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A Game-Theoretic Approach to Energy-Efficient
Resource Allocation in Device-to-Device Underlay

Communications
Zhenyu Zhou, Mianxiong Dong, Kaoru Ota, Ruifeng Shi, Zhiheng Liu, and Takuro Sato

Abstract—Despite the numerous benefits brought by Device-
to-Device (D2D) communications, the introduction of D2D into
cellular networks poses many new challenges in the resource
allocation design due to the co-channel interference caused by
spectrum reuse and limited battery life of User Equipments (UEs).
Most of the previous studies mainly focus on how to maximize
the Spectral Efficiency (SE) and ignore the energy consumption
of UEs. In this paper, we propose a distributed interference-
aware energy-efficient resource allocation algorithm to maximize
each UE’s Energy Efficiency (EE) subject to its specific Quality
of Service (QoS) and maximum transmission power constraints.
We model the resource allocation problem as a noncooperative
game, in which each player is self-interested and wants to
maximize its own EE. A distributed interference-aware energy-
efficient resource allocation algorithm is proposed by exploiting
the properties of the nonlinear fractional programming. We prove
that the optimal solution obtained by the proposed algorithm
is the Nash equilibrium of the noncooperative game. We also
analyze the tradeoff between EE and SE and derive closed-form
expressions for EE and SE gaps.

Keywords—Energy-efficient, device-to-device, resource alloca-
tion, interference-aware, tradeoff

I. Introduction

Device-to-Device (D2D) communications underlaying cellu-
lar networks bring numerous benefits including the proximity
gain, the reuse gain, and the hop gain [1]. The D2D communi-
cation session setup and management issues in the Long Term
Evolution (LTE) System Architecture Evolution (SAE) were
addressed in [2], and simulation results have demonstrated
that the total throughput of the overall cellular network can
be increased significantly.

However, the introduction of D2D communications into
cellular networks poses many new challenges in the resource
allocation design due to the co-channel interference caused by
spectrum reuse and limited battery life of User Equipments
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(UEs). A large number of works have been done on how to
perform resource allocation in an interference-limited environ-
ment. A Stackelberg game based resource allocation scheme
was proposed in [3], in which the Base Station (BS) and the
D2D UEs were modeled as the game leader and followers
respectively. Another Stackelberg game based scheme was
proposed in [4], in which the cellular UE rather than the
BS was modeled as the game leader. A two-stage resource
allocation scheme which employs both the centralized and
distributed approaches was proposed in [5]. A three-stage
resource allocation scheme which combines admission control,
power allocation, and link selection was proposed in [6]. A
reverse Iterative Combinatorial Auction (ICA) based resource
allocation scheme was proposed in [7] for optimizing the
system sum rate. The resource allocation problems in relay-
aided scenarios were studied in [8], [9], and in infeasible
systems where all users can not be supported simultaneously
were studied in [10]. The throughput performance of the
D2D underlay system with different resource sharing modes
was evaluated in [11]. However, most of the previous studies
mainly focus on how to maximize the Spectral Efficiency (SE)
and ignore the energy consumption of UEs. Only a limited
amount of works have considered the Energy Efficiency (EE)
optimization problem. In practical implementation, UEs are
typically handheld devices with limited battery life and can
quickly run out of battery if the energy consumption is ignored
in the system design. Therefore, in this paper, we focus on
how to optimize the EE through resource allocation in an
interference-limited environment.

For the EE optimization problem, distributed resource al-
location algorithms which are based on either the reverse
Iterative Combinatorial Auction (ICA) game or the bisection
method were proposed in [12] and [13] respectively. However,
the authors have not considered the Quality of Service (QoS)
provisioning constraints and have not derived a close-form
solution. Centralized resource allocation algorithms for opti-
mizing the EE in the Device-to-MultiDevice (D2MD) or D2D-
cluster scenarios were proposed in [14] and [15] respectively.
One major disadvantage of the centralized algorithms is that
the computational complexity and signaling overhead increase
significantly with the number of UEs. Besides, since the
optimization process is carried out in the BS, the optimal
solution needs to be delivered to the UEs within the channel
coherence time. Instead of maximizing EE, an auction-based
resource allocation algorithm was proposed to maximize the
battery lifetime in [16], but cellular UEs were not taken
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into consideration. A coalition game based resource sharing
algorithm was proposed in [17] to jointly optimize the model
selection and resource scheduling. The authors assumed that
independent D2D UEs and cellular UEs can communicate with
one another and act together as one entity to improve their EE
in the game.

In this paper, firstly, we propose a distributed interference-
aware energy-efficient resource allocation algorithm to max-
imize each UE’s EE subject to the QoS provisioning and
transmission power constraints. We model the resource al-
location problem as a noncooperative game in which each
player is self-interested and wants to maximize its own EE.
Compared to the cooperative game model used in [17], the
noncooperative model has the advantage of a lower overhead
for information exchange between UEs. Both of the D2D
UEs and cellular UEs are taken into consideration. The EE
utility function of each player is defined as the SE divided
by the total power consumption, which includes both trans-
mission and circuit power. The formulated EE maximization
problem is a non-convex problem but can be transformed
into a convex optimization problem by using the nonlinear
fractional programming developed in [18]. Then we prove that
a Nash equilibrium exists in the noncooperative game, and the
optimal resource allocation solution obtained by the proposed
energy-efficient algorithm is exactly the Nash equilibrium.
We also derive a spectral-efficient algorithm and compare it
with the proposed energy-efficient algorithm through computer
simulations. Finally, we analyze the tradeoff between EE and
SE in an interference-limited environment and derive closed-
form expressions of EE and SE gaps for D2D and Cellular
UEs respectively.

