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1 Introduction

1.1 Background

Sequential pattern mining is a promising and effective data mining method for finding

frequent patterns in large-scale sequential data. After Agrawal et al. [1] constructed the

foundations of sequential pattern mining in 1995, various new effective algorithms have

been developed [2, 3] and applied in a wide range of fields such as web log analysis [4],

market basket analysis [5], behavior analysis [6], process analysis [7], and DNA sequence

analysis [8]. Research into sequential pattern mining can be broadly classified into two

types: approaches that target single sequential data and those that target multiple sequen-

tial data. The former aims to find repeating and frequently occurring patterns (frequent

patterns or episodes) in sequential data [9–13]. The latter focuses on detecting same or

similar subsequences among sequential data [14–16].

1.2 Previous Work

Recently, Miura and Okada [17] proposed a method for mining a linkage pattern that

is a set of patterns that repeats across multiple sequential data. In their method, linkage

patterns were extracted using an interval graph representation of frequent patterns in the

sequential data. Note that linkage pattern mining does not assume similarity or correlation

among different sequential data patterns. Figure.1.1 shows an example of a linkage pattern

A, B, C that appears across three sets of sequential data. As we can see, even if patterns

that occur frequently in the respective sequential data do not show similarity to each other,

the set of those patterns is extracted as a linkage pattern if it appears continually within

the same period. Miura ’s method demonstrated good performance on sequential data

without noise/fluctuations [17]; however, they suggested that noise/fluctuations within

the sequential data can significantly affect the accuracy of extracting linkage patterns.
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Figure. 1.1: Linkage pattern repeating across three sequential data

1.3 Objective

1.3.1 Linkage Pattern Mining in Multiple Sequential Data

This study develops a noise-robust linkage pattern mining method by improving Miura’

s method. In our method, closed itemset mining is employed to exclude pseudo patterns

generated by noise/fluctuations and obtain only frequent and maximal patterns among

different interval graphs. In this study, comparative performance results between the

proposed method and Miura’s method (hereafter referred to as“ the previous method”)

are shown using artificial sequential datasets.

Definition of Linkage Pattern

Let S be a single sequential data. freq(S,α) is the number of occurrences of a sub-

sequence α in S. For a pre-defined constant value θ, α is a frequent pattern in S

if freq(S,α) ≥ θ. Suppose that multiple sequential data are given as input, and that

frequent patterns have already been extracted from those sequential data. If frequent

patterns occurring over those sequential data in a certain time frame satisfy the following

two conditions, the set of those frequent patterns is called a linkage pattern.

1) For all the frequent patterns, there exist one or more frequent patterns whose oc-

curring time zones overlap partially or entirely with each other.

2) A set of the frequent patterns that satisfy condition 1) occurs x or more times along

the sequential data.
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1.3.2 Application to ECG

ECG (electrocardiogram) is used for applying real data to proposed method. However, it

is possible to lose important information for detection of abnormal waveform of ECG in the

step of discretization of proposed method. Because, amplitude of wave on ECG changing

drastically. Because of above reason, we proposed a new discretization for application to

ECG. In the experiment, the new method is evaluated for extraction accuracy using real

healthy/disease ECG. Furthermore, comparative performance results between the new

method and proposed method are shown for practicability of new method.

1.4 Paper Organization

The remainder of this paper is organized as follows. Chapter1 introduces related work

and explains objective of this study. Chapter 2 explains previous and proposed method

and presents the experimental results using artificial data. Chapter 3 explains application

to ECG and presents the experimental results using disease ECG data.
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2 Linkage Pattern Mining in Multiple

Sequential Data

Figure.2.1 shows the procedure of the proposed method. Figure.2.1a, 2.1b, and 2.1d are

the steps implemented in the previous method: extracting and labeling frequent patterns

from each sequence (Figure.2.1a), generating interval graphs depending on overlapping

labels on the time axis (Figure.2.1b), and outputting the linkage pattern (Figure.2.1d).

In this method, a new step (Figure.2.1c) is introduced, i.e., closed itemset mining from

the generated interval graphs. This resolves the problem by which linkage patterns are

contaminated by noise data, as observed in the previous method. These steps are explained

in detail below.

Figure. 2.1: Procedure of the proposed method
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2.1 Preprocessing

First, normalization and discretization are executed on all sequential data in a prepro-

cessing.

2.1.1 Normalization

In normalization, sequential data are converted to a scale from 0 to 1. Normalization is

calculated as follows. In this equation, Xt means the value of time point. max and min

mean values of maximum and minimum of sequence.

Normalize(Xt) =
Xt −min

max−min
(2.1)

2.1.2 Discretization

In the discretization, the range of normalized data (0–1) is divided at the D stages, and

a discrete value from 0 to D − 1 is allocated to each data. In this study, D was set to 50

fixed value.

2.2 Frequent Pattern Mining

2.2.1 Mannila’s Algorithm

Next, repeatedly occurring frequent patterns are extracted from the sequential data

using Mannila ’s algorithm [13]. This algorithm uses a window width w and a minimum

number of occurrences θ as input parameters, where w and θ are natural numbers ≥ 2.

