maps con,? : R(F %H) — R(F%:9H) for
s € G° H < (s, and g € G, defines a Mackey bundle for Stab(G; G¢) over Z, where
Ry, is the F% G s -representation functor. We denote this Mackey bundle by RY.

Recall that R%. denotes the crossed Mackey functor on R?. Let H < G. We
now define Z-lattice homomorphisms

Ty« RDG(H) = Ree(H),  [M] = ([0sM))sece = ([Ch,s(D(H)M)])sece
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and
Uy i RGe(H) = RDE(H),  ([N())seqe = D [Cirs(N(s))].
s€eH\G®
By virtue of Lemma 8.2, this definition makes sense. From Lemma 8.1, we know
that Ty o Ty = idgs () and Iy o Uy = idgpg (). Thus Iyt =T
The following theorem is a key to induction formulae for RDg.

Theorem 8.4 The Mackey functor RD¢, is isomorphic to RC.. Really, the family
of Z-lattice isomorphisms I'y : RD&(H) — R&.(H), H < G, defines an isomor-
phism I' : RDE — RY%. of Mackey functors.

Proof. Let K < H < G, and let g € G. Obviously, the diagrams

RD&(H) s RO (H) RD%(H) —* RY,.(H)
Dcon?; l lconGc 7 and Dres# l J{resGc 1
RDE(H) —— RY..(%H) RDE(K) —— RY..(K)
9H K

are commutative. Let N € D¥(K)-mod. Then Dindf(N) = D¥(H) ®p (k) N
Let s € G, and let {hq,..., hy} be a complete set of representatives of H;\H/K.
For each integer i with 1 <i < ¢, let {ry1,--- , 7in, } be a left transversal of HyN MK
in Hs. Obviously, {ri1hi,---, rin;hi | 2 =1,..., £} is a left transversal of K in H.
We now obtain

L n;
Dindg(N) = D¢(H) @ pe,(K) N = ZZF”jhi @ pe,(K) N.
i=1 j=1
Sett; = M 's,i=1,...,¢. Then
con,, ?{t (¢, N) = (¢s @ hi) @pg(i,,) (BY(Kt,) © o, g, d1,N)
for all ¢, and the map
14
¢sDindff (N) = Y " F*H, @ po, ey, cony, & (64, N),

=1
(¢s @ 1ijhi) @ = 755 @ ((¢s @ hi) @ (dr; ® ¢r,T))

is an F?H,-module isomorphism. We now conclude that the diagram
RD&(H) —1 RO, (H)
Dind T TindGc 7
RDE(K) —— RY.(K)
K

is commutative. This completes the proof. O
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Remark 8.5 Suppose that F' = C. Let conj(G) be a full set of nonconjugate elements
in G, which is regarded as G\G¢. By the proof of [38, Theorem 2.2|, the map

CezRL(G)—» [] 2(C%G.), (Md)sece > | > Tr(s, My)g ,

s€conj(G) 9€Gs s€conj(G)

where Z(C%@,) is the center of C% Gy, is a C-space isomorphism. Moreover, from
Theorem 8.4 and the proof of [38, Lemma 2.1], we know that the map

CezRD*(@G)— [] 2([C*Gy), M~ | Y Tr(s,¢,M)g

seconj(G) 9€Gs s€conj(G)

is a C-algebra isomorphism, which was proved by Witherspoon [38, Theorem 2.2]
(see also [24, 2.2(g)] and [37, p. 316]).

If w is trivial, that is, w(g,r,s) = 1 for all g, r, s € G, then we simply write
D(G) = D¥(G), Dg(H) = Dg&(H) with H < G, and RDg = RD¢. The C-algebra
D(QG) is called the quantum double of G (cf. [14, 25, 37]).

For each H < GG, R(Dg(H)) denotes the ring consisting of all Z-linear combi-
nations of isomorphism classes of finitely generated left D¢g(H)-modules with di-
rect sum for addition and tensor product for multiplication. Given K < H < G,
M € Dg(H)-mod, and N € Dg(K)-mod, the maps

M @ (Dg(H) @pgxy N) = Da(H) ®@pg k) (M|pg ) @ N),
u® (h®@v)—he (h luewv)

and
(D(H) @pgxy N) @ M — Da(H) @pg iy (N @ M|pk)),

hav)@u— h® (v h tu
( ) ( ,

where h € H, are Dg(H )-module isomorphisms. These facts mean that Frobenius
axioms hold for RD¢g. Thus RD¢ is a Green functor (cf. [37, Section 5]).