The structure of this paper is organized as follows: Section
II introduces the system model of the D2D communica-
tion underlaying cellular networks. Section III introduces the
distributed iterative optimization algorithm for maximizing
each UE’s EE. Section IV introduces the distributed spectral-
efficient resource allocation algorithm for the purpose of
comparison. Section V introduces the tradeoff between EE and
SE for the energy-efficient and spectral-efficient algorithms.
Section VI introduces the simulation parameters, results and
analyses. Section VII gives the conclusion.

II. SystemModel

In this paper, we consider the uplink scenario of a single
cellular network, which is composed of the base station, the
D2D UEs, and the cellular UEs. Fig. 1 shows the system model
of D2D communications with uplink resource sharing. There
are two cellular UEs (UE1 and UE2), and two D2D pairs
(UE3 and UE4, and UE5 and UE6 respectively). A pair of
D2D transmitter and receiver form a D2D link, and a cellular
UE and the BS form a cellular link. The UEs in a D2D pair
are close enough to enable D2D communication. Each cellular
UE is allocated with an orthogonal link (e.g., an orthogonal
resource block in LTE), i.e., there is no co-channel interference
between cellular UEs. At the same time, the two D2D pairs
reuse the same channels allocated to cellular UEs in order
to improve the spectral efficiency. As a result, the BS suffers

desired signal

Interference from 
D2D UEs

Interference from 
cellular UEs

UE5
BS

UE1

UE2
UE4

UE3

UE6

UE5

D2D Pair 1
D2D Pair 2

Fig. 1. System model of D2D communications with uplink channel reuse.

from the interference caused by the D2D transmitters (UE3
and UE5), and the D2D receivers (UE4 and UE6) suffer from
the interference caused by cellular UEs (UE1 and UE2) and
the other D2D transmitters that reuse the same channel (UE5
or UE3 respectively).

The set of UEs is denoted as S = {N ,K}, where N and
K denote the sets of D2D UEs and cellular UEs respectively.
The total number of D2D links and cellular links are denoted
as N and K respectively. The Signal to Interference plus Noise
Ratio (SINR) of the i-th D2D pair (i ∈ N) in the k-th (k ∈ K)
channel is given by

γki =
pk

i g
k
i

pk
cg

k
c,i +

∑N
j=1, j�i pk

jg
k
j,i + N0

, (1)

where pk
i , pk

c, and pk
j are the transmission power of the i-

th D2D transmitter, the k-th cellular UE, and the j-th D2D
transmitter in the k-th channel respectively. gki is the channel
gain of the i-th D2D pair, gkc,i is the interference channel
gain between the k-th cellular UE and the i-th D2D receiver,
and gkj,i is the interference channel gain between the j-th
D2D transmitter and the i-th D2D receiver. N0 is the nosier
power. pk

cg
k
c,i and

∑N
j=1, j�i pk

jg
k
j,i denote the interference from

the cellular UE and the other D2D pairs that reuse the k-th
channel respectively.

The received SINR of the k-th cellular UE at the BS is given
by

γkc =
pk

cg
k
c∑N

i=1 pk
i g

k
i,c + N0

, (2)

where gkc is the channel gain between the k-th cellular UE and
the BS, gki,c is the interference channel gain between the i-th
D2D transmitter and the BS in the k-th channel.

∑N
i=1 pk

i g
k
i,c

denote the interference from all of the D2D pairs to the BS in
the k-th channel.

The achievable rates of the i-th D2D pair and the k-th
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cellular UE are given by

rd
i =

K∑
k=1

log2

(
1 + γki

)
, (3)

rc
k = log2

(
1 + γkc

)
. (4)

The total power consumption of the i-th D2D pair and the k-th
cellular UE are given by

pd
i,total =

K∑
k=1

1
η

pk
i + 2pcir, (5)

pc
k,total =

1
η

pk
c + pcir, (6)

where pd
i,total is the total power consumption of the i-th D2D

pair, which is composed of the transmission power over all of
the K channels, i.e.,

∑K
k=1

1
η
pk

i , and the circuit power of both
the D2D transmitter and receiver, i.e., 2pcir. The circuit power
of any UE is assumed as the same and denoted as pcir. η is
the Power Amplifier (PA) efficiency, i.e., 0 < η < 1. pc

k,total is
the total power consumption of the k-th cellular UE, which is
composed of the transmission power 1

η
pk

c and the circuit power
only at the transmitter side. The power consumption of the BS
is not taken into consideration.

III. Distributed Interference-Aware Energy-Efficient
Resource Allocation

A. Problem Formulation

In the centralized resource allocation, the optimization of
the sum EE is carried out by the BS that requires the com-
plete network knowledge. The computational complexity and
signaling overhead increase significantly with the number of
UEs. Therefore, in this section, we focus on the more practical
distributed resource allocation problem, which is modeled as
a noncooperative game.