Window width w is the length of the slice used to scan sequential data. The minimum

number of occurrences θ is the minimum number of frequent patterns to be extracted.

Mannila ’s algorithm finds frequent patterns that satisfy θ for a specified w.

2.2.2 Labeling

The labeling process applies the same label to the same frequent pattern. This process

is performed after excluding frequent patterns with length less than w/2. When multiple

frequent patterns occur within the same periods in the same sequential data, labeling is

performed for the maximum length frequent pattern.
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Figure. 2.2: Frequent pattern extraction and labeling

2.3 Interval Graph Generation

2.3.1 Definition of Interval Graph

In linkage pattern mining, we use the concept of interval graph. Figure.2.3 shows an

example of interval graph. Interval graph is a subclass of chordal graph and is graph for

representing interval overlaps. A node indicates an interval, and an edge means an overlap

between two intervals. Figure.2.4 shows a step of interval graph generation. Here, a labeled

frequent pattern is referred to as a label. In this step, interval graphs are generated from

the interval representation of each label. An interval graph is obtained by associating each

label with a node and an overlap of any two labels on the time axis between sequential

data with an edge [18–20]. In other words, an interval graph is a set of frequent patterns

that occur in a linked manner in the same period between different sequential data. The

previous method outputs the interval graph with the highest frequency as a linkage pattern.

However, frequent patterns that are accidentally constructed by noise (pseudo patterns)

cause the following problems. If different pseudo pattern labels are attached to the same

interval graphs, these interval graphs are considered completely different despite having

an identical linkage pattern. This reduces the accuracy of linkage pattern mining.
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Figure. 2.3: Interval graph representation

Figure. 2.4: Interval graph generation
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2.4 Closed Itemset Mining

2.4.1 Definition of Closed Itemset

Let I = {1, 2, …, n} be a set of items. A transaction database on I is a set T =

{t1, t2, ..., tm} such that each ti is included in I. Each ti is called a transaction. A set P ⊆

Iis called an itemset. A transaction including P is called an occurrence of P. The set of

occurrences of P is expressed as T(P). The size of a set of occurrences for P is referred to

as the frequency of P.

An itemset P is called a closed itemset if no other itemset Q satisfies T(P) = T(Q), P

⊆ Q. For a given minimum support constant (hereafter minsup), P is frequent if |T (P )| ≥
minsup. A frequent and closed itemset is referred to as a frequent closed itemset.

2.4.2 Closed Itemset Extraction

Pseudo patterns tend to occur randomly on the time axis; thus, the probability that the

same pseudo pattern will be included in multiple equivalent interval graphs is extremely

low. Therefore, it is expected that pseudo patterns can be excluded by extracting label

sets that occur commonly in multiple interval graphs. The proposed method extracts clear

linkage pattern without the pseudo patterns by closed itemset mining on the obtained

interval graphs.

Figure.2.5c shows the process of excluding pseudo patterns from interval graphs. Each

interval graph is considered a transaction, and each node in the interval graph is consid-

ered an item. By applying closed itemset mining to this transaction database, we can

extract the maximal node sets (closed itemsets) that are shared in minsup or more inter-

val graphs. Finally, the closed itemset with the highest frequency is output as the linkage

pattern. Thus, it is possible to extract linkage patterns with greater accuracy as randomly

constructed pseudo patterns can be excluded. Figure.2.5c illustrates an example of how

pseudo patterns nA, nB, and nC are excluded; only the authentic linkage patterns {A, B,
C} are extracted.

In this study, we use the fast and exhaustive linear closed itemset miner (LCM) algorithm

[21].
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Figure. 2.5: Cloased itemset extraction

2.5 Experiment

2.5.1 Evaluation of Linkage Patten Mining

The proposed method was evaluated for extraction accuracy and computational time

using artificially created sequential datasets.

Artificial Datasets

Each artificial dataset comprised three sequential data. The sequential data were gener-

ated by inserting 10 linkage patterns (embedded linkage patterns) into random sequential

data created using uniform random numbers. For this experiment, we created five non-

noise artificial datasets (Dataset1-Dataset5) that included no noise within the embedded

linkage patterns. Figure.2.6 shows a section of each artificial dataset. The formats of

linkage patterns embedded in each dataset are as follows. Dataset1 is an artificial dataset

wherein equal length frequent patterns were embedded with the same start time across the

three sequential data (Figure.2.6a). Dataset2 is an artificial dataset wherein equal length

frequent patterns were embedded with different start times across the three sequential

data (Figure.2.6b). Dataset3 is an artificial dataset wherein different length frequent pat-

terns for each of the three sequential data were embedded at the same time (Figure.2.6c).

Dataset4 is an artificial dataset wherein frequent patterns with different lengths for each

of the three sequential data were embedded at different times (Figure.2.6d). Dataset5 is

an artificial dataset wherein one or two types of frequent patterns were embedded with dif-

ferent lengths and different start times for each of the three sequential data (Figure.2.6e).

