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Framed curves in the Euclidean space
Abstract:A framed curve in the Euclidean space is a curvewith amoving frame. It is a generalization not only
of regular curves with linear independent condition, but also of Legendre curves in the unit tangent bundle.
We de�ne smooth functions for a framed curve, called the curvature of the framed curve, similarly to the
curvature of a regular curve and of a Legendre curve. Framed curves may have singularities. The curvature
of the framed curve is quite useful to analyse the framed curves and their singularities. In fact, we give the
existence and the uniqueness for the framed curves by using their curvature. As applications, we consider
a contact between framed curves, and give a relationship between projections of framed space curves and
Legendre curves.
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1 Introduction
Let ℝn be the n-dimensional Euclidean space equipped with the inner product a ⋅ b = ∑n

i=1 aibi, where a =
(a1, . . . , an) and b = (b1, . . . , bn). Let a1, . . . , an−1 ∈ ℝn be vectors ai = (ai1, . . . , ain) for i = 1, . . . , n − 1.
We de�ne the vector product

a1 × ⋅ ⋅ ⋅ × an−1 =

!!!!!!!!!!!!!!!!!!!!!

a11 ⋅ ⋅ ⋅ a1n
...

. . .
...

an−11 ⋅ ⋅ ⋅ an−1n
e1 ⋅ ⋅ ⋅ en

!!!!!!!!!!!!!!!!!!!!!

=
n
∑
i=1

det(a1, . . . , an−1, ei)ei ,

where e1, . . . , en are the canonical basis vectors of ℝn. Then (a1 × ⋅ ⋅ ⋅ × an−1) ⋅ ai = 0 for i = 1, . . . , n − 1.
Note that for the case of n = 3,

a1 × a2 =

!!!!!!!!!!!!!!

a11 a12 a13
a21 a22 a23
e1 e2 e3

!!!!!!!!!!!!!!

=

!!!!!!!!!!!!!!

e1 e2 e3
a11 a12 a13
a21 a22 a23

!!!!!!!!!!!!!!

.

The set

∆n−1 = {ν = (ν1, . . . , νn−1) ∈ ℝn × ⋅ ⋅ ⋅ ×ℝn | νi ⋅ νj = δij , i, j = 1, . . . , n − 1}
= {ν = (ν1, . . . , νn−1) ∈ Sn−1 × ⋅ ⋅ ⋅ × Sn−1 | νi ⋅ νj = 0, i ̸= j, i, j = 1, . . . , n − 1}

is an n(n − 1)/2-dimensional smooth manifold. If ν = (ν1, . . . , νn−1) ∈ ∆n−1, we de�ne a unit vector µ =
ν1 × ⋅ ⋅ ⋅ × νn−1 ofℝn. It follows that (ν, µ) ∈ ∆n and det(ν, µ) = 1.

A framed curve in the Euclidean space is a curve with a moving frame. It is a generalization not only of
regular curves with linear independent condition, but also of Legendre curves in the unit tangent bundle.

De�nition 1.1. We say that (ã, ν) : I → ℝn × ∆n−1 is a framed curve if ã̇(t) ⋅ νi(t) = 0 for all t ∈ I and i =
1, . . . , n−1. We also say that ã : I → ℝn is a framed curve (or a framed base curve) if there exists ν : I → ∆n−1
such that (ã, ν) is a framed curve.
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email: s-honda@math.sci.hokudai.ac.jp
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We de�ne smooth functions for a framed curve similarly to the curvature of a regular curve and of a
Legendre curve. Let (ã, ν) : I → ℝn × ∆n−1 be a framed curve. We de�ne µ : I → Sn−1 by µ(t) = ν1(t) × ⋅ ⋅ ⋅ ×
νn−1(t). By de�nition, (ν(t), µ(t)) ∈ ∆n for each t ∈ I and we call {ν(t), µ(t)} amoving frame along the framed
base curve ã(t). Then we have the Frenet–Serret type formula

(
ν̇(t)
µ̇(t)

) = A(t)(ν(t)
µ(t)

) ,

where A(t) = (αij(t)) ∈ o(n) for i, j = 1, . . . , n, and o(n) is the set of alternative matrices. Moreover, there
exists a smooth mapping α : I → ℝ such that

ã̇(t) = α(t)µ(t).

We call the functions (αij(t), α(t)) the curvature of the framed curve (with respect to the parameter t). Clearly,
t0 is a singular point of ã if and only if α(t0) = 0. The curvature of the framed curve is quite useful to analyse
the framed curves and singularities, see Theorems 1.3 and 1.4.

De�nition 1.2. Let (ã, ν) and (ã̃, ν̃) : I → ℝn×∆n−1 be framed curves.We say that (ã, ν) and (ã̃, ν̃) are (positive)
congruent as framed curves if there exists a matrix X ∈ SO(n) and a constant vector x ∈ ℝn such that

ã̃(t) = X(ã(t)) + x, ν̃(t) = X(ν(t))

for all t ∈ I, where SO(n) is the set of special orthogonal matrices.

The main results are the following (for n = 2, see [6]).

Theorem 1.3 (The Existence Theorem). Let (αij , α) : I → o(n) ×ℝ be a smooth mapping. There exists a framed
curve (ã, ν) : I → ℝn × ∆n−1 whose associated curvature is (αij , α).

Theorem 1.4 (The Uniqueness Theorem). Let (ã, ν) and (ã̃, ν̃) : I → ℝn × ∆n−1 be framed curves whose curva-
tures (αij , α) and (α̃ij , α̃) coincide. Then (ã, ν) and (ã̃, ν̃) are congruent as framed curves.

We shall prove these theorems in §2. We consider properties of the curvature of framed curves and con-
centrate in §3 on the case n = 3 of framed curves in ℝ3. We consider contact between framed curves, and
give a relationship between projections of framed space curves and Legendre curves. Moreover, we give the
arc-length parameter of framed immersions. In §4, we give examples of framed curves inℝ3 × ∆2.