In the noncooperative game, each UE is self-interested and
wants to maximize its own EE. The strategy set of the i-th D2D
transmitter is denoted as pd

i = {pk
i | 0 ≤

∑K
k=1 pk

i ≤ pd
i,max, k ∈K}, ∀i ∈ N . The strategy set of the k-th cellular UE is denoted

as pc
k = {pk

c | 0 ≤ pk
c ≤ pc

k,max}, ∀k ∈ K . pd
i,max and pc

k,max are
the maximum transmission power constraints for D2D UEs and
Cellular UEs respectively. The strategy set of the other D2D
transmitters in N\{i} is denoted as pd

−i = {pk
j | 0 ≤

∑K
k=1 pk

j ≤
pd

j,max, k ∈ K , j ∈ N , j � i}, ∀i ∈ N . The strategy set of the
other cellular UEs in K\{k} is denoted as pc

−k = {pm
c | 0 ≤

pm
c ≤ pc

m,max,m ∈ K ,m � k}, ∀k ∈ K .
For the i-th D2D pair, its EE Ud

i,EE depends not only on pd
i ,

but also on the strategies taken by other UEs in S\{i}, i.e.,
pd
−i,p

c
k, p

c
−k. Ud

i,EE is defined as

Ud
i,EE(pd

i ,p
d
−i,p

c
k,p

c
−k)

=
rd
i

pd
i,total

=

∑K
k=1 log2

(
1 +

pk
i g

k
i

pk
cg

k
c,i+

∑N
j=1, j�i pk

jg
k
j,i+N0

)
∑K

k=1
1
η
pk

i + 2pcir

. (7)

Therefore, the EE maximization problem of the i-th D2D pair
is formulated as

max . Ud
i,EE(pd

i ,p
d
−i,p

c
k, p

c
−k)

s.t. C1,C2. (8)

C1 :rd
i ≥ Rd

i,min, (9)

C2 :0 ≤
K∑

k=1

pk
i ≤ pd

i,max. (10)

Similarly, the EE of the k-th cellular UE Uc
k,EE is defined as

Uc
k,EE(pd

i ,p
d
−i,p

c
k,p

c
−k) =

rc
k

pc
k,total

=

log2

(
1 + pk

cg
k
c∑N

i=1 pk
i g

k
i,c+N0

)
1
η
pk

c + pcir
.

(11)

The corresponding EE maximization problem is formulated as

max . Uc
k,EE(pd

i , p
d
−i,p

c
k,p

c
−k)

s.t. C3,C4. (12)

C3 :rc
k ≥ Rc

k,min, (13)

C4 :0 ≤ pk
c ≤ pc

k,max. (14)

The constraints C1 and C3 specify the QoS requirements in
terms of minimum transmission rate. C2 and C4 are the non-
negative constraints on the power allocation variables.

B. The Objective Function Transformation

The objective functions in (8) and (12) are non-convex
due to the fractional form. In order to derive a closed-form
solution, we transform the fractional objective function to a
convex optimization function by using the nonlinear fractional
programming developed in [18]. We define the maximum EE
of the i-th D2D pair as qd∗

i , which is given by

qd∗
i = max .Ud

i,EE(pd
i ,p

d
−i, p

c
k,p

c
−k) =

rd
i (pd∗

i )

pd
i,total(p

d∗
i )
. (15)

where pd∗
i is the best response of the i-th D2D transmitter given

the other UEs’ strategies pd
−i, pc

k, pc
−k. The following theorem

can be proved:
Theorem 1: The maximum EE qd∗

i is achieved if and only
if

max . rd
i (pd

i ) − qd∗
i pd

i,total(p
d
i ) = rd

i (pd∗
i ) − qd∗

i pd
i,total(p

d∗
i ) = 0.

(16)

Proof: see Appendix A.
Similarly, for the maximum EE of the k-th cellular UE qc∗

k ,
we will have similar theorem as Theorem 1:

Theorem 2: The maximum EE qc∗
k is achieved if and only

if

max . rc
k(pc

k) − qc∗
k pc

k,total(p
c
k) = rc

k(pc∗
k ) − qc∗

k pc
k,total(p

c∗
k ) = 0.

(17)

pc∗
k is the best response of the k-th cellular UE given the other

UEs’ strategies pd
−i, pc

k, pc
−k.
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C. The Iterative Optimization Algorithm

The proposed algorithm is summarized in Algorithm 1. n is
the iteration index, Lmax is the maximum number of iterations,
and Δ is the maximum tolerance. At each iteration, for any
given qd

i or qc
k, the resource allocation strategy for the D2D

UE or the cellular UE can be obtained by solving the following
transformed optimization problems respectively:

max . rd
i (pd

i ) − qd
i pd

i,total(p
d
i )

s.t. C1,C2. (18)

max . rc
k(pc

k) − qc
k p

c
k,total(p

c
k)

s.t. C3,C4. (19)

Taking the D2D UEs as an example, the Lagrangian asso-
ciated with the problem (18) is given by

LEE(pd
i , αi, βi) = rd

i (pd
i ) − qd

i pd
i,total(p

d
i )

− αi

(
rd
i − Rd

i,min

)
− βi

⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

pk
i − pd

i,max

⎞⎟⎟⎟⎟⎟⎠ ,
(20)

where αi, βi are the Lagrange multipliers associated with the
constraints C1 and C2 respectively. The constraint pk

i ≥ 0 is
absorbed into the Karush-Kuhn-Tucker (KKT) condition when
solving the equivalent Lagrange dual problem:

min
(αi ≥ 0, βi ≥ 0)