Let a(G) be the representation ring of F'G, that is, the commutative ring con-
sisting of all Z-linear combinations of isomorphism classes of finitely generated left
FG-modules with direct sum for addition and tensor product for multiplication (see,
e.g., [11, §80D]). We define

a = (a,con, res, ind) € Green(G)z

to be the family of Z-algebras a(H), H < G, with usual conjugation, restriction,
and induction maps, and call it the F'G-representation functor. If w is trivial, then
RY is the FG-representation functor. Recall that age denotes the crossed Mackey
functor on a, which is obtained by the crossing of a by G°.

There is an important consequence of Theorem 8.4 (cf. [30, Theorem 5.5]).
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Corollary 8.6 The Green functor RDg is isomorphic to age. Really, the family of
Z-algebra isomorphisms 'y : RDg(H) — age(H), H < G, defines an isomorphism
I': RDg — age of Green functors.

Proof. Let H < G, and let r € G¢. Given M;, My € Dg(H)-mod, the map

Z indHT, (resH (psM1) ®F resH (¢ My))
(s,t)em’ st=r

= Z FH, ®Fq,, (resgz’t(gble) QF resg;t(qthg))
(s,t)EH,\GXG€, st=r
- Yo 0sMi @F My = 6 (My ® M),
(s,t)EGeXGe, st=r
h® (psx1 @ pra) = (Png @ h)z1 @ (Pry @ h)x2

is an F'H,-modules isomorphism. Thus I' is a Z-algebra isomorphism. Conse-
quently, the corollary follows from Theorem 8.4. This completes the proof. O

Remark 8.7 Keep the notation of Section 3, and assume further that S = G¢. We

view each (J, ) € El(G-set, Tg‘@cc) as the set of all pairs (x, ) for x € J, and call

(J,m) a crossed G-set (cf. [6, Definition 2.1], [17, Definition 4.2.1], [29, (1.2)]). Let

H < G, and let s € Cg(H). The G-map 75 : G/H — [[;< ZCq(U) is defined by
ms(rH) = (0rav 's)u<a

for all » € G (see Remark 4.4). The F-span ((G/H,7s))r of the crossed G-set
(G/H,7s) is viewed as a left D(G)-module with the action given by

(¢t & g)(TH, 7Ts) = 5t9Ts(g7'Ha 7Ts)

for all g, r, t € G (cf. [39, p. 18]), and the F-span (Gs/H) of the Gg-set Gs/H is
naturally is viewed as a left F'Gs-module. Assume now that w is trivial. Then

C'((Gs/H)F (ZF¢TS®T> ®ra, (Gs/H)F,

reG

and the map
CH(Gs/H)p) = ((G/H,mo))p, (drs@7) @ H s (rH, )

is a D(G)-module isomorphism. The isomorphism O : CQ(—, G¢) = Qge of Green
functors is defined in Remark 4.4, and the isomorphism I' : RDg — age of Green
functors is defined in Corollary 8.6. We define = : Qg — age to be a family of
Z-algebra homomorphisms Zp : Qge(H) = age(H), H < G, such that

Ea(([(J(O)Diece) = ({(J@) FDiece,
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where J(t) € Hi-set and (J(t))F is the F-span of J(t) viewed as a left F'H;-module.
Clearly, E € Green(G)(Qge, age)z. We now conclude that

[((G/H,m))F] = [¢'((Gs/H)F)] = TG! 0 Eg 0 O(IG/H, ).

We obtain another important consequence of Theorem 8.4, which includes (I)
stated in Section 1 (see also [37, Theorem 5.5]).

Corollary 8.8 Suppose that F' = C. Then the map
Na(H)
QezRD*(G)— ] Qez| [] R(C%H) :

HeCl(G,Cyc) s€Cq(H)

[M] — <<resgs (ngSM))

seCc(H )) HeCI(G,Cye)
1s a Q-space isomorphism. Moreover, the map

- c(H)
QezRD@G) — ] Qe (a(H) ®z ZCG(H))N "
HeCl(G,Cyc)

[M] Z res%‘(TM) ® s
s€Cq(H) HeCl(G,Cyc)

is a Q-algebra isomorphism.

Proof. Suppose that R? is extended to QR? € Mack(G)g by Q-linearly, and sup-
pose that a is extended to Qa € Mack(G)g by Q-linearly. Then it follows from
Proposition 5.5 and Lemma 7.2 that both P(QR?) and P(Qa) are the set of cyclic
subgroups of G. Hence the first assertion is a consequence of Corollary 6.2 with
X = QR? and Theorem 8.4, and the second one is a consequence of Corollary 6.2
with X = Qa and Corollary 8.6. This completes the proof. O

We end this section with a canonical version of [28, Theorem 4.1], which states
a generalization of Artin’s induction theorem.

