

二重薄肉開断面伸展梁(Bi-STEM)の接触解析による 形状取得と力学特性

メタデータ	言語: jpn
	出版者: 日本航空宇宙学会
	公開日: 2016-05-31
	キーワード (Ja):
	キーワード (En): Structural Analysis, Mechanical
	Properties, TWF-CFRP, Extendible Boom, STEM
	作成者: 大加瀬, 容平, 阿部, 尚大, 樋口, 健, 勝又, 暢久,
	渡邊, 秋人
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/00008919

二重薄肉開断面伸展梁(Bi-STEM)の接触解析による 形状取得と力学特性

その他(別言語等)	Shape and Mechanical Properties of Bi-STEM by
のタイトル	Contact Analysis
著者	大加瀬 容平, 阿部 尚大, 樋口 健, 勝又 暢久, 渡
	邊 秋人
雑誌名	第56回構造強度に関する講演会プログラム
巻	56
ページ	2A01-2A01
発行年	2014-08-07
URL	http://hdl.handle.net/10258/00008919

2A01 二重薄肉開断面伸展梁(Bi-STEM)の接触解析による 形状取得と力学特性

○大加瀬 容平(室蘭工大・院),阿部 尚大(室蘭工大・学),樋口 健,勝又 暢久(室蘭工大), 渡邊 秋人(サカセ・アドテック)

Shape and Mechanical Properties of Bi-STEM by Contact Analysis Yohei Okase, Shodai Abe, Ken Higuchi, Nobuhisa Katsumata (Muroran Institute of Technology), Akihito Watanabe (Sakase Adtech Co., ltd.)

Key Words: Structural Analysis, Mechanical Properties, TWF-CFRP, Extendible Boom, STEM

Abstract

Storable tubular extendible member (STEM) has been developed as an ultralight one-dimensional extendible structure with high packaging efficiency. It consists of open section tubular member that can be stored by rolling up to be flat on a storage spool. A pair of open section tubular members is termed "Bi-STEM", which shows high specific rigidity as compared with a single STEM. In this study, the static shape of Bi-STEM is firstly obtained by contact analysis between inner and outer shells. Then, the dynamic behavior of the Bi-STEM is examined by transient analysis.

1. 緒言

宇宙ミッションの高度化に伴い、宇宙展開構造物のさら なる軽量化や高収納性が求められている.また、宇宙空間 で確実に展開するためには、簡便で機構数の少ない展開構 造が望ましい. さらに、スピン安定型衛星のスピン軸方向 伸展構造物などに関しては高い比剛性と真直性がきわめて 重要である. それらの要求を満たす一次元伸展構造物とし て、薄肉円形開断面梁を収納リールから送り出して伸展す るSTEM (Storable Tubular Extendible Member) がある(図1). STEMは、伸展後の形状精度を得る方法として、あらかじ め所望の形状に成形した材料を巻き取って収納し、宇宙空 間で拘束を解放して形状を復元する手法(構造硬化模擬) を用いている. そのため、単純な伸展機構による軽量化や 打上げ時の小型化および宇宙空間における確実な伸展が期 待できる.特に、図1(b)のように薄肉円形開断面梁を二重 にして先端開口部を結合したBi-STEMは、曲げとねじりの 連成が抑制されるため、高い比剛性と真直性を示す.

STEMに関する過去の研究では、真空槽内や微小重力下 における実験、あるいはパラメータ調整を行った近似モデ ルによる数値解析等が行われている^{[1]-[3]}.しかし、Bi-STEM の力学特性あるいは内外シェル間接触や断面形状の変化が それらに及ぼす影響は明らかにされておらず、物理現象を 正確にとらえて解析の信頼性および精度を向上させるため には、それらの影響を検討しておく必要がある.

そこで、本研究では汎用解析ソフトウェアANSYSを用い、 まず、非線形静解析を実施して内外シェル間接触および断 面形状の変化を考慮したBi-STEMの静的形状を取得する. 次に、得られた有限要素モデルを用い、時刻歴応答解析を 実施してBi-STEMの動的特性を調べる.

2. 非線形静解析によるBi-STEMの形状取得

2-1 Uni-STEM解析モデルの作成

Bi-STEMの構成要素は、薄肉開断面伸展梁Uni-STEMで ある.図1(a)に示すように、Uni-STEMは収納リールで巻 き取るために固定端が直線状に開いた形状(以降,裾開き 形状)となっている.また、自由端には図2のような先端 ビスを付けて、相対変位を拘束している.本研究ではSTEM の材料として、高比剛性かつ適度な柔軟性を有するサカセ ・アドテック製の三軸織CFRP(TWF-CFRP)を用いる(表1).

Uni-STEMの自然な静的裾開き形状を得るために、まず、 図3のような一様断面の薄肉円形開断面梁を作成する.自 由端の開口部には先端ビスを模擬する硬いばね要素($k = 1.0 \times 10^4$ [N/m])を用いて開口部2節点を結合している. 次に、固定端節点を図4に示すサイクロイド経路に沿って 強制変位させて展開する.この過程は大変形問題であるの で、Newton-Raphson法を用いた繰り返し計算によって解を 求める.その結果得られた静的形状を図5に示す.

