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(Abstract)

The authors propose a new method to easily arabhgldetermine the exchange current densi}y (
of hydrogen evolution reactiorhdr). The validity of a novel method named the diffeia
polarization method (DPM) was ascertained by thienesion ofio on platinum electrode in acid
solutions. Thehers in 0.005, 0.05 and 0.5 mol dhH2SQ: solutions were visually categorized as
reversible reactions. The obtainethad constant values of about 0.5 mAgrorresponding to the
appearance of a vertical line on the anodic pa#dn resistance curve. This DPM showsithis
corresponds to the limiting diffusion current dénsif the hydrogen oxidation reaction. We believe
that the DPM has the potential to be a beneficidl r@liable method for estimating electrochemical

parameters.

Keywords: Hydrogen evolution reaction; Exchangeenirdensity; Platinum electrode;

Polarization resistance; Tafel relation
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1. Introduction

The hydrogen electrode reaction is one of the fioostamental electrolytic reactions in the field
of electrochemistry. It is a single electrode riescbetween hydrogen oxidation reactitwor) and
hydrogen evolution reactiorhdr). The exchange current densityis an important parameter in
evaluating the relevant catalyst performance inustiial applications such as fuel cell research,
battery development, and corrosion engineering. &oos papers about have been published
since Tafel established the experimental relatiod905 [1]. In almost all cases, thehas been
estimated by the Tafel extrapolation methg@ds= a + b log|i|. The linear relationship between the
logarithm of the cathodic current density (Ifghnd its overvoltagepj has been established as a
determinant of thé&. However, some unresolved issues still hampef#fiel method [2], [3]. For
example, in some cases different values are olis¢iyg4]. Theio of gold electrode varies from
10%t0 104%*mA cmi? [2]; a difference of more than four orders of miaggte. Similarly, another
result showed that the on platinum in sulfuric acid solutions ranged frae*°to 104 mA cni?
[1-c]. In simple experiments, the Tafel slope of0)V for theher in an acid solution can be
determined in a high overvoltage region. This plat electrode polarized in a cathodic potential
region is fully absorbed in hydrogen bubbles armbably encounters turbulence due to vigorous
H2 evolution. On the other hand, the most preferahld reliable determination afis done in a
low overvoltage region [5],[6]. Furthermore, phyditactors such as solution resistance due to the
hydrogen bubbles and the existence of oxide filmthenelectrode must be considered [7],[8]. We

think that the main reasons for the variation inasuged experimental values are because of the
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solution or oxide film or adsorption layer resisgtes. We believe that there is another suitable

method to solve or decrease these problems congetineé hydrogen electrode reaction. Such a

method should be sufficiently rigorous to accusatptedict theio from experimental data.

Furthermore, the new method must be both theoligteraund and experimentally verifiable.

In this paper, we propose a new method, the diffexiepolarization method (DPM), which is

intended to be used as a complementary approdbk ftafel method. The application of the DPM

to estimate corrosion rates has shown positivdtsegufew experimental results of the mass loss

from aluminum alloys corroded in a mineral acidusoh were in good agreement with the mass

losses predicted by the DPM [9,10]. These sucdessferimental results lead us to believe that the

DPM could be applicable to the determination ofithef her. The purpose of this paper is twofold:

firstly, to explain the methodology behind the DPamd secondly, to demonstrate its reliability in

experiments. The validity of the DPM was verifiadain experiment involving thHeer of a platinum

electrode in different sulfuric acid solutions.

2. Explanation of the DPM expression

2.1 Electrochemical reaction and its expression

Before discussing the DPM, it is necessary to éxplae relationship between electrochemical

kinetics and the DPM. A single-electrode reactiooven as

Red 2 0x** + ze~ (1)

is electrochemically characterized by the Nernsiadgn which will play a very important role in
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the explanation of DPM. By definition, thE,, is expressed as follows:

7+
— EO + —ln {0xX** }puik E(D + Eln [0xX* " ]bulk (2)

E
ed {Red}puik zF  [Red]pyik

The electrochemical polarization phenomena atttt@sary state are expressed by two main
processes: activation and diffusion. When bothnefrt occur simultaneously, the following

well-known equation is obtained [11]:

i) =iof(1- = )ewam - (1-—=)ew-£m} @)

oxZt,L
When using Eg. (3), we often confront problems sagpoor data collection and the tedious task of
calculating the activity coefficients faygr.q and yo4z+ Which are usually unknown. To circumvent

these problems, tHe? was introduced. Substitution of the following etiras into Eq. (3) yields

the following practical Eq.(6):

—

N=E—FEqq=E—E°4+ E® —Eoq=1°+ (E — E¢q) (4)

< ig = 2 F kP [Red]g, [0x],u (5)
g _ RT[0X**puik '

Beq— E7 = zF  [Red]puik (2)

Then,

{019 = k(52 exp(fy %) — (2L exp(—fe 1) ©

At the equilibrium state, which is the equal stfté (n?) = 0, we can obtain the following relation:

fRedL oun(f, “’)—‘ “Lexp(—£e %) @)

kred

After arranging the above, we found that Eq.(7ivas at the Nernst equation. For this paper it is

important to remember that th&(0) is identical to theE,,.
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For the sake of further simplification, Eq. (6jpisanged as follows:

A+B+C

B ired, i+ C gzt 1 im =1 (8)
whereA, B, andC are abbreviations foi / k®, exp( f, 1®) / kreq, and exp( —f. 1%)/ kox.
respectively. From a mathematical point of vievgreaf 1(= exp(0)), exp( f, n%), and
exp( —f.n?) are interpreted as weighted functions on respaytihie k®, kgre.q and kqy. Term
Ashown as1/ k?(= exp(0)/k®) is related to the activation process. T@&mnd ternC are related
to the diffusion processes. The teBn(= exp( £, 1%) / kreq) €Mmerges in anodic diffusion
processes and will show either a large/negligifitcewhen then® has a positive/negative value.
Conversely, the ter® (= exp( —f. n%)/ koyx) shows the opposite effect: a negligible/large @alu
when then? has a positive/negative value.

When Eq.(8) is expressed in a coherent system itf [i2,13], this equation provides specific
numerical sets for its approximation. In other vegrd combination of numerators Af B, andC
accounts for a contribution ratio for the whdlg?), because Eq.(8) is equivalent to both the
physical equation and the numerical equation. Sithee right-hand side of EQ.(8) is 1, a
combination of the left-hand-side terms correspdaagsnumerical contribution ratio.

To grasp the gist of this approximation, the exgimes of Eq.(8) is divided into two groups:
group (A) and group (B). The (A) group shows fasekics with reversible reaction characteristics

(large value ofk?). The (B) group shows slow kinetics with irreviles reaction characteristics

(small value ofk®). The (A) and (B) groups are further classifietbithree equations based on
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possible electrochemical reactions. The (A) groupich includes kroq and ko, but omits k2,

is classified as follows:

_— ER B+C F(m®Y ~
(A)1-B,l.Re(LL+C.l.OXH‘L im™) =1 (9)
2 - B (DY ~
< (A)-2: B ineartCiggr im”) =1 (10)
Cc .
_ (A)-3 im®) ~1 (11)

B iRed,L‘l'C' iOXZ+,L

and the (B) group, which always includ&$, is classified as follows:

~— - . A 7 (Z) ~
(B) 1 ) B'iRed,L+C'i0XZ+'L l(n ) ~ 1 (12)
. A+B . O\
N B2 et ()~ 1 (13)
A+C .
| (B)-3: . %) ~ 1 (14)

BigedL+C igyz+
In the field of electrochemistry, electrochemicaidtics are usually expressed in three functional

forms:i(#?), E(i) andh(i). Each function has its own merits. For instatioej(#?) function enables

the easy superimposition of anodic and cathodicdbraurrents, whereas tB@) function suggests

thermodynamically feasible reactions by referringetectrode potential-pH diagrams [14]. The

polarization resistandgi) is an another function which can be obtainediffgréntiating theE(i):

dE 1

N _ 4dE _ _
h(@) = di ~ d(ia+ic)  1/ha(ia)+1/hc(ic) (15)

The h(i) is expressed as a parallel circuit of the anguitarization resistancé,(i,), and the

cathodic polarization resistande.(i.). The h(i) expression has a merit of requiring fewer

experimental readings. Althougly?), E(i), and h(i) are exhibited in different forms, they are

interchangeable with each other. To understanddiktnctions among them, we used some

algebraic and geometrical examples. However, tpéaeation of the (B) group is beyond the scope
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of the present paper. This will be treated in detaewhere.
2.2. Approximations for reversible reactions: gr@&papproximations
(A)-1 approximation
The (A)-1 approximation is applicable in the cadereversible reactions with diffusion

phenomena in both anodic and cathodic directiohs. zTnV’), E(i) and h(i) are expressed as

follows:

Thei(y#?) is expressed as:

~ l(nm) < B.iRedyll:f;ioxth (:ia(nm) N lc(nm)) (16)
< ia(1°) = 2= irear (17)
%) = = foen a8)

TheE(i) is obtained by arranging Egs. (16)—(18):

i—i

CE(i) = F9 + BT KRed “ox"*L
E{) =E°+ ZFlnkoxz+ - (19)
. _ -0 RT kRred ia
< Ea(la) =E°+ 7F In —kOxZ+ —iRed,L_ia (20)
RT k [ — Igyz+
\Ec(ic) =E®+ In Red ‘c Ox%™ L

zF kOXZ+ —ic (21)

Close examination finds th&fi) at ireq; — 0 and igyz+; — 0 completely matches both the

Ea(ia) andEc(ic), respectively. The following is an easy matheoadiprotocol to directly obtain
Ea(ia) andEc(ic) from E(i) [7]:

Ea(ia) = [E(i)]iOXZ"',L_’O

i=iy

Ec(ic) = [E(i)]igefl,L—’O (23)

(22)

Theh(i) is expressed through differentiation of the E#9)—(21):
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RT 1 1
h( ) = E T zF (iRed,L—i + i—ion+‘L> -
.y _ dEaGa) _ RT (1 !
< ha(La) - diy T ZF (ia + iRed,L_ia> (25)
dEc(lc) RT( 1 —1
h ( c) di, T ZF (—_LC + ic_i0xz+,L) (26)