In addition, five artificial datasets (Dataset1 noiseDataset5 noise) that included noise

in the embedded linkage patterns were created by adding fluctuations to each time point

11



in the linkage patterns. The fluctuations were generated using normal random numbers

(SD = 0.01).

Figure. 2.6: Artificial datasets
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Parameter Setting

For frequent pattern extraction, the minimum number of occurrences θ was fixed at 5,

and the window widths w were set to natural numbers ≥ 3. For closed itemset mining,

minsup were set to natural numbers ≥ 2.

Extraction Accuracy of Linkage Patterns

The extraction accuracies of the embedded linkage patterns for the previous and pro-

posed methods were compared using the above 10 artificial datasets. Precision, recall,

and F -measure were used as evaluation indexes. These indexes were calculated as follows.

Precision = CDP/DDP

Recall = CDP/EDP

F -measure = 2 ∗ Precision ∗Recall/Precision+Recall

(2.2)

Here, CDP is the number of data points in the correctly detected areas of the embedded

linkage patterns, DDP is the number of data points in the areas of the embedded linkage

patterns detected by the method, and EDP is the number of data points in the embedded

linkage patterns.

Evaluation of Computational Time

This experiment was conducted using the five noisy datasets (Dataset1 noise - Dataset5 noise).

The window width w significantly affected the computational time required to find

frequent patterns [13]. First, we evaluated the computational time for the range of w

described in Section 2.2.

In addition, sequential data length may also largely influence the computational time.

Therefore, we increased the length by linking each dataset together and measured com-

putational time when modifying up to 10,000 points in increments of 1,000.

2.5.2 Grid Search

Here, we describe the grid search method for the three parameters, i.e., w, θ, and

minsup. The grid search is performed using five artificially created sequential noise

datasets(Dataset1 noise - Dataset5 noise). The goal of this experiment was to find good

parameter values that lead to high extraction accuracy.
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Parameter Setting

For frequent pattern extraction, the minimum number of occurrences θ was set to

natural numbers ≥ 5 in increments of 5, and the window width w values were set to

natural numbers ≥ 3 in increments of 1. For closed itemset mining, minsup values were

set to natural numbers ≥ 3 in increments of 2.

2.6 Results and Discussion

2.6.1 Evaluation of Linkage Patten Mining

Extraction Accuracy for Non-noise Datasets

Figures.2.7 and 2.8 are graphs of precision, recall, and F -measure in different w when

the previous and proposed methods were applied to the five non-noise datasets. The

minsup was fixed at 5. In these graphs, the results in the range 3 ≤ w ≤ 9 are shown

because no frequent patterns were extracted in w ≥ 10. As we can see, the previous

method shows unstable scores for different w values. This is caused by the pseudo patterns

randomly formed by noise added to the embedded linkage patterns. In contrast, the

proposed method demonstrates 100% extraction accuracy for w > 4. This means that the

noises included in the interval graphs were suitably excluded by closed itemset mining.

14



Figure. 2.7: Extraction accuracies in different w for the datasets without noise by the

previous method

Figure. 2.8: Extraction accuracies in different w for the datasets without noise by the

proposed method
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Extraction Accuracy for Noise Datasets

This experiment was conducted using parameters (minsup = 5, 3 ≤ w ≤ 9) same as

those in the previous section. In the previous method, the accuracy of extracting linkage

patterns was 0% for all datasets because only one interval graph was generated. This is

because pseudo patterns exist throughout the sequential data. Thus, only the results of

the proposed method are shown in this section. Figure.2.9 shows graphs of precision,

recall, and F -measure in different w for the five datasets with noise (Dataset1 noise -

Dataset5 noise). The precision values for all datasets are ≥ 80% for all w values. In

particular, when w ≥ 5, the embedded linkage patterns are effectively extracted from all

datasets because pseudo patterns are suitably excluded by closed itemset mining. Note

that recall tends to decrease as w increases. In particular, when w ≥ 5, recall decreases

drastically for all datasets because the number of frequent patterns extracted from each

sequence decreases drastically. Therefore, the obtained interval graphs are also reduced

drastically. Note that F -measure decreases significantly with the drastic decline of recall

values.

In addition, we investigated the impact of minsup on the extraction accuracy. Fig-

ure.2.10 shows graphs of precision, recall, and F -measure in different minsups. In

this experiment, the w was fixed at 5. The precision tends to increase with increasing

minsup in all the datasets. In contrast, the recall decreases dramatically with increasing

minsup. In particular, a rapid decrease in the scores is observed in minsup ≥ 5. The

F -measure is a similar tendency to the recall and especially shows high scores in the

range of 2 ≤ minsup ≤ 4.

