

形状記憶合金を用いた組紐被覆コンベックステープ ブームの展開実証

メタデータ	言語: jpn
	出版者: 日本航空宇宙学会
	公開日: 2016-05-31
	キーワード (Ja):
	キーワード (En): SMA-BCON boom, Deployment
	demonstration, Synchronous deployment
	作成者: 勝又, 暢久, 貝森, 政明, 樋口, 健
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/00008918

形状記憶合金を用いた組紐被覆コンベックステープ ブームの展開実証

その他(別言語等)	Deployment Demonstrations on Braid Coated
のタイトル	Bi-SMA Convex tape Boom (SMA-BCON Boom)
著者	勝又 暢久, 貝森 政明, 樋口 健
雑誌名	第56回構造強度に関する講演会プログラム
巻	56
ページ	1A19-1A19
発行年	2014-08-06
URL	http://hdl.handle.net/10258/00008918

形状記憶合金を用いた組紐被覆コンベックス テープブームの展開実証

○勝又暢久,貝森政明,樋口健(室蘭工業大学)

Deployment Demonstrations on Braid Coated Bi-SMA Convex tape Boom (SMA-BCON Boom) Nobuhisa Katsumata, Masaaki Kaimori and Ken Higuchi (Muroran Institute of Technology)

Key Words: SMA-BCON boom, Deployment demonstration, Synchronous deployment

Abstract

The purpose of this research is to evaluate the deployment behavior of the booms consist of bi-shape memory alloys (SMA) convex tapes covered with braid, named SMA-BCON Boom. The initial shape of SMA is fixed on convex tape shape. The booms are stored around a quadrangular center body, and they can deploy by heating. The deployment behavior is evaluated using the conceptual deployable model, and stepwise deployment behavior is achieved through deployment experiments.

1. 緒言

数十メートルから百メートルクラスの大型展開膜面構 造物や、小型・超小型衛星のデオービット用展開膜面機構 などへ応用可能な軽量かつ高剛性伸展ブームとして、組紐 被覆コンベックステープブーム (Braid Coated Bi-Convex tape Boom, 以降BCONブームとする)^{[1],[2]}が注目され, 盛 んに研究されている. BCONブームの特徴は、コンベック ステープ2枚を凸形状に組合せた楕円形状の断面を有し,収 縮性と伸長性に優れた組紐によって2枚のコンベックステ ープの外周を拘束している点にある. コンベックステープ は組紐内で長手方向にスライドすることが可能なため、収 納時の周長差を許容しながらコンパクトに収納することが できる.また一般的なコンベックステープ (SUS301FHなど) を用いた場合、展開は収納時の弾性エネルギーを解放する ことで行われる. そのため, 展開挙動の観点では断続展開 や減衰器などにより展開力を制御しながら展開する必要が ある. また収納時の巻き付け部形状によっても展開力は変 化する.巻き付け部形状が四角形の場合には、BCONブー ムは四角形の頂点でのみ折り曲げられるため、一般的なコ ンベックステープを用いた場合には展開力のロスが懸念さ れる.

そこで本研究では、小型・超小型衛星の設計で一般的な 立方体の外周にBCONブームを巻き付けることを前提にし、 かつ衛星本体の姿勢安定性の観点から展開力が制御できる BCONブームとして、「SMA-BCONブーム」を提案する. 四角形の中心構体、展開力の制御、軽量化の観点から、 SMA-BCONブームは収納時の変形部(四角形の頂点部)に のみ曲率を持った形状記憶合金(SMA)の板材を用い、四 角形の辺に沿った直線部分は軽量化ブームによって設計す る.またSMAの加熱状態を変化させることで展開力の制御 が可能であると考えた.

以上を背景として、今回はSMA-BCONブームの概念検証

を目的に、実験室規模の概念モデルを製作し、展開実験に より展開挙動の評価を行った.

2. 概念モデルの設計及び製作

2-1 SMA-BCONブームの概念モデル

SMA-BCONブームの概要を図1に示す. 収納時の変形部 にはNi-Ti合金のSMAを使用し、変形しない直線部にはアク リルの板材(板厚:3mm)を肉抜きして使用した.SMAは コンベックステープのように曲率断面を有する板材として 形状記憶されている. 今回用いたSMAの変態温度は約60度 である. SMAとアクリル板は両面テープとカプトンテープ で固定した.SMAとアクリル板の接合部寸法がブーム全体 の曲げ・ねじり剛性に影響を与えることが予想されたため、 自重を用いた簡易的な曲げ・ねじり試験により結合部の長 さ、幅などの寸法を決定した.SMAの加熱はニクロム線を 用いた. 高温接着性に優れた金属用接着剤でSMAの内壁に ニクロム線を一筆書きの波状に接着した. さらに、その上 から接着効果と絶縁のためにポリイミドテープを張付けた. また展開時の温度を計測するため、SMA表面にシートタイ プの熱電対を取り付けた.以上の製作の完了後,最終的に 組紐によって外周を被覆した. 製作後のSMA-BCONブーム の一部を図2に示す.

図2 製作後のSMA-BCON Boom

2-2 収納部の製作と展開構造物の概念モデル 収納部は1辺30cmの正方形のボックスとし、塩ビ板(板 厚:3mm)で製作した.展開力によるボックスの回転運動 を考慮し、ベニヤ板とスラストベアリングを用いて回転デ ーブルをボックス底面に設置した.ボックス内には熱電対 用の計測ユニットとジャイロセンサーを設置した.製作し た展開構造物の概念モデルを図3に示す.