Sinceh(i) is an one order differential equatid(i) is obtained by solving th&i) under an initial

condition such as (&(0)):

fro dE =% i(. LI >di @27

lRed,L_l "_lOXZ+,L

Then,

i—i

E(i) = E(0) + 2% In—Redk 0L (28)

~loxz+ L iRed,L—{
And as E(0) = Eq,

EQ) = B9 + 2lin fred Dot (29)

koxz+ iRed,L.—L

The Eq.(29) above is the same expression as Eq.(19)
Theia(i) andic(i) as functions ofi are directly obtained wheB (i) = E,(i,) and E(i) = E.(i.):

io(i) = RetCloet) (: i + ——Redk i) (30)

lRed L~ loxz+ L, lRed L~ loxZ+ L,

i (i) = 2+ 1(i=iRed L) (_ iy +- —ioX'z+,L P =i ia(i)> (31)

iRed,L=ipxz+ L, lRed L™ loxz+ L,

Becausei, = i,(0) or i, = —i.(0), the i, is expressed as:

iRed,L(_iOXZ+,L) _ 1

(32)

lg = — - = -
lRed L~ loxz+ L, 1/lRed,L+1/_loXZ+,L

Substituting Eq. (32) into tH&0) in Eq. (24) gives that thg, in diffusion process is expressed as:

h(O)——< L )=ﬂ.i (33)

ZF \iRedL —loxz+ L, ZF iy

The detailed condition when the (A)-1 approximai®available is expressed as:
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B iRed,L‘l' C iOXZ+,L - B iRed,L+ C iOXZ+,L (34)
A+B+C - B+C
This can be simplified to:
(A = 0) V) (B iRed,L + C iOXZ+,L = 0) (35)

The @ = 0) has the same meaning for a large valugd8f, becaused = 1/ k® ~ 0 (« 1). The
arrangement off ireqy, + C igyz+ 1, = 0) yields the Nernst equation. This is:
E(0) ~ E® + %m%(: Eeq) (36)
Thus, approximation of the (A)-1 is valid whete«< k® or E(0) = Eeq -
(A)-2 approximation
The (A)-2 approximation is applicable in the cabeewersible reactions with a diffusion process

occurring in an anodic direction. The same procesidescribed for the (A)-1 can be applied.

The i(n®) expressions are:

~ l'(77¢) ~ B-iRed,L;C-ioxu,L (:ia(rl@) + ic(n‘b)) (37)
< ia(nw) = IRedL (38)
| ic(n®) = % Lox?* L (39)

The E(i) expressions are:

EQ) = E9 4 BTy Krea Zlox*tL (40)

ZF kOXZ+ iRed,L_i

< E,(i,) = ? (unknown) (41)

kRed _iOx”,L

, »  RT
L E.(il) =E°+ ~F In (42)

kOXZ+ —I:C

A similar expression for Eq.(23) is:
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Ec(ic) = [E(D)] iRed,L™0 (43)

i=ic

Unfortunately, theE, (i,) cannot be expressed.

Theh(i) expressions are:

"~ ., _RT 1
h(i) = ZF iRed,L—{ (44)

SN 1
ha(la) = dia/dE_a(ia)’ then (45)

<
I S R )
diged,./dEa(i3) 0
, dEc(ic) _ RT 1

Chella) === =7 = (47)

Applying the previous procedures of Egs. (27) J 82heh(i), theE(i) can be solved under the

initial condition of (0,E(0)) . This solution is:

E(i) _RT i 1 .
Jew 9B =75 s iRed.L—1 di (48)
Then,
N RT, _RedL _ ¢, RT,_ Kged “loxz L,
E(i) =E(0)+ ZFln o E® + ZFln " (49)

The Eq.(49) above is the same expression as EqIA6(i) andic(i) expressions are:
[5() = iRear (50)
() =i—i3(0) =i — iReqr (51)
The i, and h(0) are:
ip = i,(0) = —i.(0) = [Red,L (52)

h(o)zﬂ;:ﬂi (53)

ZF iRed,L zF ip
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It is interesting to note that thé, and h(0) in the (A)-2 correspond to the special state of
[Red,L/ —loxz+ 1 < 1 inthe (A)-lapproximation.

The condition where the (A)-2 approximation conmde effect occurs when:

BigeqLt C iOXZ+,L ~ BigeqLt C iOXZ+,L (54)
A+B+C B
Equation (54) can be simplified to:
(A +C=0) U(Bigeqr+ Ciggz+y = 0) (55)

The expression(B igreq1. + C igyz+ 1, = 0) is the Nernst equation. Whety k? ~ 0, the detail of
A+C=0) is:
1/ k® +exp( —fcn®) / kox = exp(—fen®) [ kox = 0 (K 1) (56)
Hence, the (A)-2 approximation will be valid foetfollowing condition:
n? > [;RT;m kox (= = Inkoy) OF E & Eeq. (57)
(A)-3 approximation
The (A)-3 approximation is applicable in the cabeegersible reactions with diffusion control

phenomena occurring in a cathodic direction.