. max
(pd

i )
. LEE(pd

i , αi, βi) (21)

It is noted that the objective function in (18) is a concave
function of pk

i (pk
i ∈ pd

i ), and the primal and dual optimal
points form an saddle-point of the Lagrangian. The dual
problem in (21) can be decomposed into two subproblems:
the maximization problem solves the power allocation problem
to find the best strategy and the minimization problem solves
the master dual problem to find the corresponding Lagrange
multipliers. For any given qd

i , the solution is given by

pk
i =

⎡⎢⎢⎢⎢⎢⎢⎣η(1 − αi) log2 e

qd
i + ηβi

−
pk

cg
k
c,i +

∑N
j=1, j�i pk

jg
k
j,i + N0

gki

⎤⎥⎥⎥⎥⎥⎥⎦
+

, (22)

where [x]+ = max{0, x}. Equation (22) indicates a water-
filling algorithm for transmission power allocation, and the
interference from the other UEs decreases the water level. For
solving the minimization problem, the Lagrange multipliers
can be updated by using the subgradient method [19], [20] as

αi(τ + 1) =
[
αi(τ) − μi,α(τ)

(
rd
i (τ) − Rd

i,min

)]+
, (23)

βi(τ + 1) =

⎡⎢⎢⎢⎢⎢⎣βi(τ) − μi,β(τ)
⎛⎜⎜⎜⎜⎜⎝

K∑
k=1

pk
i (τ) − pd

i,max

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
+

, (24)

where τ is the iteration index, μi,α, μi,β are the positive step
sizes. The solution of problem (21) converges to the optimum
solution in (18) if the step sizes are chosen to satisfy the
diminishing step size rules [20]. Since the Lagrange multi-
plier updating techniques are beyond the scope of this paper,

Algorithm 1 Iterative Resource Allocation Algorithm

1: qd
i ← 0, qc

k ← 0, Lmax ← 10, n← 1, Δ← 10−3

2: for n = 1 to Lmax do
3: if D2D link then
4: solve (18) for a given qd

i and obtain the set of
strategies pd

i
5: if rd

i (pd
i ) − qd

i pd
i,total(p

d
i ) ≤ Δ, then

6: pd∗
i = pd

i , and qd∗
i =

rd
i (pd∗

i )

pd
i,total(p

d∗
i )

7: break
8: else

9: qd
i =

rd
i (pd

i )

pd
i,total(p

d
i )

, and n = n + 1

10: end if
11: else
12: solve (19) for a given qc

k and obtain the set of
strategies pc

k
13: if rc

k(pc
k) − qc

k p
c
k,total(p

c
k) ≤ Δ, then

14: pc∗
k = pc, and qc∗

k =
rc
k(pc∗

k )

pc
k,total(p

c∗
k )

15: break
16: else

17: qc
k =

rc
k(pc

k)

pc
k,total(p

c
k)

, and n = n + 1

18: end if
19: end if
20: end for

interested readers may refer to [19], [20] and references therein
for details.

Similarly, the optimum solution of pc is given by

pk
c =

⎡⎢⎢⎢⎢⎢⎣η(1 − δk) log2 e

qc
k + ηθk

−
∑N

i=1 pk
i g

k
i,c + N0

gkc

⎤⎥⎥⎥⎥⎥⎦
+

, (25)

where δk, θk are the Lagrange multipliers associated with the
constraints C3 and C4 respectively.

A Nash equilibrium is a set of power allocation strategies
that none UE (neither D2D UE nor cellular UE) can unilater-
ally improve its EE by choosing a different power allocation
strategy, i.e., ∀i ∈ N ,∀k ∈ K ,

Ud
i,EE(pd∗

i ,p
d∗
−i , p

c∗
k ,p

c∗
−k) ≥ Ud

i,EE(pd
i ,p

d
−i,p

c
k,p

c
−k), (26)

Uc
k,EE(pd∗

i ,p
d∗
−i , p

c∗
k ,p

c∗
−k) ≥ Uc

k,EE(pd
i ,p

d
−i,p

c
k,p

c
−k). (27)

Theorem 3: A Nash equilibrium exists in the noncooperaive
game. Furthermore, the strategy set {pd∗

i ,p
c∗
k | i ∈ N , k ∈ K}

obtained by using Algorithm 1 is the Nash equilibrium.
Proof: see Appendix B.