All maps and manifolds considered here are di�erentiable of class C∞.

Acknowledgements: The authors would like to thank the referee for helpful comments to improve the origi-
nal manuscript.

Funding: The second author was supported by JSPS KAKENHI Grant Number 26400078.

2 Proofs for the existence and uniqueness theorems
First we prove the existence theorem by using the theorem of existence and uniqueness for a system of linear
ordinary di�erential equations.

Proof of Theorem 1.3. Choose any �xed value t = t0 of the parameter. We consider the initial value problem
d
dt
F(t) = A(t)F(t), F(t0) = In ,

where F(t) ∈ M(n), A(t) = (αij(t)) ∈ o(n) for i, j = 1, . . . , n; hereM(n) is the set of n × nmatrices and In is the
identity matrix. By the existence and the uniqueness of the solution of a system of linear ordinary di�erential
equations, there exists a solution F(t). Since A(t) ∈ o(n),

d
dt

(tF(t)F(t)) = (
d
dt

tF(t))F(t) + tF(t)( ddt
F(t)) = tF(t)(tA(t) + A(t))F(t) = O.
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It follows that tF(t)F(t) is constant. Thus tF(t)F(t) = tF(t0)F(t0) = In, and F(t) is an orthogonal matrix. Let
F(t) = t(ν1(t), . . . , νn−1(t), µ(t)). Since (d/dt)(det F(t)) = 0, we have det F(t) = det F(t0) = det In = 1. Then
µ(t) = ν1(t) × ⋅ ⋅ ⋅ × νn−1(t). Next we consider the initial value problem

ã̇(t) = α(t)µ(t), ã(t0) = x,

where x is a point in ℝn. By the existence and the uniqueness of the solution of a system of linear ordinary
di�erential equations, there exists a solution ã(t). Therefore, there exists a framed curve (ã, ν) : I → ℝn×∆n−1
whose associated curvature is (αij , α). 2

In order to prove the Uniqueness Theorem (Theorem 1.4), we need two lemmas.

Lemma 2.1. Let (ã, ν) and (ã̃, ν̃) : I → ℝn×∆n−1 be congruent as framed curves. Then their curvatures coincide.

Proof. Since (ã, ν) and (ã̃, ν̃) are congruent as framed curves, there exist a matrix X ∈ SO(n) and a constant
vector x ∈ ℝn with the property that

ã̃(t) = X(ã(t)) + x, ν̃(t) = X(ν(t))

for all t ∈ I. By de�nition of µ, we have µ̃(t) = X(µ(t)) for all t ∈ I. By a direct calculation, we have

α̃ij(t) = ̇̃νi(t) ⋅ ν̃j(t) = X( ̇νi(t)) ⋅ X(νj(t)) = ̇νi(t) ⋅ νj(t) = αij(t),
̇̃ã(t) = X(ã̇(t)) = X(α(t)µ(t)) = α(t)X(µ(t)) = α(t)µ̃(t).

Hence we have αij(t) = α̃ij(t) and α(t) = α̃(t). 2

Lemma 2.2. Let (ã, ν)and (ã̃, ν̃) : I → ℝn×∆n−1 be framedcurves having equal curvature, that is, (αij(t), α(t)) =
(α̃ij(t), α̃(t)) for all t ∈ I. If there exists a parameter t = t0 for which (ã(t0), ν(t0)) = (ã̃(t0), ν̃(t0)), then (ã, ν)
and (ã̃, ν̃) coincide.

Proof. Here we put νn(t) = µ(t). De�ne a smooth function f : I → ℝ by f(t) = ∑n
i=1 νi(t) ⋅ ν̃i(t). Since αij(t) =

α̃ij(t) and αij(t) = −αji(t), we have

̇f (t) =
n
∑
i=1

( ̇νi(t) ⋅ ν̃i(t) + νi(t) ⋅ ̇̃νi(t))

=
n
∑
i=1

{(
n
∑
j=1
αij(t)νj(t)) ⋅ ν̃i(t) + νi(t)⋅(

n
∑
j=1
α̃ij(t)ν̃j(t))} = 2

n
∑
i=1

n
∑
j=1

(αij(t) + αji(t))νi(t) ⋅ ν̃j(t) = 0.

It follows that f is constant. Moreover, ν(t0) = ν̃(t0), so µ(t0) = µ̃(t0). Hence f(t0) = n and the function f is
constant with value n. By the Cauchy–Schwarz inequality, we have

νi(t) ⋅ ν̃i(t) ≤ |νi(t)||ν̃i(t)| = 1,

for each i = 1, . . . , n. If one of these inequalities were strict, the value of f(t) would be less than n. It follows
that these inequalities are equalities, and we have νi(t) ⋅ ν̃i(t) = 1 for all t ∈ I and i = 1, . . . , n. Then we have

|νi(t) − ν̃i(t)|2 = νi(t) ⋅ νi(t) − 2νi(t) ⋅ ν̃i(t) + ν̃i(t) ⋅ ν̃i(t) = 0.

Hence νi(t) = ν̃i(t) for all t ∈ I and i = 1, . . . , n. Since ã̇(t) = α(t)µ(t), ̇̃ã(t) = α̃(t)µ̃(t) and with the assumption
α(t) = α̃(t)we obtain (d/dt)(ã(t)− ã̃(t)) = 0. It follows that ã(t)− ã̃(t) is constant. By the condition ã(t0) = ã̃(t0),
we have ã(t) = ã̃(t) for all t ∈ I. 2

Proof of Theorem 1.4. Choose any �xed value t = t0 of the parameter. By using a matrix X ∈ SO(n) and a
constant vector x ∈ ℝn, we can assume that ã̃(t0) = X(ã(t0)) + x and ν̃(t0) = X(ν(t0)). By Lemma 2.1, the
curvatures of the framed curves (ã(t), ν(t)) and (X(ã(t)) + x, X(ν(t)) coincide. By Lemma 2.2, we have

ã̃(t) = X(ã(t)) + x, ν̃(t) = X(ν(t))

for all t ∈ I. It follows that (ã, ν) and (ã̃, ν̃) are congruent as framed curves. 2

Remark 2.3. The Uniqueness Theorem 1.4 can be proved also by using the theorem of uniqueness of the
solution of a system of ordinary di�erential equations.
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3 Framed curves inℝ3 × ∆2

In this section, we focus on space curves. One can extend the results to higher dimensional curves. However,
it is rather tedious; we concentrate on the case of n = 3.

