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Deep Learning (DL) has become a crucial technology for multimedia computing. It o�ers a powerful
instrument to automatically produce high-level abstractions of complex multimedia data, which can be
exploited in a number of applications including object detection and recognition, speech-to- text, media
retrieval, multimodal data analysis, and so on. �e availability of a�ordable large-scale parallel processing
architectures, and the sharing of e�ective open-source codes implementing the basic learning algorithms,
caused a rapid di�usion of DL methodologies, bringing a number of new technologies and applications
that outperform in most cases traditional machine learning technologies. In recent years, the possibility of
implementing DL technologies on mobile devices has a�racted signi�cant a�ention. �anks to this technology,
portable devices may become smart objects capable of learning and acting. �e path towards these exciting
future scenarios, however, entangles a number of important research challenges. DL architectures and
algorithms are hardly adapted to the storage and computation resources of a mobile device. �erefore, there
is a need for new generations of mobile processors and chipsets, small footprint learning and inference
algorithms, new models of collaborative and distributed processing, and a number of other fundamental
building blocks. �is survey reports the state of the art in this exciting research area, looking back to the
evolution of neural networks, and arriving to the most recent results in terms of methodologies, technologies
and applications for mobile environments.
CCS Concepts: •General and reference → Surveys and overviews; •Computing methodologies →
Neural networks; •Information systems→Mobile information processing systems; Multimedia information
systems;
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1 INTRODUCTION
Deep Neural Networks (DNN), also known as Deep Learning (DL), have recently a�racted signi�cant
a�ention from both industry and academia, as they provide powerful instruments to automatically
produce high-level abstractions of complex multi-modal data. We are already experiencing the
power of DNNs in our daily life, e.g., through the on-line recommendation services used by Amazon
or Net�ix, the voice and image recognition tools adopted by Google, or the face recognition features
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in Facebook. DNN technologies are rapidly spreading thanks to the convergence of two key factors:
the unprecedented interest in Big Data analytics, and the advances in hardware technologies. �e
former is creating the need for powerful tools capable of processing enormous volumes of low-
structured data and extract signi�cant information. In fact, traditional machine learning techniques
are in most cases unsuitable for this purpose, for they require a lot of work to de�ne and calculate
suitable data descriptions (feature extraction), and are usually unable to generalize and scale to
large, unstructured, and heterogeneous data. DNNs overcome this issue by allowing computers to
easily and automatically extract features from unstructured data without human intervention. �e
la�er is enabling the deployment of DNN technologies at a large scale. At the same time, advances
in parallel computing architectures make DNNs more and more feasible. Speci�cally, in recent
years powerful and compact GPUs have been released at a�ordable prices, which allow accelerating
the computation of the weights of DNNs. Such units provide massive parallel processing, speeding-
up by several orders of magnitude the execution of both learning and inference algorithms, as
compared to conventional CPUs. In addition, the availability of e�ective open-source libraries and
frameworks for implementing basic learning algorithms (see, e.g., Chainer[3], Ca�e[53], Torch[10],
�eano [14], Tensor�ow [12]) made DL methodologies easily available to anyone, causing their
rapid di�usion not only within the research community, but also for commercial purposes.

Among the many potential application areas, DL brings great opportunities in multimedia
computing, where it can greatly enhance the performance of various components, such as object
detection and recognition, speech-to-text translation, media information retrieval, multi-modal data
analysis, and so on. DL is particularly suited to this domain, as multimedia data are intrinsically as-
sociated to severe computational and storage problems. Furthermore, the possibility of introducing
smart multimedia applications in mobile environments is gaining more and more a�ention, due the
rapid spreading of smart portable devices. As a consequence, there is an increasing interest on the
possibility of applying DNNs to mobile environments [61]. DL not only can boost the performance
of mobile multimedia applications availably nowadays, but could also pave the way towards more
sophisticated uses of mobile devices. Many such devices, including smartphones, smart cameras,
pads, etc. hold some sensing and processing capability that can potentially make them smart objects
capable of learning and acting, either stand-alone or interconnected with other intelligent objects.
As an example, a remote health-care system may use wearable devices to produce a huge amount of
sensor data such as pulse rate, blood pressure, images of face and body, and even audio and video of
the patient and the environment. All those data may be used to monitor the patient’s condition, but
require an e�cient on-the-�y processing to produce a compact stream of signi�cant information.

