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Abstract

A framed curve is a smooth curve in the Euclidean space with a moving frame. We
call the smooth curve in the Euclidean space the framed base curve. In this paper, we
give an existence condition of framed curves. Actually, we construct a framed curve such
that the image of the framed base curve coincides with the image of a given smooth curve
under a condition. As a consequence, polygons in the Euclidean plane can be realised as
not only a smooth curve but also a framed base curve.

1 Introduction

A framed curve in the Euclidean space is a curve with a moving frame. It is a generalisation of
not only regular curves with the linear independent condition (cf. [7]), but also regular curves
with Bishop frame (cf. [2]). Moreover, framed curves may have singular points. It is also a
generalisation of Legendre curves in the unit tangent bundle over R2 (cf. [1, 4]).

Let Rn be the n-dimensional Euclidean space equipped with the inner product a · b =∑n
i=1 aibi, where a = (a1, . . . , an) and b = (b1, . . . , bn). For a1, . . . ,an−1 ∈ Rn, we define the

vector product,

a1 × · · · × an−1 =

∣∣∣∣∣∣∣∣∣
a11 · · · a1n
...

. . .
...

an−11 · · · an−1n

e1 · · · en

∣∣∣∣∣∣∣∣∣ =
n∑
i=1

det(a1, . . . ,an−1, ei)ei,

where ai = (ai1, . . . , ain) for i = 1, . . . , n−1 and e1, . . . , en are the canonical basis on Rn. Then
we have (a1 × · · · × an−1) · ai = 0 for i = 1, . . . , n− 1. We denote the set ∆n−1,

∆n−1 = {ν = (ν1, . . . , νn−1) ∈ Rn × · · · × Rn | νi · νj = δij, i, j = 1, . . . , n− 1}
= {ν = (ν1, . . . , νn−1) ∈ Sn−1 × · · · × Sn−1 | νi · νj = 0, i 6= j, i, j = 1, . . . , n− 1}.

Then ∆n−1 is an n(n − 1)/2-dimensional smooth manifold. If ν = (ν1, . . . , νn−1) ∈ ∆n−1, we
define the unit vector µ = ν1 × · · · × νn−1 of Rn. It follows that the pair (ν,µ) ∈ ∆n. By
definition, we have det(ν1, . . . , νn−1,µ) = 1. Note that ∆2 = S1.

Let I be an interval or R.
2010 Mathematics Subject classification: 58K05, 53A04, 57R45
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Definition 1.1 We say that a smooth map (γ,ν) : I → Rn × ∆n−1 is a framed curve if
γ̇(t) · νi(t) = 0 for all t ∈ I and i = 1, . . . , n − 1. We also say that a smooth map γ : I → Rn

is a framed base curve if there exists a smooth map ν : I → ∆n−1 such that (γ,ν) is a framed
curve.

For a framed curve (γ,ν) : I → Rn×∆n−1, the framed base curve γ may have singular points.
We denote the set of singular points of γ by Σ(γ), that is, we set Σ(γ) = {t ∈ I | γ̇(t) = 0}.
The framed curves can be characterised by the moving frame {ν(t),µ(t)} of the framed base
curve γ(t) and the curvature of the framed curve, in detail see [6].

In the case of n = 2, the framed curve is nothing but a Legendre curve with respect to
the canonical contact structure on the unit tangent bundle T1R2 = R2 × S1 over R2. We have
shown that analytic curves are at least locally framed base curves in the cases of plane curves
(n = 2) and space curves (n = 3), see [4] and [6], respectively.

For a function f , we denote f(a−0) (respectively, f(a+0)) as one sided limit limt→a−0 f(t)
(respectively, limt→a+0 f(t)). We denote t(t) as the unit tangent vector of γ(t) at regular points,
that is, t(t) = γ̇(t)/‖γ̇(t)‖ if γ̇(t) 6= 0.

The main result in this paper is as follows. We give an existence condition of a framed curve
such that the image of the framed base curve coincides with the image of a given smooth curve.

Theorem 1.2 Let γ : [a, b] → Rn be a C∞-curve. Suppose that the singular set Σ(γ) is finite,
and the limit of the derivatives of the tangent vectors t(k)(s − 0) and t(k)(s + 0) exist for all
s ∈ Σ(γ) and k ∈ N ∪ {0}. Then there exists a framed curve (γ̃, ν̃) : [0, 1] → Rn ×∆n−1 such
that γ̃([0, 1]) = γ([a, b]).

