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Abstract

For a primitive form f of weight k for SL2(Z), let KS(f) be
the Kim-Ramakrishnan-Shahidi lift (K-R-S lift) of f to the space
of cusp forms of weight detk+1 ⊗Symk−2 for Sp2(Z). Based on some
working hypothesis, we propose a conjecture, which relates the ratio
〈KS(f), KS(f)〉

〈f, f〉3
of the periods (Petersson norms) to the symmetric

6-th L-value L(3k−2, f, Sym6) of f. From this, we also propose that a
prime ideal dividing the (conjectural) algebraic part L(3k−2, f, Sym6)
of L(3k − 2, f, Sym6) gives a congruence between the K-R-S lift and
non-K-R-S lift, and test this conjecture numerically.

1 Introduction

For a primitive form, that is, a normalized Hecke eigenform f for
SL2(Z) let f̂ be a lift of f to a space of (scalar valued or vector valued)
modular forms for another group. Here, the lift f̂ of f means a Hecke
eigenform whose certain L-function is expressed in terms of certain
L-functions of f. As examples of lifts, we can take the Doi-Naganuma
lift, the Saito-Kurokawa lift, the Duke-Imamoglu-Ikeda lift, the Ikeda-
Miyawaki lift, the Yoshida lift, the Kim-Ramakrishnan-Shahidi lift(K-
R-S lift), and so on. It is an interesting problem to consider the
relation between the period (or the Petersson norm) 〈f̂ , f̂〉 of f̂ and
the period 〈f, f〉 of f. Therefore we propose the following problem.
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Problem A. Express the ratio
〈f̂ , f̂〉
〈f, f〉e

with some e in terms of the

special values of certain L-functions of f (e.g. L(s, f, χ), L(s, f,St)),
and prove that the above ratio is algebraic.
In the case where the above problem is solved affirmatively, a prime

ideal dividing
〈f̂ , f̂〉
〈f, f〉e

sometimes gives a congruence between f̂ and a

Hecke eigenform not coming from the lift. Here we say that a prime
ideal P gives a congruence between two cuspidal Hecke eigenforms
if the corresponding Hecke eigenvalues are congruent mod P. So the
following problem seems also interesting:
Problem B. Characterize primes giving congruence between f̂ and
another Hecke eigenform not coming from the lifting, in terms of the
L-values of f appearing in Problem A.
Zagier [45] solved Problem A for the Doi-Naganuma lift f̂ of a prim-
itive form f. Based on this period relation, Doi, Hida, and Ishii [10]
proposed a conjecture on the congruence between the Doi-Naganuma
lift and non-Doi-Naganuma lift. Kohnen and Skoruppa [29] solved
Problem A in the case where f is the Saito-Kurokawa lift of a prim-
itive form f. By using this period relation, Brown [7] and Katsurada
[24] independently proved a modification of Harder’s conjecture on
congruences occurring between Saito-Kurokawa lifts and non-Saito-
Kurokawa lifts under mild conditions. Böecherer, Dummigan, and
Schulze-Pillot [4] proved the period relation for the Yoshida lift and
gave a similar result on the congruence between the Yoshida lift and
non-Yoshida lift. Katsurada and Kawamura [26] proved Ikeda’s con-
jecture on the period of the Duke-Imamoglu-Ikeda lift proposed in
[23], and by using this period relation Katsurada proved Problem
B for the Duke-Imamoglu-Ikeda lift in [25] (see also [8]). Based on
the conjectural period relation in [23], Ibukiyama, Katsurada, Poor,
and Yuen [18] proposed a conjecture on the congruence of the Ikeda-
Miyawaki lift and tested it numerically. Now, for a primitive form
f of weight k for SL2(Z) let us consider the lift KS(f) of f to the
space Sk+1,k−2(Sp2(Z)) of cusp forms of weight detk+1 ⊗Symk−2 for
Sp2(Z) whose spinor L function L(s,KS(f), Sp) is the symmetric third
L-function L(s, f,Sym3) of f. The existence of this type of lifting from
modular forms of one variable to Siegel modular forms appeared first
in [28] for generic Siegel modular forms and then was proved for holo-
morphic vector valued Siegel modular forms by [35]. Therefore we call
the above KS(f) the Kim-Ramakrishnan-Shahidi lift or K-R-S lift for
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short. Ibukiyama and Katsurada [19], among other things, proposed
a conjecture on the algebraicity of the period relation of the K-R-S
lift and proved the congruence between the K-R-S lift and non-K-R-S
lift in some case.

In this paper, we propose a more precise conjecture on the period
relation of the K-R-S lift and the congruence between the K-R-S lift
and non-K-R-S lift. Moreover we test the congruence between the K-
R-S lift and non-K-R-S lift numerically. One of main conjectures in
this paper can be stated, roughly speaking, as follows:

“Let KS(f) be the Kim-Ramakrishnan-Shahidi lift of a primitive
form f of weight k for SL2(Z) and let L(3k − 2, f,Sym6) be the
(conjectural) algebraic part of the symmetric 6-th L-function of f
at s = 3k − 2. Then a prime ideal dividing L(3k − 2, f, Sym6) gives a
congruence between KS(f) and non-Kim-Ramakrishnan-Shahidi lift.”

We note that 3k−2 is immediately to the right of the central point
for the functional equation of L(s, f,Sym6). We also give numerical
examples which support our conjecture in case where k = 16, 18 and
20. Let us explain more precisely in the case k = 16. In this case, for
the unique primitive form f in S16(SL2(Z)), the K-R-S lift of f to the
space S17,14(Sp2(Z)) is uniquely determined up to a constant multiple,
and take a KS(f) appropriately. Then we can prove that there is a
Hecke eigenform G in S17,14(Sp2(Z)) such that

cKS(f)(T ) ≡ cG(T ) mod P,

for any positive definite half-integral symmetric matrix T of degree
two, where c∗(T ) is the T -th Fourier coefficient of a Siegel modu-
lar form, and P is a prime ideal in the Hecke field of G lying above
92467. From this, we easily see that P gives a congruence between
KS(f) and G. On the other hand, at present there is no way of com-
puting the algebraic part L(46, f, Sym6) rigorously. However, by using
Dokchitser’s L-calculator [11], we can numerically check that it is di-
visible by 92467. In other cases, we can also test the above conjecture
numerically.

This paper is organized as follows. In Section 2, we review on
the vector valued modular forms. In Section 3, we review on the
critical values of the higher symmetric power L-functions of elliptic
modular forms, and in Section 4, we review on the critical values
of the standard L-functions of Siegel modular forms. In Section 5,
we review the conjecture on the algebraicity of the period relation of
the Kim-Ramakrishnan-Shahidi lift in [19]. In Section 6, we propose
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a more precise conjecture on the period of the Kim-Ramakrishnan-
Shahidi lift based on some heuristic argument, and also propose a
conjecture on the congruence of the Kim-Ramakrishnan-Shahidi lift.
Finally, in Section 7, we give numerical examples.

The authors thank the referee for many valuable comments. The
first named author was partially supported by the JSPS KAKENHI
Grant Numbers 24540005 and 25247001, and the both authors were
partially supported by the JSPS KAKENHI Grant Number 23224001.
Notation. Let R be a commutative ring. We denote by R× and
R∗ the semigroup of non-zero elements of R and the unit group of
R, respectively. We also put S2 = {a2 | a ∈ S} for a subset S
of R. We denote by Mmn(R) the set of m × n-matrices with entries
in R. In particular put Mn(R) = Mnn(R). Put GLm(R) = {A ∈
Mm(R) | det A ∈ R∗}, where det A denotes the determinant of a
square matrix A. For an m × n-matrix X and an m × m-matrix A,
we write A[X] = tXAX, where tX denotes the transpose of X. Let
Sn(R) denote the set of symmetric matrices of degree n with entries in
R. Furthermore, if R is an integral domain of characteristic different
from 2, let Hn(R) denote the set of half-integral matrices of degree n
over R, that is, Hn(R) is the subset of symmetric matrices of degree
n with entries in the field of fractions of R whose (i, j)-component
belongs to R or 1

2R according as i = j or not. In particular, we put
Hn = Hn(Z). For a subset S of Mn(R) we denote by S× the subset of
S consisting of non-degenerate matrices, that is, matrices with non-
zero determinant. If S is a subset of Sn(R) with R the field of real
numbers, we denote by S>0 (resp. S≥0) the subset of S consisting
of positive definite (resp. semi-positive definite) matrices. The group
GLn(R) acts on the set Sn(R) in the following way:

GLn(R) × Sn(R) 3 (g,A) 7−→ A[g] ∈ Sn(R).

Let G be a subgroup of GLn(R). For a G-stable subset B of Sn(R) we
denote by B/G the set of equivalence classes of B under the action of
G. We sometimes use the same symbol B/G to denote a complete set
of representatives of B/G. We abbreviate B/GLn(R) as B/ ∼ if there
is no fear of confusion. Let R′ be a subring of R. Then two symmetric
matrices A and A′ with entries in R are said to be equivalent over
R′ with each other and write A ∼R′ A′ if there is an element X of
GLn(R′) such that A′ = A[X]. We also write A ∼ A′ if there is no
fear of confusion. For square matrices X and Y we write X⊥Y =
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(
X O
O Y

)
.

For an integer D ∈ Z such that D ≡ 0 or ≡ 1 mod 4, let dD be
the discriminant of Q(

√
D), and put fD =

√
D
dD

. We call an integer
D a fundamental discriminant if it is either 1 or the discriminant of
some quadratic extension of Q. For a fundamental discriminant D,

let
(

D
∗

)
be the character corresponding to Q(

√
D)/Q. Here we make

the convention that
(

D
∗

)
= 1 if D = 1.