We �x the following notation throughout this section. Let (ã, ν1, ν2) : I → ℝ3 × ∆2 be a framed curve and
µ(t) = ν1(t) × ν2(t). The Frenet–Serret type formula is given by

(
̇ν1(t)
̇ν2(t)
µ̇(t)

) = (
0 ℓ(t) m(t)

−ℓ(t) 0 n(t)
−m(t) −n(t) 0

)(
ν1(t)
ν2(t)
µ(t)

) ,

where ℓ(t) = ̇ν1(t) ⋅ ν2(t),m(t) = ̇ν1(t) ⋅ µ(t) and n(t) = ̇ν2(t) ⋅ µ(t). Moreover, there exists a smooth mapping
α : I → ℝ such that

ã̇(t) = α(t)µ(t).

Example 3.1. Typical example of framed curves are regular curves with linear independent condition. Let
ã : I → ℝ3 be a regular curve with linear independent condition, namely, ã̇(t) and ã̈(t) are linear independent
for all t ∈ I. If we take ν1(t) = n(t) and ν2(t) = b(t), then (ã, ν1, ν2) : I → ℝ3 × ∆2 is a framed curve. Note that
µ(t) = ν1(t) × ν2(t) = t(t). Here

t(t) =
ã̇(t)
|ã̇(t)|

, n(t) =
(ã̇(t) × ã̈(t)) × ã̇(t)
|(ã̇(t) × ã̈(t)) × ã̇(t)|

, b(t) =
ã̇(t) × ã̈(t)
|ã̇(t) × ã̈(t)|

.

We give a relationship between regular curves and framed curves.

Proposition 3.2. With notation as in Example 3.1, the relationships between the curvature of the framed curve
(ℓ(t),m(t), n(t), α(t)), and the curvature κ(t) and torsion τ(t) of ãare given by

|α(t)|κ(t) = √m2(t) + n2(t), (1)

α(t)(m2(t) + n2(t))τ(t) = m(t)ṅ(t) − ṁ(t)n(t) + (m2(t) + n2(t))ℓ(t). (2)

Proof. By a direct calculation, we have

ã̇(t) = α(t)µ(t), (3)
ã̈(t) = α̇(t)µ(t) − α(t)m(t)ν1(t) − α(t)n(t)ν2(t), (4)
ã⃛(t) = (α̈(t) − α(t)m2(t) − α(t)n2(t))µ(t) − (2α̇(t)m(t) + α(t)ṁ(t) − α(t)n(t)ℓ(t))ν1(t) (5)

− (2α̇(t)n(t) + α(t)ṅ(t) + α(t)m(t)ℓ(t))ν2(t).

It follows that

|ã̇(t)| = |α(t)|

|ã̇(t) × ã̈(t)| = α2(t)√m2(t) + n2(t)

det(ã̇(t), ã̈(t), ã⃛(t)) = α3(t)(m(t)ṅ(t) − ṁ(t)n(t) + (m2(t) + n2(t))ℓ(t))

Therefore, the curvature κ(t) and the torsion τ(t) are given by

κ(t) =
|ã̇(t) × ã̈(t)|

|ã̇(t)|3
=

√m2(t) + n2(t)
|α(t)|

and
τ(t) =

det(ã̇(t), ã̈(t), ã⃛(t))
|ã̇(t) × ã̈(t)|2

=
m(t)ṅ(t) − ṁ(t)n(t) + (m2(t) + n2(t))ℓ(t)

α(t)(m2(t) + n2(t))
. 2
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Let ã : (ℝ, 0) → (ℝ3, 0) be a space curve germ and write ã(t) = (x(t), y(t), z(t)). It can be shown that,
if ã is not in�nitely �at, namely, if either x(t), y(t) or z(t) does not belong to m∞

1 (the ideal of in�nitely �at
function germs), then ã is a framed base curve. Suppose without loss of generality that x(t) does not belong
tom∞

1 and that order x(t) ≤ min{order y(t), order z(t)}. Then there exist smooth function germs a(t) and b(t)
such that ẏ(t) = a(t)ẋ(t) and ż(t) = b(t)ẋ(t). Thus if we take

ν1(t) =
1

√1 + a2(t)
(−a(t), 1, 0),

ν2(t) =
1

√(1 + a2(t))(1 + a2(t) + b2(t))
(−b(t), −a(t)b(t), 1 + a2(t)),

then (ã, ν1, ν2) is a framed curve. Note that

µ(t) = ν1(t) × ν2(t) =
1

√1 + a2(t) + b2(t)
(1, a(t), b(t)).

On the other hand, constant maps are also framed base curves, which do not satisfy the above su�cient
condition. In particular an analytic curve germ is always a framed base curve, because if it is in�nitely �at,
then it is constant.

Let (ã, ν1, ν2) : I → ℝ3 × ∆2 be a framed curve with the curvature of the framed curve (ℓ,m, n, α). By (3),
(4) and (5) in the proof of Proposition 3.2, we have the following Taylor expansion of ã:

ã(t) = ã(t0) + (t − t0)α(t0)µ(t0) +
(t − t0)2

2 (α̇(t0)µ(t0) − α(t0)m(t0)ν1(t0) − α(t0)n(t0)ν2(t0))

+
(t − t0)3

3! ((α̈(t0) − α(t0)m2(t0) − α(t0)n2(t0))µ(t0) − (2α̇(t0)m(t0) + α(t0)ṁ(t0)

− α(t0)n(t0)ℓ(t0))ν1(t0) − (2α̇(t0)n(t0) + α(t0)ṅ(t0) + α(t0)m(t0)ℓ(t0))ν2(t0)) + o(4).