In section 2, we give a proof of the main result by using flat functions. In section 3, we give
examples of a polygon and a 3/2-cusp singularity. We also give an example that the smooth
curve does not admit as a framed curve.

All maps and manifolds considered here are differential of class C∞ unless the contrary is
explicitly stated.

Acknowledgement. The first author was partially supported by JSPS KAKENHI Grant
Number 15K17457 and the second author was partially supported by JSPS KAKENHI Grant
Number 26400078.

2 Proof of the main result

We introduce notations as preparations. Let ϕ : [0, 1] → R be a non-analytic smooth function
defined by

ϕ(t) =

{
e−1/t if 0 < t ≤ 1,
0 if t = 0.

We also define a smooth function ψ : [0, 1] → R by

ψ(t) =
ϕ(t)

ϕ(t) + ϕ(1− t)
.

The function ψ provides a smooth transition from 0 to 1 on the interval [0, 1] and ψ(n)(0 +
0) = ψ(n)(1− 0) = 0 for all n ∈ N. Moreover, we define a smooth function ψa,b : [0, 1] → R by
ψa,b(t) = ψ(t)b+ (1− ψ(t))a, where a, b ∈ R with a < b. Note that ψ0,1 = ψ.
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Lemma 2.1 The function ψa,b : [0, 1] → R provides a smooth transition from a to b in the
interval [0, 1].

Proof. By definition, ψa,b(0) = ψ(0)b+ (1−ψ(0))a = a and ψa,b(1) = ψ(1)b+ (1−ψ(1))a = b.

Moreover, we have ψ̇a,b(t) > 0 for 0 < t < 1. Since ψ
(n)
a,b (t) = ψ(n)(t)(b − a) for all n ∈ N, we

have ψ
(n)
a,b (0+ 0) = ψ(n)(0+ 0)(b− a) = 0 and ψ

(n)
a,b (1− 0) = ψ(n)(1− 0)(b− a) = 0 for all n ∈ N.

2

Let X be a topological space. For two maps on the unit interval f1 : [0, 1] → X and
f2 : [0, 1] → X with f1(1) = f2(0), we define a concatenation map f2 ∗ f1 : [0, 1] → X by

(f2 ∗ f1)(t) =
{
f1(2t) if 0 ≤ t ≤ 1/2,
f2(2t− 1) if 1/2 ≤ t ≤ 1.

Note that the operator ∗ is not associative. The concatenation map of two continuous maps
turns out a continuous map again (see [8], for example). On the other hand, in general, the
concatenation map of two C∞-maps does not turn out a C∞-map. However, we can concatenate
two C∞-maps smoothly by using the smooth transition function.

Lemma 2.2 Let M be a smooth manifold. Assume f1 : [0, 1] → M and f2 : [0, 1] → M are
C∞-maps with f1(1) = f2(0). Then the concatenation map (f2 ◦ ψ) ∗ (f1 ◦ ψ) : [0, 1] → M is a
C∞-map.

Proof. Since the map (f2 ◦ ψ) ∗ (f1 ◦ ψ) is C∞ on t 6= 1/2, it is sufficient to show that
{(f2 ◦ ψ) ∗ (f1 ◦ ψ)}(n)(1/2− 0) = {(f2 ◦ ψ) ∗ (f1 ◦ ψ)}(n)(1/2 + 0) for all n ∈ N. By definition
of the concatenation map, we have

{(f2 ◦ ψ) ∗ (f1 ◦ ψ)}(n)
(
1

2
− 0

)
= (f1 ◦ ψ)(n)(1− 0)

and

{(f2 ◦ ψ) ∗ (f1 ◦ ψ)}(n)
(
1

2
+ 0

)
= (f2 ◦ ψ)(n)(0 + 0).