IV. Distributed Interference-Aware Spectral-Efficient
Resource Allocation

In this section, for the purpose of comparison, we derive
the distributed interference-aware spectral-efficient resource
allocation by employing the noncooperative game model de-
veloped in Section III. Each UE is self-interested and wants
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to maximize its own SE rather than EE, and the power
consumption is completely ignored in the optimization process.
For the i-th D2D pair, its SE utility function Ud

i,S E depends not
only on pd

i , but also on the strategies taken by other UEs in
S\{i}, i.e., pd

−i, pc
k, pc

−k. Ud
i,S E is defined as

Ud
i,S E(pd

i ,p
d
−i,p

c
k,p

c
−k)

= rd
i =

K∑
k=1

log2

⎛⎜⎜⎜⎜⎜⎜⎝1 + pk
i g

k
i

pk
cg

k
c,i +

∑N
j=1, j�i pk

jg
k
j,i + N0

⎞⎟⎟⎟⎟⎟⎟⎠ . (28)

Therefore, the SE maximization problem of the i-th D2D
pair is formulated as

max . Ud
i,S E(pd

i ,p
d
−i,p

c
k,p

c
−k)

s.t. C1,C2. (29)

Similarly, the SE of the k-th cellular UE Uc
k,S E is defined as

Uc
k,S E(pd

i ,p
d
−i, p

c
k,p

c
−k) = rc

k = log2

⎛⎜⎜⎜⎜⎜⎝1 + pk
cg

k
c∑N

i=1 pk
i g

k
i,c + N0

⎞⎟⎟⎟⎟⎟⎠ .
(30)

The corresponding SE maximization problem is formulated as

max . Uc
k,S E(pd

i ,p
d
−i,p

c
k,p

c
−k)

s.t. C3,C4. (31)

It is noted that the objective functions in (29) and (31) are
concave and closed-form solution can be derived by exploiting
the properties of convex optimization. Taking the D2D UEs as
an example, given the other UEs’ strategies pd

−i, pc
k, pc

−k, the
Lagrangian associated with the problem (29) is given by

LS E(pd
i , αi, βi)

= rd
i (pd

i ) − αi

(
rd
i (pd

i ) − Rd
i,min

)
− βi

⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

pk
i − pd

i,max

⎞⎟⎟⎟⎟⎟⎠ , (32)

where αi, βi are the Lagrange multipliers associated with the
constraints C1 and C2 respectively. The equivalent Lagrange
dual problem:

min
(αi ≥ 0, βi ≥ 0)

. max
(pd

i )
. LS E(pd

i , αi, βi). (33)

The dual problem in (33) can be decomposed into two subprob-
lems: the maximization problem solves the power allocation
problem to find the best strategy and the minimization problem
solves the master dual problem to find the corresponding
Lagrange multipliers. For any given αi, βi, the solution is given
by

pk∗
i =

⎡⎢⎢⎢⎢⎢⎢⎣ (1 − αi) log 2e
βi

−
pk∗

c g
k
c,i +

∑N
j=1, j�i pk

jg
k
j,i + N0

gki

⎤⎥⎥⎥⎥⎥⎥⎦
+

. (34)

Equation (34) indicates a water-filling algorithm for transmis-
sion power allocation, and the interference from the other UEs
decreases the water level. The Lagrange multipliers can be
updated by using the subgradient method [19], [20], which is
introduced in Section III.

Similarly, the optimum solution of pk∗
c is given by

pk∗
c =

⎡⎢⎢⎢⎢⎢⎣ (1 − δk) log2 e

θk
−

∑N
i=1 pk∗

i g
k
i,c + N0

gkc

⎤⎥⎥⎥⎥⎥⎦
+

, (35)

where δk, θk are the Lagrange multipliers associated with the
constraints C3 and C4 respectively.

A Nash equilibrium is a set of power allocation strategies
that none UE (neither D2D UE nor cellular UE) can unilater-
ally improve its SE by choosing a different power allocation
strategy, i.e., ∀i ∈ N ,∀k ∈ K ,

Ud
i,S E(pd∗

i , p
d∗
−i ,p

c∗
k ,p

c∗
−k) ≥ Ud

i,S E(pd
i ,p

d
−i,p

c
k,p

c
−k), (36)

Uc
k,S E(pd∗

i , p
d∗
−i ,p

c∗
k ,p

c∗
−k) ≥ Uc

k,S E(pd
i ,p

d
−i,p

c
k,p

c
−k). (37)

Theorem 4: A Nash equilibrium exists in the noncooperaive
game. Furthermore, the strategy set {pd∗

i ,p
c∗
k | i ∈ N , k ∈ K}

obtained by (34), (35) is the Nash equilibrium.
Proof: see Appendix C

V. Energy Efficiency and Spectral Efficiency Tradeoff

In this section, we investigate the tradeoff between EE and
SE. For the i-th D2D pair, the EE gap between the energy-
efficient algorithm and the spectral-efficient algorithm, which
are derived in Section III and Section IV respectively, is
defined as

Gd
i,EE = Ud∗

i,EE −
Ud∗

i,S E

(pd
i,total)S E

=

∑K
k=1 log2

(
1 +

pk∗
i,EEg

k
i

pk∗
c,EEg

k
c,i+

∑N
j=1, j�i pk∗

j,EEg
k
j,i+N0

)
∑K

k=1
1
η
pk∗

i,EE + 2pcir

−
∑K

k=1 log2

(
1 +

pk∗
i,S Eg

k
i

pk∗
c,S Eg

k
c,i+

∑N
j=1, j�i pk∗

j,S Eg
k
j,i+N0

)
∑K

k=1
1
η
pk∗

i,S E + 2pcir

, (38)

where Ud∗
i,EE and Ud∗

i,S E are the maximum EE and SE which
are obtained by solving the problems in (8) and (29) respec-
tively. pk∗

i,EE and pk∗
c,EE are the optimal energy-efficient power

allocation solution given by Algorithm 1 (using (22) and (25)
respectively). pk∗

i,S E and pk∗
c,S E are the optimal spectral-efficient

power allocation solution given by (34) and (35) respectively.
The SE gap between the spectral-efficient algorithm and the
energy-efficient algorithm is defined as