Despite the great potential of mobile DNNs, it is not always straightforward to match the
requirements of the neural architectures with the constraints imposed by mobile and wireless
environments. �ere are a number of important problems to be solved, starting from the funda-
mental DNN technologies, to arrive to network architectures, training and inference algorithms,
footprint reduction, etc. For example, as the network connections among mobile devices become
unstable and unreliable, existing DNN algorithms need more e�cient fault tolerance and security
technologies. Meanwhile, unlike traditional high performance servers, mobile multimedia devices
such as wireless sensors and smartphones usually have limited resources in terms of energy, com-
puting power, memory, network bandwidth, and so on. �is brings the need of more e�cient DNN
technologies, which can cope with the constraints of mobile multimedia. Furthermore, because
of the dynamic scale and network topologies, mobile multimedia computing needs more scalable
DNN support than traditional data center environments.

A possible solution to these problems is to use distributed processing facilities such as cloud
computing, where powerful servers can be used to handle heavy DNN processes with plenty of
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memory space, at the cost of an increased data tra�c. Nevertheless, the possibility of directly
running DNNs on mobile devices is being investigated as a valuable alternative. �is implies
either increasing the capabilities of mobile processors and chipsets, or reducing the footprint of
algorithms, or both. Additionally, new models of collaborative and distributed processing among
mobile devices are considered promising directions to deal with higher complexity tasks. �ese
and other fundamental instruments are expected to provide in the near future reliable, e�cient and
real-time DNNs for mobile multimedia computing, communications and applications, but there
is a critical need for extensive research from so�ware to hardware and from theory to practice,
supporting DNN technologies for mobile multimedia.

In this paper, we provide a comprehensive survey on state-of-the-art research in DNNs for
mobile multimedia, and we highlight some critical issues for future research in this area. �e rest
of the paper is structured as follows. In Section II, we �rst present an overview of DNNs and
report the so�ware and hardware frameworks so far proposed for e�cient DNN implementation.
Section III focuses on DNNs for mobile environments, and �rst presents the current results on
reduced complexity algorithms for mobile DL, and then we review the latest research on so�ware
frameworks and special hardware platforms for mobile DNNs. In Section IV, we introduce a
selection of mobile multimedia applications already proposed in di�erent areas, including object
detection, human activity monitoring, ambient sensing, cyber-security, and resource optimization.
Finally, in Section V we close the paper with some conclusions and a summary of open research
directions.

2 BASIC CONCEPTS ON DL
2.1 A brief history of DNNs
�e history of Arti�cial Neural Networks (ANN) dates back to middle 1900, with the introduction of
the �rst biological-inspired models of shallow ANN [68]. �ese networks were unable to learn, but
this capacity was introduced only a few years later, initially with the introduction of unsupervised
learning [46] and subsequently with the �rst supervised training algorithms [75][84][85][103].

�e �rst wave of popularity of ANNs came a bit later, between ’70 and ’80, with the introduction
of e�cient back-propagation (BP) learning algorithms [38][102], and reached its peak in middle ’80
with the work by Rumelhart et al [86], which �rst hypothesized the possibility of obtaining useful
representations of input data in the hidden layers of a NN. Since the end of the ’80 though, the
initial enthusiasm within the research community went down when it became clear that BP-trained
ANNs could not be the universal solution to any machine learning problem. In the very same
years, however, a series of seminal works were published that paved the way towards modern
DNNs. In 1987 Ballard proposed the use of unsupervised auto-encoder hierarchies for pre-training
of networks [19]. In 1989 LeCun applied the BP to convolutional NN with adaptive connections,
one of the key elements of modern deep learners [65]. In its architecture, LeCun organized the
network in two types of layers, convolutional and subsampling, each one showing a topographic
structure. A couple of years later, Hochreiter was the �rst to identify the fundamental DL problem,
also known as the ’long time lag problem’ [48], which motivated the following works of Bengio et
al towards a viable solution for deep network learning [20][49]. More or less in the same years, the
Cresceptron model introduced the use of max-pooling (MP) layers in the neural architecture [101],
a concept that will be later widely adopted in modern DL.

At that time, however, the a�ention of the ML community was monopolized by non-neural
methods, such as SVMs [96], whose use was widespread in both research and practical applications.
It is only at the end of the �rst decade of 2000 that DL as we currently intend it showed up with
the invention of Deep Belief Networks [47], a derivation of Restricted Boltzman Machines, which
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immediately achieved astonishing performance in MNIST handwri�en pa�ern classi�cation and
a�racted a new wave of a�ention on ANNs. In the same years, the use of unsupervised multiple-
stage auto-encoders to substitute the pre-training phase before �ne-tuning, gained increasing
a�ention [21][39][97].