By the chain rule, we can write each component of (f1◦ψ)(n) (respectively, (f2◦ψ)(n)) as a sum of

products of each component of f
(k)
1 (respectively, f

(k)
2 ) and ψ(k) for k ∈ {1, · · · , n}. By Lemma

2.1, ψ(k)(1− 0) = 0 and ψ(k)(0 + 0) = 0 for k = 1, · · · , n. Hence we have (f1 ◦ ψ)(n)(1− 0) = 0
and (f2 ◦ ψ)(n)(0 + 0) = 0. Therefore, the map (f2 ◦ ψ) ∗ (f1 ◦ ψ) : [0, 1] →M is a C∞-map. 2

Remark 2.3 By Lemma 2.2, piece-wise C∞-curves can be realised as a C∞-curve such that
the same image. Especially, polygons in the Euclidean plane may be considered as the image
of a C∞-curve.

Proof of the Theorem 1.2. Let {s0, · · · , sn} be the set of singular points except a and b.

First step: We define a smooth map γ̃a,s0 : [0, 1] → Rn by γ̃a,s0(t) = γ(ψa,s0(t)). We show
this map has the following properties:

(i) γ̃a,s0(0) = γ(a) and γ̃a,s0(1) = γ(s0),

(ii) γ̃
(n)
a,s0(0 + 0) = γ̃

(n)
a,s0(1− 0) = 0 for all n ∈ N,
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(iii) γ̃a,s0([0, 1]) = γ([a, s0]).

By Lemma 2.1, we obtain γ̃a,s0(0) = γ(ψa,s0(0)) = γ(a) and γ̃a,s0(1) = γ(ψa,s0(1)) = γ(s0).

By the chain rule, we can calculate γ̃
(n)
a,s0 as a sum of products of γ(k) and ψ

(k)
a,s0 for k ∈ {1, · · · , n}.

By Lemma 2.1, we have γ̃
(n)
a,s0(0 + 0) = γ̃

(n)
a,s0(1− 0) = 0 for all n ∈ N. Since ψa,s0 is a bijection

from [0, 1] to [a, s0], we have γ̃a,s0([0, 1]) = γ([a, s0]). Therefore, (i), (ii) and (iii) hold.

Second step: We construct a map ν̃a,s0 : [0, 1] → ∆n−1 such that (γ̃a,s0 , ν̃a,s0) : [0, 1] →
Rn ×∆n−1 is a framed curve. By the assumption, we have t(a+ 0). Consider an orthonormal
n− 1 frame ν− = (ν−,1, · · · , ν−,n−1) with (T t(a+ 0), Tν−) ∈ SO(n), where Ta is the transpose
of a vector a and SO(n) is the n × n special orthogonal group. Since t is the smooth unit
tangent vector field along γ on [a, s0), there exists a smooth map A ∈ C∞([a, s0), SO(n)) such
that t(t) = t(a + 0)A(t). By the assumption, the one side derivatives t(k)(s0 − 0) exists for
all k ∈ N ∪ {0}. We can extend A to t = s0, that is, A ∈ C∞([a, s0], SO(n)). Now we
define νa,s0 : [a, s0] → ∆n−1 by νi(t) = ν−,iA(t) for each component i = 1, · · · , n − 1. Then
ν̃a,s0 : [0, 1] → ∆n−1 defined by ν̃a,s0(t) = νa,s0(ψa,s0(t)) is the required map. In fact, we have
(d/dt)γ̃a,s0(t) ∈ 〈ν̃a,s0(t)〉⊥, since

d

dt
γ̃a,s0(t) · ν̃a,s0;i(t) = γ̇(ψa,s0(t))ψ̇a,s0(t) · νa,s0;i(ψa,s0(t))

= ‖γ̇(ψa,s0(t))‖t(ψa,s0(t))ψ̇a,s0(t) · νa,s0;i(ψa,s0(t))
= ‖γ̇(ψa,s0(t))‖ψ̇a,s0(t)t(ψa,s0(0 + 0))A(ψa,s0(t)) · ν−,iA(ψa,s0(t))
= ‖γ̇(ψa,s0(t))‖ψ̇a,s0(t)t(ψa,s0(0 + 0)) · ν−,i
= 0

for all i = 1, · · · , n − 1, where ν̃a,s0 = (ν̃a,s0;1, · · · , ν̃a,s0;n−1), νa,s0 = (νa,s0;1, · · · , νa,s0;n−1) and
〈ν̃a,s0(t)〉⊥ is the orthogonal complement of the linear space spanned by ν̃a,s0(t).

Third step: We define γ̃s0 : [0, 1] → Rn by a constant map γ̃s0(t) = γ(s0) for all t ∈ [0, 1].