Corollary 8.9 Suppose that F'= C. Then for any M € D¥(G)-mod,
1 w
HeCl(G,Cyc) K<H

Proof. By an analogous argument to the proof of Corollary 8.8, the assertion follows
from Corollary 6.3 with X = QR? and Theorem 8.4. This completes the proof. O



Induction formulae for Mackey functors/ Yugen Takegahara 44

9 Fundamental theorems for the plus constructions

We continue to assume that k = Z. Throughout this section, A denotes a
restriction functor for G over Z and B a stable Z-basis of A. Let H < G. We set

= JI =z

(K,0)eR(H,B)
For each (K, o) € R(H,B), Ny (K, o) denotes the stabilizer of (K, o) in H, that is,
Ng(K,0) = {h € Ng(K) | con’(c) = o}.

There exists a Z-module isomorphism x4} : Ga(H) = A*(H) given by

K,o
K11 (8(K.0) (U1)) (U r)er(11,8)) = () e,
where
. Z cont (o) if L = "K for some r € H,
y(L ) = ANy (K,0)ENg (K)/Ni (K,0)
0 otherwise.

Given K < H and x € A(K), there exist integers (x, o), o € B(K), such that

X = Z <X,O‘>O’.

ceB(K)

We now define a Z-module homomorphism ¢4 g : A4 (H) = Ga(H) by

oan([K,a]) = S (resf o conli(0),7)
hKeH/K, UL hK (U,r) 9 (H,B)

for all (K,0) € R(H,B), and call it the Burnside homomorphism. Obviously, the
diagram

A*(H)

is commutative, and thereby, ¢4 g is a monomorphism (see Proposition 2.2).
For each (K, o) € R(H, B), we set

Wi(K,0) = Ny(K,0)/K.
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Remark 9.1 For each (K,o) € R(H,B), |Wg(K,o)| divides each component of
wa H([K,0]). By an argument analogous to the proof of [11, Proposition 80.15],
we can show that the elements (1/|Wgy(K,0)|)pa u([K,o]) for (K,o) € R(H,B)
form a Z-basis of G4(H), that is,

0nm = @  grrmmrean(Uo)z

(U,T)eR(H,B)

The following lemma, which is similar to [43, Lemma 2.7 (Cauchy-Frobenius)]
(see also [34, Lemma 4.1]), plays a crucial role in the proof of Theorem 9.4.

Lemma 9.2 Let H < G, and suppose that (K, o), (U,T) € R(H,B). Then for any
Q S WH(U7 T)7

Z Z (reng oconlt(c),7) =0 (mod |Q)).

rUeQ hKeH/K, (r\U< hK
Proof. We set
Iy ={hK € H/K |U < "K and (res;* o confy(0),7) # 0}

and set
Ly = {hK € Iy | (")U < 'K}

for each rU € Q. View [y as a left ()-set with the action given by
rUhRK =rhK
for all U € @ and hK € Iyy. Then
IL.y ={hK € Iy | 'URK = hK}

for each rU € Q. Hence

Z Z resU oconK Z Z resU OCOH}}Z{() T)

rUEQ hK€el .y hKely rUeQnk
h
Z |Qnk| - (res;™ o con(0),7),
hKely

where @y, is the stabilizer of hK in (). Observe now that

<res5K o con.(0),7) = (conl; o reng o con (), conl; (7))

= <res[}hK o cont (o), T)
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for all rU € Q and hK € Iyy. Then

ST Y GesgFoconl(o), ) = Y |O(K)| - [Qu] - (res X o conli (o), 7)

rUEQ hKel i hKe€Q\Iy
=0 (mod |Q]),

where Q\ Iy is a complete set of representatives of Q-orbits in Iy and O(hK) is the
Q-orbit containing hK. This completes the proof. O

We define an obstruction group of A, (H) by

Obsa(H)= [  z/Wu(U,7)Z
(U,m)eR(H,B)
By Lemma 2.3,
mean= P van(U7)Z
(U,r)eR(H,B)

Hence it follows from Remark 9.1 that
gA(H)/ImgoAyH = ObSA(H).

Let p be a prime. By Lemma 2.3, [K, 0], (K, o) € R(H, B), form a Z,)-basis of
A+(H)(p), that is,

As(H) ) = @ LK, o).
(K,0)ER(H,B)
We identify Ga(H)(,) with
I Zw
(K,0)€R(H,B)

and identify Obsa(H ), with

I Zy/WuEo)Zy |2 I Z/Wa(K o),z
(K,0)eR(H,B) (K,0)€R(H,B)
Let @%)H be the monomorphism from A (H),) to Ga(H),) determined by ¢ p.
Then by the preceding argument,

Ga(H) )/ Im@ff,)g = Obsa(H)p)-
We write 4,05402 = QAH-
For each (K, o) € R(H, B), Wy (K, o), denotes a Sylow p-subgroup of Wy (K, o),
and Wy (K, 0)s denotes Wi (K, o).
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We denote by A the set consisting of all primes and the symbol co. Assume
that p € A. If (U,7) € R(H,B) and if (2(k,0))(k,0)emm,8) € Ga(H)(p), then we
set xj s = T, for all h € H. There exists a Z(,-module homomorphism