The i(n®) expressions are:

(" Bige , Ci xZ . .
(%) & R (g (1) + i (1)) (58)
3 ia(nw) :% [Red,L (59)
Jc(’?(b) = loxz+ L (60)

The E(i) expressions are:
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. RT, k i=ig.z+,
~ E(l) — EQ + —1n Red 'Ox ,
zF kon+ lRed,L

. RT k i

< E,(iy) =E®+-—In-Rd 2

zF kon+ lRed,L

~ E.(i.) = ? (unknown)

The same procedure gives us thgi,) expression:

Ea(ia) = [E(l)] Loxz+ 1,0

i=i,
The h(i) expressions are:

~ h() =" —

zF i=lgyz+y,

.y _ dE(ia) _RT 1
ha(la) - diy T ZF ia

.y dEc(ic) 1
he(ic) = dic  di¢/dEc(ic)’ then

1 1
= 5 -5
\_ dlon+_L/dEc(lc) 0

Thelid(i), ic(i), iy and h(0) are:
L) =i—i()=1i- lox** L
lc(l) == iOXZ+,L

iO == la(O) = _lC(O) = _iOXZ+,L

RT 1 RT 1
h0)=2- ——="2
( ) ZF —igyz+y, ZF iy

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

The i, and h(0) of the (A)-3 can be interpreted as special sthtgQ 1./ —igyz+y > 1 inthe

(A)-1. The condition where the (A)-3 comes intceeffis:

RT RT
7 < U0 ke (= 2510 kpea) OF E = Eeq

(72)
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Let us now construct polarization curves for viawaderstanding. The numerical values used as
an example are=2, ireqr, = 1 mAcm™2 and igyz+; = —100 mA cm™2. The E~log| i |
curve is shown in Fig.1(a). ThB(i) curve has asymptotes df= 1 mA cm™?(= igeqr) andi =
—100 mA cm™?(= igyz+,). The intersection of the branch curves f(i,) and E.(i.)
indicates theo. Its value can be read to approximatédlynA cm~2. The algebraic estimation using

Eq. (32) is:

. 1
A =
0 1/(1 mAcm=2)+1/(100 mA cm~—2

;= 0.99mAcm™2 ~ 1 mA cm™2 (73)
It is shown that the calculated value ¢f is almost same as the value read from the graghid
case, a direct reading @f ~ igeq (= 1 mA cm™2) is acceptable due to the small ratio of
iRedL/—loxz+ (= 1mAcm™2/4+100 mAcm™2 = 0.01) < 1. Thelogh ~ log|i| curveis
shown in Fig. 1(b). Thei(i) curve has two vertical lines &f = ireq1 and ic = igyz+y. Since
the h(i) curve approaches a horizontal line at a low ctinamge of|i| < 0.001 mA cm™2, we
can accept thak(0.001 mA cm™2) =~ h(0 mA cm™2). Visual reading of the1(0) is =~

0.013 kQ cm?. Therefore, the algebraic estimationigf using Eg. (33) is:

8.31 k] K1 mol~1)(298 K 1 _
0 ~ ( J )( a ) — 1 mA cm 2
(2)(96.5%x103A s mol~1) 0.013 kQ cm?

(74)

The close agreement between the estimations f¢r Hcand Eq.(74) firmly establish that the

graphical reading oh(i) provides an easy and simple way to obtairighe

2.3 Approximation shortcuts
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Even without the complicated procedures describesgction 2.2, we can deduce E{® from
the Nernst equation. Before the explanation ofgsh@rtcut, it is necessary to understand common
criteria underlying all the approximations. Comnabgebraic criteria for A approximations are:

(I): Eeq = E(0) is satisfied in all approximations.

(IN: The E(i), E,(iy), E.(i.) andi, expressions include none afand f (or a =

land g = 1).

(I): The h(i), h,(i,) and h.(i.) expressions also include nonewfand 8 (or a =

land g =1).
The common geometric criteria are:

(IV): The logh ~ log| i | curves show a constant horizontal ling at 0.
The common (I) provides us with some ideas: (aktheay be a simple procedure to obt(i);
(b) E(i) also satisfies the relation d&(0) = E.q, which is probably a starting formula; and &)
must have a mathematical formula with a logaritbnction. Taking these common criteria into

considerationk(i) should be expressed as:

Z+
RT In <]

N\ — 9
E(l)_E + zZF [Red]

(75)
The [0x**] and [Red] are functions @fand their variable domains are limited to:
[0x%F]¢ < [0x*F] < [0X*Jpuik (76)

[Red]e; < [Red] < [Red]pyik (77)

Equation (75) changes to the Nernst equation Witer¥*] = [0x**], x and [Red] =
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[Red]pyk:

[E)] Redi=[Redlpurc = E® + ——In W:ﬁf = Eeq (78)
[0x*+]= [0X%* |y ‘

(A)-1 approximation

The diffusion phenomena play important roles &) approximations. Th¢0x**] and
[Red] should be expressed #8x**],; and [Red].;, because the (A) approximation is under the
control of the diffusion phenomena. They are oletdiby arranging Eq.(s4) and Eq.(s5) shown in

the list of symbols. This shortcut is obtained blyisig the following simultaneous equations:

( By =E°+ T 2% In [‘;’f;] (75)

< [Red] = [Red], = k— (79)
i—i xZ+,

\[OXZJ“] = [0x*F]g = #Ox; (80)

The same Eq. (19) can be obtained through thenmipprocedure:

_ 9 [0x**] o [OXZ+]e1
E(i)=E + 2 1 Red] — = g%+ 2L [Red]
_ E(D _|_ 1 - 0XZ+L Z FKRed E(Z) + Tl kRed i_iOxZ"',L (81)
Z FRgyz+ URed,L—i ZF  kggz+ iRedL—i

(A)-2 Approximation
The (A)-2 approximation results in a diffusion pbenenon occurring in an anodic direction. A

similar procedure to that described in (A)-1 leasi$o the same expression as Eq. (40).

