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ステンレス・フレキシブルチューブの健全性評価 
 

藤木 裕行*1，臺丸谷 政志*2，清水 茂夫*3 

 
Numerical Study on Characteristics of Stress in -Shaped 

Tubular Bellows 
 

概要 
 
管状ベローズは構造物のエネルギーや変位を吸収す

るための機械装置である．管状ベローズは振動，熱膨

張，さらに部品の円周・半径・軸方向変位等に対応す

るために広く使用されている．本研究では，近年開発

され実際に利用されているΩ型管状ベローズの応力特

性を数値的に検討した．ベローズは内圧やたわみ荷重

を受けており，そのときの応力状態を従来の U 型ベロ

ーズならびにトロイダル型ベローズと比較した．数値

解析にはソリッド要素を用い，二次元軸対象モデルで

弾性解析を行った．ベローズの寸法は，内径 ri=64mm，

外形 ro=77mm，ピッチ q=11.5mm，肉厚 t=0.45mmとし，

E=193GPaとν=0.3の特性を持つSUS321で作られてい

る．その結果，数値解析結果は理論結果とよく一致す

ることが示され，ベローズの中で最も重要な応力は子

午線方向応力であることがわかった．Ω型管状ベロー

ズの子午線方向応力は U 型のものよりも低いが，トロ

イダル型ベローズよりも高くなった． 
 

1  INTRODUCTION 
 
Tubular bellows is a mechanical device for absorbing 

energy or displacement in structures. It is widely used to deal 
with vibrations, thermal expansion, and the angular, radial, 
and axial displacements of components. It has been used for 
a long time in many engineering applications, therefore, 
numerous papers dealt with bellows have found in literatures. 
Many design formula of bellows can be found in ASME 
code(1). And the most comprehensive and widely accepted 
text on bellows design is the Standards of Expansion Joint 
Manufactures Association, EJMA(2). The study on 
characteristics of stress can be found in the following papers. 
Shaikh et al.(3) have performed an experimental work to 

analyze failure of an AM 350 steel bellows. It is shown that 
the exposure of bellows to a marine atmosphere during a 
storage period of 13 years is suspected to have caused the 
pitting. Browman et al.(4) have determined dynamic 
characteristics of bellows by manipulating certain 
parameters of beam finite elements of a commercial 
software. It is reported that, in comparison with the 
semi-analytical, their method has potential of considering 
axial, bending, and torsion degrees of freedom 
simultaneously, and the rest of the system, also modeled by 
beam or shell finite elements. The procedure was also 
verified by experimental results. Li (5) has investigated the 
effect of the elliptic degree of -shaped bellows toroid on its 
stresses. The calculated stress results of -shaped bellows 
with elliptic toroid correspond to experiments. The elliptic 
degree of -shaped toroid affects the magnitude of internal 
pressure-induced stress and axial deflection-induced stress. 
Especially, it produces a great effect on the pressure-induced 
stress. In order to keep the bellows strength and maintain its 
fatigue life, the toroid elliptic degree should be reduced 
greatly in manufacturing process, for example, at least lower 
than 15%. Becht(6) evaluated the EJMA stress calculations 
for unreinforced bellows. Parametric analyses were 
conducted using linier axisymmetric shell elements. The 
analyses were carried out using commercial code finite 
element analysis. The prediction of meridional bending 
stress due to internal pressure and axial displacement were 
found to be accurate. However, prediction of membrane 
stress was found to deviate significantly from the finite 
element results. 

Some recent works focused on manufacturing process of 
bellows are also found. Faraji et al.(7) reported evaluation of 
effective parameters in metal bellows forming process. The 
FEM commercial code LS-DYNA has been used and the 
results were compared with experiments. Faraji et al.(5) used 
a commercial FEM code ABAQUS Explicit to simulate 
manufacturing process of metal bellows. The objective is to 
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find the optimum design parameters. Kang et al.(6) proposed 
the forming process of various shape of tubular bellows 
using a single-step hydroforming process. The conventional 
manufacturing of metallic tubular bellows consists of 
four-step process: deep drawing, ironing, tube bulging, and 
folding. In their study a single step tube hydroforming 
combined with controlling of internal pressure and axial 
feeding was proposed. 