Gd
i,S E = Ud∗

i,S E − (pd
i,total)EEUd∗

i,EE

=

K∑
k=1

log2

⎛⎜⎜⎜⎜⎜⎜⎝1 +
pk∗

i,S Eg
k
i

pk∗
c,S Eg

k
c,i +

∑N
j=1, j�i pk∗

j,S Eg
k
j,i + N0

⎞⎟⎟⎟⎟⎟⎟⎠
−

K∑
k=1

log2

⎛⎜⎜⎜⎜⎜⎜⎝1 +
pk∗

i,EEg
k
i

pk∗
c,EEg

k
c,i +

∑N
j=1, j�i pk∗

j,EEg
k
j,i + N0

⎞⎟⎟⎟⎟⎟⎟⎠ .
(39)

Similarly, for the k-th cellular UE, the EE and SE gaps between
the energy-efficient and the spectral-efficient algorithms are
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given by

Gc
k,EE = Uc∗

k,EE −
Uc∗

k,EE

(pc
k,total)S E

=

log2

(
1 +

pk∗
c,EEg

k
c∑N

i=1 pk∗
i,EEg

k
i,c+N0

)
1
η
pk∗

c,EE + pcir
−

log2

(
1 +

pk∗
c,S Eg

k
c∑N

i=1 pk∗
i,S Eg

k
i,c+N0

)
1
η
pk∗

c,S E + pcir
,

(40)

Gc
k,S E = Uc∗

k,S E − (pc
k,total)EEUc∗

k,EE

= log2

⎛⎜⎜⎜⎜⎜⎝1 + pk∗
c,S Eg

k
c∑N

i=1 pk∗
i,S Eg

k
i,c + N0

⎞⎟⎟⎟⎟⎟⎠
− log2

⎛⎜⎜⎜⎜⎜⎝1 + pk∗
c,EEg

k
c∑N

i=1 pk∗
i,EEg

k
i,c + N0

⎞⎟⎟⎟⎟⎟⎠ , (41)

where Uc∗
k,EE and Uc∗

k,S E are the maximum EE and SE which
are obtained by solving (12) and (31) respectively.

Although the EE and SE gaps can be calculated by using
(38), (39), (40), (41), the numerical results depends on the
specific channel realization in each simulation and a large
number of simulations are required to obtain the average
result. In order to facilitate analysis and get some insights,
we consider a special case that all the signal channels have
the same power gain g, and all the interference channels have
the same power gain ĝ. The interference level of the overall
network is defined as I = ĝ

g
. The EE and SE gaps defined in

(38), (39), (40), (41) can be rewritten as

Gd
i,EE =

K log2

(
1 +

pk∗
i,EE

pk∗
c,EE I+(N−1)pk∗

i,EE I+
N0
g

)

K
η
pk∗

i,EE + 2pcir

−
K log2

(
1 +

pk∗
i,S E

pk∗
c,S E I+Npk∗

j,S E I+
N0
g

)

K
η
pk∗

i,S E + 2pcir
, (42)

Gd
i,S E = K log2

⎛⎜⎜⎜⎜⎜⎜⎝1 +
pk∗

i,S E

pk∗
c,S E I + (N − 1)pk∗

i,S E I + N0
g

⎞⎟⎟⎟⎟⎟⎟⎠
− K log2

⎛⎜⎜⎜⎜⎜⎜⎝1 +
pk∗

i,EE

pk∗
c,EEI + Npk∗

i,EEI + N0
g

⎞⎟⎟⎟⎟⎟⎟⎠ , (43)

Gc
k,EE =

log2

(
1 +

pk∗
c,EE

Npk∗
i,EE I+

N0
g

)

1
η
pk∗

c,EE + pcir
−

log2

(
1 +

pk∗
c,S E

Npk∗
i,S E I+

N0
g

)

1
η
pk∗

c,S E + pcir
,

(44)

Gc
k,S E = log2

⎛⎜⎜⎜⎜⎜⎜⎝1 +
pk∗

c,S E

Npk∗
i,S E I + N0

g

⎞⎟⎟⎟⎟⎟⎟⎠
− log2

⎛⎜⎜⎜⎜⎜⎜⎝1 +
pk∗

c,EE

Npk∗
i,EEI + N0

g

⎞⎟⎟⎟⎟⎟⎟⎠ . (45)

TABLE I. Simulation Parameters.

Parameter Value
Cell radius 500 m
Maximum D2D transmission distance 25 m
Maximum transmission power pd

i,max, p
c
k,max 200 mW (23 dBm)

Constant circuit power pcir 10 mW (10 dBm)
Thermal noise power N0 10−7 W
Number of D2D pairs N 5
Number of cellular UEs K 3
PA efficiency η 35%
QoS of cellular UEs Rc

k,min 0.1 bit/s/Hz
QoS of D2D UEs Rd

i,min 0.5 bit/s/Hz

The relationships among the EE and SE tradeoff, the EE
and SE gap, and the inreference level are analyzed through
simulations by using the equations derived above.