B0 Ga(H) () = L /Wi (U, )|y with (U, 7) € R(H, B) given by

ng)ﬁ) ((@(k.0)) (K,0)en(H,B))
= Y e (es?Y (), 7) (mod Wi (U, 7))

rUeWg (U,T)p,
veB((rU)

for all (z(x.0))(k,0)em(m,B) € Ga(H)(p)- When p is a prime, ¢((I()J)T) is independent of
the choice of a Sylow p-subgroup Wg (U, 1), of Wg (U, T), because

U MU, B
S ey s = Y wug - (res Y (M), 7)
rUeWy (U, m)p, rUEW g (U,T)p,
veB(r)U) veB((r)U)

U
= > Ty * <fesg> (v),7)
rUe hUWH(U,T)py
veB((r)U)

for all h € Ny (U, ), where v = con%U(y).
We define a Z;,)-module homomorphism ¢£€)H 1 GaA(H) @y — Obsa(H)p) by

V(@ (k.00 (k oyesn(1.5)) = ('tb?(g])ﬁ)((x(K,a))(K,a)em(H,B)))(U,T)em(H,B)

for all (z(x 4)) (K ,0)en(m,B) € GA(H) (), and call it the Cauchy-Frobenius homomor-
phism.

Lemma 9.3 Assume that p € A. For each H < G, wng is an epimorphism.

Proof. The proof is straightforward. See also the proof of [34, Lemma 4.3]. O

The following theorem is a generalization of [43, Proposition 2.9] (see also [13,
Proposition 1.3.5], [29, Theorem 4.4], [34, Theorem 4.5, and [42, Lemma 2.1]).

Theorem 9.4 (Fundamental theorem) Assume that p € A. For each H < G,
the sequence

oy o

0 — Ay (H)@) = Ga(H)p) — Obsa(H)g) — 0

of Zyy-modules is exact.
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Proof. By Proposition 2.2, gaff)H is a monomorphism. Moreover, Lemma 9.3 states

that wff)H is an epimorphism. Hence it remains to verify that Imcpff)H = Ker wff)}q.
By definition and Lemma 9.2,

o (P, 0))

= w((QT) Z <res£K o con’s (o), v)
hKeH/K, L< 'K (L) ER(H.B)
= Z Z <res<’:f>(U o conl (o), v) - <res<Ur>U(1/), )
VSN U hKEH/K, (UK

Z Z (res{}K o con’ (), 7)

rUeWy (U,r)p hRKEH/K, (r)U< hK
=0 (mod |[Wg(U,71)|p)

for all (K, o), (U,7) € R(H,B). Hence we have Imgp(:)H C Ker wg))H. Suppose next

that * = (T(k.0)) (K,0)en(H,8) € Kerwfz)li, and set
R(x) = {(K,0) € R(H, B) | 7k, # 0}
We define a partially order <g of R(H, B) by
(U,7) <g (K,0) <= U < "K and <res5K o conl(c), ) # 0 for some h € H,

and define Ro(x) to be the set of maximal elements of R (z) with respect to <g. If
x # 0, let £, be the smallest integer such that |K| < ¢, for all (K,0) € Ro(x). Set

ly = 0 for convenience’ sake. Using induction on ¢, we show that x € Imgo(:)H. If

ly =0, then clearly, v =0 € Im(pff}i. Assume that x # 0. For each (U, 1) € Ro(z),

Ul @) = ) (mod [Wia(U7),)

whence -y = yw,7) - [Wn (U, 7)|, for some y(y,) € Z,). Now set

Wy(U, 7
N - )
(U,m)ERo () ’

Then by the definition of goff’)H, we have ¢, < {,. Since y € Ker 1/11(5)}[, it follows from

the inductive assumption that y € ImgoEf)H. This means that x € ImLpEf)H. Thus we

have Imcpf{)H D Ker wg},)H. This completes the proof. O
For each (U, 7) € R(H, B), we set
&(H.B)> s = {(K.0) € S(H,B) |U<K and (resfi (o), 7) # 0}.
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Lemma 9.5 Let H < G. For any (v(k ¢)) (K 0)enm,B) € Ga(H),

0 © K ((x(KJ))(KJ)E%(H,B))
1| .
- T T UK . U. 7.
2  Wa(U,7) 2 wU, K)a (o) - resy (o), T){U, 7]

(U,T)G%(H,B (Kva)GG(H»B)z(U,T)

Proof. By definition,

i1 © k71 (T (K.0)) (K.0)er(,5))

= > > > U, K x.0)

(K,0)€R(H,B) rNy (K)eH/Ny (K) U< TK

X Z [U, res € o cont?(o)]
hNH(K,O')GNH(K)/NH(K,O')

= Z Z \Uu(U, K)7 (K o) - <resIU((0), U, 7]

(U,r)eS(H,B) (K,0)€6(H,B)> 1.+

H
S D DI TCY S e R
(U,T)ER(H,B) T (K 0)€S(H B>,y

completing the proof. O

There exists a Z-module homomorphism &) : Ga(H) — Z/|Wy (U, 7)|Z with
(U,T) € R(H, B) given by

> w(U, K)x () - (vests (0),7)  (mod |Wg (U, T))).