Those reviewed papers show that there are needs for 
rigorous analysis and forming parameters of bellows. It is 
stated that the -shaped bellows have much better ability to 
endure high internal pressure than common U-shaped 
bellows. Their reliability and economy are remarkable in 
higher internal pressure situation(5). As a note, there are two 
types of -shaped bellows are usually found, toroidal 
bellows and conventional -shaped bellows. However, in 
literatures only design equations for toroidal bellows are 
found. In this paper the characteristics of stress of 
conventional -shaped of bellows will be analysed 
numerically. The resulted stresses will be compared with 
those of conventional U-shaped bellows and toroidal 
bellows. 

 
2  METHOD 

 
Geometry of a considered bellows is depicted in Fig. 1. 

In general, it is a tubular with inside diameter of bD  and 
consists of several convolutions. In the figure, four 
convolutions are shown and the bellows pitch is q . The 
shape of the bellows convolution can be divided into 
conventional U-shaped, -shaped, and toroidal bellows. 
These shapes are depicted in Fig. 2. In the present work, 
single ply bellows are only considered. 

According to EJMA(2), there are five design equations 
usually used in bellows. They are circumferential membrane 
stress due to internal pressure (S2), meridional membrane 
stress due to internal pressure (S3), meridional bending stress 
due to internal pressure (S4), meridional membrane stress 
due to deflection (S5), and meridional bending stress due to 
deflection (S6). These design equations will be used in this 
paper.  

 
2.1 Design equations for U-shaped bellows 

The bellows circumferential stress due to internal 
pressure ( P ) is calculated based on equilibrium 
considerations. The equation for bellows circumferential 
membrane stress is:  












qwt

PDS m

/2571.0
1

22   (1) 

where mD is mean diameter of bellows convolutions. It is 
defined as twDD bm  . 

The bellows meridional membrane stress due to internal 
pressure is calculated based on the component of pressure in 
axial direction acting on the convolution divided by the 
metal area of root and crown. It is calculated by the 
following equation: 

t
PwS
23      (2) 

The bellows meridional bending stress due to internal 
pressure ( 4S ) is calculated by: 

Fig. 1  Geometry of bellows 
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Fig. 2 Convolution shape of bellows 

-41-



 
 

pCt
wPS

2

4 2






     (3) 

The bellows meridional membrane stress ( 5S ) and 
meridional bending stress ( 6S ) due to deflection (e ) are 
calculated by the following equations, respectively: 

f
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     (5) 

where pC , fC , and dC  are the factors to calculate 4S , 

5S and 6S , respectively. They are provided as diagram and 
table in EJMA(2). And bE is Modulus of Elasticity of the 
bellows.  
 
2.2 Design equations for toroidal bellows  

For toroidal bellows, meridional membrane stress due 
to pressure is calculated by: 













rD
rD

t
rPS

m

m

23    (6) 

Here r  is mean radius of toroidal bellows convolution and 

mD is the median diameter of bellows convolution.  
Membrane stress of the bellows due to deflection is 

calculated by: 

13

2

5 5.34
B

r
etE

S b     (7) 

The bellows meridional bending due to deflection is 
calculated by: 

226 3.34
B

r
etE

S b     (8) 

1B  and 2B are factors provided in appendix I of EJMA(2). 
 
2.3 Numerical simulation  

In this study, ANSYS code is used to carry out 
numerical simulation. Structural solid element 8-node 
Plane183 is employed. Elastic analyses were carried out on a 
full convolution of the bellows with axysimmetric model. 
The computational domain is divided into 10 elements in 
thickness and 500 elements in length. The proper number 
elements test was performed, where 800 elements in length 
was tested. The results showed essentially the same. 
Therefore, the model with elements 10500 is used in all 
analyses. 