VI. Simulation Results

In this section, the proposed algorithm is verified through
computer simulations. The values of simulation parameters are
inspired by [4], [7], [12] , and are summarized in Table I. We
compare the proposed EE maximization algorithm (labeled as
“energy-efficient”) with the SE maximization algorithm (la-
beled as “spectral-efficient” ), and the random power allocation
algorithm (labeled as “random”). The results are averaged
through a total number of 1000 simulations and normalized
by the maximum value. For each simulation, the locations of
the cellular UEs and D2D UEs are generated randomly within
a cell with a radius of 500 m. Fig. 2 shows the locations of
D2D UEs and cellular UEs generated in one simulation. The
maximum distance between any two D2D UEs that form a
D2D pair is 25 m. The channel gain between the transmitter
i and the receiver j is calculated as d−2

i, j |hi, j|2 [4], [12], [16],
where di, j is the distance between the transmitter i and the
receiver j, hi, j is the complex Gaussian channel coefficient
that satisfies hi, j ∼ CN(0, 1).

Fig. 3 shows the normalized average EE of D2D links
corresponding to the number of game iterations. The normal-
ized average EE of the proposed energy-efficient algorithm
converge to 0.429, while the random algorithm converge to
0.124 and the spectral-efficient algorithm converge to 0.064.
It is clear that the proposed energy-efficient algorithm sig-
nificantly outperforms the spectral-efficient algorithm and the
random algorithm in terms of EE in an interference-limited
environment. The spectral-efficient algorithm has the worst EE
performance among the three because power consumption is
completely ignored in the optimization process.

Fig. 4 shows the normalized average EE of cellular links
corresponding to the number of game iterations. The simula-
tion results demonstrate that the proposed algorithm achieves
the best performance again. Comparing Fig. 4 with Fig. 3, we
find that the D2D links can achieve a much better EE than
the cellular links due to the proximity gain and the channel
reuse gain. The proposed energy-efficient algorithm and the
conventional SE algorithm converges to the equilibrium within
3 ∼ 4 game iterations, while the random algorithm fluctuates
around the equilibrium since that the transmission power
strategy is randomly selected.
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Fig. 2. The locations of D2D UEs and cellular UEs generated in one
simulation (N = 5, K = 3, the cell radius is 500 m, and maximum D2D
distance is 25 m ). A total of 1000 simulations are performed.
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Fig. 3. The normalized average energy efficiency of D2D links corresponding
to the number of game iterations (N = 5, K = 3, pd

i,max = pc
k,max = 200 mW,

Rc
k,min = 0.1 bit/s/Hz, Rd

i,min = 1 bit/s/Hz, 1000 simulations).

Fig. 5 shows the tradeoff between EE and SE for the
cellular UE under different interference scenarios, i.e., I =
−15,−10,−5 dB. We consider the special case discussed in
Section V. The SE of the cellular UE is increased from 0
bits/s/Hz to 7 bits/s/Hz with a step of 0.2, and the correspond-
ing transmission power pk

c is calculated by using (2) and (4).
We assume that the D2D transmitter is selfish and always use
the maximum transmission power. For each step of SE, the
corresponding EE is obtained through simulations.

For the case of I = −15 dB, the maximum achievable SE
and EE subject to the transmission power constraint are 6.6
bits/s/Hz and 54.26 bits/s/J respectively. In comparison, for
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Fig. 4. The normalized average energy efficiency of cellular links correspond-
ing to the number of game iterations (N = 5, K = 3, pd

i,max = pc
k,max = 200

mW, Rc
k,min = 0.1 bit/s/Hz, Rd

i,min = 1 bit/s/Hz, 1000 simulations).
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Fig. 5. The energy efficiency and spectral efficiency tradeoff for cellular UEs
corresponding to three interference levels I = −20,−15,−10 dB, (g = 1,N =
1,K = 1, pd

i,max = pc
k,max = 200 mW).

the case of I = −10 dB, the maximum achievable SE and EE
are 5 bits/s/Hz and 28.21 bits/s/J respectively. By increasing
the interference level from −15 dB to −10 dB, the maximum
achievable SE and EE are reduced by nearly 24% and 48%
respectively. We conclude that as interference level increases,
the EE decreases more rapidly than the SE. Furthermore, if
we further increase the transmission power, the EE degrades
severely while the SE only improves slightly. For example,
when I = −15 dB, if we increase the SE from 2.2 bits/s/Hz
to 4 bits/s/Hz, the corresponding EE is reduced from 54.26
bits/s/J to 37.83 bits/s/J. As a result, the SE is only increased
by 1.8 bits/s/Hz, but the EE is reduced by 16.43 bits/Hz/J.
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Fig. 6. The energy efficiency and spectral efficiency gaps of the cellular UE
with regards to the interference level I (g = 1,N = 1,K = 1, pd

i,max = pc
k,max =

200 mW).

Hence, increasing transmission power beyond the power for
optimal EE brings little SE improvement but significant EE
loss. However, in the severe interference case, i.e., I = −5dB,
the EE loss is not so large due to the fact that the maximum
achievable EE is limited by the interference.

Fig. 6 shows the EE and SE gaps of the cellular UE (defined
in (44) and (45) respectively) with regards to the interference
level I. From Fig. 6, it is clear that both the EE and SE gaps
(Gc

i,EE and Gc
i,S E) decrease as the interference level I increas-

ing. In particular, the EE gap decreases much more rapidly than
the SE gap, which verifies again that in an interference-limited
environment, increasing transmission power beyond the power
for optimal EE brings little SE improvement but significant EE
loss. Therefore, the proposed energy-efficient algorithm can
bring significant EE improvement subject to little SE loss.