Fourth step: Let ν+ be an element of ∆n−1 with (T t(s0 + 0), Tν+) ∈ SO(n). We denote
(T t(s0 + 0), Tν+) by S+, and (T t(s0 − 0), T ν̃a,s0(1)) by S−. Note that S− ∈ SO(n) by the
definition of ν̃a,s0 in the second step.

We construct a map ν̃s0 : [0, 1] → ∆n−1 which connects T ν̃a,s0(1) and
Tν+. By the linear

algebra, there is a C∞-map P1 : [0, 1] → SO(n), which connects S− and In, where In is the
unit element of SO(n) (see [5] for example). Further, there is a C∞-map P2 : [0, 1] → SO(n),

which connects In and S+. We define P̃i : [0, 1] → SO(n) by P̃i(t) = Pi(ψ(t)) for i = 1, 2. Then

we obtain the required map ν̃s0 : [0, 1] → ∆n−1 by ν̃s0(t) = (T (P̃2 ∗ P̃1)2(t), · · · , T (P̃2 ∗ P̃1)n(t)),

where (P̃2 ∗ P̃1)k is the k-th column of the matrix (P̃2 ∗ P̃1). By Lemma 2.2, the map ν̃s0 is a
C∞-map. Since γ̃s0 is a constant map, (γ̃s0 , ν̃s0) : [0, 1] → Rn ×∆n−1 is also a framed curve.

Fifth step: Similar to the first step to the fourth step, we construct γ̃si,si+1
, ν̃si,si+1

, γ̃si+1
,

ν̃si+1
, γ̃sn,b and ν̃sn,b for all i = 1, · · · , n−1. Note that we can take ν̃si,si+1

(respectively, ν̃si+1,b)
such that ν̃si,si+1

(0) = ν̃si(1) for all i = 1, . . . , n− 1 (respectively, ν̃sn,b(0) = ν̃sn(1)).

Sixth step: We concatenate on the all maps, that is, we define a C∞-map (γ̃, ν̃) : [0, 1] →
Rn ×∆n−1 by

γ̃(t) = (γ̃sn,b ∗ (γ̃sn ∗ (· · · ∗ (γ̃s0 ∗ γ̃a,s0))))(t), ν̃(t) = (ν̃sn,b ∗ (ν̃sn ∗ (· · · ∗ (ν̃s0 ∗ ν̃a,s0))))(t).

By the construction, we have 〈 ˙̃γ(t)〉 ⊂ 〈ν̃(t)〉⊥ for all t ∈ [0, 1]. It follows that the map
(γ̃, ν̃) : [0, 1] → Rn ×∆n−1 is a framed curve such that γ̃([0, 1]) = γ([a, b]). 2
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Remark 2.4 By the above construction, the boundaries 0 and 1 in the unit interval [0, 1]
are singular points of γ̃ in spite of a and b may be regular points of γ. On the other hand,
if we use ϕs0,a(1 − t) (respectively, ϕsn,b(t)) instead of ψa,s0(t) (respectively ψsn,b(t)), where
ϕa,b : [0, 1] → [a, b] is defined by ϕa,b(t) = (eϕ(t))b + {1− (eϕ(t))}a, then 0 (respectively, 1) is
a regular point of γ̃ if and only if a (respectively, b) is a regular point of γ.

The assumption that the limit of the derivatives of the tangent vectors t(k)(s − 0) and
t(k)(s + 0) exist for all s ∈ Σ(γ) and k ∈ N ∪ {0} is essential. We can construct a C∞-curve
which is not the image of the framed base curves, see Example 3.4.

In the case of the domain of γ is an open interval or R, we also have the following result.

Corollary 2.5 (1) Let γ : (a, b) → Rn be a C∞-curve. Suppose that the singular set Σ(γ) is
finite, and the limit of the derivatives of the tangent vectors t(k)(s− 0) and t(k)(s+ 0) exist for
all s ∈ Σ(γ) and k ∈ N ∪ {0}. Then there exists a framed curve (γ̃, ν̃) : (0, 1) → Rn × ∆n−1

such that γ̃((0, 1)) = γ((a, b)).