Sy ((T(r.0)) (K 0)en(m,B))
(Kfo)EG(HvB)Z(U,T)

We now define a Z-module homomorphism {4 g : Ga(H) — Obsa(H) by
Ean((7(k o)) (ko)enmB) = Eur)(T(k0)) (K,0)eR(H@,B))) (Ur)eR(H,B)

for all (JJ(K,U))(K,a)em(H,B) € Ga(H).
The next theorem is similar to [10, Corollary 4.2] (see also [20, Theorem 1.1],
[29, Corollary 5.3], and [43, Theorem 8.3]).

Theorem 9.6 (Second fundamental theorem) For each H < G, the sequence

YA H

0 — AL (H) % Go(H) % Obsa(H) — 0
of Z-modules is exact.

Proof. By Proposition 2.2, ¢4 g is a monomorphism. Moreover, it is easily verified
that £4, 77 is an epimorphism. Combining Proposition 2.2 with Lemma 9.5, we have
Impg p = Keréy p. This completes the proof. O
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10 Integral canonical induction formulae

Let X € Mack(G)z, and let A be a restriction subfunctor of X. If £ = Q or
E = Z,) with p € A, then X is extended to EX € Mack(G)g by E-linearly, and
A is also extended to FA € Res(G)g by E-linearly.

We assume that A € Con(G)(X, A)z and B is a stable Z-basis of A. By Propo-
sition 5.3, there exists a morphism U4 . QX — QA of restriction functors
defined to be a family of Q-space homomorphlsms \IIXA)‘ QX(H) - QAL(H),
H < @G, such that

1
AN ) = Wﬁfl(O‘K o resyi(w)) <)

for all z € X(H). Given H < G, z € X(H) and (U, 7) € R(H, B), we set

1
mr(z) = NAGRTE Z w(U, K)(\g oresti(z), o) - (res (o), 7).
(Wa(U,7)l (K,0)€S(H,B)> (1)

y (IV),
PN @) = ST ST U, B[, et o Ax o restt (@)
’ | K<HU<LK
1
_ W Z Z |U (U, K)( )\KoresK( )s )[Ujresg(a)]
(K,0)e6(H,B) UK
1
= Y Wa@o)me@w,]
(U,r)e&(H,B)
= Z mT(aj) [U7 T}
(U,7)ER(H,B)

forall H < G and z € X (H).

It O3 @) € Zgy A (H) with p € A for all H < G and = € X(H), then we
view XA a5 a morphism ¥XAA : Zp) X — Zp) A+ of restriction functors defined
to be a family of Z,)-module homomorphisms \IIXA/\ C Ly X (H) — LAy (H),
H < @G, such that

p

1
0N @) = m”fl((/\l( o vesi (z)) k<)

for all x € X (H).
The following theorem is part of [4, Corollary 9.4].

Theorem 10.1 Let X € Mack(G)z, and let A be a restriction subfunctor of X.
Assume that A € Con(G)(X, A)z, B is a stable Z-basis of A, p € A, and

(v orest (x),7) = Z (Ak oresi(x),0) - (res(} (o), T) (*p)

c€B(K)
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for alU < K < H<G, z € X(H), and 7 € B(U) such that K/U is a cyclic
p-group and conj; (1) =7 for all v € K. Then

S me(@)[U,7] € Zgy Ay (H)
(U,m)eR(H,B)
forall H<G and x € X(H).

The condition (%) is the condition (%) in [4, Theorem 9.3, Corollary 9.4] with
m = {p}. We apply Theorem 9.4 to the proof of this theorem.

Proof of Theorem 10.1. By Proposition 2.2 and Lemma 9.5,

Ay l1H Y @)U
(U,r)eR(H,B)

= (pff,)H o iy o Ky ((Ax o resti(z),0)) (i 0)en(m,5))

= |H|({(Ak o TGS%(JU%U»(K,U)@%(H,B)-

Moreover,
w?@’,ﬂ (A o resi(2),0)) (k 0)er(H,B))

= Y Qpooresty(@),v) - esiV (v),7)

rUEW g (U,T)p,
veB((r)U)

= Z (A\p orestl (x),T)
rUeWu (U, T)p
=0 (mod |[Wg(U,71)|p)

for each (U,7) € R(H,B). Hence the assertion follows from Theorem 9.4. This
completes the proof. O

The following corollary is crucial to a canonical choice of Brauer’s induction
theorem on X (cf. [4, Corollary 9.5]).