We put e(x) = exp(2π
√
−1x) for x ∈ C. For a prime ideal P

of the ring of integers of an algebraic number field K we denote by
ordP(∗) the additive valuation of the P-adic field KP normalized so
that νP($) = 1, where $ is a prime element of KP.

2 Siegel modular forms

For any natural number n, we denote by Hn the Siegel upper half
space of degree n.

Hn = {Z ∈ Mn(C);Z = tZ = X +
√
−1Y, X, Y ∈ Mn(R), Y > 0}.

For any ring R and any natural integer n, we define the symplectic
group GSpn(R) over R with symplectic similitudes by

GSpn(R) = {g ∈ M2n(R); tgJng = ν(g)Jn with some ν(g) ∈ R×},

and
Spn(R) = {g ∈ M2n(R); tgJng = Jn},

where Jn =
(

0n −1n
1n 0n

)
. In particular, if R is the field R of real numbers,

we put
GSpn(R)+ = {g ∈ GSpn(R) | ν(g) > 0}.

We put Γ (n) = Spn(Z) for the sake of simplicity. For a positive integer
d, we define the paramodular group Γ para(d) of degree two of level d
as

Γ para(d) = {g ∈ M4(Z) | tgJ2(d)g = J2(d)},

where J2(d) =
( 0 0 1 0

0 0 0 d
−1 0 0 0
0 −d 0 0

)
. A modular form for the paramodular

group is called a paramodular form. For any irreducible representa-
tion (ρ, V ) of GL(n, C), for any V -valued function F on Hn, and for
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any g =
(

A B
C D

)
∈ Spn(R), we write

F |ρ[γ] = ρ(CZ + D)−1F (γZ).

Let Γ be an arithmetic subgroup of Spn(Q) commensurable with Γ (n),
and χ be a character of Γ . We say that F is a holomorphic Siegel
modular form of weight ρ and character χ for Γ if F is holomorphic
on Hn and F |ρ[γ] = χ(γ)F for any γ ∈ Γ (with the extra condition
of holomorphy at cusps if n = 1). We denote by C[u1, · · · , un]m the
vector space of homogeneous polynomials of degree m in u1, · · · , un.
Then the m-th symmetric tensor representation Symm of GL(n, C) is
defined by

Symm(g)(P (u1, · · · , un)) = P ((u1, · · · , un)g)

for any g ∈ GL(n, C) and P ∈ C[u1, · · · , un]m. For any integer k,
we denote by detk the representation of GL(n, C) given by detk(g) =
(det(g))k for any g ∈ GL(n, C). We put ρk,m = detk ⊗Symm. We
denote by Mk,m(Γ, χ) the vector space of holomorphic Siegel modular
forms of weight ρk,m and character χ for Γ . Let F be an element of
Mk,m(Γ, χ). Then for any g ∈ Spn(Q), F has the following Fourier
expansion.

F |ρk,m
[g](Z) =

∑
A∈Sn(Q)≥0

cF,g(A; u) exp(2π
√
−1tr(AZ)),

where cF,g(A) is a homogeneous polynomial of degree m in u = (u1, · · · , un)
with coefficients in C for any A ∈ Sn(Q)≥0, Therefore, we often write
cF,g(A) as cF,g(A;u). If g = 12n, we write cF,g(A) and cF,g(A; u) as
cF (A) and cF (A; u), respectively. We say that F is a cusp form if
cF,g(A;u) = 0 unless A ∈ Sn(Q)>0. We denote by Sk,m(Γ, χ) the
space of cusp forms in Mk,m(Γ, χ). If χ is the trivial character, we
simply write Mk,m(Γ, χ) and Sk,m(Γ, χ) as Mk,m(Γ ) and Sk,m(Γ ), re-
spectively. Let F be an element of Sk,m(Γ ) with the following Fourier
expansion:

F (Z) =
∑

A∈Hn(Z)>0

cF (A; u) exp(2π
√
−1tr(AZ)).

For a fundamental discriminant D < 0 we then define the |D|-th Bessel
function of F as

BF (|D|) =

√
|D|
2

∑
A∈H2(Z)>0/SL2(Z)

4 det A=|D|

1
#SO(A)

∫
A[u]≤1

cF (A; u)du,
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where SO(A) is the special orthogonal group of A. In the case where
m = 0 we have

BF (|D|) =
1√
|D|

∑
A∈H2(Z)>0/SL2(Z)

4 det A=|D|

cF (A)
#SO(A)

.

We note that any element F of Mk,m(Γ (n)) has the following Fourier
expansion.

F (Z) =
∑

A∈Hn(Z)≥0

cF (A; u) exp(2π
√
−1tr(AZ)),

and in particular, if F is a cusp form then

F (Z) =
∑

A∈Hn(Z)>0

cF (A; u) exp(2π
√
−1tr(AZ)).

We also note that a paramodular form has also a Fourier expansion
similar to above.

For any ring R ⊂ C, we denote by Mk,m(Γ (n))(R) the R-submodule
of Mk,m(Γ (n)) consisting of modular forms whose A-th Fourier co-
efficient belongs to R[u1, · · · , un]m for all A ∈ Hn(Z)≥0. We con-
sider Siegel modular forms of genus 2. We note that any rational
irreducible representation of GL(2, C) is given by ρk,m up to equiv-
alence. In particular, we have Mk,m(Γ (2)) = 0 if m is odd and
Mk,m(Γ (2)) = Sk,m(Γ (2)) if k is odd.

For any non-negative integers a1, · · · , an, b1, · · · , bn with a1 + · · ·+
an = b1 + · · · + bn = m, we put

〈ua1
1 · · ·uan

n , ub1
1 · · ·ubn

n 〉 =
a1! · · · an−1!b1! · · · bn−1!

m!
δa1b1 · · · δan−1,bn−1 ,

where δij is Kronecker’s delta. We define the hermitian inner product
on C[u1, · · · , un]m by extending this linearly. Then we have

〈ρk,m(A)x, y〉 = 〈x, ρk,m(tA)y〉

for any x, y ∈ C[u1, · · · , un]m and A ∈ GLn(C). Let Γ be a subgroup
of Spn(Q) commensurable with Γ (n). We define the volume vol(Γ ) by

vol(Γ ) =
∫

Γ\Hn

det Y −n−1dXdY.
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For two vector valued Siegel cusp forms F,G ∈ Sk,m(Γ ), we define the
inner product 〈F,G〉 of F and G by

〈F,G〉 = vol(Γ (n))vol(Γ )−1

×
∫

Γ\Hn

〈ρk,m(
√

Y )F (Z), ρk,m(
√

Y )G(Z)〉det(Y )−n−1 dX dY

where Z = X +
√
−1Y and dX = ∧1≤i≤j≤ndxij , dY = ∧1≤i≤j≤ndyij

for X = (xij), Y = (yij) ∈ Mn(R). In particular, we call 〈F, F 〉 the pe-
riod or the Petersson norm of F. We denote by L̃n the Q-vector space
whose genenerators over Q are the symbols ΓαΓ (α ∈ GSpn(Q)+).
The vector space L̃n becomes a commutative ring with a certain mul-
tiplication. Any T ∈ L̃n acts on Mk,m(Γ (n)). We write the action of
T on F ∈ Mk,m(Γ (n)) as F |T. An element F of Sl,j(Γ (n)) is called a
Hecke eigenform (for L̃n) if F |T = λF (T )F with λF (T ) ∈ C for any
T ∈ L̃n. We call λF (T ) the Hecke eigenvalue of T for F. For a Hecke
eigenform F ∈ Sk,j(Γ (n)), we denote by Q(F ), the field generated over
Q by all the Hecke eigenvalues of F. We also have a Hecke theory for
any congruence subgroup of Γ (n) and any paramaodular group.

3 Symmetric power L-functions of el-

liptic modular forms

Let

f =
∞∑

n=1

a(n) exp(2π
√
−1nz)

be a primitive form in Sk(SL2(Z)). For a prime number p let αp, βp

be complex numbers such that αp +βp = a(p) and αpβp = pk−1. For a
Dirichlet character χ define the symmetric j-th L function of f twisted
by χ as

L(s, f,Symj , χ) =
∏

p:prime

j∏
i=0

(1 − αi
pβ

j−i
p p−sχ(p))−1.

In particular, put L(s, f) = L(s, f,Sym1). It is proved that L(s,Symj , χ)
is continued meromorphically to the whole s plane and that for small
j it satisfies the functional equation for s → (k − 1)j + 1 − s (cf. [42]
for example.) To consider the algebraicity of L(s, f,Symj , χ) let

ΓC(s) := 2(2π)−sΓ(s)
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and put
Λ(s, f) = ΓC(s)L(s, f).

Then there exist Ω± = Ω±(f) ∈ R× so that

Λ(j, f)
Ω(−1)j

∈ Q(f)

for 1 ≤ j ≤ k − 1 (cf. [38]). Here, Ω(−1)j is Ω+ or Ω− according as
(−1)j is 1 or −1. To consider the algebraicity of the higher symmetric
power L-functions, for an odd integer m = 2r − 1 and an integer
(k − 1)(r − 1)/2 < l ≤ (k − 1)r/2 put

L(l, f, Symm) =
L(l, f, Symm)

(2π)rl−r(r−1)(k−1)/2Ωr
(−1)l〈f, f〉r(r−1)/2

and for an even integer m = 2r and an even integer (k − 1)r < l ≤
(k − 1)(r + 1) put

L(l, f, Symm) =
L(l, f, Symm)

(2π)(r+1)l−r(r+1)(k−1)/2〈f, f〉r(r+1)/2
.