In the present analyses, a conventional -shaped 
bellows available in market with nominal diameter 125A is 
picked to be analyzed (9). The bellows inside diameter is 128 
mm with outside diameter of 154 mm, thickness of 0.45 mm, 
pitch of 11.5 mm, and height is 12.5 mm. The bellows 
material is made of stainless steel SUS 321 with the modulus 
of elasticity of 193 GPa and poisson's ratio of 0.3. The model 
of -shaped bellows and its constraints are presented in Fig. 
3. In the present work, the internal pressure ( iP ) and axial 
deflection are only considered. In Fig. 3, the constraints due 
to internal pressure are only presented. For toroidal bellows 
the radius of the toroidal convolution is assumed to be r
5.5 mm. 

 
3  RESULTS AND DISCUSSIONS 

 
3.1 Numerical validations 

In order to validate the present numerical method a 
comparison test is performed. Since, solid element is used, 
the stress resulted from FEM is a local stress. However, the 
design equations result in averaged stress. Thus, the FEM 
stresses shown in comparison are the linearized one. The 
meridional membrane stress and meridional bending stress 
due to internal pressure of U-shaped bellows and toroidal 
bellows were calculated. The applied internal pressures are 1 
MPa, 1.5 MPa, and 2 MPa, respectively. The results are 
presented in Table 1. In the table, the results from analytical 
solutions by EJMA equations are also presented. The 
comparisons show a good agreement. 

The meridional membrane stress and meridional 
Fig. 3  A convolution computational model and its 

constrains 
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bending stress due to axial deflections are presented in Table 

2. The applied axial deflections are 0.5 mm, 0.75 mm, and 1 

mm, respectively. In the table, the results from analytical 

solution by EJMA equations are also presented. The 

comparisons for U-shaped bellows show a good agreement. 

However, for toroidal bellows the analytical solutions show 

a significant discrepancy. The discrepancy caused by the 

factors 1B  and 2B  provided by EJMA(2). Thus, further  

Type of 
Bellows Stress Axial Deflection [mm]

0.5 0.75 1.

U- 
shaped 
bellows 

5S  
(Eq. (4)) 3.252 4.877 6.503 

5S  
(FEM) 3.389 5.169 7.02 

Ratio 1.042 1.059 1.079
6S  

(Eq. (5)) 265.66 398.49 531.32 

6S  
(FEM) 239.49 357.85 476.05 

Ratio 0.901 0.898 0.896

Toroidal 
bellows 

5S  
(Eq. (7)) 7.239 10.858 14.477 

5S  
(FEM) 3.686 5.481 7.254 

Ratio 0.509 0.505 0.501
6S  

(Eq. (8)) 250.97 376.45 501.94 

6S  
(FEM) 172.65 254.41 333.71 

Ratio 0.688 0.677 0.665
 

study need to be performed to evaluate those factors. This is 
beyond the objective of the present paper. 

In general, the present numerical method shows good 
agreement with results by EJMA equations, except for the 
toroidal bellows. Therefore, the method can be used to 
evaluate the characteristics of stress distributions in 
-shaped bellows. 

 
3.2 Comparison of design stresses of all bellows 

The present numerical method is now used to evaluate 
characteristics of stress for all bellows. The first comparison 
is meridional membrane stress due to internal pressure. The 
applied internal pressures are 1 MPa, 1.5 MPa, and 2 MPa, 
respectively. The results are presented in Fig. 4. The figure 
shows that meridional membrane stress in -shaped bellows 

Type of 
Bellows Stress Internal Pressure [MPa]

1 1.5 2

U- 
shaped 
bellows 

3S  
(Eq. (2)) 13.889 20.833 27.778

3S  
(FEM) 13.032 19.572 26.137

Ratio 0.938 0.939 0.94
4S  

(Eq.(3)) 251.00 376.50 502.01

4S  
(FEM) 241.91 360.33 477.7 

Ratio 0.964 0.957 0.952

Toroidal 
bellows 

3S  
(Eq.(6)) 12.733 19.099 25.466

3S  
(FEM) 13.596 20.366 27.128
Ratio 1.068 1.066 1.065

 

Fig. 4  Meridional membrane stresses due to internal 
pressure 

Fig. 5  Meridional bending stresses due to internal 
pressure 

Table 2  Analytic and FEM stresses due to deflection

Table 1  Analytic and FEM stresses due to internal 
pressure 
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is lower than in toroidal bellows, but same value as 
U-shaped bellows. 