In parallel, the availability of powerful GPUs at a�ordable prices allowed implementing e�ective
parallel algorithms to speed up the training process. �e combination of complex network models,
e�ective algorithms, and ever-increasing computational power, paved the way towards the rapid
di�usion of DL technologies over the last decade. �e �rst GPU implementations of CNNs allowed
speeding-up the learning process by a factor 4-5 over traditional CPU architectures [24], but the joint
progress of GPU architectures and optimized algorithms eventually brought gains of some orders
of magnitude [82]. �e work in [32] introduced a �exible GPU-implementation of convolutional
NN integrating convolutional and max-pooling layers, with a �nal stage of fully-connected layers,
which inspired a number of e�cient implementations, successfully used to solve various pa�ern
recognition contests. In particular, in 2012 Alex Krizhevsky et al proposed in [56] a combination of
GPU-MPCNNs that obtained the best results at the ImageNet benchmarking initiative, the so-called
AlexNet. �e network was made up of 5 convolutional layers, max-pooling layers, dropout layers,
and 3 fully-connected layers, and was designed to classify 1000 categories. Starting from the idea of
AlexNet, in the following years new architectures were proposed with ever increasing performance.
In 2013 M. Zeiler and R. Fergus presented the ZF Net [108], which introduced a new way of
visualizing the feature maps to gain be�er knowledge of the inner mechanisms of the network. A
further big step ahead in the design of e�cient networks was the Inception architecture, which led
to the so-called GoogleNet [94]. Inception introduced the intuition that the CNN layers could be
organized in new ways, without the need of being layered sequentially. In the same year, Microso�
introduced ResNet, a very deep network with 152 layers that won the 2015 ILSVRC competion
with an error rate as low as 3.6% [45]. Among the most interesting results of the last years, it is
also worth mentioning the concept of generative adversarial networks, �rst introduced by Ian
Goodfellow et al in [43]. In this model, two networks compete in a game where a generator is trying
to learn the input data distribution so as to fool a classi�er (the discriminator), while the la�er tries
not to be fooled. At convergence, the samples created by the generator are indistinguishable from
the training ones.

2.2 So�ware Frameworks
So�ware frameworks that provide the necessary basis and the building blocks for implementing
deep network architectures without coding from scratch are a very important part of the DL
ecosystem and a facilitator of the rapid advancements that we witness in DL. A number of such
frameworks have appeared in the last �ve years; these include cuda-convnet [56], ca�e [53], mxnet
[6], chainer [3], neon [7], torch [10], theano [14], tensor�ow [12].

�e most important characteristics of such frameworks are: i) optimized implementation and
exploitation of multi-core computing capabilities (especially GPUs), so as to allow for fast learning
and inference (be reminded that the amount of computations required for training a deep network is
one of the two factors that prohibited the practical use of DL for decades!); and ii) expressibility and
extensibility, allowing developers to easily re-use standard network structures such as convolutional,
pooling and fully-connected layers, and to extend or modify such structures and the overall network
architecture so as to investigate new ideas, such as the introduction of non-typical nonlinearities.

Cuda-convnet [56] and its more recent version, cuda-convnet2, are the archetypical DL frame-
works. �ey are fast C++/CUDA implementations of convolutional, or more generally feed-forward,
neural networks that can be used for modeling arbitrary layer connectivity and network depths;

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2016.



Deep Learning for Mobile Multimedia: A Survey 1:5

and, they rely on the back-propagation algorithm for training the resulting network. Ca�e [53] is a
BSD-licensed C++ library with Python and MATLAB bindings for training and deploying convolu-
tional neural networks and other deep models. Ca�e treats separately the network representation
and its actual implementation, thus allowing its user to easily switch between di�erent hardware
architectures (e.g. CPUs and NVidia’s CUDA-capable GPUs) for the same network (e.g. training
it on a GPU and then performing inference on a CPU-based platform). MXNet [6] is another
framework that supports multiple programming languages (C++, Python, R and more), multiple
hardware architectures (CPUs, GPUs and distributed architectures of multiple CPU/GPUs) and dif-
ferent network architectures, including LSTM-based recurrent networks. Support for the la�er (and
other network architectures) is a characteristic of most DL frameworks, including Ca�e (discussed
above) and many of the frameworks discussed in the sequel. Being by design extensible, most of
these frameworks are continuously extended with implementations of the latest ideas in the �eld.
Chainer [3], for instance, is a Python library that supports feed-forward nets, convnets, recurrent
and recursive nets, as well as batch optimization architectures. Neon [7], backed by leading chip
manufacturer Intel, is another Python library that also provides a multitude of di�erent types of
network layers, activation functions and cost functions as building blocks for implementing deep
networks architectures. Torch [10] is a framework that makes use of the scripting language LuaJIT
for simplifying the building of network architectures; similarly to the previous frameworks, it
provides a multitude of network building blocks. A beta version of PyTorch [8], which uses Python
instead of LuaJIT, has also been released recently. �eano [14] also tries to simplify the modeling
of complex mathematical problems, including deep network training. It is a highly-extensible
compiler for mathematical expressions in Python that translates high-level NumPy-like code into
machine language, for e�cient CPU and GPU computation. TensorFlow [12], backed by Google,
is one of the most recent additions in the DL frameworks ecosystem. Similarly to �eano, it is a
more general library for numerical computations, in this case using data �ow graphs, which can be
used not only for realizing DL networks but also in other scienti�c computing problems. In terms
of DL, it includes a set of community-contributed (as for most frameworks) network models and
individual building blocks, as well as utilities such as a converter for converting an existing Ca�e
model to TensorFlow. Add-on interfaces (wrappers) for further reducing the human e�ort and time
of building and training a network architecture using libraries such as the above include Lasagne
[5] for �eano, and Keras [4] for �eano and TensorFlow.