(2) Let γ : R → Rn be a C∞-curve. Suppose that the singular set Σ(γ) is finite, and the
limit of the derivatives of the tangent vectors t(k)(s−0) and t(k)(s+0) exist for all s ∈ Σ(γ) and
k ∈ N∪ {0}. Then there exists a framed curve (γ̃, ν̃) : R → Rn×∆n−1 such that γ̃(R) = γ(R).

Proof. (1) By a similar construction in the proof of Theorem 1.2, we have the result.

(2) Parameter changes preserve the conditions of the framed curves. By using (1) and a
diffeomorphism between R and an open interval, we have the result. 2

3 Examples

We give concrete examples of the construction of framed curves in the proof of Theorem 1.2.
Furthermore, we give an example of a C∞-curve which is not the image of the framed base
curves.

Example 3.1 Let γ : (−1, 1) → R2 be a C∞-curve given by

γ(t) =


(e−

1
t2 , 0) if − 1 < t < 0,

(0, 0) if t = 0,

(0, e−
1
t2 ) if 0 < t < 1.

Note that this curve is not a frontal (see [4, 6]). However, we can construct a framed curve
(γ̃, ν̃) : (0, 1) → R2 × S1 such that γ̃((0, 1)) = γ((−1, 1)) by using the method in the proof of
Theorem 1.2, since the singular set Σ(γ) = {0} and the limit of the derivatives of the tangent
vectors exists at the origin.

First, we define γ̃−1,0 : (0, 1] → R2 by

γ̃−1,0(t) = γ(ψ−1,0(t)) =

{ (
exp

(
− 1
ψ−1,0(t)2

)
, 0
)

if 0 < t < 1,

(0, 0) if t = 1.

Second, we define ν̃−1,0 : (0, 1] → S1 as follows. By a direct calculation, we have t(−1+0) =
(−1, 0) and ν− = (0,−1). The unit tangent vector is given by t(t) = (−1, 0) for all t ∈ (−1, 0].

5



Hence, we have t(t) = t(−1 + 0)I2, for all t ∈ (−1, 0], where I2 is the 2 × 2 unit matrix.
Then we have the constant map ν−1,0 : (−1, 0] → S1, ν−1,0(t) = ν−I2 = ν−. Now we define
ν̃−1,0 : (0, 1] → S1 by ν̃−1,0(t) = ν−1,0(ψ−1,0(t)) = (0,−1).

Third, we define a map γ̃0 : [0, 1] → R2 by γ̃0(t) = γ(0) = (0, 0) for all t ∈ [0, 1].

Fourth, we define a map ν̃0 : [0, 1] → S1 as follows. By a direct calculation, we have
t(0 + 0) = (0, 1), ν+ = (−1, 0), t(0− 0) = (−1, 0) and ν̃−1,0(1) = (0,−1). Hence,

S+ = (T t(0 + 0), Tν+) =

(
0 −1
1 0

)
=

(
cos π

2
− sin π

2

sin π
2

cos π
2

)
and

S− = (T t(0− 0), T ν̃−1,0(1)) =

(
−1 0
0 −1

)
=

(
cosπ − sin π
sinπ cosπ

)
.

We define maps P1 (respectively, P2) from S− to I2 (respectively, from I2 to S+) by

P1(t) =

(
cos(1− t)π − sin(1− t)π
sin(1− t)π cos(1− t)π

)
, P2(t) =

(
cos tπ

2
− sin tπ

2

sin tπ
2

cos tπ
2

)
.

Then we have P̃i(t) = Pi(ψ(t)), that is,

P̃1(t) =

(
cos(1− ψ(t))π − sin(1− ψ(t))π
sin(1− ψ(t))π cos(1− ψ(t))π

)
, P̃2(t) =

(
cos ψ(t)π

2
− sin ψ(t)π

2

sin ψ(t)π
2

cos ψ(t)π
2

)
.

Now we define

ν̃0(t) =
T (P̃2 ∗ P̃1)2(t) =

{
(− sin(1− ψ(2t))π, cos(1− ψ(2t))π) if 0 ≤ t ≤ 1/2,(
− sin ψ(2t−1)π

2
, cos ψ(2t−1)π

2

)
if 1/2 ≤ t ≤ 1.

Fifth, we define γ̃0,1 : [0, 1) → R2 by

γ̃0,1(t) = γ(ψ(t)) =

{ (
0, exp

(
− 1
ψ(t)2

))
if 0 < t < 1,

(0, 0) if t = 0.