If t0 is a singular point of ã, then we have

ã(t) = ã(t0) +
(t − t0)2

2
α̇(t0)µ(t0) +

(t − t0)3

3! (α̈(t0)µ(t0) − 2α̇(t0)m(t0)ν1(t0) − 2α̇(t0)n(t0)ν2(t0)) + o(4).

Let (ã, ν1, ν2) : I → ℝ3 × ∆2 be a framed curve with the curvature of the framed curve (ℓ,m, n, α). For
the normal plane of ã(t), spanned by ν1(t) and ν2(t), there is some ambient of framed curves similarly to the
case of the Bishop frame of a regular space curve (cf. [3]). We de�ne (ν1(t), ν2(t)) ∈ ∆2 by

(
ν1(t)
ν2(t)

) = (
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)(
ν1(t)
ν2(t)

) ,

where θ(t) is a smooth function. Then (ã, ν1, ν2) : I → ℝ3 × ∆2 is also a framed curve and

µ(t) = ν1(t) × ν2(t) = (cos θ(t)ν1(t) − sin θ(t)ν2(t)) × (sin θ(t)ν1(t) + cos θ(t)ν2(t))
= ν1(t) × ν2(t) = µ(t).

By a direct calculation, we have

ν̇1(t) = (ℓ(t) − θ̇(t)) sin θ(t)ν1(t) + (ℓ(t) − θ̇(t)) cos θ(t)ν2(t) + (m(t) cos θ(t) − n(t) sin θ(t))µ(t),

ν̇2(t) = −(ℓ(t) − θ̇(t)) cos θ(t)ν1(t) + (ℓ(t) − θ̇(t)) sin θ(t)ν2(t) + (m(t) sin θ(t) + n(t) cos θ(t))µ(t).

If we take a smooth function θ : I → ℝ which satis�es θ̇(t) = ℓ(t), then we call the frame {ν1(t), ν2(t), µ(t)}
an adapted frame along the framed base curve ã(t). It follows that the Frenet–Serret type formula is given by

(
ν̇1(t)
ν̇2(t)
µ̇(t)

) = (
0 0 m(t)
0 0 n(t)

−m(t) −n(t) 0
)(

ν1(t)
ν2(t)
µ(t)

) ,
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where m(t) and n(t) are given by

(
m(t)
n(t)

) = (
cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)
)(

m(t)
n(t)

) . (6)

We now consider framed curves in a plane. Let (ã, ν1, ν2) : I → ℝ3 × ∆2 be a framed curve with the
curvature of the framed curve (ℓ,m, n, α). We denote a plane by

P(v, c) = {x ∈ ℝ3 | x ⋅ v = c},

where v ∈ S2 and c ∈ ℝ. If ã(t) ∈ P(v, c), then we have det(ã̇(t), ã̈(t), ã⃛(t)) = 0. It follows that

α(t)(m(t)ṅ(t) − ṁ(t)n(t) + (m2(t) + n2(t))ℓ(t)) = 0

for all t ∈ I. Conversely, we have the following result.

Proposition 3.3. Let (ã, ν1, ν2) : I → ℝ3 × ∆2 be a framed curve with curvature (ℓ,m, n, α).

(1) If α(t) = 0 for all t ∈ I, then ã(t) is a point.
(2) If m(t) = n(t) = 0 for all t ∈ I, then ã(t) is a part of a straight line.
(3) Ifm(t)ṅ(t)− ṁ(t)n(t)+ (m2(t)+ n2(t))ℓ(t) = 0 andm2(t)+ n2(t) ̸= 0 for all t ∈ I, then there exist a vector

v ∈ S2 and a constant c ∈ ℝ such that ã(t) ∈ P(v, c).

Proof. (1) By ã̇(t) = α(t)µ(t) = 0 for all t ∈ I, ã(t) is a point.
(2) By the Frenet–Serret type formula, µ̇(t) = 0 for all t ∈ I and hence ã̇(t) = α(t)µ(t) = α(t)v, where

v ∈ S2 is a constant vector. Then there exists a constant vector x such that ã(t) = (∫ α(t)dt)v + x. It follows
that ã(t) is a part of a straight line.

(3) We take an adapted frame {ν1(t), ν2(t), µ(t)} along the framed base curve ã(t). By (6) and a direct
calculation, we have

m(t)ṅ(t) − ṁ(t)n(t) = m(t)ṅ(t) − ṁ(t)n(t) + (m2(t) + n2(t))ℓ(t) = 0

and
m2(t) + n2(t) = m2(t) + n2(t) ̸= 0

for all t ∈ I. It follows thatm(t) and n(t) are linear dependent on I (cf. [4; 9; 10]). Thus, there exists a non-zero
constant vector (c1, c2) such that c1m(t) + c2n(t) = 0 for all t ∈ I. Then ṽ = c1ν1(t) + c2ν2(t) is a non-zero
constant vector. Let v = ṽ/√c21 + c

2
2. Since ã̇(t) ⋅ v = α(t)µ(t) ⋅ v = 0 for all t ∈ I, there exists a constant c ∈ ℝ

such that ã(t) ∈ P(v, c). 2

Remark 3.4. If (ã, ν1, ν2) : I → ℝ3 × ∆2 is an analytic framed curve, then m(t) and n(t) are also analytic
functions. Hence if m(t)ṅ(t) − ṁ(t)n(t) + (m2(t) + n2(t))ℓ(t) = 0 for all t ∈ I, then m(t) and n(t) are linear
dependent on I (cf. [4; 10]). It follows that there exist a vector v ∈ S2 and a constant c ∈ ℝ such that ã(t) ∈
P(v, c).

We also de�ne a Legendre curve on a plane.

De�nition 3.5. Wesay that (ã, ν) : I → ℝ3×S2 is aLegendre curve on the plane P(v, c) ifã(t)⋅v = c, ã̇(t)⋅ν(t) = 0
and ν(t) ⋅ v = 0 for all t ∈ I.