Corollary 10.2 Keep the hypothesis of Theorem 10.1, and assume further that

M pg(e) —2) =0

for all H € C(QX) and x € X(H). Then U542 js a canonical induction formula
for Zy X from Z,) A, and
vyt @ = Y me@)UT]
(U,m)ER(H,B)

forall H<G and x € X(H).
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Proof. By Proposition 5.3, U4 is a canonical induction formula for QX from
QA. Hence the corollary follows from Theorem 10.1. This completes the proof. O

In the remaining part of this section, we assume the following situation.
Hypothesis 10.3
(i) S € G-set.
(ii) X € Mack(G;S)z.

(iii) A € Res(G;S)z such that for each s € S, A is a restriction subfunctor of
X, and the crossed conjugation maps con,y, for H < G5 and g € G are the
restriction of those of X.

(iv) As € Con(Gs)(Xs, As)z, s € S, which satisfy
con, ¥ o g5 = g5 9y © con, 4
forall s € S, H < G,, and g € G.
(v) For each s € S, B is a stable Z-basis of A, such that
Bun(“H) = {con, § () | o, € B,(H)}
for all H < G4 and g € G.

Obviously, the crossed restriction functor Ag on A is a restriction subfunctor of
the crossed Mackey functor Xg on X. We define A\g : Xg — Ag to be a family of
Z-module homomorphisms Ag g : Xg(H) = As(H), H < G, such that

AsH((2(s))ses) = (yu(s))ses

for all (z(s))ses € Xs(H), where yg(s) = Asg(z(s)) if s € Cg(H), and yg(s) =0
otherwise. Clearly, Ag € Con(G)(Xg, Ag)z.

We define a stable Z-basis Bg of Ag to be a family of Z-bases Bs(H) of As(H),
H < @G, such that

Bs(H) = {(dst05)tes € As(H) | s € Cg(H) and o5 € Bs(H)}
for all H < G, where 6505 =0 if s £t and 5505 = 0.

Lemma 104 Let U < K < H < G. Assume that 75 € Bs(U) with s € Cs(H) and

(Asy oresil(z),7,) = Z (As i orest(z), 05) - (res (o), 7s)
os€Bs(K)
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forallx € Xs(H). Set 7 = (0575 )tes € Bs(U). Then
<)‘SU Oressg(( (t tGS Z fO‘T tGS)
o€Bs(K)

for all (z(t))ies € Xs(H), where

for((2()tes) = (Ask oresg K ((2(t))ees), 0) - (ress ; (0), 7).

Proof. Let (x(t))ies € Xs(H). If 05 € Bs(K) and if 0 = (d5t05)1es € Bs(K), then

for((x(t)tes) = (s 0 resi((s)), 0s) - (vesg; (o), 7).

Hence
Z far tES) = Z <)‘5K Oresg('x(s)%US) ) <reSlIJ<(US)778>
c€Bs(K) 0s€Bs(K)
= (Asp o res{][(x(s)), Ts)
= (Asv oresg ] (x(t))ies), ),
completing the proof. O

We are now in position to show a result about an integral canonical induction
formula for Xg from Ag.

Proposition 10.5 Assume that p € A and
(Asvoresff(),7) = Y (A\sk oresg(z),04) - (resfs (04),7s)
os€Bs(K)

forallU <K <H<G,seCgs(H), v Xs(H), and 75 € Bs(U) such that K/U is
a cyclic p-group and con,[;(7s) = 7s for all v € K. Assume further that

S (p(x) —2) =0

for all H € C(QX), s € Cs(H), and x € Xs(H). Then ¥Xs4s:As js q canonical
induction formula for ZXs from Z,)As, and
VS (@(s)ses) = Y me((@(9)ses) U, 7]
(U,m)eR(H,Bs)

for all H < G and (x(s))ses € Xs(H), where
mr((2(s))ses)
1
RGN PR

(K,0)€6(H,Bs) >,

x(As i o resg i ((2(s))ses), o) - (resg{f (0), 7).
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Proof. By Lemma 10.4, the condition (*,) of Theorem 10.1 holds for X = Xg,
A= Ag, A = Ag, and B = Bg. Suppose that H € C(QXg). Let (x(s))ses € Xs(H),
and set

(y(s))ses = e - (s m(((5))ses) — (2(5))ses)-

Then Proposition 5.5 yields (y(s))ses € KXS(H). Using an argument analogous to
the proof of Proposition 6.1, we have

s(s) { ) (Ao (w(s) — a(s))  if 5 € Cs(H),

0 otherwise.