Then the following conjecture is a special case of the conjecture pro-
pose by Deligne [9].

Conjecture 3.1. (Deligne’s Conjecture) L(l, f, Symm) ∈ Q(f).

We note that 〈f,f〉
Ω+Ω−

∈ Q(f), and that Deligne originally formulated
the above conjecture in terms of Ω+ and Ω−. Deligne’s conjecture
holds true for m = 1, 2. (cf. Shimura [38], Sturm [41]) In the case of
m = 3, more precisely we have the following:

Proposition 3.2. (Orloff [34], Satoh [36], Böecherer and Panchishkin
[5]) Let f be a primitive form in Sk(SL2(Z)). For an integer l such
that (k − 1)/2 < l ≤ k − 1, and for a primitive Dirichlet character χ
mod M such that χ2 = 1 put

L(l, f, Sym3, χ) =
L(l, f, Sym3, χ)

(2π)2l−(k−1)Ω2
∗〈f, f〉

√
M

,

where Ω∗ = Ω+ or Ω− according as χ(−1) = (−1)l or χ(−1) =
(−1)l+1. Then L(l, f, Sym3, χ) ∈ Q(f).
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4 Special values of the standard L-functions

In this section we define three L-functions, the spinor L-function, the
standard L-function, and the adjoint L-function for a cuspidal Hecke
eigenform F in Sk,m(Γ (2)). For a prime number p let α0,p, α1,p, α2,p

be the Satake p-parameters of F. We then first define the spinor L-
function L(s, F, Sp, χ) of F twisted by a Dirichlet character χ as

L(s, F, Sp, χ)

=
∏
p

{(1 − α0,pp
−sχ(p))(1 − α0,pα1,pp

−sχ(p))(1 − α0,pα2,pp
−sχ(p))

×(1 − α0,pα1,pα2,pp
−sχ(p))}−1.

Next we define the standard L-function L(s, F, St) of F as

L(s, F, St) =
∏
p

{(1−p−s)(1−α1,pp
−s)(1−α−1

1,pp
−s)(1−α2,pp

−s)(1−α−1
2,pp

−s)}−1.

Here we normalize the Satake p-parameters α0,p, α1,p, α2,p so that
L(s, F, St) and L(s, F, Sp) satisfy the functional equations for s −→
1− s and for s −→ 2k + m− 2− s, respectively. Finally we define the
adjoint L-function L(s, F, Ad) as

L(s, F, Ad)

=
∏
p

{(1 − p−s)2(1 − α1,pp
−s)(1 − α−1

1,pp
−s)(1 − α2,pp

−s)(1 − α−1
2,pp

−s)

×(1−α1,pα2,pp
−s)(1−α−1

1,pα2,pp
−s)(1−α1,pα

−1
2,pp

−s)(1−α−1
1,pα

−1
2,pp

−s)}−1.

Now we review on the algebraicity of the standard L-function.
For an even positive integer l, we define the Siegel Eisenstein series
E4,l(Z, s) of degree 4 by

E4,l(Z, s) = ζ(1 − l − 2s)ζ(3 − 2l − 4s)ζ(5 − 2l − 4s)

×
∑

g=
“

A B
C D

”

∈Γ (4)∞\Γ (4)

det(CZ + D)−l(det(Im(g(Z))))s

(Z ∈ H4, s ∈ C), where ζ(∗) is Riemann’s zeta function, and Γ (4)
∞ ={

( ∗ ∗
04 ∗ ) ∈ Γ (4)

}
. This series converges for 2Re(s) + l > 5 and is con-

tinued meromorphically to the whole plane as a function of s. Fur-
thermore, for l ≥ 4, E4,l(Z, 0) is a holomorphic Siegel modular form
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of weight l as a function of Z (cf. [39]). From now on we as-
sume that E4,l(Z, 0) is holomorphic as a function of Z, and write
E4,l(Z) = E4,l(Z, 0). Put V

(m)
1 = C[u1, u2]m and V

(m)
2 = C[u3, u4]m

and denote by Hol(H2, V
(m)
i ) the space of V

(m)
i -valued holomorphic

functions on H2. We naturally identify elements in V
(m)
1 ⊗ V

(m)
2 with

polynomials in u1, u2, u3, u4. We also denote by Hol(H4, V
(m)
1 ⊗

V
(m)
2 ) the space of V

(m)
1 ⊗V

(m)
2 -valued functions on H4. We note that

Hol(H2, V
(0)
1 ) = Hol(H2, V

(0)
2 ) is the space Hol(H2, C) of scalar valued

holomorphic functions on H2 and Hol(H4, V
(0)
1 ⊗ V

(0)
2 ) is the space

Hol(H4, C) of scalar valued holomorphic functions on H4. Let D̃k−l
l =

D̃k−1 ◦ · · · D̃l+1 ◦ D̃l be the holomorphic differential operator acting on
Hol(H4, C) defined in Böcherer [3]. Moreover let L(m) be the holomor-
phic vector valued differential operator defined in Böecherer, Satoh
and Yamazaki [6]. It maps Hol(H4, C) to Hol(H2 × H2, V

(m)
1 ⊗ V

(m)
2 ).

For any scalar valued holomorphic function f on H4, we write

Dl,(k,m)(f) =
1

(2π
√
−1)2(k−l)

(L(m)D̃k−l
l (f)).

Then Dl,(k,m) maps holomorphic functions on H4 to Hol(H2, V
(m)
1 ) ⊗

Hol(H2, V
(m)
2 ). In particular, it preserves automorphy after restriction

and maps Ml(Γ (4)) to Mk,m(Γ (2)) ⊗ Mk,m(Γ (2)). The image is con-
tained in Sk,m(Γ (2)) ⊗ Sk,m(Γ (2)) if k − l > 0. For Z = (zij) ∈ H4 we
write ∂ij = δij+1

2
∂

∂zij
, and for an integer a and a non-negative integer

µ put (a)µ = a(a+1) · · · (a+µ−1). Then we note that D̃k−l
l and L̃k,m

can be expressed as

D̃k−l
l =

1∏k
α=l(α − 3/2)(α − 1)

×P (∂ij (1 ≤ i ≤ j ≤ 4), zij (1 ≤ i ≤ 2, 3 ≤ j ≤ 4)),

and

L(m) =
1

(2π
√
−1)m(k)m

∏[m/2]
µ=0 µ!(m − 2µ)!(1 − k − m)µ

×Q(∂ij (1 ≤ i ≤ j ≤ 4), ui (1 ≤ i ≤ 4))
∣∣
H2×H2

,

where P (Xij (1 ≤ i ≤ j ≤ 4), zij (1 ≤ i ≤ 2, 3 ≤ j ≤ 4)) is a
polynomial in Xij (1 ≤ i ≤ j ≤ 4), zij (1 ≤ i ≤ 2, 3 ≤ j ≤ 4) with
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coefficients in Z, and Q(Xij (1 ≤ i ≤ j ≤ 4), ui (1 ≤ i ≤ 4)) is a
polynomial in Xij (1 ≤ i ≤ j ≤ 4), ui (1 ≤ i ≤ 4) with coefficients in

Z, and
∣∣
H2×H2

means the restriction of functions of Z =
(

Z1 Z12
Z12 Z2

)
∈

H4 to the set H2 × H2
∼=

{(
Z1 0
0 Z2

)
; Zi ∈ H2

}
(see, [12], pages 1312-

1322). Hence, Dl,(k,m) can be expressed as

Dl,(k,m) =
1

al,(k,m)(2π
√
−1)2(k−l)+m

×R(∂ij (1 ≤ i ≤ j ≤ 4), ui (1 ≤ i ≤ 4)),

where

al,(k,m) =
k∏

α=l

(α − 3/2)(α − 1)
[m/2]∏
µ=0

µ!(m − 2µ)!(1 − k − m)µ,

and R(Xij (1 ≤ i ≤ j ≤ 4), ui (1 ≤ i ≤ 4)) is a polynomial in
Xij (1 ≤ i ≤ j ≤ 4), ui (1 ≤ i ≤ 4) with coefficients in Z. We
note that al,(k+1,k−2) is an integer whose prime divisor is not greater
than 2k − 1 for 4 ≤ l ≤ k. For R,S ∈ Sn(Q) and T ∈ M2(Q), put

(mij)4×4 =
(

R T
tT S

)
and put

φl,(k,m)(R,S, T ; ui (1 ≤ i ≤ 4)) = R(mij (1 ≤ i ≤ j ≤ 4), ui(1 ≤ i ≤ 4)).

For F ∈ Sk,m(Γ (4)), we define Λ(r, F, St) by

Λ(r, F, St) = 214−6k−r−2m(−1)r/2 × Γ(r + 1)Γ(2r)Γ(2k + m − 3)
(k − 2)(k)mm!

× L(r, F, St)
π2k+m+3r−3〈F, F 〉

.