Proposition 3.6. (1) If (ã, ν) : I → ℝ3 × S2 is a Legendre curve on the plane P(v, c), then (ã, v, ν) : I →
ℝ3 × ∆2 is a framed curve with ℓ(t) = m(t) = 0 for all t ∈ I. Conversely, if (ã, ν1, ν2) : I → ℝ3 × ∆2 is a
framed curve with ℓ(t) = m(t) = 0 for all t ∈ I, then there exist a constant vector v ∈ S2 and a constant
c ∈ ℝ such that (ã, ν2) : I → ℝ3 × S2 is a Legendre curve on the plane P(v, c).

(2) If (ã, ν) : I → ℝ3 × S2 is a Legendre curve on the plane P(v, c), then (ã, ν, v) : I → ℝ3 × ∆2 is a framed
curve with ℓ(t) = n(t) = 0 for all t ∈ I. Conversely, if (ã, ν1, ν2) : I → ℝ3 × ∆2 is a framed curve with
ℓ(t) = n(t) = 0 for all t ∈ I, then there exist a constant vector v ∈ S2 and a constant c ∈ ℝ such that
(ã, ν1) : I → ℝ3 × S2 is a Legendre curve on the plane P(v, c).
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Proof. (1) By de�nition, we have ã̇(t) ⋅ v = 0 and (v, ν(t)) ∈ ∆2. Since v is a constant, we have ℓ(t) = m(t) = 0
for all t ∈ I. Conversely, by the Frenet–Serret type formula, v = ν1(t) ∈ S2 is a constant vector. Moreover, since
ã̇(t) ⋅ v = α(t)µ(t) ⋅ ν1(t) = 0 for all t ∈ I, there exists a constant c ∈ ℝ such that ã(t) ⋅ v = c. It follows that
(ã, ν2) : I → ℝ3 × S2 is a Legendre curve on the plane P(v, c).

Assertion (2) can be proved similarly. 2

3.1 Contact between framed curves

In this subsection, we discuss contact between framed curves. Let

(ã, ν1, ν2) : I → ℝ3 × ∆2; t Ü→ (ã(t), ν1(t), ν2(t)) and (ã̃, ν̃1, ν̃2) : Ĩ → ℝ3 × ∆2; u Ü→ (ã̃(u), ν̃1(u), ν̃2(u))

be framed curves and let k be a natural number. We say that (ã, ν1, ν2) and (ã̃, ν̃1, ν̃2) have k-th order contact
at t = t0, u = u0 if

(ã, ν1, ν2)(t0) = (ã̃, ν̃1, ν̃2)(u0),
d
dt

(ã, ν1, ν2)(t0) =
d
du

(ã̃, ν̃1, ν̃2)(u0), . . . ,

dk−1

dtk−1
(ã, ν1, ν2)(t0) =

dk−1

duk−1
(ã̃, ν̃1, ν̃2)(u0),

dk

dtk
(ã, ν1, ν2)(t0) ̸=

dk

duk
(ã̃, ν̃1, ν̃2)(u0)

(cf. [6; 8]). Moreover, we say that (ã, ν1, ν2) and (ã̃, ν̃1, ν̃2) have at least k-th order contact at t = t0, u = u0 if

(ã, ν1, ν2)(t0) = (ã̃, ν̃1, ν̃2)(u0),
d
dt

(ã, ν1, ν2)(t0) =
d
du

(ã̃, ν̃1, ν̃2)(u0), . . . ,

dk−1

dtk−1
(ã, ν1, ν2)(t0) =

dk−1

duk−1
(ã̃, ν̃1, ν̃2)(u0).

In general, we may assume that (ã, ν1, ν2) and (ã̃, ν̃1, ν̃2) have at least �rst order contact at any point
t = t0, u = u0, up to congruence as framed curves. We denote the curvatures of the framed curves
(ã(t), ν1(t), ν2(t)) by F(t) = (ℓ(t),m(t), n(t), α(t)) and that of (ã̃(u), ν̃1(u), ν̃2(u)) by F̃(u) = (ℓ̃(u), m̃(u), ñ(u),
α̃(u)).

Theorem 3.7. Let (ã, ν1, ν2) and (ã̃, ν̃1, ν̃2) as above. If (ã, ν1, ν2) and (ã̃, ν̃1, ν̃2) have at least (k + 1)-th order
contact at t = t0, u = u0 then

F(t0) = F̃(u0),
d
dt

F(t0) =
d
du

F̃(u0), . . . , dk−1

dtk−1
F(t0) =

dk−1

duk−1
F̃(u0). (7)

Conversely, if conditions (7) hold, then (ã, ν1, ν2) and (ã̃, ν̃1, ν̃2) have at least (k + 1)-th order contact at t =
t0, u = u0, up to congruence as framed curves.

Proof. Suppose that (ã, ν1, ν2) and (ã̃, ν̃1, ν̃2) have at least second order contact at t = t0, u = u0. Since
ν1(t0) = ν̃1(u0) and ν2(t0) = ν̃2(u0), we have µ(t0) = µ̃(u0). By the Frenet–Serret type formula,

d
dt

(ã, ν1, ν2) = (α(t)µ(t), ℓ(t)ν2(t) + m(t)µ(t), −ℓ(t)ν1(t) + n(t)µ(t)),

d
du

(ã̃, ν̃1, ν̃2) = (α̃(u)µ̃(u), ℓ̃(u)ν̃2(u) + m̃(u)µ̃(u), −ℓ̃(u)ν̃1(u) + ñ(u)µ̃(u)).

It follows that F(t0) = F̃(u0). Hence, the �rst assertion of Theorem 3.7 holds in the case of k = 1.
Suppose that the assumption is true up to the k-th order of contact. Let (ã, ν1, ν2) and (ã̃, ν̃1, ν̃2) have at

least (k + 1)-th order contact at t = t0, u = u0. Then they have at least k-th order of contact, so

F(t0) = F̃(u0),
d
dt

F(t0) =
d
du

F̃(u0), . . . , dk−2

dtk−2
F(t0) =

dk−2

duk−2
F̃(u0).