VII. Conclusion

In this paper, we proposed a distributed interference-aware
energy-efficient resource allocation algorithm for D2D com-
munications by exploiting the properties of the nonlinear
fractional programming. Simulation results have demonstrated
that the proposed energy-efficient algorithm significantly out-
performs the spectral-efficient algorithm in terms of EE for
both cellular and D2D links. We have analyzed the tradeoff
between EE and SE and derived closed-form expressions for
EE and SE gaps. Through simulation results we found that in
an interference-limited environment, increasing transmission
power beyond the power for optimal EE brings little SE
improvement but significant EE loss. Therefore, the proposed
energy-efficient algorithm can bring significant EE improve-
ment subject to little SE loss.

Appendix A
Proof of the Theorem 1

The proof of the Theorem 1 is similar to the proof of the
Theorem (page 494 in [18]). Firstly, we prove the necessity
proof. For any feasible strategy set pd

i , ∀i ∈ N , we have

qd∗
i =

rd
i (pd∗

i )

pd
i,total(p

d∗
i )
≥ rd

i (pd
i )

pd
i,total(p

d
i )
. (46)

By rearranging (46), we obtain

rd
i (pd∗

i ) − qd∗
i pd

i,total(p
d∗
i ) = 0, (47)

rd
i (pd

i ) − qd∗
i pd

i,total(p
d
i ) ≤ 0. (48)

Hence, the maximum value of rd
i (pd

i ) − qd∗
i pd

i,total(p
d
i ) is 0, and

can only be achieved by pd∗
i , which is obtained by solving the

EE maximization problem defined in (8). This completes the
necessity proof.

Now we turn to the sufficiency proof. Assume that p̃d
i is the

optimal solution which satisfies that

rd
i (pd

i ) − qd∗
i pd

i,total(p
d
i ) ≤ rd

i (p̃d
i ) − qd∗

i pd
i,total(p̃

d
i ) = 0. (49)

By rearranging (49), we have

qd∗
i =

rd
i (p̃d

i )

pd
i,total(p̃

d
i )
≥ rd

i (pd
i )

pd
i,total(p

d
i )
. (50)

Hence, p̃d
i is also the solution of the EE maximization problem

defined in (8), i.e., p̃d
i = pd∗

i . This completes the sufficiency
proof.

Appendix B
Proof of the Theorem 3

According to [21], a Nash equilibrium exists if the utility
function is continuous and quasiconcave, and the set of strate-
gies is a nonempty compact convex subset of a Euclidean
space. Taking the EE objection function defined in (7) as
an example, the numerator rd

i defined in (3) is a concave
function of pk

i , ∀i ∈ N , k ∈ K . The denominator defined
in (5) is an affine function of pk

i . Therefore, Ud
i,EE is qua-

siconcave (Problem 4.7 in [22]). The set of the strategies
pd

i = {pk
i | 0 ≤ ∑K

k=1 pk
i ≤ pd

i,max, k ∈ K}, ∀i ∈ N , is a
nonempty compact convex subset of the Euclidean space RK .
Similarly, it is easily proved that the above conditions also
hold for the cellular UE. Therefore, a Nash equilibrium exists
in the noncooperaive game.

If the strategy set pd∗
i obtained by using Algorithm 1 is not

the Nash equilibrium, the i-th D2D transmitter can choose the
Nash equilibrium p̂d

i (p̂d
i � pd∗

i ) to obtain the maximum EE qd∗
i .

However, by Theorem 1, qd∗
i can only be achieved by choosing

pd∗
i . Then, we must have p̂d

i = pd∗
i , which contradicts with the

assumption. Therefore, pd∗
i is part of the Nash equilibrium. A

similar proof holds for pc∗
k . It is proved that the set {pd∗

i ,p
c∗
k |

i ∈ N , k ∈ K} obtained by using Algorithm 1 is the Nash
equilibrium.
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Appendix C
Proof of the Theorem 4

According to [21], a Nash equilibrium exists if the utility
function is continuous and quasiconcave, and the set of strate-
gies is a nonempty compact convex subset of a Euclidean
space. Taking the SE objection function defined in (28) as
an example, rd

i defined in (3) is a concave function of pk
i ,

∀i ∈ N , k ∈ K . Therefore, Ud
i,EE is quasiconcave since any

concave function is quasiconcave [22]. The set of the strategies
pd

i = {pk
i | 0 ≤

∑K
k=1 pk

i ≤ pd
i,max, k ∈ K}, ∀i ∈ N , is a nonempty

compact convex subset of the Euclidean space RK . Similarly,
it is easily proved that the above conditions also hold for
the cellular UE. Therefore, a Nash equilibrium exists in the
noncooperaive game.

If the strategy set pd∗
i obtained by (34) is not the Nash

equilibrium, the i-th D2D transmitter can choose the Nash
equilibrium p̂d

i (p̂d
i � pd∗

i ) to obtain the maximum SE defined
in (29). Hence, p̂d

i is also the solution of the SE maximization
problem defined in (29), i.e., p̂d

i = pd∗
i . This completes the

proof.
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