From the above results, we can see that w and minsup should be fixed at a smaller

value to obtain higher extraction accuracy.
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Figure. 2.9: Extraction accuracies in different w for the datasets with noise by the proposed

method

Figure. 2.10: Extraction accuracies in different minsup for the datasets with noise by the

proposed method
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Impact of Window Width on Computational Time

Figure.2.11 shows graphs of computational times when w was varied. In this experiment,

minsup was set to 5. In addition to the total computational time required for all steps in

the proposed method, these graphs show the computational time for Steps (a), (b), and (c).

Note that Step (a) is frequent pattern extraction and labeling, Step (b) is interval graph

generation, and Step (c) is linkage pattern extraction based on closed itemset mining. As

we can see, the total computational time is strongly affected by the computational time of

Step (a) and increases drastically with increasing w because Step (a) must check labels in

a combinatorial manner to find frequent patterns. On the other hand, the computational

times of Steps (b) and (c) are considerably shorter than Step (a) and relatively stable

against the increased w. This is due to the following reasons. First, Step (c) only detects

the overlapped intervals along the time axis and therefore can be executed in linear time

for the sequential data length. Furthermore, with regard to Step (c), besides the closed

itemset enumeration algorithm LCM being exceptionally fast, the size of the transaction

database for interval graphs was small (only tens to hundreds of transactions). Thus,

computational time is highly dependent on the time required to extract frequent patterns;

however, it is possible to execute within a realistic time by reducing the w value.

18



Figure. 2.11: Computational times in different w

Impact of Sequential Data Length on Computational Time

Figure.2.12 shows graphs of computational time for each step, including the total time

when sequential data length was changed. In this experiment, w and minsup were set

to 5. As we can see, Steps (a) and (b) increase linearly with increased sequential data

length. However, Step (a) requires more computational time than Step (b) owing to

the combinatorial search in frequent pattern extraction. For Step (c), the computational

times are considerably less than Steps (a) and (b) although there are major fluctuations

related to sequential data length. This is because the size of the transaction database

changed depending on the number of extracted interval graphs. From the above, we can

see that the computational time of the proposed method increases linearly with increased

sequential data length. However, the computational time required to extract frequent

patterns constitutes a large proportion of the proposed method ’s total computational

time. Increasing the speed of the frequent pattern mining algorithm will certainly become

an issue when applying this method to large-scale real data.
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Figure. 2.12: Computational times in sequential data of different lengths

2.6.2 Grid Search

Figures.2.13, 2.14, and 2.15 show the grid search results of precision, recall, and F -

measure for the five datasets(Dataset1 noise - Dataset5 noise), respectively. The two-

dimensional graphs in these figures are the scores for different combinations of the two

parameters, w and θ, and the respective minsup values are shown. In these figures, for

w > 9 and θ > 30, the results are not shown because it required too much computational

time (several hours or days) for each combination of parameters. In addition, the results

for minsup > 11 are not shown because no frequent pattern was extracted.

As described in Section 2.4, minsup is the minimum value (a threshold) of the number

of interval graphs (transactions) having a set of common labels (nodes). Figures.2.13,

2.14, and 2.15 show that the extraction accuracy with large minsup indicates unstable

and low scores for all the indexes. Large minsup results in linkage patterns composed of a

small set of nodes, i.e., it increases the possibility of extracting false linkage patterns. This

causes decreased precision. Furthermore, large minsup also decreases recall because only

high-frequent linkage patterns are targeted. In contrast, extraction accuracy with small

minsup shows higher score regardless of the combinations of w and θ. In many cases,

small minsup yields false or noise-contaminated linkage patterns. However, the proposed

20



method can remove such pseudo patterns adequately using the closed itemset mining

process and enables high and stable accuracy. From the above, we discuss only the results

for small minsup (i.e., 3, 4, and 5).

From the results of precision, we consider that w should be set to smaller values to obtain

high precision. This is based on the fact that large w does not show clear superiority

compared to small w, in addition to requiring significant computational time. For θ,

extremely small or large values should be avoided due to unstable performance. θ values

that are too small yield many false linkage patterns composed of low-frequency patterns,

and overly large θ makes it difficult to detect frequent patterns composing true linkage

patterns. Thus, we consider that an adequate θ value should be selected by trial and

error in order from smaller to larger values.

Recall shows relatively clear results compared to that of precision. It shows high scores

when both w and θ are small. This means that the frequent pattern mining process

focuses on searching for short length and low-frequency patterns. In other words, we can

obtain many possible frequent patterns that can be components of a linkage pattern, i.e.,

recall increases. However, when w and θ are large values, recall decreases because the

number of extracted frequent patterns decreases. Thus, both w and θ should be set to

smaller values to obtain higher recall.