By the Frenet–Serret type formula, we have
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dk

dtk
ã(t) = (

dk−1

dtk−1
α(t))µ(t) + f1(F(t), . . . ,

dk−2

dtk−2
F(t))ν1(t)

+ f2(F(t), . . . ,
dk−2

dtk−2
F(t))ν2(t) + f3(F(t), . . . ,

dk−2

dtk−2
F(t))µ(t),

dk

dtk
ν1(t) = (

dk−1

dtk−1
ℓ(t))ν2(t) + (

dk−1

dtk−1
m(t))µ(t) + g1(F(t), . . . ,

dk−2

dtk−2
F(t))ν1(t)

+ g2(F(t), . . . ,
dk−2

dtk−2
F(t))ν2(t) + g3(F(t), . . . ,

dk−2

dtk−2
F(t))µ(t),

dk

dtk
ν2(t) = −(

dk−1

dtk−1
ℓ(t))ν1(t) + (

dk−1

dtk−1
n(t))µ(t) + h1(F(t), . . . ,

dk−2

dtk−2
F(t))ν1(t)

+ h2(F(t), . . . ,
dk−2

dtk−2
F(t))ν2(t) + h3(F(t), . . . ,

dk−2

dtk−2
F(t))µ(t)

for some smooth functions fi , gi , hi (i = 1, 2, 3). By the same calculations,

dk

duk
ã̃(u) = (

dk−1

duk−1
α̃(u))µ̃(u) + f1(F̃(u), . . . ,

dk−2

duk−2
F̃(u))ν̃1(u)

+ f2(F̃(u), . . . ,
dk−2

duk−2
F̃(u))ν̃2(u) + f3(F̃(u), . . . ,

dk−2

duk−2
F̃(u))µ̃(u),

dk

duk
ν̃1(u) = (

dk−1

duk−1
ℓ̃(u))ν̃2(u) + (

dk−1

duk−1
m̃(u))µ̃(u) + g1(F̃(u), . . . ,

dk−2

duk−2
F̃(u))ν̃1(u)

+ g2(F̃(u), . . . ,
dk−2

duk−2
F̃(u))ν̃2(u) + g3(F̃(u), . . . ,

dk−2

duk−2
F̃(u))µ̃(u),

dk

duk
ν̃2(u) = −(

dk−1

duk−1
ℓ̃(u))ν̃1(u) + (

dk−1

duk−1
ñ(u))µ̃(u) + h1(F̃(u), . . . ,

dk−2

duk−2
F̃(u))ν̃1(u)

+ h2(F̃(u), . . . ,
dk−2

duk−2
F̃(u))ν̃2(u) + h3(F̃(u), . . . ,

dk−2

duk−2
F̃(u))µ̃(u).

It follows that (dk−1/dtk−1)F(t0) = (dk−1/duk−1)F̃(u0). By induction, we have the �rst assertion.
Conversely, suppose that Condition (7) holds. By the above calculations, we have (di/dti)(ã, ν1, ν2)(t0) =

(di/dui)(ã̃, ν̃1, ν̃2)(u0) for i = 1, . . . , k. Therefore, (ã, ν1, ν2) and (ã̃, ν̃1, ν̃2) have at least (k + 1)-th order
contact at t = t0, u = u0, up to congruence as framed curves. 2

3.2 Projections to planes and Legendre curves

We quickly review Legendre curves; for more detail see [6]. The Legendre curves correspond to the case of
n = 2 for framed curves. We say that (ã, ν) : I → ℝ2 × S1 is a Legendre curve if (ã, ν)∗θ = 0 for all t ∈ I,
where θ is a canonical contact 1-form on the unit tangent bundle T1ℝ2 = ℝ2 × S1 (cf. [1; 2]). This condition
is equivalent to ã̇(t) ⋅ ν(t) = 0 for all t ∈ I. We say that ã : I → ℝ2 is a frontal if there exists a smooth mapping
ν : I → S1 such that (ã, ν) is a Legendre curve.

Let (ã, ν) : I → ℝ2 × S1 be a Legendre curve. Then we have the Frenet formula of the frontal ãas follows.
We put µ(t) = J(ν(t)), where J is the anti-clockwise rotation by π/2 onℝ2. We call the pair {ν(t), µ(t)} amoving
frame along the frontal ã(t) inℝ2. The Frenet formula of the frontal (or, the Legendre curve) is given by

(
ν̇(t)
µ̇(t)

) = (
0 ℓ(t)

−ℓ(t)0
)(

ν(t)
µ(t)

) ,

where ℓ(t) = ν̇(t) ⋅ µ(t). Moreover, there exists a smooth function β(t) such that

ã̇(t) = β(t)µ(t).

We call the pair (ℓ(t), β(t)) the curvature of the Legendre curve (with respect to the parameter t).
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Let (ã, ν1, ν2) : I → ℝ3 × ∆2 be a framed curve with curvature (ℓ,m, n, α). For a �x point t0 ∈ I, we
consider three orthogonal projections fromℝ3 along the direction ν1(t0), ν2(t0) and µ(t0).

First, we consider the projection of ã along the ν1(t0) direction given by ãν1 : I → ℝ2 with ãν1 (t) =
(ã(t) ⋅ ν2(t0), ã(t) ⋅ µ(t0)). Then ã̇ν1 (t) = α(t)(µ(t) ⋅ ν2(t0), µ(t) ⋅ µ(t0)). There is a subinterval I1 of I around t0
such that (µ(t) ⋅ ν2(t0))2 + (µ(t) ⋅ µ(t0))2 ̸= 0 for all t ∈ I1. We de�ne a smooth map νν1 : I1 → S1 by

νν1 (t) =
1

√(µ(t) ⋅ ν2(t0))2 + (µ(t) ⋅ µ(t0))2
(µ(t) ⋅ µ(t0), −µ(t) ⋅ ν2(t0)).