(This is the same as the definition in [31] or [12] for n = 2, though
apparently different looking.) Then the following result is a special
case of the pullback formula for the Siegel Eisenstein series in [3], [6]
and [31]. We can take a basis F1, . . . , Fd of Sk,m(Γ (2)) so that Fi

belong to Sk,m(Γ (2))(Q(Fi)) for any 1 ≤ i ≤ d. We define the function
F̃l,(k,m)(Z1, Z2) on Hol(H2, V

(m)
1 ) ⊗ Hol(H2, V

(m)
2 ) by

F̃l,(k,m)(Z1, Z2) = Dl,(k,m)(E4,l)(Z1, Z2).
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We write the Fourier expansion of F̃l,(k,m)(Z1, Z2) by

F̃l,(k,m)(Z1, Z2) =
∑

R,S∈H2(Z)>0

εl,(k,m)(R,S; U) exp(2π
√
−1tr(RZ1+SZ2)),

where εl,(k,m)(R,S; U) is a polynomial in U = (u1, u2, u3, u4). Then
for fixed R and S, we have

εl,(k,m)(R,S; U) =
∑

T∈M2(Z)

c4,l

((
R T/2

tT/2 S

))
φl,(k,m)(R,S, T/2;U),

where c4,l(T ) denotes the Fourier coefficient of E4,l at T ∈ H4(Z)≥0

and is regarded as zero if T is not positive semi-definite. For a fixed
S ∈ H2(Z)>0, we write

Gl,(k,m),S(Z1) =
∑

R∈H2(Z)>0

εl,(k,m)(R,S; U) exp(2π
√
−1tr(RZ1)).

Then we have

F̃l,(k,m)(Z1, Z2) =
∑

S∈H2(Z)>0

Gl,(k,m),S(Z1) exp(2π
√
−1tr(SZ2)).

For each S ∈ H2(Z)>0, we denote by ci(S, v) the Fourier coefficient of
Fi(Z2) at S ∈ H2(Z)>0, which are polynomials in v = (u3, u4). Then
we have the following.

Theorem 4.1. Let F1, · · · , Fd be a basis of Sk,m(Γ (2)) consisting of
Hecke eigenforms. Assume that Fi ∈ Sk,m(Γ (2))(Q(Fi)) for any i =
1, · · · , d. Then for any S ∈ H2(Z)>0 and for any even integer l such
that 4 ≤ l ≤ k − 2, we have

Gl,(k,m),S(Z1) =
d∑

i=1

cFi(S; v)Λ(l − 2, Fi,St)Fi(Z1), (1)

where v = (u3, u4).

Remark 4.2. We always take a basis F1, · · · , Fd of Sk,m(Γ (2)) satis-
fying the conditions in the above theorem.

Corollary 4.3. Let F be a Hecke eigenform in Sk,m(Γ (2))(Q(F )).
Then Λ(l − 2, F, St) ∈ Q(F ) for any even integer l such that 4 ≤ l ≤
k − 2.
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5 Period and congruence of the K-R-S

lift

For any F ∈ Sk,j(Γ (2)), let L(s, F, St) and L(s, F, Sp) be the standard
L function and the spinor L function, respectively, of F , normalized
as in Section 4. Now we quote a part of the theorem in [35] we need.

Theorem 5.1 (Ramakrishnan-Shahidi [35]). For any primitive Hecke
eigenform f ∈ Sk(SL2(Z)), there exists a holomorphic Siegel modular
form F ∈ Sk+1,k−2(Γ (2)) which is a Hecke eigenform such that

L(s, f,Sym3) = L(s, F, Sp).

We call the above F the Kim-Ramakrishnan-Shahidi lift as in Sec-
tion 1. We note that Ibukiyama [17] gave a precise conjecture on these
liftings with numerical experiments on ∆ and F as cited in [35]. The
above theorem is a correspondence between automorphic representa-
tions, so even if multiplicity one theorem holds, F is defined only up
to constants and there is no canonical way to choose normalization
of F at moment. But from now on we write this F as KS(f). We
note that Q(KS(f)) = Q(f), and therefore we can take KS(f) so that
KS(f) ∈ Sk+1,k−2(Γ (2))(Q(f)). We can easily see that for the same f
and KS(f) above, we have also

L(s + 2k − 2, f, Sym4) = L(s,KS(f), St)

by checking the relation between Satake parameters. Hence by Corol-
lary 4.3, we have

Theorem 5.2. For any primitive form f ∈ Sk(SL2(Z)), let KS(f) be
the K-R-S lift of f such that KS(f) ∈ Sk+1,k−2(Q(f)). Then Deligne’s
conjecture holds true for the critical values of L(s, f,Sym4) if and only

if 〈KS(f), KS(f)〉
〈f, f〉3

∈ Q(f).

Hence, taking Theorem 5.2 into account, we propose the following
conjecture.

Conjecture 5.3. Let f be a primitive form in Sk(SL2(Z)). Assume
that KS(f) ∈ Sk+1,k−2(Γ (2))(Q(f)). Then 〈KS(f),KS(f)〉

(f,f)3
∈ Q(f).

Assuming the above conjecture, we want to know more precise in-
formation about the 〈KS(f), KS(f)〉/(f, f)3. Hence we would like to
propose the following question.
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Question. What L-value divides
〈KS(f), KS(f)〉

〈f, f〉3
?

In the next section, we consider this question.
Now we consider the congruence of Siegel modular forms. We

denote by Ln the Z-free module whose genenerators over Z are the
symbols ΓαΓ (α ∈ GSpn(Q)+ ∩ M2n(Z)). Then Ln is a subring of
L̃n and it acts on Mk,j(Γ (n)). Moreover, if k ≥ n + 1, then for any
T ∈ Ln and F ∈ Mk,j(Γ (n))(Z), we have F |T ∈ Mk,j(Γ (n))(Z). Let F
be a Hecke eigenform in Sk,j(Γ (n)). First we note that λF (T ) ∈ OQ(F )

for any T ∈ Ln. Let M be a Hecke stable subspace of Sk,j(Γ (n))
such that M ⊂ (CF )⊥, where (CF )⊥ is the orthogonal complement
of CF in Sk,j(Γ (n)) with respect to the Petersson product. Let K be
a algebraic number field containing Q(F ). A prime ideal P in K is
called a congruence prime of F with respect to M if there exists a
Hecke eigenform G ∈ M such that

λG(T ) ≡ λF (T ) mod P̃

for any T ∈ Ln, where P̃ is a prime ideal of K · Q(G) lying above
P. In this case, we also say P gives a congruence between F and
G. If M = (CF )⊥, we simply say that P is a congruence prime of
F. In this case, we simply write G ≡e.v F mod P. Let O be the
ring of integers in K, and P a prime ideal of K. We denote by
O(P) the localization of O at P. For a polynomial P (u1, . . . , un) =∑

i1,...,in
ai1...inui1

1 · · ·uin
n ∈ O(P)[u1, . . . , un], we write P (u1, . . . , in) ≡

0 mod P if ai1...in ≡ 0 mod P for any i1, . . . , in. First we give a lemma,
which can be proved in the same way as [25], Lemma 5.1.

Lemma 5.4. Let F1, · · · , Fd be Hecke eigenforms in Sk,m(Γ (n)) lin-
early independent over C, and G an element of Sk,m(Γ (n)). Write

Fi(z) =
∑
A

cFi(A; u) exp(2π
√
−1tr(Az))

for i = 1, · · · , d, and

G(z) =
∑
A

cG(A; u) exp(2π
√
−1tr(Az)).

Let K be the composite field of Q(F1), Q(F2), · · · , Q(Fd), and O = OK .
Let P be a prime ideal of O. Assume that

(1) cG(A; u) belongs to O(P) for any A ∈ Hn(Z)>0, and cF1(A1; u)
belongs to O∗

(P) for some A1 ∈ H2(Z)>0;
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(2) there exist c1, ..., cd ∈ K such that ordP(c1) < 0 and

G(z) =
d∑

i=1

ciFi(z).

Then there exists i 6= 1 such that we have

λFi(T ) ≡ λF1(T ) mod P

for any T ∈ Ln.

Theorem 5.5. Assume that Deligne’s conjecture holds true for the
critical values of L(s, f,Sym4). Assume that a prime ideal P of K
divides (KS(f), KS(f))/(f, f)3 and does not divide

(2k − 1)!|cKS(f)(A; u)|2L(l + 2k − 4, f, Sym4)

for some even integer l such that 4 ≤ l ≤ k − 1 and an element A of
H2(Z)>0. Then there exists a Hecke eigenform G not constant multiple
of KS(f) such that G ≡e.v KS(f) mod P.

Proof. Take a basis of Sk+1,k−2(Γ (2)) in Theorem 4.1 so that F1 =
KS(f). Then

Gl,(k+1,k−2),A(Z) =
d∑

i=1

cFi;u(A, v)Λ(l − 2, Fi)Fi.

By the assumption, P divides the denominator of Λ(l − 2, KS(f)) for
some 4 ≤ l ≤ k − 1 and cKS(f)(A; u) 6≡ 0 mod P. By [2], E4,l ∈
Ml(Γ (4))(O(P)). Hence, by the property of Dl,(k+1,k−2) stated before,
we have Gl,(k+1,k−2)(Z) ∈ Sk+1,k−2(Γ (2))(O(P)). Then the assertion
follows from Lemma 5.4.

6 Some observation on the period of

the K-R-S lift

To consider the above question, we will make a ”stupid” observation.
First we review the result and the observation in [20]. Let G be
a Hecke eigenform in Sk(Γ (2)) with k even. First assume L-packet
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conjecture. This implies that there exists a generic modular form
Ggen for GSp2(AQ) such that

L(s,Ggen, Ad) = L(s,G, Ad).

We define the Petersson norm 〈Ggen, Ggen〉 of Ggen by

〈Ggen, Ggen〉 =
∫

A×
Q GSp2(Q)\GSp2(AQ)

|Ggen(g)|2dg,

where dg is the Tamagawa measure on GSp2(AQ). Then we have the
following result. (See also [30].)