F -measure is the harmonic mean of precision and recall. From these graphs, we can

see that smaller w and θ should be used to obtain high extraction accuracy.
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Figure. 2.13: Grid search results for precision
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Figure. 2.14: Grid search results for recall
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Figure. 2.15: Grid search results for F -measure
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2.7 Conclusion

2.7.1 Evaluation of Linkage Pattern Mining

We proposed a new noise-robust linkage pattern mining method based on closed itemset

mining. In the proposed method, closed itemset mining is employed to exclude pseudo

patterns generated by noise/fluctuations and obtain only frequent and maximal patterns

among different interval graphs. In our first experiment, we compared the performance

of the previous and proposed methods using artificial datasets. As a result, it was shown

that the proposed method can appropriately detect linkage patterns with noise that were

not detected by the previous method. Furthermore, we found that w and minsup should

be fixed at a smaller value to obtain higher extraction accuracy. In our second experiment,

we measured computational time using five datasets with noise when the window width w

and sequential data length were varied. As a result, we observed that computational time

increases as w and sequential data length increase. Furthermore, in the proposed method,

the impact of introducing closed itemset mining on computational time is substantially

small.

In future, we will address increasing the speed of the frequent pattern mining algo-

rithm. In addition, we will apply the method to large-scale real sequential data that

includes noise/fluctuations, such as vital data and crustal movement data. The practical

applicability of the proposed method will also be evaluated in terms of extraction accuracy

and computational time

2.7.2 Grid Search

Our linkage pattern mining method requires three parameters, w, θ, and minsup. In

our previous study [18], we used empirically-selected parameters. However, the extraction

accuracy of linkage patterns is significantly affected by the combination of these parame-

ters.

In this study, we conducted gird search experiments to investigate better combinations

of the three parameters to provide high extraction accuracy. In the experiments, three

indexes, i.e., precision, recall, and F -measure, were evaluated in different combinations of

the parameters using five artificial sequential datasets. As a result, the following findings

were obtained.

1) minsup should be set to a small value to obtain stable and high extraction accuracy.

This is a common finding among the three indexes.
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2) w should be set to a small value to obtain high precision. However, θ needs to be

determined in order from the smallest value (minsup = 3).

3) Both w and θ should be set to small values to obtain high recall.

4) F -measure is the harmonic mean of precision and recall. Both w and θ should

be set to small values to obtain high F -measure.

In the future, we will address increasing the speed of the frequent pattern mining al-

gorithm and apply the method to large-scale real sequential data with noise/fluctuations,

such as vital data and crustal movement data.
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3 Application to ECG

3.1 ECG Data

ECG(Electrocardiography) is a tracing representing the heart’s electrical action derived

by amplification of the minutely small electrical impulses normally generated by the heart

[29]. In other word, ECG is a recording of the electrical activity of the heart over a period

of time using electrodes placed on the skin. ECG is composed of twelve sequences that are

called electrodesleads. Electrodes-leads are measured from twelve specific sites of the body.

Electrodes-leads consist of twelve sequences:standard limb leads-I, II, III, augmented limb

leads- aVr, aVl, and aVf , and precordial or chest leads-V1 to V6. Typically, an ECG in

each sequence consists of three major components: the P wave, which indicates atrial

depolarization, the QRS complexventricular depolarization, and the T waveventricular

repolarization [25]. Figure.3.1 shows the composition of ECG.

Figure. 3.1: Artificial ECG data
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3.1.1 Healthy ECG Data

In this study, we use healthy ECG data for comparing with disease ECG data. Healthy

data is composed of twelve sequences (I, II, III,a Vr,a Vl,a Vf , and V1 to V6). The length

of each sequence was set to 10000. This means that the number of data points is 10000.

Figure.3.2 shows the twelve sequences of healthy ECG data. Figure.3.3 – 3.14 show the

each sequence of healthy ECG data.
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Figure. 3.2: Healthy data (Sequence 1 - 12)
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Figure. 3.3: Healthy data (Sequence 1)

Figure. 3.4: Healthy data (Sequence 2)
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Figure. 3.5: Healthy data (Sequence 3)

Figure. 3.6: Healthy data (Sequence 4)
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Figure. 3.7: Healthy data (Sequence 5)

Figure. 3.8: Healthy data (Sequence 6)
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Figure. 3.9: Healthy data (Sequence 7)

Figure. 3.10: Healthy data (Sequence 8)
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Figure. 3.11: Healthy data (Sequence 9)

Figure. 3.12: Healthy data (Sequence 10)

34



Figure. 3.13: Healthy data (Sequence 11)

Figure. 3.14: Healthy data (Sequence 12)
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3.1.2 Disease Data

In this study, a disease ECG data was used for detecting abnormal waveform using

linkage pattern mining method. Information concerning patients are shown in detail below.

• age: 44

• sex: female

• ECG date: 13/05/1991

• Infarction date (acute): 12/05/1991

• Reason for admission: Myocardial infarction

• Acute infarction (localization): inferior

• Former infarction (localization): no

• Additional diagnoses: no

• Smoker: yes

• Number of coronary vessels involved: 1

As described in healthy ECG data, disease data is composed of twelve sequences (I,

II, III, aVr, aVl, aVf, and V1 to V6). The length of each sequence was set to 10000.

Figure.3.15 shows the healthy ECG data. Figure.3.16 – 3.27 show the each sequence of

disease ECG data.