Sixth, we define ν̃0,1 : [0, 1) → S1 as follows. By a direct calculation, we have t(0+0) = (0, 1)
and ν− = (−1, 0). The unit tangent vector is given by t(t) = (0, 1) for all t ∈ [0, 1). Hence,
we have t(t) = t(0 + 0)I2, for all t ∈ [0, 1). Then we have the constant map ν0,1 : [0, 1) → S1,
ν0,1(t) = ν−I2 = ν−. Now we define ν̃0,1 : [0, 1) → S1 by ν̃0,1(t) = ν0,1(ψ(t)) = (−1, 0).

Finally, we concatenate on the all maps, that is, we define γ̃ : (0, 1) → R2 and ν̃ : (0, 1) → S1

by γ̃(t) = (γ̃0,1 ∗ (γ̃0 ∗ γ̃−1,0))(t) and ν̃(t) = (ν̃0,1 ∗ (ν̃0 ∗ ν̃−1,0))(t). Then we obtain a framed curve
(γ̃, ν̃) : (0, 1) → R2 × S1 such that γ̃((0, 1)) = γ((−1, 1)), see Figure 1.

Remark 3.2 Since piece-wise smooth curves can be realised as a C∞-curve, see Remark 2.3,
it is also realised as a framed base curve by Theorem 1.2 if the conditions satisfy. It follows
that polygons in the Euclidean plane can be realised as the image of a framed base curve.
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(γ̃−1,0(t), ν̃−1,0(t)) (γ̃0(t), ν̃0(t)) (γ̃0,1(t), ν̃0,1(t))

Figure 1: Legendre curve (γ̃, ν̃). Note that the length of the unit normal vectors is modified.

(γ(t), ν(t)) (γ̃(t), ν̃(t))

Figure 2: Images of the 3/2-cusp and unit normal vector fields. Note that the length of the
unit normal vectors is modified.

Example 3.3 Let γ : (−1, 1) → R2 be a 3/2-cusp γ(t) = (t2/2, t3/3) (cf. [4]). As well known,
the 3/2-cusp is a front. In fact, if we take ν(t) = (1/

√
t2 + 1)(−t, 1) (respectively, −ν), then

(γ, ν) (respectively, (γ,−ν)) is a framed curve and (γ, ν) (respectively, (γ,−ν)) is an immersion.
Both cases, the unit normal vectors change inner (outer) to outer (inner) of the curve γ around
the origin, see Figure 2 left. However, we can construct a framed curve (γ̃, ν̃) : (0, 1) → R2×S1

such that γ̃((0, 1)) = γ((−1, 1)) and the unit normal ν̃ does not change inner and outer of the
curve γ, by using the method of the proof in Theorem 1.2, see Figure 2 right.

By definition of γ, the singular set Σ(γ) = {0} and the limit of the derivatives of the tangent
vectors exists at the origin.

First, we define γ̃−1,0 : (0, 1] → R2 by

γ̃−1,0(t) = γ(ψ−1,0(t)) =

(
1

2
ψ−1,0(t)

2,
1

3
ψ−1,0(t)

3

)
.

Second, we define ν̃−1,0 : (0, 1] → S1 as follows. By a direct calculation, we have

t(−1 + 0) = lim
t→−1+0

1

|t|
√
t2 + 1

(t, t2) =
1√
2
(−1, 1)

and ν− = (1/
√
2)(−1,−1). The unit tangent vector is given by t(t) = (−1/

√
t2 + 1)(1, t) for all
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t ∈ (−1, 0]. Hence, we have t(t) = t(−1 + 0)A(t), where

A(t) =
−
√
2

2
√
t2 + 1

(
t− 1 −t− 1
t+ 1 t− 1

)
for all t ∈ (−1, 0]. Then we have a map ν−1,0 : (−1, 0] → S1,

ν−1,0(t) = ν−A(t) =
1√
2
(−1,−1)

−
√
2

2
√
t2 + 1

(
t− 1 −t− 1
t+ 1 t− 1

)
=

−1√
t2 + 1

(−t, 1).

Now we define ν̃−1,0 : (0, 1] → S1 by

ν̃−1,0(t) = ν−1,0(ψ−1,0(t)) =
−1√

ψ−1,0(t)2 + 1
(−ψ−1,0(t), 1).