(a) 実験装置の概要(b) ブーム収納状態図3 SMA-BCONブームの展開実験モデル

3. SMA-BCONブームの展開実験

<u>3-1</u> SMA-BCONブームのみによる展開実験

2章で述べた概念モデルを用いて展開実験を行った.図 1にあるように1本のブームにSMAは2か所あるため、2段 階の展開となる.ブームは全部で4本あるため、SMAを加熱 するニクロム線は全部で8CHだが、直流電源のCH数の上限 から4CHによって電力を供給した.ニクロム線と直流電源 は並列に接続した.展開実験は、3種類の供給電圧、電力を 用いて行った.直流電源との配線方法、実験条件を表1に 示す.また自重の影響を低減するため、展開時はブーム先 端をヒモで吊って実験を行った.

衣工 ノームのみ	の展開夫	映にわける)供稻竜庄,	電力旭
	1段階目		2段階目	
	Boom	Boom	Boom	Boom

1,2

6.3 V

供給電

Case

)の7の日間(中野)にいいう7世(公長)に

3,4

8.0 V

1,2

7.6 V

3,4

7.3 V

圧また	Case 2	10 V	10 V	10 V	10 V
は電力	Case 3	10 W	10 W	10 W	10 W
図4に,	展開実調	険の代表例	りとして10	[V]の電日	Eをそれそ
れのニクロ	コム線に住	共給して展	晨開させた	Case2の結	果を示す.
また図5に	L,展開8	寺のSMAの)温度変化	を示す. 🛛	図4におい

また図5に、展開時のSMAの温度変化を示す.図4において、横軸は時間、左縦軸はボックス中心からブーム先端までの距離、右縦軸にはジャイロセンサーで計測したボックスの角速度を示している.

Case 1は各所におけるニクロム線の抵抗値の違いを考慮 して、ニクロム線に流れる電流が約1[A]になるように電圧 を調整して展開させた. Case 2は10[V]の一定電圧を供給し、 Case 3では10[W]の一定電力をニクロム線に供給した. 図4 (a) Boom 1,3,4のように、各ブームの展開長の実線が重なっ ている場合は同期展開、重ならない場合は非同期展開であ る.非同期展開の場合、ブームの展開時反力によりボック スが回転・振動するため、角速度の急激な変化が生じてい る(図4 (b)).図4(a)においては、ブーム長が短く反力が 小さいことも要因ではあるが、赤線で示したBoom2以外が 同期的に展開しているため、展開完了時の反力が小さくな ったと考えられる.これらの考察は3種類のすべての場合に おいて共通した結果である.また図5の温度変化と図4の 展開挙動の関係については,展開の1段階目おいてBoom 3 (緑色の実線)の温度が急上昇しているが,その影響が展 開挙動に表れていない.展開の2段階目においてはBoom 4 (青色の点線)の温度が急激に高くなっている.その影響 として温度が急上昇した20秒後以降,Boom4のみ他のブー ムより先に展開している.直流電源によって電圧,電力は 制御されているが,温度変化に差が生じている.この原因 としてニクロム線と直流電源の接続不良や,SMA内部でニ クロム線が接触してショートし,大電流が流れたなどの推 測はできるが、現状では原因の特定はできていない.

(b) 2段階目
図4 SMA-BCONブームのみの展開実験結果
(供給電圧:10V)

3-2 ブーム間にケーブルを張った場合の展開実験

各ブームの非同期展開は、ブーム間に張られた膜面を介 して同期展開に近づくと考えられる.そこで膜面を模擬し たケーブルをブーム間に張り、非同期展開時に生じる張力 の影響について展開実験により確認した.ブーム間に張る ケーブルの本数(1,2,3本の3パターン)をパラメータと して実験を行った.そのためニクロム線に供給する電力は 一定とし、各ニクロム線に1[A]の電流が供給されるように 設定した.ブーム間に3本のケーブルを張ったパターン3の 展開挙動を図6,またパターン3の実験結果を図7に示す.

図7と図5の比較より、ブーム間をケーブルでつなぐこ とで4本のブームの同期性が向上したと考えられる.また展 開の同期性はブーム間を結ぶケーブルの本数が増すごとに 向上した.特に図7 (b)のBoom 2 (赤色) において、隣り 合うBoom 1 (水色)の展開が先に行われたことにより、 Boom 2の展開も同調したと考えられる.その挙動が図6(e)、 (f)、(g)においても示されている.Boom 4 (青色) において は、Boom 3から張力が与えられケーブルが張った状態にな っているが、展開の初期状態にその作用が働かなったため に展開の終盤でBoom 3に引き寄せられて急激に展開した と考えられる(図6 (g), (h)、図7 (b) 50~60 [s]).

図7 SMA-BCON Boom間をケーブルでつないだ展開実 験結果(3本のケーブルでつないだ場合)

4. 結言

展開力制御可能なBCONブームとして、形状記憶合金の 形状回復力を用いたSMA-BCONブームを提案した.曲率を 有するSMA板材を2枚組み合わせ、その外周を組紐で被覆 することでSMA-BCONブームの概念モデルを製作した.ま たSMA-BCONブームの利点を活かせる四角形中心構体の 外周に収納した展開構造物の概念モデルを製作し、展開実 証を行った.ニクロム線によるSMAの加熱により、収納状 態からSMA-BCONブームは展開し、各ブームの展開同期性 と展開挙動について考察した.また膜面を模擬したケーブ ルをブーム間に張ることで、ブーム間の展開速度の差が緩 和され、同期展開が促進されることも明らかになった. SMAの均等加熱と温度制御は今後の課題である.

参考文献

 渡邊秋人,他,「組紐を被覆した伸展構造物の検討」, 第56回宇宙科学技術連合講演会,2007,2012年10月,別府.
渡邊秋人,他,「組紐被覆ブームの軽量化検討」,第57 回宇宙科学技術連合講演会,3M15,2013年10月,米子.