Then (ãν1 , νν1 ) : I1 → ℝ2 × S1 is a Legendre curve. Since µν1 : I1 → S1 is

µν1 (t) = J(νν1 (t)) =
1

√(µ(t) ⋅ ν2(t0))2 + (µ(t) ⋅ µ(t0))2
(µ(t) ⋅ ν2(t0), µ(t) ⋅ µ(t0)),

the curvature of the Legendre curve (ãν1 , νν1 ) is given by

ℓν1 (t) =
1

(µ(t) ⋅ ν2(t0))2 + (µ(t) ⋅ µ(t0))2
(m(t)((ν1(t) ⋅ ν2(t0))(µ(t) ⋅ µ(t0)) − (ν1(t) ⋅ µ(t0))(µ(t) ⋅ ν2(t0)))

+ n(t)((ν2(t) ⋅ ν2(t0))(µ(t) ⋅ µ(t0)) − (ν2(t) ⋅ µ(t0))(µ(t) ⋅ ν2(t0))))

and
βν1 (t) = α(t)√(µ(t) ⋅ ν2(t0))2 + (µ(t) ⋅ µ(t0))2.

Note that ℓν1 (t0) = n(t0) and βν1 (t0) = α(t0). The projection of ã along the ν2(t0) direction is similar to the
case of the ν1(t0) direction.

Next, we consider the projection of ã along µ(t0), given by ãµ : I → ℝ2 with ãµ(t) = (ã(t) ⋅ ν1(t0), ã(t) ⋅
ν2(t0)). Then ã̇µ(t) = α(t)(µ(t) ⋅ ν1(t0), µ(t) ⋅ ν2(t0)). In this case, ãµ is not always a frontal, that is, there does
not exists a smoothmapping νµ : I → S1 such that (ãµ , νµ) : I → ℝ2×S1 is a Legendre curve, see Example 4.2.
However, if ãµ is not in�nitely �at around t0, namely, if either ã(t) ⋅ ν1(t0) or ã(t) ⋅ ν2(t0) does not belong to
m∞
1 , then ãµ is a frontal (cf. [6]).

In general, let t0 ∈ I and �x a positive orthonormal basis {v1, v2, v3} on ℝ3, with (v1, v2) ∈ ∆2 and
v3 = v1 × v2, such that v3 ̸= ±µ(t0). Then we consider the orthogonal projection along v3 to the (v1, v2)-
plane. We denote ãv : I → ℝ2 given by ãv(t) = (ã(t) ⋅ v1, ã(t) ⋅ v2). Then ã̇v(t) = α(t)(µ(t) ⋅ v1, µ(t) ⋅ v2). By the
assumption, there is a subinterval Ĩ of I around t0 such that (µ(t) ⋅ v1, µ(t) ⋅ v2) ̸= (0, 0) for all t ∈ Ĩ. We de�ne
a smooth map νv : Ĩ → S1 by

νv(t) =
1

√(µ(t) ⋅ v1)2 + (µ(t) ⋅ v2)2
(µ(t) ⋅ v2, −µ(t) ⋅ v1).

Then (ãv , νv) : Ĩ → ℝ2 × S1 is a Legendre curve. Since µv : Ĩ → S1 is

µv(t) = J(νv(t)) =
1

√(µ(t) ⋅ v1)2 + (µ(t) ⋅ v2)2
(µ(t) ⋅ v1, µ(t) ⋅ v2),

the curvature of the Legendre curve (ãv , νv) is given by

ℓv(t) =
1

(µ(t) ⋅ v1)2 + (µ(t) ⋅ v2)2
(m(t)((ν1(t) ⋅ v1)(µ(t) ⋅ v2) − (ν1(t) ⋅ v2)(µ(t) ⋅ v1))

+ n(t)((ν2(t) ⋅ v1)(µ(t) ⋅ v2) − (ν2(t) ⋅ v2)(µ(t) ⋅ v1)))

and
βv(t) = α(t)√(µ(t) ⋅ v1)2 + (µ(t) ⋅ v2)2.

Remark 3.8. If we take a positive orthonormal basis {v1, v2, v3} on ℝ3 such that v3 ∈ S2 \ {±µ(I)}, then we
may consider Ĩ = I. In this case, the Legendre curve (ãv , νv) can be de�ned globally.
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3.3 Framed immersions

Let I and Ĩ be intervals. A smooth function s : Ĩ → I is a (positive) change of parameter when s is surjective
and has a positive derivative at every point. It follows that s is a di�eomorphism.

Let (ã, ν1, ν2) : I → ℝ3 × ∆2 and (ã̃, ν̃1, ν̃2) : Ĩ → ℝ3 × ∆2 be framed curves whose curvatures are
(ℓ,m, n, α) and (ℓ̃, m̃, ñ, α̃) respectively. Suppose (ã, ν1, ν2) and (ã̃, ν̃1, ν̃2) are parametrically equivalent via
the change of parameter s : Ĩ → I. Thus (ã̃(t), ν̃1(t), ν̃2(t)) = (ã(s(t)), ν1(s(t)), ν2(s(t))) for all t ∈ Ĩ. By
di�erentiation, we have

ℓ̃(t) = ℓ(s(t)) ̇s(t), m̃(t) = m(s(t)) ̇s(t), ñ(t) = n(s(t)) ̇s(t), α̃(t) = α(s(t)) ̇s(t).

Hence the curvature is dependent on the parametrization. Note that (ã, ν1, ν2) is a framed immersion if and
only if (ℓ(t),m(t), n(t), α(t)) ̸= (0, 0, 0, 0) for all t ∈ I. Moreover, for an adapted frame, we may assume that
ℓ(t) = 0 for all t ∈ I.