Third, we define a map γ̃0 : [0, 1] → R2 by γ̃0(t) = γ(0) = (0, 0) for all t ∈ [0, 1].

Fourth, we define a map ν̃0 : [0, 1] → S1 as follows. By a direct calculation, we have
t(0 + 0) = (1, 0), ν+ = (0, 1), t(0− 0) = (−1, 0) and ν̃−1,0(1) = (0,−1). Hence,

S+ = (T t(0 + 0), Tν+) =

(
1 0
0 1

)
=

(
cos 0 − sin 0
sin 0 cos 0

)
and

S− = (T t(0− 0), T ν̃−1,0(1)) =

(
−1 0
0 −1

)
=

(
cosπ − sin π
sinπ cosπ

)
.

We define a map P1 from S− to I2 by

P1(t) =

(
cos(1− t)π − sin(1− t)π
sin(1− t)π cos(1− t)π

)
,

and we define a map P2 from I2 to S+ by P2(t) = I2 for all t ∈ [0, 1]. Then we have P̃i(t) =
Pi(ψ(t)), that is,

P̃1(t) =

(
cos(1− ψ(t))π − sin(1− ψ(t))π
sin(1− ψ(t))π cos(1− ψ(t))π

)
, P̃2(t) = I2

for all t ∈ [0, 1]. Now we define

ν̃0(t) =
T (P̃2 ∗ P̃1)2(t) =

{
(− sin(1− ψ(2t))π, cos(1− ψ(2t))π) if 0 ≤ t ≤ 1/2,

(0, 1) if 1/2 ≤ t ≤ 1.

Fifth, we define γ̃0,1 : [0, 1) → R2 by

γ̃0,1 = γ(ψ(t)) =

(
1

2
ψ−1,0(t)

2,
1

3
ψ−1,0(t)

3

)
.

Sixth, we define ν̃0,1 : [0, 1) → S1 as follows. By a direct calculation, we have t(0+0) = (1, 0)
and ν− = (0, 1). The unit tangent vector is given by t(t) = (1/

√
t2 + 1)(1, t) for all t ∈ [0, 1).

Hence, we have t(t) = t(0 + 0)A(t), where

A(t) =
1√
t2 + 1

(
1 t
−t 1

)
8



for all t ∈ [0, 1). Then we have a map ν0,1 : (−1, 0] → S1,

ν0,1(t) = ν−A(t) = (0, 1)
1√
t2 + 1

(
1 t
−t 1

)
=

1√
t2 + 1

(−t, 1).

Now we define ν̃0,1 : [0, 1) → S1 by

ν̃0,1(t) = ν0,1(ψ(t)) =
1√

ψ(t)2 + 1
(−ψ(t), 1).

Finally, we concatenate all maps, that is, we define γ̃ : (0, 1) → R2 and ν̃ : (0, 1) → S1 by
γ̃(t) = (γ̃0,1 ∗ (γ̃0 ∗ γ̃−1,0))(t) and ν̃(t) = (ν̃0,1 ∗ (ν̃0 ∗ ν̃−1,0))(t), respectively. Then we obtain a
framed curve (γ̃, ν̃) : (0, 1) → R2 × S1 such that γ((−1, 1)) = γ̃((0, 1)).

Example 3.4 Let γ : [0, 1] → R2 be given by

γ(t) =

{ (
e−1/t cos 1

t
, e−1/t sin 1

t

)
if 0 < t ≤ 1,

(0, 0) if t = 0,

see Figure 3. Since γ(n) is given by a sum of products of ϕ(k), sin(k), cos(k), (1/t)(k) for k ∈
{0, 1, · · · , n} and γ(n)(0 + 0) = 0 for all n ∈ N, γ is a C∞-curve. The singular set Σ(γ) = {0}.
However, the unit tangent vector is given by

t(t) =
1√
2

(
cos

1

t
+ sin

1

t
, sin

1

t
− cos

1

t

)
on (0, 1]. The limit of the tangent vector t(0 + 0) and hence the limit of a unit normal vector
ν(0+ 0) oscillate. Therefore, we can not extend the unit normal vector ν to [0, 1]. This means
that there are no framed curves (γ̃, ν̃) : I → R2 × S1 such that γ̃(I) = γ([0, 1]).

Figure 3: An example of the image of a curve which can not be the image of a framed base
curve.
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