This implies that (y(s))ses = 0, because C(QXg) = C(QX) by Proposition 6.1.
Thus the proposition is a consequence of Corollary 10.2. This completes the proof.
O

11 Induction formulae for representations of C*G

Let a : G x G — C* be a normalized 2-cocycle, and keep the notation of
Section 7. For each H < @G, let Irr,(H) be the set of isomorphism classes of ir-
reducible left C* H-modules, and let Lin,(H) be the set of isomorphism classes of
one-dimensional left C* H-modules. We denote by R2" the restriction subfunctor of
the C*G-representation functor R, such that R2P(H) with H < G is the Z-span of
Lin,(H), and define a morphism \* : R, — R2 of conjugation functors by

{ x if x € Liny(H),

G =
i (X) 0 otherwise

for all H < G and x € Irr,(H). Obviously, there exists a stable Z-basis B of R2P
such that BY(H) = Liny(H) for all H < G. From Lemma 7.3, we know that the
condition (%,) of Theorem 10.1 holds for X = R,, A = R X\ = )% B = B*, and
p = oo. Observe that by Lemma 7.2, C(QR,,) is the set of cyclic subgroups of G.
Then for any H € C(QR.), R’ (H) = Ro(H) and XY = idg, () (see also the proof

of Lemma 7.2). Hence it follows from Corollary 10.2 that RaRE"A s a canonical
induction formula for R, from R2" and

R07R31),)\a . @
U = >  mUT
(U,T)eR(H,BY)

for all x € Ro(H), where

1
m?(X):m Z (U, K) (X oresi(x),0).
BN (K o)es(H,82) s )

Note that (resf; (o), 7) = 1 for any (K,0) € &(H,BY) >,y with (U, 7) € R(H, B*).
Consequently, we have the following.
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Proposition 11.1 Under the above notation,

x= >, mi()indf(r)

(Um)eR(G,B>)
for all x € Ry(G).

If o is trivial, that is, a(s,t) = 1 for all s, ¢t € G, then Proposition 11.1 yields a
canonical choice of Brauer’s induction theorem on C-characters of G, which is due
to Boltje [3] (cf. [4, Examples 1.8(a), 6.13(a), 9.7]).

A subgroup H of G is said to be hyper-elementary if H has a cyclic normal
p-complement, or equivalently OP(H) is cyclic, for some prime p. Assume now that
p € A, and define a morphism A\ : R, — R2" of conjugation functors by

pa x if OP(H) is cyclic and if y € Ling(H),
g () = .
0  otherwise

for all H < G and x € Irro(H). (Note that A>** = X*.) Then it follows from
Lemma 7.3 that the condition (x,) of Theorem 10.1 holds for X = R,, A = R,
A =M% and B = B Moreover, Nj;* = idg_ () for any H € C(QR,), because
C(QR,) is the set of cyclic subgroups of G. Hence it follows from Corollary 10.2
that WRe-Ra" " i a canonical induction formula for Zp)Ro from Z(p)Rgb, and

R, R2P AP _ @
Uy = >, m)U7]
(U,7)ER(H,B>)
for all x € Ro(H), where
(0% 1 (0%
my®(x) = Wi Z p(U, H) (X oresit(x), o).
’ (K,U)EG(H,BO‘)E(U,T)

In particular, Proposition 11.1 is reduced to the type of hyper-elementary groups.

Proposition 11.2 Let A(G) denote the set of all primes dividing |G|. Under the
above notation, if the condition

G|
Z 0y
per(G T

holds for integers £y, p € A(G), then

P VR O o | naio)

(U,m)eH(G,B>) \peA(G

for all x € Ro(G), where
N(G,B*) ={(U,7) € R(G,B*) | OP(U) is cyclic}.
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If « is trivial, then Proposition 11.2 is [34, Theorem 8.7].

Remark 11.3 A subgroup H of G is said to be elementary if H is the direct product
of a p-group and a cyclic group of order prime to p for some prime p. We denote
by €(G) the set of elementary subgroups of G. By [22, Theorem 7.5.3], every
a-character is expressed as a Z-linear combination of a-characters induced from a-
characters of degree 1 of elementary subgroups of G (see also [11, Brauer Induction
Theorem 15.9]). Hence it follows from [22, Proposition 7.1.1, Theorem 7.1.11] that
each x € Ro(G) is expressed as a Z-linear combination of the elements ind$(r) for

(U, 7) € R(G, B*) with U € &(G).