Preceding studies using interval between QRS wave and R wave by feature quantity

[26–28]. However, some disease ECG indicating features between P wave and T wave. To

detect features of heart disease, it is necessary to extract features these waves [23].
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Figure. 3.15: Disease data (Sequence 1 - 12)
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Figure. 3.16: Disease data (Sequence 1)

Figure. 3.17: Disease data (Sequence 2)
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Figure. 3.18: Disease data (Sequence 3)

Figure. 3.19: Disease data (Sequence 4)

39



Figure. 3.20: Disease data (Sequence 5)

Figure. 3.21: Disease data (Sequence 6)
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Figure. 3.22: Disease data (Sequence 7)

Figure. 3.23: Disease data (Sequence 8)
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Figure. 3.24: Disease data (Sequence 9)

Figure. 3.25: Disease data (Sequence 10)
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Figure. 3.26: Disease data (Sequence 11)

Figure. 3.27: Disease data (Sequence 12)
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3.2 A New Discretization Method for ECG

We proposed a new discretization method for application to ECG data. In this step,

only disease ECG data is used.

3.2.1 Normalization

Remove Trends

Normalization is executed on all sequential data in a preprocessing. After normalization,

sequential data are converted scale from 0 to 1. In the new discretization, normalization

method is same as proposed method. However, it is necessary to remove trends in ECG

before normalization. This is because ECG indicates swinging heartbeats. Thus, it is

difficult to extract specific pattern that have features from ECG data without remove

trends. Because of above reason, removal trends is executed before the normalization.

Figure.3.28 – 3.39 show normalized disease data after removal trends. In these figure,

horizon tall axis is the length of data and vertical axis is the normalization scale.

Figure. 3.28: Normalized disease data (Sequence 1)
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Figure. 3.29: Normalized disease data (Sequence 2)

Figure. 3.30: Normalized disease data (Sequence 3)
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Figure. 3.31: Normalized disease data (Sequence 4)

Figure. 3.32: Normalized disease data (Sequence 5)
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Figure. 3.33: Normalized disease data (Sequence 6)

Figure. 3.34: Normalized disease data (Sequence 7)
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Figure. 3.35: Normalized disease data (Sequence 8)

Figure. 3.36: Normalized disease data (Sequence 9)
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Figure. 3.37: Normalized disease data (Sequence 10)

Figure. 3.38: Normalized disease data (Sequence 11)
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Figure. 3.39: Normalized disease data (Sequence 12)
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3.2.2 Discretization

In the discretization, the range of normalized data (01) is divided at the D stages, and

a discrete value from 0 to D-1 is allocated to each data. For application to real sequential

data, discretization is specifically important step. This is due to the following reasons.

First, ECG waveform changing drastically in section of QRS wave. Furthermore, it is

possible to change input value of data by the setting number of D value in the step of

discretization. D value is fixed by 50 in proposed method. This means that it is possible

to lose important information from ECG because of fixed value. Therefore, in this study,

we proposed a new discretization for ECG data.

Figure.3.40 shows the procedure of new discretization. In this new method, input is

normalized ECG data. We select 250 points before R wave(peak of waveform) and 450

points after R wave from ECG data. Hence, the length of the one waveform is 701. We

used square-root choice in order to decide bin number of histogram. Thus, bin number

of histogram was set to 26. The histogram of each sequence of ECG is generated by

26 bin numbers(Figure.3.40(a)). Next, class numbers of each bin are calculated using

square-root choice(Figure.3.40(b)). After that, ECG data is divided by the class num-

ber(Figure.3.40(c)). In this figure, ECG data is divided by 105 because all number of

class is 105. Discretized ECG data is output of new discretization method.

As above steps, discretization are executed about twelve sequences of disease ECG data.

These steps are explained in detail below.
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Figure. 3.40: Procedure of discretization
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Histogram Generation

First, we generate histogram from normalized ECG data. We used square-root choice

in order to decide bin number of histogram. The square-root choice were calculated as

follows equation.

k =
√
n (3.1)

Here, k means bin number, and n means the number of data point. We select 250 points

before R wave(peak of waveform) and 450 points after R wave from ECG data. Hence,

the length of the one waveform is 701. From this equation, bin number of histogram was

set to 26. Consequently, the histogram of each sequence of ECG is generated by 26 bin

numbers(Figure.3.40(a)).

Figure.3.41 – Figure.3.52 show each histogram of twelve sequences of disease data. In

these figure, horizon tall axis is the normalization scale and vertical axis is data points of

each bin.

Figure. 3.41: Histogram (Sequence 1)
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Figure. 3.42: Histogram (Sequence 2)

Figure. 3.43: Histogram (Sequence 3)
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Figure. 3.44: Histogram (Sequence 4)

Figure. 3.45: Histogram (Sequence 5)
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Figure. 3.46: Histogram (Sequence 6)

Figure. 3.47: Histogram (Sequence 7)
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Figure. 3.48: Histogram (Sequence 8)

Figure. 3.49: Histogram (Sequence 9)
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Figure. 3.50: Histogram (Sequence 10)

Figure. 3.51: Histogram (Sequence 11)
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Figure. 3.52: Histogram (Sequence 12)
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Calculation of Class Number

Next, class numbers of each bin are calculated using square-root choice again(Figure.3.40(b)).