図2 Uni-STEM先端ビス

$\Delta \mathbf{X} = \mathbf{A} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} Y$	表1	解析に用い	いた三軸織CFRF	の材料物性値
---	----	-------	-----------	--------

Young's modulus	Poisson's ratio	Density
E [GPa]	ν	$\rho [kg/m^2]$
15.035	0.499	999

図3 薄肉円形開断面梁の形状寸法

図4 各節点のサイクロイド経路 (X>0の部分のみ)

図5 Uni-STEMの静的形状

2-2 Bi-STEM解析モデルの作成

前項では、薄肉円形開断面梁の固定端をサイクロイド経路に沿って強制変位させることによりUni-STEMの静的形状を得た.本項では、前項と同じ寸法の薄肉円形開断面梁を二つ用い、接触解析によってBi-STEMの静的形状を求める(図6).なお、Bi-STEMの先端ビスを模擬するために、

図 7 (b)のように六つの硬いばね要素 ($k = 1.0 \times 10^4$ [N/m])を用いて開口部付近の節点を結合する.

一作成手順—

- (1) XYZ空間に内側シェル,外側シェル,剛体平板を作成する.また,あらかじめ図7(b)のように六つのばね要素を作成しておき,図7(a)のように一部のばね要素を無効化(剛性を微小化)する.
- (2) 内外シェルの固定端を前項のサイクロイド経路に沿っ て展開する.
- (3) 外側シェルの自由端開口部2節点にX方向荷重Fx = ±4[N]を与えて展開する.このとき、外側シェルを剛体 平板に押し付けながら展開することにより、外側シェ ルの長手方向中央付近が自然に展開される.
- (4) 内側シェルを-Y方向に移動させ、先端を外側シェルの 内面に接触させる.
- (5) X方向荷重Fx = ±4[N]を徐々に小さくし、外側シェルの自由端を閉じる.
- (6) 剛体平板を-Y方向に遠ざけることにより,外側シェル の長手方向中央付近が自然に閉じられる.
- (7) 円筒中心を内外シェル固定端の中央に変位させ、図7
 (b)のようにすべてのばね要素を有効化したのち、先端の変位拘束を削除する.

以上の手順で得られた静的形状を図8に示す.

図6 Bi-STEM静的形状の作成手順

図8 Bi-STEMの静的形状

3.時刻歴応答解析によるBi-STEMの動的特性

Bi-STEMは、内外シェル間の接触問題を含むため、接触 面を線形ばねで結合する通常のモーダル解析では正確な固 有振動数を算出することができない.したがって、ここで は時刻歴応答解析を実施して、接触状態の時間変化を考慮 した自由減衰振動の変位履歴を求める.そして、変位履歴 からBi-STEMの固有振動数を推定し、内外シェル間の摩擦 係数や自由減衰振動の初期変位の大きさが振動波形や固有 振動数に与える影響を調べる.解析には前節で作成した Bi-STEM解析モデルを用いる.また、表2に時刻歴応答解 析の解析条件を示す.

図9に摩擦係数による応答変化を示す.摩擦係数の違いにより固有振動数や振動中心が変化すると思われるが,明確な規則性がないため計算誤差を含んでいる可能性がある.

図10に初期変位による応答変化を示す. Bi-STEMは 上下対称構造ではないため、必ずしも上下対称の応答と なっていない.小さい初期変位では振動数に対する影響 は小さいが、大たわみに関しては明確な規則性がないた め計算誤差を含んでいる可能性がある.

表2	時刻歴応答解析の解析条件

Ę

固定端の拘束条件	中央節点:X軸周りの回転を除いた 5自由度拘束 それ以外の節点:Y方向のみ拘束	
シェル間摩擦係数 μ^{*1}	$0, 0.25, 0.5, 1.0, \infty$	
初期変位 $y_0[mm]^{*2}$	-15, -10, -5, -1, 0, 1, 5, 10, 15	
変位履歴*2	節点P,QのY方向変位の平均をとる	
	*1 势麻坡反粉上動麻坡反粉は11万位しい	

^{*1} 静摩擦係数と動摩擦係数はµで等しい

*2 変位は静的つり合い位置から計測

図10 先端変位の時間履歴(摩擦係数μ = 1.0)

4. 結言

非線形静解析により、固定端付近における断面形状の変 化および内外シェル間の接触を考慮したBi-STEMの静的形 状を取得した.

得られたBi-STEM解析モデルを用いて時刻歴応答解析を 行い、先端変位の時間履歴を求めた.そして、振動波形と 固有振動数に対する摩擦係数および初期変位の影響につい て調べた.しかし、波形が1/4周期を超えた付近で収束困難 を生じ、固有振動数を推定するために必要な波数の時刻歴 応答を得られなかったため、今後は初期変位の与え方や解 析条件を検討するとともに、計算誤差の大きさも評価する 必要がある.

参考文献

- Ken Higuchi et al.: Design and Evaluation of an Ultra-light Extendible Mast as an Inflatable Structure, AIAA 006-1809, SDM, USA, (2006.5).
- [2] Ken Higuchi et al.: Verification of Practical Use of an Inflatable Structure in Space, Trans. JSASS Space Tech. Japan, Vol.7, No.ists26, pp.Tc7-Tc11, (2009).
- [3] Yoshiro Ogi et al.: Effect of Attachment Errors of Flexible Appendages on the Spin Axis of a Rigid Body, Aerospace Technology Japan, Vol.10, No.ists28, pp.Pc_7-Pc_12, (2012.3).

[4] http://www-civ.eng.cam.ac.uk/dsl/research/sak/