N 0 RT [0xZt]
E@) =E°+ In"os (75)
{ [Red] = [Red]y =%;‘d (79)
| [0x*] = [0x**]q = [0x** ]bulk—zpi’j*z'; (82)

Then,
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N = 9 4 R0 _ po o RT 10X buik
EQ=E"+ ZFln [Red] E"+ zFl [Red]e;
RT —loyez+ Fk RT k —i~ 7+
=E%+ ——In—2—L ZRed _ g0 4 |y “Red _Ox L (83)
zF  ZFRgyz+ iRedL—I zZF  kgyz+ lRedL—!

(A)-3 Approximation

Using the same procedure, we can easily obtain;

N = g9 4 BTy, o]
E(L) =E" + Zpln [Red] (75)
< [Red] = [Red] = [Red]pyp, = Rtk (84)
Z FKRed
o 7+ _ gzt
\[OX ] - [OX ]el - Z Fgyz+ (80)
Then,
N g0y BTy [0X**] g RT. [0x™He
E(i)=E"+ ZFln [Red] BT+ zF  [Red]puik
_ E@ + ﬂln i_i0xz+,L Z FKRed — E@ + ElnkR_ed l_lo_XZ+'L (85)

ZF  ZFRguz+  iRedL ZF  Kkoyz+  lRedL

We do wish to emphasize that these shortcuts aff@lternative way to express all of #(@) in

the Nernst equation. Detailed procedures of hoapfay these shortcuts to actual experiments will

be presented in section 5.1.
Here, we discuss the relationship between the Dpivioximation and the Tafel relation.

Differentiating the Tafel relation expressedmpas- a + b log|i|, the following equation is obtained:

d_17 _ d(E-Eeq) _ d_E _ .\ __ 1 dlog|i]

TR TR T O Rl (86)
When i < 0, then |i| = —i. The above equation is further arranged as:

dnp _ . . _ pdloglif _ bdln(=i) _ b1

di h(i) = b di 23 di  23i (87)

The differential expression of the Tafel relaticaidmgs to one of thie(i) expressionsSince
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value of § = 1 in the case of reversible reaction, the aboveasranged and simplified to:

h(i)i=— =

RT
il i (constant value) (88)

Comparing Eq.(88) and Eq.(53), the following ineerslation betweeh(i) andi is obtained:
h(i)i = h(0) iy, = g (constant value) (89)

Although the value ab cannot be directly obtained from experiments, s @lculate it using the
graphical reading of thg0).
2.4 Consideration of the effect of oxide film oeclodes

In the experiments it is very important to acddian the physical resistance that mainly occurs
from solution resistance, oxide film, and adsorpt&yer resistance. These can hinder the accurate
calculation of the Tafel extrapolation estimatenéts it is crucial that the physical resistances ar
calculated in a more accurate and reliable manhenweading experimental data. The DPM shows
us an easy and simple way to eliminate unneceg$gsical resistances. However, some caution
and careful attention are needed. Since physisitamce is independent of the electrochemical
phenomena, we treat the physical resistance tersnsa aseries circuit connection to the
electrochemical resistances. In experimental camditthe following expression is beneficial in the

case of reversible reaction.

. RT 1 1 l
h(i) =77 (iRed’L—i + i—iOXz+’L> t (90)
- . . RT 1 RT 1 l
The h(i) is the summation of the following three terms:- -, —— and-. The
ZF iReqL—l 2zZF I=lgxz+], K

contribution of each term, especially théc term to theh(i) shape will play a very important role

to accurately and reliably estimate. The contrdoutbecomes clear when each term is visually
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expressed. Théog h(i) ~log |i| graphs plotted with a reference valuelgk = 0 kQ cm? and
four examples ofl /x = 0.001,0.01,0.1 and 1 kQ cm? are shown in Fig.2. To be concrete, their

numerical expressions are as follows:

(" (D) =0013 (= +—) (91)

h, (i) = 0.013 (ﬁ + iioo) +0.001 (92)

~ h,(i) = 0.013 (ﬁ + Hjoo) +0.01 (93)
1 1

hy(i) = 0.013 (= + =) + 0.1 (94)
1

Lha(D) = 0.013 (= + ——) +1 (95)

The pink fine line ofdn/di = h(i) = 0.013/(—i), on which the Tafel relation is satisfied, is also
added to Fig.2 as a reference. There are somespmtweerh(i) and the Tafel relation line, but a
poor line region along the line of the Tafel raatilt is extremely difficult to find the Tafel rigom

in the case ofig,z+;, = —100 mA cm™2. To make matters worse, the physical resistaneée e
situation more difficult: the larger value éfx, the more pronounced is the change in the shape of

h(i). It will be shown in 5.2 how to actually removeetl /x from theh(i).