The equation of square-root choice is explained above step histogram generation. Table.3.1

shows the class number of 26 bins on each sequence of discretized disease data. The range

of bins that have large data points was divided by large class number. In contrast, the

range of bins that have small data points was divided by small class number.

Table. 3.1: Class number of distribution on discretized disease data

Class number of distribution Total number

Sequence 1 2 6 12 11 11 10 6 4 4 4 3 3 4 3 3 3 5 2 1 1 1 1 1 1 1 2 105

Sequence 2 3 3 6 9 16 10 12 4 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 89

Sequence 3 2 5 3 4 2 3 3 4 6 5 6 13 15 7 5 3 1 2 2 2 1 1 1 1 1 2 100

Sequence 4 2 2 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 4 8 10 13 9 14 6 2 3 86

Sequence 5 2 2 2 3 5 12 14 10 6 4 3 4 5 4 2 2 2 2 3 2 3 3 2 3 4 1 105

Sequence 6 5 4 5 6 4 6 12 13 11 5 5 3 2 1 1 1 0 1 1 1 1 1 1 1 1 2 94

Sequence 7 1 2 2 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1 2 2 2 15 18 10 2 76

Sequence 8 2 2 2 2 1 2 2 1 1 2 1 2 1 1 1 2 2 3 19 12 6 6 4 4 4 6 91

Sequence 9 1 2 2 2 2 1 1 2 1 2 2 1 2 2 2 3 15 15 6 5 5 4 4 4 4 5 95

Sequence 10 2 1 2 1 2 1 2 2 14 17 8 5 4 4 5 6 2 1 1 2 1 0 2 1 2 2 90

Sequence 11 9 14 15 10 8 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 2 2 76

Sequence 12 4 14 15 11 9 3 1 2 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 2 2 77

Division of ECG Data

ECG data was divided by the class number(Figure.3.40(c)) as above table. For example,

sequence 12 was divided by 26 bins and each bin was divided by 4, 14, 15, 11, 9, 3, 1, 2,

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, and 2 in normalized range of 0-1. Discretized

sequences of disease ECG data are output of new discretization method. Figure.3.53 –

Figure.3.64 show the discretized disease data of each sequence. In these figure, horizon

tall axis is the length of disease data(data points) and vertical axis is the discrete value.
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Figure. 3.53: Discretized disease data (Sequence 1)

Figure. 3.54: Discretized disease data (Sequence 2)

61



Figure. 3.55: Discretized disease data (Sequence 3)

Figure. 3.56: Discretized disease data (Sequence 4)
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Figure. 3.57: Discretized disease data (Sequence 5)

Figure. 3.58: Discretized disease data (Sequence 6)
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Figure. 3.59: Discretized disease data (Sequence 7)

Figure. 3.60: Discretized disease data (Sequence 8)
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Figure. 3.61: Discretized disease data (Sequence 9)

Figure. 3.62: Discretized disease data (Sequence 10)
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Figure. 3.63: Discretized disease data (Sequence 11)

Figure. 3.64: Discretized disease data (Sequence 12)
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3.3 Experiment

The proposed method based on new discretization was evaluated for extraction accuracy

using disease ECG data. The goal of this experiment is to compare the performance of the

previous and proposed methods using disease ECG data for extracting abnormal waveform.

3.3.1 Type of Disease ECG Data

In this experiment, disease ECG data was used for detection abnormal waveform. As

described in section 3.1.2 Disease Data, this disease data is myocardial infarction(MI).

Table.3.2 shows the types of myocardial infarction and the sequences indicating abnormal

waveform by MI types. The type of myocardial infarction of disease data is an inferior.

Therefore, there exist abnormal Q and ST wave in the area of sequences, II, III, aVF ,

V5, and V6. We can see that abnormal Q and ST wave in the sequences, II, III, aVF , V5,

and V6 compare with healthy ECG data visually.

Table. 3.2: Types of myocardial infarction and the sequences indicating abnormal Q and

ST wave

Types of myocardial infarction Sequences indicating abnormal Q and ST wave

Septal V1, V2

Anterior V3, V4

Anteroseptal V1, V2, V3, V4

Anterolateral I, V3, V4, V5, V6, aVL

Extensive anterior I, V1, V2, V3, V4, V5, V6, aVL

Inferior II, III, aVF , V5, V6

Lateral I, aVL, V5, V6

Posterior V7, V8, V9

RV II, III, aVF , V 1, V4

3.3.2 Parameter Setting

For frequent pattern extraction, the window width w values was fixed at 3 and the

minimum number of occurrences θ were set to natural numbers ≥ 5 in increments of 5.
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For closed itemset mining, minsup values were set to 3. For discretization, in the new

method, the discrete values of each sequence was set to 105, 89, 100, 86, 105, 94, 76, 91,

95, 90, 76, and 77. In the previous discretization method, discrete values were set to fixed

value same as new discretization. In the new discretization method, the range of bins that

have large data points was divided by large class number. In contrast, the range of bins

that have small data points was divided by small class number. However, In the previous

discretization method, the all range of bins was divided by equally even same discrete

value with proposed method.