Proposition 6.1. ([20], Theorem 1.1) Let W be the Whittaker func-
tion of Ggen. Assume that Ggen is stable and that W (14) = 1. Then

〈Ggen, Ggen〉 = dL(1, Ggen, Ad),

where d is a constant depending only on k.

Moreover we assume the conjectural relative trace formula due to
Furusawa and Shalika [14]. Then, for a fundamental discriminant
D < 0

|BG(|D|)|2

〈G,G〉
= c

L(3k/2 − 1, G, Sp)L(3k/2 − 1, G, Sp, ( ∗
D ))

L(1, G, Ad)
,

where BG(|D|) is the D-th Bessel function of G defined in Section 2,
and c is a constant depending only on k (cf. page 4 of [20].) We note
that 3k/2 − 1 is the central point of L(s,G, Sp).

Now assume that for a primitive form g of odd weight k of level
N of neben type, there is a lift G ∈ Sk+1,k−2(Γ ) with some arithmetic
subgroup Γ of Sp2(Q) such that

L(s,G, Sp) = L(s, g, Sym3).

Taking [17] into account, we might assume that Γ is the paramodular
group of level N. Then we expect a formula similar to above for G.
We remark that

L(s,G, Ad) = L(k − 1 + s, g, Sym2)L(3k − 3 + s, g, Sym6),

L(s,G, Sp, χ) = L(s, g, Sym3, χ)
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for a Dirichlet character χ, and that
L(k, g, Sym2)
〈g, g〉πk+1

is a rational number

independent of g (cf. [16], Theorem 5.1). Hence we expect that

|BG(|D|)|2〈g, g〉3

〈G,G〉
= c

L(3k
2 − 1, g, Sym3)L(3k

2 − 1, g, Sym3, ( ∗
D ))

L(3k − 2, g, Sym6)

with c a rational number depending only on k. Assume that Con-
jceture 3.1 holds for L(s, g, Sym6). Consider a prime ideal P dividing
L(3k − 2, g, Sym6). Then we normalize G so that

min
T∈H2(Z)>0

νP(cG(T )) = 0.

Then BG(|D|) belongs to O∗
P for some fundamental discriminant D

(cf. Remark 8.11(2) of [4]). According to the first named author’s
experience (e.g. [18]), it is expected that P does not divide

L(
3k

2
− 1, g, Sym3)L(

3k

2
− 1, g, Sym3, (

∗
D

))

with some fundamental discriminant D if it is “big”, for an example,

if it does not divide (2k − 1)!. Hence P is expected to divide 〈G,G〉
〈g, g〉3

.

This observation makes no sense in the original K-R-S lift, because
k + 1 is odd in this case, and

BKS(f)(|D|) = L(3k/2 − 1, KS(f), Sp) = L(3k/2 − 1, f, Sym3) = 0.

Nevertheless we expect the above equality holds with some modifi-
cation, for an example, replacing L(3k/2 − 1, KS(f), Sp) with the
derivative of L(s,KS(f), Sp) at s = 3k/2 − 1, and thus we propose
the following two conjectures:

Conjecture 6.2. Under a certain normalization of KS(f), the ra-

tio
〈KS(f), KS(f)〉

〈f, f〉3
is algebraic. Moreover let P be a prime ideal

dividing L(3k − 2, f, Sym6) not dividing (2k − 1)!. Then P divides
〈KS(f), KS(f)〉

〈f, f〉3
.

In view of Theorem 5.5, and taking Conjecture B in [18] into ac-
count, we can also expect:

Conjecture 6.3. A prime ideal dividing L(3k − 2, f, Sym6) but not
dividing (2k − 1)! gives a congruence between KS(f) and non-K-R-S
lift.
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7 Numerical Examples

In this section, we give numerical examples which support the Conjec-
ture 6.3. Let k = 16, 18 or 20 and fk ∈ Sk(SL2(Z)) be the primitive
form of weight k. Note that dimC Sk(SL2(Z)) = 1 and Q(fk) = Q in
this case. We compute the conjectural value L(3k − 2, fk, Sym6) of
the symmetric 6-th L-function numerically. We also compute KS(fk)
and a basis of (CKS(fk))

⊥.

7.1 Approximate value of L(3k − 2, fk, Sym6)

First, we give numerical examples of L(3k − 2, fk, Sym6). We can
compute a numerical value of a Dirichlet series which has a functional
equation by Dokchitser’s algorithm [11] and his script written in the
GP language. For the computation of the Petersson norm 〈fk, fk〉,
we compute the product of critical values of L(s, fk) at even and odd
numbers. This method was used by Zagier [45]. We try to com-
pute L(3k − 2, fk, Sym6) numerically to precision 150, though we lose
some precision in the computation. In the following, we illustrate how
we find a rational number which is close to an approximate value of
L(52, f18, Sym6). To compute L(52, f18, Sym6) to precision 150, we
have to compute the first 220619 coefficients of the Dirichlet series
L(s, f18,Sym6). We use Sage [40] for the computation of Fourier co-
efficients of elliptic modular forms. A script for the computation of
L(3k − 2, fk, Sym6), written in Sage, can be found at [27].

To reduce the denominator of the conjectural critical value, we
normalize L(l, fk, Sym6) as follows:

Lk(l) = 2−6kΓ(l)Γ(l − k)L(l, fk, Sym6).

Then L18(52) is equal to 7.453999912152378892733564013840830449
826989619377186006742394596126880520117341006733335517138007508
95126665755149832214210267648365215683906593106757×1017. The
continued fraction expansion of this value is given as follows:

[a0, 3, 1, 1, 1, 12, 2, 5121719897367775453576894048, 3, 3, 1, 2, 3, 4, 2, . . . ],

where a0 = 745399991215237889. If we consider the 8-th number as
“big”, then L18(52) is “close” to the continued fraction with expansion
[a0, 3, 1, 1, 1, 12, 2] which is equal to

24 · 310 · 57 · 7 · 11 · 17−2 · 37903031.
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In a similar way, we can guess the conjectural value of Lk(3k− 2) for
other weights. Table 1 shows those values.

Table 1: Conjectural value of Lk(3k − 2)
k conjectural value of Lk(3k − 2)
12 221 · 313 · 54 · 7 · 11−2 · 13
16 216 · 39 · 52 · 75 · 11 · 13−3 · 92467
18 24 · 310 · 57 · 7 · 11 · 17−2 · 37903031
20 214 · 34 · 52 · 72 · 112 · 13 · 17−4 · 19−2 · 103 · 5518029068479

7.2 Rankin-Cohen-Ibukiyama type differential
operators

In order to construct vector valued Siegel modular forms of odd weights,
we use Rankin-Cohen-Ibukiyama type differential operators construed
by Eholzer-Ibukiyama [13] and a differential operator constructed by
van Dorp [44]. Theta series are also useful for the construction of
vector valued Siegel modular forms. However we prefer differential
operators since they are easy to compute. In this subsection, we re-
view differential operators given in [13] and [44].

Let k, l be positive integers and χ, ψ characters of Γ (2). For F ∈
Mk(Γ (2), χ), G ∈ Ml(Γ (2), ψ), Eholzer-Ibukiyama [13] constructed
vector valued Siegel modular forms

{F,G}Sym(j) ∈ Mk+l,j(Γ (2), χψ),

{F,G}det2 Sym(j) ∈ Mk+l+2,j(Γ (2), χψ),

by Rankin-Cohen-Ibukiyama type differential operators. For example,
{F,G}Sym(2) is given as follows:(

kF
∂G

∂z1
− lG

∂F

∂z1

)
u2

1+
(

kF
∂G

∂z2
− lG

∂F

∂z2

)
u1u2+

(
kF

∂G

∂z3
− lG

∂F

∂z3

)
u2

2.

Here we write Z =
(

z1 z2

z2 z3

)
∈ H2 and we consider Sym(2) as

the space of homogeneous polynomials of u1 and u2 of degree 2.
{F,G}Sym(2) is the differential operator defined by Satoh [37].

Next we review the differential operator defined by van Dorp [44].
As before, let k, l be positive integers and χ, ψ characters of Γ (2).
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Let F ∈ Mk,j(Γ (2), χ) and G ∈ Ml(Γ (2), ψ) be a vector valued Siegel
modular form and a scalar valued Siegel modular form respectively.
Then van Dorp [44, Proposition 3.6.1] constructed

{F, G}det Sym(j) ∈ Mk+l+1,j(Γ (2), χψ),

by a differential operator. Though he proved the proposition only
when both χ and ψ are trivial characters, the same proof works for
this case.

Next we define differential operators on three scalar valued Siegel
modular forms. For i = 1, 2, 3, let ki be a positive integer and χi be
a character of Γ (2). For Fi ∈ Mki

(Γ (2), χi) (i = 1, 2, 3), we define
differential operators as follows:

{F1, F2, F3}det Sym(j) =
{
{F1, F2}Sym(j) , F3

}
det Sym(j)

∈ Mk1+k2+k3+1, j(Γ (2), χ1χ2χ3),

{F1, F2, F3}det3 Sym(j) =
{
{F1, F2}det2 Sym(j) , F3

}
det Sym(j)

∈ Mk1+k2+k3+3, j(Γ (2), χ1χ2χ3),

Note that polynomials used when defining these differential operators
have Z[1/2]-integral coefficients. Therefore if p 6= 2 is a prime and
F1, F2 and F3 have p-integral Fourier coefficients then, {F1, F2, F3}det Sym(j)

and {F1, F2, F3}det3 Sym(j) also have p-integral Fourier coefficients.