3. Experimental method
3.1 Specimens

We used platinum (99.98% Pt, NILACO Ltd., Japanjkigy electrode wire with a diameter of 1
mm and a length of 80 mm (exposure area 23.¢rhe platinum counter electrode was a long wire

with a diameter of 1mm and a length of 480mm (empwsirea 15 cf The counter and working



s/

ECA 01 O.Seri ~20~

electrodes were washed with acetone and dippedaintgric acid solution at298 K (room

temperature) for 300 seconds to clean their swsfatkey were subsequently rinsed thoroughly

with deionized water. All electrodes were thoroyghihsed with deionized water before the

experiments.

3.2 Test solution

Chemical-grade sulfuric acid (98%%{, Wako Pure Chemical Industries Ltd., Japan) was.us

Deionized water was used to prepare the solutiDosing the experiments the solutions were

maintained under stagnant conditions and at aneaxht@mperature. The solutions were saturated

with bubbling hydrogen gas (99.9999 %) Hluring the tests. In the hydrogen experiments, th

electrolyte was continuously bubbled with t8 maintain a saturated condition underzgkessure

of 1 atm. The pH, dissolved oxygen (DO), and tleeteical conductivity £) of the HSQ: solution

were measured. The results are listed in Tablel.

3.3 Measurements

In order to have the completely same environmentsthe independence of the experimental

operations, we used a stagnant solution and autor@tammetry technique. An electrochemical

measurement system (Hokuto Denko Inc., HZ7000,nJapas used for the cyclic voltammetry

method. As a reference electrode, an Ag/AgCl addetr(DKK-TOA Co., HS-305D, Japan) in a

saturated potassium chloride solution was usethi¢npaper, the electrode potential related to the

Ag/AgCI reference electrode (V vs. SSE) is simetifias V unless otherwise noted. The distance

between the working and reference electrodes wam tr less. The polarization curves were not
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corrected foiiR drop. For the polarization sequence, the specivanfirst kept at an open-circuit
potential for 600 seconds and then cyclically ppoéat. A scan rate of 0.1 mViswas selected.
This rate is sufficiently slow to enable quasi-dieatate conditions. Since the resulting data had a
scattering tendency due to the slow scan rate tperan the stagnant solution, a smoothing
treatment for the polarization curves was needdw @&xperimental polarization curves were

mathematically smoothed using the commercial soéwgor Pro 6.

4. Results
4.1 Polarization curves for platinum in$0; solutions

The E~log| i | curves for the bright platinum in stagnant soluiaf 0.005, 0.05 and 0.5 mol
dm H.SQ: were measured. A typical result from a 0.005 muof*dH2SQ: solution is shown in
Fig.3(a). The cyclic polarization began at thetstgrpoint (A) at approximately —0.32 V. When
bubbling gas was observed on the surface at < afibudtV, the polarization was reversed. At point
(C), thei changed from a negative to a positive value. legiobd point (C), the anodic current
reached a saturation value of (D). The second foutie points (E)-(F)-(G)-(H)-(I) showed almost
the same route as that of the first route. Theicy&k log| i | curves for 0.05 and 0.5 mol dn
H.SOQr solutions were measured and are shown in figufe$ &nd 3(c), respectively. Their
polarization curves also showed a similar tendeilacyhat of Fig.3; there is an anodic current
saturation region observed on the anodic branciieciiVe would emphasize that a noticeable

current vibration was only observed on the anodanth curve and not on the cathodic branch
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curve even in the same solution. Comparing theetbrgves, the anodic current vibration is most
clearly seen in the stronger acid solution in Kig).3
4.2 Polarization resistance curve

The regions of (B)-(C)-(D) in figures 3(a), 3(Bpd 3(c) were differentiated lbyTheirh(i) curves
were changed into a form dbgh~log |i| and shown in Fig.4(a), Fig.4(b) and Fig.4(c),
respectively. Each of thie(i) curves maintained an anodic vertical lifide relationship between
the anodic vertical line current and the pH valiee@otted in Fig.5. The anodic current values for
0.005 and 0.5 mol di H2SQ: solutions were around 0.5 mA @nThe value for the 0.05 mol
dm® H2SOs solution is 0.3~0.4 mA ¢t To approximate, the anodic vertical line is inelegent of

the solution pH

5. Discussion
5.1 Determination ob by the DPM

We already know that theer of bright platinum in an acidic solution falls inthe category of a
reversible reaction [1]-[4]. This reaction is exgsed as follows:

2H* +2e~ 2 H, 1 (96)

The limited solubility of H gas in aqueous solutions suggests thahéhes probably controlled by
the diffusion of the kK gas. The DPM tells us that all of the experimemésults shown in
Fig.3(a)~Fig.3(c) and Fig.4(a)~Fig.4(c) indicatedometrical common characteristics of the

reversible reaction. In addition, all of the resudelong to the (A) approximation, particularly the
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(A)-2 approximation due to the existence of a @rahodic vertical line. The (A)-2 approximation
tells us that the vertical line appearing on thedambranch curve exactly corresponds to the
limiting diffusion phenomena. Therefore, the naatofz, 0x**, and Red corresponds to the actual
indication of 2, H*, andH,, respectively. Figure 5 shows that the anodicicadrcurrents in the
H2SOs solutions are aroun@.5 mA cm™2. Hence, the actual relation of Eq. (52) is:
ip = iRear = im,. = 0.5mAcm™ (97)

The value ofi,=0.5 mA cm™?2 in the stagnant environment corresponds to thatsesbtained in
previously published experimental studies [1].