3.3.3 Extraction Accuracy of Linkage Pattern

The extraction accuracies of the embedded linkage patterns for the previous and pro-

posed discretization methods were compared using the above disease ECG data. In this

experiment, the extraction accuracy means that how many abnormal waveform was de-

tected from disease ECG data. Therefore, only sequences, II, III, aVF , V5, and V6

indicating abnormal Q and ST wave in inferior myocardial infarction was used for extrac-

tion accuracy. Precision, recall, and F-measure were used as evaluation indexes. These

indexes were calculated as follows.

Precision = CDP/DDP

Recall = CDP/EDP

F -measure = 2 ∗ Precision ∗Recall/Precision+Recall

(3.2)

Here, CDP is the number of data points in the correctly detected areas of the abnormal

waveform, DDP is the number of data points in the areas of the abnormal waveform

detected by the method, and EDP is the number of data points in the abnormal waveform.
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3.4 Results

3.4.1 Extraction Accuracy

Visualization of Extraction Accuracy

Figure.3.68 – Figure.3.72 are graphs of extracted linkage patterns in different θ when

the previous discretization method was applied to the disease data. Figure.3.73 is graph

of extracted linkage patterns when the proposed discretization method was applied to the

healthy data. Figure.3.74 – Figure.3.77 are graphs of extracted linkage patterns in different

θ when the proposed discretization method was applied to the disease data. In this figures,

only these sequences II, III, aVF , V5, and V6 are indicated because the type of myocardial

infarction of disease data is an inferior. Blue part shows the extracted abnormal waveform

and yellow part shows the linkage pattern was extracted. As we can see, the abnormal

waveform is detected by both of previous and proposed discretization method. In contrast,

the proposed method shows that the abnormal waveform is more detected than previous

method for all θ. This is because the previous method discretizes the disease ECG data

using equal discrete value. However, the proposed method discretizes the disease ECG

data using different discrete value by the number of data point in each class. This means

that the disease ECG data was discretized more correctly by the proposed method than

the previous method.

Extraction accuracy using indexed are explained in below.

Extraction Accuracy based on Indexes

Figure.3.65 – Figure.3.67 are graphs of precision, recall, and F-measure in different

θ when the previous and proposed discretization methods were applied to the disease

data. In these graph, horizon tall axis is the minimum number of occurrences θ and

vertical axis is the score. From these graphs, the proposed method demonstrates high

extraction accuracy for all θ compared previous method. This means that the abnormal

waveform was extracted suitably by new discretization method. In addition, precision of

both of previous and proposed discretization method tends to increase with increasing

θ Precision shows the correctness of extraction accuracy and the minimum number of

occurrences θ is the minimum number of frequent patterns to be extracted. Therefore,

large θ value means strict condition to extract linkage pattern. From the above reasons,

precision indicates high score when θ is large value. As a result, abnormal waveform of

disease data was detected appropriately using the linkage pattern mining method with

proposed discretization.
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Figure. 3.65: Precision of previous and proposed discretization method

Figure. 3.66: Recall of previous and proposed discretization method
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Figure. 3.67: F-measure of previous and proposed discretization method
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Figure. 3.68: Extraction accuracy of previous discretization method (θ=10)
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Figure. 3.69: Extraction accuracy of previous discretization method (θ=15)
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Figure. 3.70: Extraction accuracy of previous discretization method (θ=20)
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Figure. 3.71: Extraction accuracy of previous discretization method (θ=25)
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Figure. 3.72: Extraction accuracy of previous discretization method (θ=30)
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Figure. 3.73: Extraction accuracy of healthy ECG data by proposed discretization method
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Figure. 3.74: Extraction accuracy of proposed discretization method (θ=15)
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Figure. 3.75: Extraction accuracy of proposed discretization method (θ=20)
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Figure. 3.76: Extraction accuracy of proposed discretization method (θ=25)
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Figure. 3.77: Extraction accuracy of proposed discretization method (θ=30)
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3.5 Conclusion

In this section, the previous and proposed discretization method was applied to real

ECG (electrocardiogram) data, and the performance is evaluated. In this experiment, a

discretization method based on data distribution is newly incorporated into the proposed

method in order to deal with the peak in ECG data. As a result, it is shown that the

proposed method can extract abnormal waveform that are composed of waves crucial for

diagnosis of heart disease. This suggests that the proposed method is available as a new

abnormality detector for ECG data.

In the future, we will apply the method to another disease ECG data is made from

abnormal waveform and the performance will be evaluated.
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