7.3 Generators of the ring of scalar valued Siegel
modular forms

For the construction of scalar valued Siegel modular forms, we recall
generators of the ring of scalar valued Siegel modular forms of even

weights. For a semi-positive definite matrix T =
(

n r/2
r/2 m

)
and a

Siegel modular form F of degree 2, we put

c((n, r,m);F ) = cF (T ).

For an even integer k, we denote by φk the Siegel-Eisenstein se-
ries of degree 2, of level 1 and of weight k. We normalize φk so
that the constant term c((0, 0, 0); φk) is equal to 1. We denote by
χ10 ∈ S10,0(Γ (2)) and χ12 ∈ S12,0(Γ (2)) the nontrivial cusp form of
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weight 10 and 12 respectively. We normalize χ10 and χ12 so that
c((1, 1, 1); χ10) = c((1, 1, 1); χ12) = 1. The following theorem is well-
known.

Theorem 7.1 (Igusa [21], [22]). Modular forms φ4, φ6, χ10 and
χ12 are algebraically independent over C. Moreover they have inte-
gral Fourier coefficients and generate the ring of scalar valued Siegel
modular forms of degree 2, of even weights and of level 1.

Let sgn be the unique nontrivial character of Γ (2) (see [32]). Then
sgn is quadratic. There exists a square root χ5 ∈ S5(Γ (2), sgn) of χ10.
The cusp form χ5 has the following Fourier expansion:

χ5(Z) =
∑

n, m, 4nm−r2>0
n, r, m∈1/2+Z

c((n, r,m);χ5)e (nz11 + rz12 + mz22) ,

where Z =
(

z11 z12

z12 z22

)
. We normalize χ5 so that c((1/2, 1/2, 1/2);χ5) =

1.
We note that Fourier coefficients of Siegel-Eisenstein φk are explic-

itly known, and χ10 and χ12 can be written as polynomials of Siegel-
Eisenstein series. Since χ5 is the Saito-Kurokawa lift of a Jacobi theta
series (see [33], [15]), we can easily calculate Fourier coefficients of χ5.
By the same reason, it can be proved that χ5 has integral Fourier
coefficients.

7.4 Congruences between KS(fk) and non-K-
R-S lift

In this subsection, we prove a congruence between KS(fk) and a non-
K-R-S lift, modulo a prime ideal which divides the conjectural nu-
merator of L(3k − 2, fk,Sym6), for k = 16, 18, 20. Since Fourier
coefficients of KS(fk) are not explicitly known, we construct a basis of
Sk+1,k−2(Γ (2)) and compute all eigenforms in this space. Source files
for computing bases and eigenforms, written in Sage, can be found at
[27].

By the dimension formula of Tsushima [43], dimensions of Sk+1,k−2(Γ (2))
for k = 16, 18, 20 and S21,14(Γ (2)) are given in Table 2. To con-
struct basis of S19,16(Γ (2)) and S21,18(Γ (2)), we use differential opera-
tors defined in Section 7.2 and the Hecke operator T (2). In general,
it is difficult to construct Siegel modular forms of small determinant
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Table 2: Dimension of Sk,j(Γ
(2))

(k, j) (17, 14) (21, 14) (19, 16) (21, 18)

dim Sk,j(Γ
(2)) 13 24 23 39

weights with differential operators. Therefore, to construct a basis
of S17,14(Γ (2)), we compute a basis of a space of larger determinant
weight instead. We embed S17,14(Γ (2)) into S21,14(Γ (2)) by multiply-
ing by φ4, and construct a basis of S21,14(Γ (2)). Then we compute
a basis of S17,14(Γ (2)) from the basis of S21,14(Γ (2)) and the Hecke
operator T (2). In the following, we explain this method. A similar
method was used by van Dorp [44].

For a subring R ⊂ C, we define the ring AR of formal q-expansion
as

AR = R[q12, q−1
12 ][[q11, q22]].

We put A = AC. For an half integral matrix T =
(

n r/2
r/2 m

)
, we put

qT = qn
11q

r
12q

m
22.

We consider Mk,j(Γ (2)) as a subspace of A⊗Sym(j) by the embedding

∑
T∈H2(Z)≥0

cF (T )e(tr(TZ)) 7→
j∑

ν=0

 ∑
T∈H2(Z)≥0

cF (T )νq
T

 ⊗ uj−ν
1 uν

2

for F ∈ Mk,j(Γ (2)). Here for an element of a ∈ Sym(j), we write aν

the coefficient of uj−ν
1 uν

2 in a. Next, we define a formal Hecke operator
T (p)k,j on A ⊗ Sym(j). Let F =

∑
T∈H2(Z)≥0

cF (T )qT be an element
of A⊗Sym(j). Let p be a prime number and α, β and γ non negative
integers. For T ∈ H2(Z)≥0 and U ∈ M2(Z) ∩ GL2(Z), we put

b(α, β, γ, T, U) = ρk,j

(
tU−1

)
cF (pα−β−γT [U ]),

if p−γT ∈ H2(Z) and p−β−γT [U ] ∈ H2(Z). Otherwise we put

b(α, β, γ, T, U) = 0.

Then we define F |T (p)k,j by

cF |T (p)k,j
(T ) =

∑
α+β+γ=1

∑
U

b(α, β, γ, T, U),
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where α, β, γ runs over all non-negative integers such that α + β +

γ = 1 and U runs over the set GL2(Z)
(

1 0
0 p

)
GL2(Z)/GL2(Z). By

Arakawa [1, (2. 5)], T (p)k,j on Mk,j(Γ (2)) coincides with the usual
Hecke operator T (p).

Since φ4S17,14(Γ (2)) ⊂ S21,14(Γ (2)) and φ4 is a unit in A, we have

S17,14(Γ (2)) ⊂ S̃17,14(Γ (2)) ⊂ A ⊗ Sym(j),

where S̃17,14(Γ (2)) = φ−1
4 S21,14(Γ (2)). We can construct a basis of

S21,14(Γ (2)) by differential operators and the Hecke operator T (2).
Therefore we can compute a basis of S̃17,14(Γ (2)) explicitly.

Proposition 7.2. Let F1, . . . , F24 be Siegel modular forms of weight
det21 ⊗Sym(14) given as follows:

F1 = {φ4, χ5, χ5φ6}1 , F2 = {φ4, φ6, φ4φ6}1 , F3 = {φ4, φ6, χ10}1 ,

F4 =
{
φ4, φ

2
4, φ

2
4

}
1
, F5 = {φ4, χ10, φ6}1 , F6 = {φ4, φ4φ6, φ6}1 ,

F7 = {φ4, χ5φ6, χ5}1 , F8 = {φ4, χ12, φ4}1 , F9 =
{
φ4, φ

3
4, φ4

}
1
,

F10 =
{
φ4, φ

2
6, φ4

}
1
, F11 = {χ5, φ6, φ4χ5}1 , F12 = {χ5, φ4χ5, φ6}1 ,

F13 = {χ5, φ4φ6, χ5}1 , F14 = {χ5, χ10, χ5}1 , F15 = {χ5, χ5φ6, φ4}1 ,

F16 =
{
φ6, φ

2
4, φ6

}
1
, F17 = {φ6, φ4χ5, χ5}1 , F18 = {φ6, φ4φ6, φ4}1 ,

F19 = {φ6, χ10, φ4}1 , F20 = {φ4, χ5, φ4χ5}3 , F21 =
{
φ4, φ6, φ

2
4

}
3
,

F22 =
{
φ4, φ

2
4, φ6

}
3
, F23 = F1|T (2), F24 = F2|T (2).

Here T (2) is the Hecke operator and we abbreviate {F, G,H}det Sym(14)

as {F, G,H}1 and {F, G,H}det3 Sym(14) as {F, G,H}3. Then F1, . . . , F24

forms a basis of S21,14(Γ (2)).

Remark 7.3. 1. To check the linear independence and compute
the action of the Hecke operator, we computed all Fourier coeffi-
cients of {F1, . . . F24} and

{
φ−1

4 F1, . . . φ
−1
4 F24

}
for the following

finite set of half integral matrices.{(
n r/2

r/2 m

)
∈ H2(Z)≥0

∣∣ n, m ≤ 6
}

.

2. As explained in Section 7.2 and §7.3, modular forms F1, . . . , F24

have Z[1/2]-integral Fourier coefficients.
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3. Since φ4 is a unit in AZ, modular forms φ−1
4 F1, . . . φ

−1
4 F24 also

have Z[1/2]-integral Fourier coefficients.

For 1 ≤ i ≤ 24, we define Gi = φ−1
4 Fi. Let F ∈ A ⊗ Sym(j) be a

formal q-expansion. For T ∈ H2(Z)≥0 and an integer ν, we denote by
cF (T )ν the coefficient of uj−ν

1 uν
2 in cF (T ). Let

{
(Ti, νi)

∣∣ 1 ≤ i ≤ 24
}

be a set of pairs of a half integral matrix and a positive integer such
that

det
(
cGj (Ti)νi

)
1≤i,j≤24

6= 0.

We can take this set as follows:

{((1, 0, 1), 1), ((1, 0, 1), 3), ((1, 0, 1), 5), ((1, 1, 1), 1),
((1, 1, 1), 3), ((1, 0, 2), 1), ((1, 0, 2), 3), ((1, 0, 2), 5),

((1, 0, 2), 7), ((1, 0, 2), 9), ((1, 0, 2), 11), ((1, 0, 2), 13),
((1, 1, 2), 7), ((1, 1, 2), 9), ((1, 1, 2), 11), ((1, 1, 2), 13),
((2, 0, 2), 1), ((2, 0, 2), 3), ((2, 0, 2), 5), ((2, 1, 2), 2),

((2, 1, 2), 3), ((2, 1, 2), 6), ((1, 0, 3), 13), ((2, 0, 3), 11)}.