The comparisons of meridional bending stress of all 
considered bellows due to internal pressure are presented in 
Fig. 5. The figure shows that meridional bending stresses are 
higher than meridional membrane stresses. This suggests 
that meridional bending stress is more destructive than 
meridional membrane stress. The meridional bending stress 
of -shaped bellows is lower than U-shaped bellows, but it 
is higher than toroidal bellows.  

The comparisons of meridional membrane stress of all 
considered bellows due to axial deflection are presented in 
Fig. 6. The applied axial deflections are 0.5 mm, 0.75 mm, 
and 1 mm, respectively. The figure shows that meridional 
membrane stress in -shaped bellows is lower than in 
toroidal and U-shaped bellows.  

 

 

 

 

The comparisons of meridional bending stress of all 
bellows due to axial deflection are presented in Fig. 7. Here, 
the meridional bending stresses are higher than meridional 
membrane stresses. This also suggests that meridional 
bending stress is more destructive than meridional 
membrane stress. The figure shows that meridional bending 
stress of -shaped bellows is lower than U-shaped bellows, 
but it is higher than toroidal bellows.  

Those comparisons reveal that the most destructive 
stress in bellows due to internal pressure and axial deflection 
is meridional bending stress. Furthermore, for both internal 
pressure and axial deflections the meridional bending stress 
of -shaped bellows is lower than U-shaped bellows, but it 
is higher than toroidal bellows. Thus, -shaped bellows is 
expected to have longer operational life than U-shaped 
bellows. 
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Fig. 9  Axial stress distribution on -shaped bellows 
due to internal pressure of 2 MPa 

Fig 8  Axial stress distribution on U-shaped bellows due 
to internal pressure of 2 MPa 

Fig. 7  Meridional bending stresses due to axial 
deflection 

Fig. 6  Meridional membrane stresses due to axial 
deflection 
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3.3 Stress distributions due to internal pressure 

The axial stress distributions in the bellows due to 
internal pressure of 2 MPa for U-shaped, -shaped, and 
toroidal bellows are presented in Fig. 8, Fig. 9, and Fig. 10, 
respectively. It can be said that U-shaped and -shaped 
bellows show the similar distribution but they are different 
from toroidal bellows. In the U-shaped and -shaped 
bellows, the maximum axial stress takes place on the crown 
part. In the toroidal one, it takes places on the root part. 
3.4 Stress distributions due to axial deflection 

The axial stress distributions in the bellows due to axial 
deflection of 1 mm for U-shaped, -shaped, and toroidal 
bellows are presented in Fig. 11, Fig. 12, and Fig. 13, 
respectively. Those figures show that there is no significant 
different from all bellows. 

 
4  CONCLUSSIONS 

 
The numerical study on characteristics of stress in 

-shaped bellows has been performed. The design stresses 
and distributions are compared with U-shaped and toroidal 
bellows. The main conclusion is that the most destructive 
stress in bellows due to internal pressure and axial deflection 
is meridional bending stress. Furthermore, for both internal 
pressure and axial deflections the meridional bending stress 
of -shaped bellows is lower than U-shaped bellows, but it 
is higher than toroidal bellows. Thus, -shaped bellows is 
expected to have longer operational life in comparison with 
U-shaped bellows. 

 

 
Fig. 11  Axial Stress distribution on U-shaped bellows due 

to axial deflection of 1 mm 
 

 

Fig. 12  Axial Stress distribution on -shaped bellows due 
to axial deflection of 1 mm 

 

 

Fig. 13  Axial Stress distribution on toroidal bellows due to 
axial deflection of 1 mm 
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Fig. 10  Axial stress distribution on toroidal bellows due 
to internal pressure of 2 MPa 
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