Other equations derived from the DPM can offerhfartsupporting evidence. Equation (53) in the
A-(2) provides a simple means for determining theApplying the Eq.(53) to an experimental data
of h(0) = 0.03kQ cm? in a 0.5 mol dnt H2SQ: solution which is less hindered by solution

resistance:

. _RT 1 _ 0.026 V

T 1 _ 0020V -2
"0 JF h0)  (2)(0.03 ka cm?) 0.43 mA cm (98)

An estimation of the physical resistance allowsaudetermine a more reliable and accurate value
of theio. The l/k value, which shows the distinctive horizontal lind=ig.4(c), is obtained using

the following equation:

l/k < lim ,h(®) ~ 0.003~0.004 kQ cm? (99)

i»—20~-100 mA cm™

The modified Eq.(98) leads to a more correct value:

. _RT 1 0.026 V

—_— = = ~ —2
o = zF h(0)-1/k  (2)(0.03 kQ cm2-0.003~0.004 kQ cm?2) 0.48~0.5mA cm (100)
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We see that the revised value agrees more clostiythe value ofiy,; ~ 0.5 mA cm™2. When

the large influence of/k on theh(0) is observed in Fig.4(a) and Fig.4(b), which veh®ady
discussed in Fig.2, further revisions are not resgs For instance, thg in Fig.4(a) is calculated

using I/k = 0.4 kQ cm?:

joRT_ 1 0.026V
0™ 2F h0)-l/k ~ (2)(0.3kQcm2-0.4 kQ cm?)

= —0.13 mA cm™2 (101)

An answer ofi, < 0 mA cm™? is utterly inconceivable. Thg, in Fig.4(b) is similarly calculated:

= 0.026V
0 ™ (2)(0.08 kQ cm2—-0.02 kQ cm?)

~ 0.22 mA cm™2 (102)
The value ofi; = 0.22 mA cm™2 is almost half the value of thig, ;. These misleading results
are due to the unintended effects of the physisistance such as the solution resistance or the
oxide film. These effects are usually not compests&tr in normal measurements.

The shortcut discussed in 2.3 gives us anotherfgpaay to determine thd,. We can do this by

simultaneously solving the following equations:

4 . RT, [H*]?
E(i)=E® + EYARTN] (103)
S [Hal = [Hele = 52— (104)
—i
[H*] = [H*pune = — % (105)
HT
Then,
EG) = E°+ 2l1n ( _ i“+'L>2 <2F"“2) = g0 4 RT ), 2 (‘iHﬁL)Z 1 (106)
2F FkH+ iHZ,L_i 2F F kH+ iHZ,L_i
To directly determiné&c(ic) from E(i), we can use Eq. (43):
Ec(ic) = [E(D] iy, 0 (107)

i=i,

Then,
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; 2
. _ 0 RT 2ky _lH+,L 1 0 RT 2 1
Ec(lc) =FE*+ ;ln Tz(kH_+> —_lc =FE°+ ;ln (ZFkHz [H+]bulk—_ic) (108)

At Eeq, E(0) = Ec(—ip):

. 2
¢ , RT . 2Kku, (Tly+r\" 1 g  RT +12 1
9+ 22 (m) = B+ (2Pl [1* R ) (109)
Then,
iO = iHZ,L (110)

The completely same equation as EQ.(97) was olotaismg the above shortcut. Hence, this is a

very advantageous and very easy technique fortljirglataining thei, from the Nernst equation.

5.2 The relationship between the Tafel extrapatatnethod and the DPM

The Tafel extrapolation method is widely used determining theo for her. When then is

plotted against the logarithm far the Tafel relation is obtained. Plottidgg|i| againstn will

give b from the slope and where they intersect. Under ideal conditions, thé&Tmethod is a

powerful tool for determining electrochemical paedens, but there are many practical

requirements that must be understood before thikadecan be used successfully. First of all, it is

essential that we know the region exactly satidfiedTafel linear relation when accurately applying

the Tafel extrapolation method. In order to obtaiore accurate data, the Tafel region must extend

over a current range of at least one order of nbagei In an hydrogen electrode reaction system,

this cannot always be achieved because of intederfom diffusion phenomena and the effects of

various physical properties. As previously mentihnthe Tafel extrapolation method is often

inapplicable for the determination iefin a reversibléier. However, the DPM offers a possible way

to determine thdo value from a reading of th&(0). Furthermore, agreement between the
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experimentaE(i) and theoreticak(i) which is obtained from the differential equatiohEg.(44)

confirms the validity of this method. The theorakig(i) curve by solving the differential equation

at the initial condition was (0, -0.22 V) is obtghas follows :

E(i) _ i {0.026 1 . i 1 . i .
fFOdE = ! (—2 =+ l/K) di = 0013 f[{ 1 di + [ 0.004 di (112)
Then,
E@i) = 022 + 0.013In-2% + 0.004 i (113)