Here we identify a triple of integers (n, r,m) as a half integral matrix(
n r/2

r/2 m

)
. For 1 ≤ i ≤ 24, we define (Ti, νi) by the i-th element in

the sequence above. We define a C-linear map ψ : A⊗ Sym(j) → C24

by
ψ(F ) = (cF (T1)ν1 , . . . , cF (T24)ν24).

Then ψ|
eS17,14(Γ (2))

is an isomorphism by definition. We define an en-

domorphism T̃ (2) ∈ EndC(S̃17,14(Γ (2))) by

T̃ (2) = ψ|−1
eS17,14(Γ (2))

◦ ψ ◦ T (2)17,14.

Note that S17,14(Γ (2)) is stable under the action of T (2)17,14 but
S̃17,14(Γ (2)) is not. By definition, T̃ (2)|S17,14(Γ (2)) coincides with T (2).

The characteristic polynomial of T̃ (2) is given as follows:

(x + 4078080)P (x)Q(x),

where P (x) and Q(x) are irreducible polynomials in Q[x] of degree 11
and 12 respectively. The polynomial Q(x) is given by

Q(x) = x12 +
12∑
i=1

cix
12−i,
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where c1, . . . , c12 is given as follows.

c1 = 26 · 3 · 134213,

c2 = −211 · 32 · 29 · 1907 · 14479,

c3 = −223 · 34 · 2081 · 3378533243,

c4 = −224 · 35 · 887 · 1171 · 2767 · 2284700807,

c5 = 236 · 36 · 5 · 4211 · 159508391107808527,

c6 = 244 · 36 · 52 · 1279 · 1730089 · 1957827496395923,

c7 = −253 · 37 · 54 · 7 · 14620141637042347711823137,

c8 = −260 · 38 · 54 · 4404227063914933919915630591809,

c9 = −270 · 310 · 57 · 59 · 71 · 45659 · 10052695226405708353357,

c10 = 279 · 312 · 56 · 7 · 29 · 1126202887 · 110526993959 · 561766099379,

c11 = 294 · 314 · 57 · 7 · 11 · 17 · 292 · 47 · 10093 · 31469 · 149371 · 1618265278589,

c12 = −299 · 317 · 59 · 72 · 112 · 17 · 293 · 17477 · 9039433779330638884999

Therefore there exist 3 eigenvectors of T̃ (2) in S̃17,14(Γ (2)) up to
Aut(C) conjugate and constant multiple. Let α̃ be a root of the poly-
nomial P (x). It is easy to check that an eigenvector of T̃ (2) with
eigenvalue α̃ is not an eigenvector of T (2)17,14. Thus the following
proposition holds.

Proposition 7.4. The space S17,14(Γ (2)) is equal to the subspace of
S̃17,14(Γ (2)) annihilated by (T̃ (2)+4078080)Q(T̃ (2)). Thus there exist
exactly two eigenforms in S17,14(Γ (2)) up to Aut(C) conjugate and
constant multiple.

By this proposition, we can calculate the lift KS(f16) and a non-lift
eigenform G17,14 ∈ S17,14(Γ (2)) as linear combinations of G1, . . . , G24.
Let α be a root of Q(x). The lift KS(f16) (resp. the non-lift eigenform
G17,14) is equal to the eigenform in S17,14(Γ (2)) whose eigenvalue of
T (2) is equal −4078080 (resp. α). Therefore the Hecke field of KS(f16)
(resp. G17,14) is the rational field (resp. the number field generated
by α). We normalize KS(f16) so that

9−1c((1, 1, 1);KS(f16)) = 14u13
1 u2+91u12

1 u2
2+436u11

1 u3
2+1397u10

1 u4
2

+ 2466u9
1u

5
2 + 2121u8

1u
6
2 − 2121u6

1u
8
2 − 2466u5

1u
9
2

− 1397u4
1u

10
2 − 436u3

1u
11
2 − 91u2

1u
12
2 − 14u1u

13
2 . (2)
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We normalize G17,14 so that the coefficient of u13
1 u2 in c((1, 1, 1);G17,14)

is equal to that of KS(f16). Let p be the prime 92467. For F ∈
S̃17,14(Γ (2)), we define ξ(F ) = (v1, · · · , v24) ∈ C24 by the vector that
satisfies the following equation

F =
24∑
i=1

viGi.

Then every entry of ξ (KS(f16)) (resp. ξ (G17,14)) is p-integral (resp.
P′-integral). Here P′ is any prime of the Hecke field Q(G17,14) above
p. Therefore Fourier coefficients of KS(f16) are p-integral and Fourier
coefficients of G17,14 are P′-integral. The same statement also holds
for Hecke eigenvalues. The factorization of Q(x) in Fp[x] is as follows:

(x + 9532)(x + 62632)(x10 + 83373x9 + 7236x8 + 53688x7 + 63576x6

+ 79102x5 + 299x4 + 77779x3 + 56013x2 + 33999x + 83588).

Thus any prime above p is unramified in Q(G17,14)/Q and there exists
a unique prime P such that α ≡ −9532 ≡ −4078080 mod P. It can
be checked that every entry of ξ (KS(f16) − G17,14) modulo P is equal
to 0. Therefore we have the following theorem.

Theorem 7.5. Let KS(f16) be the K-R-S lift of f16 normalized so that
the equation (2) holds and G17,14 ∈ S17,14(Γ (2)) the eigenform which is
not K-R-S lift and normalized as above. Let p = 92467 be a prime and
P be the prime of the Hecke field Q(G17,14) defined as above. Then
for every T ∈ H2(Z)≥0, cKS(f16)(T ) and cG17,14(T ) are P-integral and
the following congruence relation holds.

cKS(f16)(T ) ≡ cG17,14(T ) mod P for T ∈ H2(Z)≥0.

In particular, the following congruence relation among Hecke eigen-
values holds.

λKS(f16)(T (m)) ≡ λG17,14(T (m)) mod P for m ∈ Z≥1.

Remark 7.6. The prime 92467 appears in the conjectural numerator
of L(46, f16, Sym6) given in Section 7.1. Therefore this theorem gives
an example that supports Conjecture 6.3.

Similar statements to the theorem above hold for KS(f18) and
KS(f20). We introduce the statements briefly. The construction of
a basis of Sk+1,k−2(Γ (2)) is more straightforward. We can construct
the basis by differential operators introduced in §7.2 and the Hecke
operator T (2).
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Proposition 7.7. Let k = 18 or 20. We define αk = cfk
(2)3 −

2kcfk
(2), where cfk

(n) is the n-th Fourier coefficient of fk. Explicitly,
we have

αk =

{
−8785920 if k = 18,

−383331840 if k = 20.

Then the characteristic polynomial of T (2) ∈ Sk+1,k−2(Γ (2)) is equal
to P1(x)P2(x). Here P1(x) = x−αk and P2(x) is an irreducible polyno-
mial of Q[x]. Thus there exist exactly two eigenforms in Sk+1,k−2(Γ (2))
up to Aut(C) conjugate and constant multiple.

We normalize KS(fk) so that c((1, 1, 1);KS(f18)) is equal to

260u15
1 u2 + 1950u14

1 u2
2 + 4844u13

1 u3
2 + 1911u12

1 u4
2 − 13818u11

1 u5
2

− 31955u10
1 u6

2 − 29282u9
1u

7
2 + 29282u7

1u
9
2 + 31955u6

1u
10
2

+ 13818u5
1u

11
2 − 1911u4

1u
12
2 − 4844u3

1u
13
2 − 1950u2

1u
14
2 − 260u1u

15
2 ,

and 7−1c((1, 1, 1);KS(f20)) is equal to

8926u17
1 u2 + 75871u16

1 u2
2 + 403888u15

1 u3
2 + 1511740u14

1 u4
2

+ 3842794u13
1 u5

2 + 6652945u12
1 u6

2 + 7722424u11
1 u7

2 + 5266591u10
1 u8

2

− 5266591u8
1u

10
2 − 7722424u7

1u
11
2 − 6652945u6

1u
12
2 − 3842794u5

1u
13
2

− 1511740u4
1u

14
2 − 403888u3

1u
15
2 − 75871u2

1u
16
2 − 8926u1u

17
2

We denote by Gk+1,k−2 the eigenform in Sk+1,k−2(Γ (2)) whose eigen-
value of T (2) is equal to a root of P2(x). We normalize Gk+1,k−2 so
that the coefficient of uk−3

1 u2 in c((1, 1, 1);Gk+1,k−2) is equal to that
of c((1, 1, 1);KS(fk)). We define a prime p by

p =

{
37903031 if k = 18,

103 or 5518029068479 if k = 20.

By factoring of P2(x) mod p, we see that there exists a unique prime
P of the Hecke field Q(Gk+1,k−2) above p which is unramified in
Q(Gk+1,k−2)/Q and λKS(fk) ≡ αk mod P.

Theorem 7.8. Let k = 18 or 20 and KS(fk), Gk+1,k−2 and P as
above. Then for every T ∈ H2(Z)≥0, cKS(fk)(T ) and cGk+1,k−2

(T ) are
P-integral and the following congruence relation holds.

cKS(fk)(T ) ≡ cGk+1,k−2
(T ) mod P for T ∈ H2(Z)≥0.
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In particular, the following congruence relation among Hecke eigen-
values holds.