12 Induction formulae for representations of D¥(G)

Let w: G x G x G — C* be a normalized 3-cocycle, and keep the notation of
Section 8. Recall that R? is the Mackey bundle composed of Ry, € Mack(Gs)z,
s € G°, equipped with the crossed conjugation maps con,y, for s € G, H < G,
and g € G. Given s € G¢, the restriction subfunctor RSE’ of Ry,, the morphism
PO Ry, — RSE of conjugation functors, where p € A, and the stable Z-basis B%
such that B% (H) = Ling, (H) for all H < G are defined in Section 11. Let R*"Y be
the restriction bundle composed of Rgla € Res(Gs)z, s € G, such that the crossed
conjugation maps con, 7, for s € G¢, H < G, and g € G are the restriction of those
of R?. The crossed Mackey functor

Rl = (R%e, conge, resqe, indge) € Mack(G)z
on R? and the crossed restriction functor
R¥Y = (R2I conge,resge) € Res(G)z

on R* are defined in Section 4. Suppose that the morphism \” Y RO, — R"ébf of

conjugation functors and the stable Z-basis BZ. of Rgbc are Age and Bge defined in

Section 10 with S = G¢, X = R?, A = R*0 X\, = \PYs and B, = B, respectively.

a 0 . . .

Lemma 12.1 Assume that p € A. Then URGeREEAGe s a canonical induction
Jormula for Z, RGGC from Z(p)RZEQ such that

RY,e RO N

\I]HG G G

((2(s))sece) = Yo mE((x(s))sece) U]

(U7)ER(H, B, )
for all H < G and ((s))sege € R%.(H), where
0
mz"((x(s))seae)

1 0
= W@ ) (U, KN 0 veseft (2(5))see), o),
T (Ko)eS(H BL) s (1r
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Proof. The argument before Proposition 11.2 means that the assumptions of Propo-
sition 10.5 hold for s € G¢, Xy = Ry,, As = RSE’ As = AP and By = B%. Hence
the lemma follows from Proposition 10.5. This completes the proof. O

Keep the notation of Section 11. For each H < GG, we set

[psM] € Irrg, (Hs) for some s € H\G¢,
Irr(Dg(H)) = § [M] € DG(H)-mod | and ¢;M = {0} for any t € H\G®
with s £ ¢

and

dimc(¢sN) =1 for some s € Cq(H),
Lin(DE(H)) = < [N] € DE(H)-mod | and ¢ N = {0} for any t € G¢
with s # ¢

By Theorem 8.4, D&(H) with H < G is a semisimple algebra, and Irr(Dg(H)) is
the set of isomorphism classes of irreducible left D% (H)-modules. Let R* D¢ be
a restriction subfunctor of RD¢ such that Rang(H ) with H < G is the Z-span
of Lin(D%(H)). For each p € A, we define a morphism A3 : RDY, — R DY, of
conjugation functors by

if OP(H) is cyclic and if x € Lin(Dg(H)),

pyw _J X
Aah(X) = { 0  otherwise

for all H < G and x € Irr(DE(H)). Obviously, there exists a stable Z-basis B
of R*"D¥, such that BL(H) = Lin(D%(H)) for all H < G. Given H < G and
(U,T) € R(H, Bg), we set

Wy (U,7) = {hU € Ny (U)/U | Dconls () = 7}.

Theorem 12.2 Assume thatp € A. Then YRDERPDENG" s g canonical induction

formula for Z g, RDE, from Z(p)Rang such that
RDY, ’RabDw 7)\1’,“-7 w
Uy T )= Y mRY (U]
(U,r)ER(H,B2)
for all H < G and x € RDE(H), where

1
00 = o MUK Do, 0)
AN (K o)es(H,82) s w.n)
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Proof. We define a morphism I'?P : RabD‘” — R%}L@ of restriction functors by

% : R*°Dg(H) — REY(H), = — Tp(x)
for all H < G, where I'yy is defined in Section 8. By Theorem 8.4, I'*" is an
isomorphism of restriction functors. For each H < G, the diagram

RD%(H) —y RO.(H)

s | et
R DE(H) —— RE()

H

is commutative, and F?}’ induces a one to one correspondence
B4(H) 3 0 Ty(o) € BLe(H).
Hence the theorem follows from Theorem 8.4 and Lemma 12.1. O

We are now successful in finding an analogy of Brauer’s induction theorem on
C-characters of G.

Corollary 12.3 Keep the notation of Theorem 12.2, and let M € D“(G)-mod.
Then

[M] = 3 meyy ((MD[D?(G) ®pgwy N1
(U,[N])ER(G.B%)

> 4l lél

Gly

If the condition

peEA(G

holds for integers £,, p € A(G), then
= 3 |2 G e (1)) | 1D(C) @y N
- |G| Dg(U) ’

(U[N))eH(G,BE) \peA(G
where

(G, B&) ={(U,[N]) € R(G,BE) | OP(U) is cyclic}.

Remark 12.4 By Lemma 8.1, there exists an equivalence between the categories
CH-mod and DY (H)-mod. Moreover, if a : G x G — C* is the trivial 2-cocycle,
then the statements of Propositions 11.1 and 11.2 are special cases of Corollary 12.3.
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