The dark red colore#(i) curve calculated from the above equation is drawrthe experimental
curve region of (B)-(C)-(D) in Fi.g.3(c). The resid shown in Fig.6. This added confirmation that
the theoreticaE(i) curve almost clearly overlaps at 0 mA cm™2 with the experimentak(i)

curve is valid evidence of the usefulness of th&DP

6. Conclusion

We measured the polarization curves of bright pledi in three stagnant solutions of 0.005, 0.05
and 0.5 mol di? H2SQs. We developed a new method which is named therdittial polarization
method (DPM), and through which we obtained chargstics of the polarization resistance curve
by differentiating the experimental polarizatioma The DPM showed that the exchange current
density of hydrogen evolution reaction in an aaduton is equivalent to the anodic limiting
current density. This can be visually ascertaingdelading from a graph of an anodic vertical line
on the polarization resistance curve. The DPM algaws that the hydrogen evolution reaction in

the SO solutions was a reversible reaction andoitsas approximately 0.5 mA ¢ which is
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the limiting diffusion current density of hydroggas. We believe that the DPM has the potential to

become a useful analytical tool in the determimatibelectrochemical parameters.
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(List of symbols used)

Eeq is the equilibrium electrode potential (V vs. SHE)
E° is the standard electrode potential (V vs. SHE).

E? is the formal electrode potential (V vs. SHE).

E? = EO 4 BT Yot (s1)
zZF YRed

{Red},uk is the activity of the reductant in a bulk solatig).

{Red}puik = Yred [Red]puix (s2)
{Ox**},uk is the activity of the oxidant in a bulk solutifih

{0x™ }puik = Yoxz+ [0X*F Jpuik (s3)
Yred IS the activity coefficient of the Red (-).
Yoxz+ IS the activity coefficient of th®@x**(-).
[Red]y ik is the concentration of the Red in the bulk solutinol dm™3).
[0x%* ]k IS the concentration of th&x?* in the bulk solutionrfiol dm™3).

[Red], is the concentration of the Red near the electsadace (mol dm™3).

[Redla = (1= ) [Redllpu (54

lRed,L

[0x?*],; is the concentration of th@x?* near the electrode surfa¢enol dm™3).

[0x%F]e = (1 - ) [0x** Jpuik (s5)
loxz+ L
z is the number of electrons transferred (-).

F is the Faraday’s constarft & 96.5 x 103 A s mol™1).

Ris the gas constartR = 8.31 ] mol™1 K™1).
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T is the absolute temperature (K).

i(n) is the net current density as a function of thereoltage (mA cri?).

1 is the overvoltage between an applied poteBtiand theE.q (n = E — E¢q) (V).
n? is the overvoltage according to the stand&fd (n° = E — E®) (V).

iy is the exchange current dengityA cm™2).

faisa z FIRT (V7Y).

feispz FIRT (VY.

ireq,L iS the limiting diffusion current density of the &Re(mA cm™2).

ioxz+ 1, is the limiting diffusion current density of thex**, (mA cm™2).

The relations and details are shown as follows:

: Dre
IRea L = ZF 5;2 [Red]puik = zF krea[Red]puik (s6)
. Dz

loye+, = —2zF —52 Z: [0x** Jpuik = —2F koxz+ [0X*F Jpuik (s7)

Dreq is a diffusion coefficient of the Red (érs1).

Doyz+ is a diffusion coefficient of th@x?* (cn? s?).

Oreq IS the Nernst diffusion layer thickness for thelRem).
Soxz+ 1S the Nernst diffusion layer thickness for the?*(cm).
kreq is the rate constant of the Red (cit).s

koyz+ is the rate constant of th@x?* (cm s

iais the anodic branch current densfiyA cm™2).



(f
7 EcAol O.ser ~30~

ic is the cathodic branch current densfiyA cm™2).

i is the net current densitfi = i, + i) (mA cm™2).

h,(i,) is the anodic branch polarization resistanced?).

h.(i.) is the cathodic branch polarization resistan€ecfk?).

[/k is the polarization resistance for the physicsistances containing the solution resistance and
oxide film kQ cm?).

L is the thickness of the physical resistances aaintathe solution resistance and oxide film (cm).
K is the conductivity of the physical resistancestaming the solution resistance and oxide film

((kQ cm)™1).

It is necessary to confirm that the units usedhis paper belong to a coherent system of units. A
physical quantity is expressed as the productmimaerical number and a unit of dimension. For an
example, thei, is the product of(i;) and (mA cm~2). Here, the character shown @g) in
parenthesis is numerical number. For instance tequi) is verified as follows:

Physical expression:

i

2 F k9 [Red]? |, [0x7*]& i

(ip) (mA cm™?)
(2)(=) (F){A s mol~1) (k?)(cm ™) {([Red]pu1k) (mol dm™~3) }A {([0x**Jpy1i) (mol dm~3) }&

=1 (s8)

The physical expression is divided into the nunaexpression and dimension expression. They

are:

Numerical expression:
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(io)
=1
(2) (F) (k%) ([Red]puik )? ([0xZ* |puik )® (s9)

Dimension expression:

(mA cm™?)
(=) (A s mol~1)(cm s~1) (mol dm~3)#(mol dm—3)«

=1 (s10)

Equation (s10) shows that the units used in thiepsatisfy the requirements of a coherent system.
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