In general, we cannot consider the arc-length parameter of the framed base curve ã, since ãmay have
singularities. However, if (ã, ν1, ν2) is an immersion, we introduce the arc-length parameter for the framed
immersion (ã, ν1, ν2). The speed s(t) of the framed immersion at the parameter t is de�ned to be the length
of the tangent vector at t, namely,

s(t) = |(ã̇(t), ν̇1(t), ν̇2(t))| = √ã̇(t) ⋅ ã̇(t) + ν̇1(t) ⋅ ν̇1(t) + ν̇2(t) ⋅ ν̇2(t).

Given scalars a, b ∈ I, we de�ne the arc-length from t = a to t = b to be the integral of the speed,

L(ã, ν) =
b

∫
a

s(t) dt.

By the samemethod for the are-length parameter of a regular curve, one can prove the following (cf. [5; 7; 8]).

Proposition 3.9. Let (ã, ν1, ν2) be a framed immersion, and let t0 ∈ I. Then (ã, ν1, ν2) is parametrically equiv-
alent to a unit speed curve (ã̃, ν̃1, ν̃2) : Ĩ → ℝ3 × ∆2 under a change of parameter t : Ĩ → I with t(0) = t0 and
with t�(s) > 0.

We call the parameter s in Proposition 3.9 the arc-length parameter for the framed immersion. Let s be the
are-length parameter for (ã, ν1, ν2). By de�nition, we have ã�(s) ⋅ ã�(s) + ν�1(s) ⋅ ν

�
1(s) + ν

�
2(s) ⋅ ν

�
2(s) = 1, where

� is the derivation with respect to s. It follows that 2ℓ(s)2 + m(s)2 + n(s)2 + α(s)2 = 1.
If we consider the framed immersion with an adapted frame, then ℓ(s) = 0 for all s ∈ I. It follows that we

have m(s)2 + n(s)2 + α(s)2 = 1.

4 Examples
Example 4.1. Let n1, n2, n3, k1 and k2 be natural numbers with n2 = n1+k1 and n3 = n2+k2. Let (ã, ν1, ν2) :
ℝ→ ℝ3 × ∆2 be de�ned by

ã(t) = (
1
n1
tn1 , 1

n2
tn2 , 1

n3
tn3),

ν1(t) =
1

√1 + t2k1
(−tk1 , 1, 0),

ν2(t) =
1

√(1 + t2k1 )(1 + t2k1 + t2k1+2k2 )
(−tk1+k2 , −t2k1+k2 , 1 + t2k1).

We see that (ã, ν1, ν2) is a framed curve, and a framed immersion when n1 = 1 or k1 = 1. We say that ã is of
type (n1, n2, n3). By de�nition, µ : ℝ→ S2 is given by

µ(t) = 1
√1 + t2k1 + t2k1+2k2

(1, tk1 , tk1+k2)
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and the components of the curvature are

ℓ(t) = k1t2k1+k2−1

(1 + t2k1 )√1 + t2k1 + t2k1+2k2
,

m(t) = −k1tk1−1

√(1 + t2k1 )(1 + t2k1 + t2k1+2k2 )
,

n(t) = −tk1+k2−1(k1 + k2 + k2t2k1 )
(1 + t2k1 + t2k1+2k2 )√1 + t2k1

,

α(t) = tn1−1√1 + t2k1 + t2k1+2k2 .

Example 4.2. Let ã : ℝ→ ℝ3 be the smooth mapping ã(t) =
{{{
{{{
{

(t, 0, e−1/t2) if t > 0,
(0, 0, 0) if t = 0,
(t, e−1/t2 , 0) if t < 0.

The curve ã is regular but does not satisfy the linear independent condition at t = 0. However, ã is a framed
base curve. We have the smooth mapping (ν1, ν2) : ℝ→ ∆2 with

ν1(t) =
{
{
{

(1/√2 + ̇f (t)2)( ̇f (t), −1, −1) if t ̸= 0,

(1/√2)(0, −1, −1) if t = 0,

ν2(t) =
{{{{
{{{{
{

(1/√(1 + ̇f (t)2)(2 + ̇f (t)2))( ̇f (t), 1 + ̇f (t)2, −1) if t > 0,

(1/√2)(0, 1, −1) if t = 0,

(1/√(1 + ̇f (t)2)(2 + ̇f (t)2))(− ̇f (t), 1, −1 − ̇f (t)2) if t < 0,

where f(t) = e−1/t2 for t ̸= 0. It is easy to see that (ã, ν1, ν2) is a framed curve. Since µ : ℝ→ S2 is given by

µ(t) = ν1(t) × ν2(t) =
{{{{
{{{{
{

(1/√1 + ̇f (t)2)(1, 0, ̇f (t)) if t > 0,

(1, 0, 0) if t = 0,

(1/√1 + ̇f (t)2)(1, ̇f (t), 0) if t < 0,

the curvature of the framed curve is given by

ℓ(t) =
{{{{
{{{{
{

̇f (t) ̈f (t)/(2 + ̇f (t)2)√1 + ̇f (t)2 if t > 0,
0 if t = 0,

− ̇f (t) ̈f (t)/(2 + ̇f (t)2)√1 + ̇f (t)2 if t < 0,

m(t) =
{
{
{

̈f (t)/√(1 + ̇f (t)2)(2 + ̇f (t)2) if t ̸= 0,
0 if t = 0,

n(t) =
{{{{
{{{{
{

̈f (t)/((1 + ̇f (t)2)√2 + ̇f (t)2) if t > 0,

0 if t = 0,

− ̈f (t)/((1 + ̇f (t)2)√2 + ̇f (t)2) if t < 0,

α(t) =
{
{
{

√1 + ̇f (t)2 if t ̸= 0,
1 if t = 0.

Note that consider the projection to µ(0) = (1, 0, 0) direction. Then ãµ : ℝ→ ℝ2 is given by

ãµ(t) =
{{{
{{{
{

−(1/√2)(e−1/t2 , e−1/t2) if t > 0,
(0, 0) if t = 0,
(1/√2)(−e−1/t2 , e−1/t2) if t < 0.

It follows that ãµ : ℝ→ ℝ2 is not a frontal (cf. [6]).
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