λKS(fk)(T (m)) ≡ λGk+1,k−2
(T (m)) mod P for m ∈ Z≥1.

Remark 7.9. The primes 37903031, 103 and 5518029068479 appear
in the conjectural numerators of L(3k − 2, fk, Sym6) given in Section
7.1. Therefore this theorem gives examples that support Conjecture
6.3.

Remark 7.10. Let k = 12. Then dim S12(SL2(Z)) = 1 and S12(SL2(Z))
is spanned by the Ramanujan delta function ∆. Then, approximately
we have∗

L(34, ∆,Sym6) =
244

311 · 57 · 76 · 116 · 132 · 172 · 192 · 23 · 29 · 31
.

Therefore, this gives neither a numerical support nor a counter exam-
ple of our conjecture.

7.5 Table of Fourier coefficients

Table 3 shows Fourier coefficients of KS(f16), KS(f18) and KS(f20).
For integers (n, r,m, i) and KS(fk), the corresponding number in the
table shows the coefficient of uj−i

1 ui
2 in c((n, r,m);KS(fk)), where j =

k − 2. If i > j, then the coefficient of uj−i
1 ui

2 of the Fourier coefficient
does not exist. Therefore we denote it by “None” if i > j. Fourier
coefficients of non-lift eigenforms are too complicated to show here.
See [27] for Fourier coefficients of non-lift eigenforms.

(n, r,m, i) KS(f16) KS(f18) KS(f20)
(1, 1, 1, 0) 0 0 0
(1, 1, 1, 1) 126 260 62482
(1, 1, 1, 2) 819 1950 531097
(1, 1, 1, 3) 3924 4844 2827216
(1, 1, 1, 4) 12573 1911 10582180
(1, 1, 1, 5) 22194 -13818 26899558
(1, 1, 1, 6) 19089 -31955 46570615
(1, 1, 1, 7) 0 -29282 54056968
(1, 1, 1, 8) -19089 0 36866137
(1, 1, 1, 9) -22194 29282 0

∗This was first informed by A. Mellit
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(1, 1, 1, 10) -12573 31955 -36866137
(1, 1, 1, 11) -3924 13818 -54056968
(1, 1, 1, 12) -819 -1911 -46570615
(1, 1, 1, 13) -126 -4844 -26899558
(1, 1, 1, 14) 0 -1950 -10582180
(1, 1, 1, 15) None -260 -2827216
(1, 1, 1, 16) None 0 -531097
(1, 1, 1, 17) None None -62482
(1, 1, 1, 18) None None 0
(1, 0, 1, 0) 0 0 0
(1, 0, 1, 1) -1452 1040 -4780164
(1, 0, 1, 2) 0 0 0
(1, 0, 1, 3) -28792 8096 -3464648
(1, 0, 1, 4) 0 0 0
(1, 0, 1, 5) 77812 192 -35156716
(1, 0, 1, 6) 0 0 0
(1, 0, 1, 7) 0 105776 -252085184
(1, 0, 1, 8) 0 0 0
(1, 0, 1, 9) -77812 -105776 0
(1, 0, 1, 10) 0 0 0
(1, 0, 1, 11) 28792 -192 252085184
(1, 0, 1, 12) 0 0 0
(1, 0, 1, 13) 1452 -8096 35156716
(1, 0, 1, 14) 0 0 0
(1, 0, 1, 15) None -1040 3464648
(1, 0, 1, 16) None 0 0
(1, 0, 1, 17) None None 4780164
(1, 0, 1, 18) None None 0
(1, 1, 2, 0) 0 0 0
(1, 1, 2, 1) 164064 14560 -760217472
(1, 1, 2, 2) 1066416 109200 -6461848512
(1, 1, 2, 3) 484000 3114496 -17710799680
(1, 1, 2, 4) -9068576 18588024 -3594027360
(1, 1, 2, 5) -22515744 21981456 115166666272
(1, 1, 2, 6) -15710664 -79926616 411073936000
(1, 1, 2, 7) 415680 -183609888 494829268640
(1, 1, 2, 8) -12169872 72099720 -688113915104
(1, 1, 2, 9) 4990336 729865136 -3721332519520
(1, 1, 2, 10) 69181048 1260570696 -7317582085968
(1, 1, 2, 11) 105468480 1091356224 -8483702524640
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(1, 1, 2, 12) 74475568 443250976 -5844240474240
(1, 1, 2, 13) 27695104 22165248 -1399528146688
(1, 1, 2, 14) 4464000 -38099040 1556500998080
(1, 1, 2, 15) None -13922944 948294575200
(1, 1, 2, 16) None -2814336 -443455506256
(1, 1, 2, 17) None None -402415446272
(1, 1, 2, 18) None None -65643110400
(1, 0, 2, 0) 0 0 0
(1, 0, 2, 1) 308376 680160 2870692872
(1, 0, 2, 2) 0 0 0
(1, 0, 2, 3) -10234368 -11585376 21170506128
(1, 0, 2, 4) 0 0 0
(1, 0, 2, 5) 14925744 -201397536 -207676697592
(1, 0, 2, 6) 0 0 0
(1, 0, 2, 7) -90793440 342733248 515492430624
(1, 0, 2, 8) 0 0 0
(1, 0, 2, 9) 6773184 -244396416 5359795453320
(1, 0, 2, 10) 0 0 0
(1, 0, 2, 11) -82904832 -1712994048 4673534432016
(1, 0, 2, 12) 0 0 0
(1, 0, 2, 13) -13238784 1592051712 -7577714008032
(1, 0, 2, 14) 0 0 0
(1, 0, 2, 15) None -386488320 4021039796352
(1, 0, 2, 16) None 0 0
(1, 0, 2, 17) None None -92754851328
(1, 0, 2, 18) None None 0
(2, 2, 2, 0) 0 0 0
(2, 2, 2, 1) -513838080 -2284339200 -23951340026880
(2, 2, 2, 2) -3339947520 -17132544000 -203586390228480
(2, 2, 2, 3) -16002385920 -42558996480 -1083761911357440
(2, 2, 2, 4) -51273699840 -16789893120 -4056486530611200
(2, 2, 2, 5) -90508907520 121403842560 -10311457063326720
(2, 2, 2, 6) -77846469120 280754073600 -17851999537881600
(2, 2, 2, 7) 0 257269309440 -20721757008261120
(2, 2, 2, 8) 77846469120 0 -14131964129902080
(2, 2, 2, 9) 90508907520 -257269309440 0
(2, 2, 2, 10) 51273699840 -280754073600 14131964129902080
(2, 2, 2, 11) 16002385920 -121403842560 20721757008261120
(2, 2, 2, 12) 3339947520 16789893120 17851999537881600
(2, 2, 2, 13) 513838080 42558996480 10311457063326720
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(2, 2, 2, 14) 0 17132544000 4056486530611200
(2, 2, 2, 15) None 2284339200 1083761911357440
(2, 2, 2, 16) None 0 203586390228480
(2, 2, 2, 17) None None 23951340026880
(2, 2, 2, 18) None None 0
(2, 1, 2, 0) 2343600000 1291780224 -18708286464000
(2, 1, 2, 1) 6599473920 60812237184 -283106276624640
(2, 1, 2, 2) -4935304080 211298009760 -1532906227320720
(2, 1, 2, 3) 8449920000 367872146880 -400231772844960
(2, 1, 2, 4) 78047298360 1313340416640 8509377989028000
(2, 1, 2, 5) 142805970000 3235358847168 17839762657594080
(2, 1, 2, 6) 155413971000 3249774289608 -26204400458628000
(2, 1, 2, 7) 0 1319296867680 -116239043127809280
(2, 1, 2, 8) -155413971000 0 -120617734193935440
(2, 1, 2, 9) -142805970000 -1319296867680 0
(2, 1, 2, 10) -78047298360 -3249774289608 120617734193935440
(2, 1, 2, 11) -8449920000 -3235358847168 116239043127809280
(2, 1, 2, 12) 4935304080 -1313340416640 26204400458628000
(2, 1, 2, 13) -6599473920 -367872146880 -17839762657594080
(2, 1, 2, 14) -2343600000 -211298009760 -8509377989028000
(2, 1, 2, 15) None -60812237184 400231772844960
(2, 1, 2, 16) None -1291780224 1532906227320720
(2, 1, 2, 17) None None 283106276624640
(2, 1, 2, 18) None None 18708286464000
(2, 0, 2, 0) 0 0 0
(2, 0, 2, 1) 10082121728 71661715456 356358052100096
(2, 0, 2, 2) 0 0 0
(2, 0, 2, 3) -44349837312 -173404717056 3687020553695232
(2, 0, 2, 4) 0 0 0
(2, 0, 2, 5) -103716046848 1442227421184 -15714753453070336
(2, 0, 2, 6) 0 0 0
(2, 0, 2, 7) 0 -3081923395584 71719961448185856
(2, 0, 2, 8) 0 0 0
(2, 0, 2, 9) 103716046848 3081923395584 0
(2, 0, 2, 10) 0 0 0
(2, 0, 2, 11) 44349837312 -1442227421184 -71719961448185856
(2, 0, 2, 12) 0 0 0
(2, 0, 2, 13) -10082121728 173404717056 15714753453070336
(2, 0, 2, 14) 0 0 0
(2, 0, 2, 15) None -71661715456 -3687020553695232
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(2, 0, 2, 16) None 0 0
(2, 0, 2, 17) None None -356358052100096
(2, 0, 2, 18) None None 0

Table 3: Fourier coefficients of K-R-S lifts
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