Extensions of DL frameworks for distributed DL on big-data clusters have also been devel-
oped. Such extensions include Ca�eOnSpark [2] and TensorFlowOnSpark [9], based on Ca�e and
TensorFlow, respectively, which allow performing leaning and inference on Spark and Hadoop
clusters.

2.3 Hardware Frameworks
Hardware accelerated technology is an important research area for DL. Special hardware design or
architectures will signi�cantly increase the e�ciency of DNNs for di�erent applications. In TABLE
1, we list the major hardware acceleration solution categories for DNNs. We will brie�y analyze
each solution in terms of performance and energy consumption. In the next subsections we will
discuss the use of GPUs, distributed computing, and high performance computing. In the following
Section 3.3, we will introduce FPGA, ASIC, and VPU-based solutions, which are characterized by a
lower energy consumption and are therefore more suited to mobile applications.

2.3.1 GPU. GPUs play an important role in DL, because their highly-parallel processing structure
is very e�ective for both learning and inference algorithms. As shown in Fig. 1, the typical
application requires a host computer with a GPU board installed, where the basic algorithms of
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Table 1. Di�erent hardware acceleration solutions for DNNs

Speci�c hardware or architecture Solutions Performance Energy Consumption Cost
GPU CUDA [78], cuDNN[29] High High Low
FPGA nn-X [41] Medium Low Medium
ASIC DianNao [25], Eyeriss [28] High Low High
VPU Myriad 2 [74] Medium Low Medium

Distributed Computing Adam [30], GeePS [35] High High High
High Performance Computing COTS [33], DaDianNao [27] High High High

the DNN are moved during processing. A GPU device is a single instruction, multiple data (SIMD)
device, which has much more cores than a traditional CPU, thus allowing extensive parallelization
[87]. Each GPU core includes tens of arithmetic logic units (ALUs), which are the smallest computing
units for simple arithmetic or logical computing operations. As each CPU core usually has one
ALU, GPUs have be�er parallel performance than CPUs on speci�c applications. In DNN, large
amounts of neurons will be processed by the same instructions at each layer, which can take full
advantage of a SIMD architecture.

CPU memory

CPU

GPU Device

GPU memoryLocal Disk

GPU cores

PCIe

...

CPU cores

NIC

Fig. 1. GPU device in a machine

�ere are two major GPU manufacturers, AMD and NVIDIA, which propose computing platforms
on their GPUs. NVIDIA also proposed cuDNN [29], which is the primary GPU-accelerated DNN
development tool on NVIDIA graphic devices. cuDNN provides spatial convolutions, pooling
and activation functions for DL applications. In a cuDNN implementation, NVIDIA focuses on
on-chip memory and processing since o�-chip memory is much expensive. �e authors of [29]
implement input fetching to hide the memory latency with the data transfer and lazily materializing
the lowered matrix on-chip memory only during lower convolutions onto matrix multiplication.
Because of the delicate on-chip optimization, experimental results show that cuDNN can perform
nearly half of the peak �oating point performance (FLOPs) on the NVIDIA graphic devices.

2.3.2 Distributed system. Since the performance of a single GPU is not su�cient to manage
large-scale DL applications, it is quite common to parallelize processing tasks across multiple GPUs.
Distributed computing is an e�cient parallel solution to increase the DL performance by exploiting
more distributed resources. Fig. 2 shows an example of a distributed DL system. A distributed DL
system usually consists of many workers and a master server [110]. �e master server organizes the
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task scheduling and node management. A distributed �lesystem is deployed for sharing training
data, and the master server acts also as a meta-data server for the distributed �lesystem, e.g., the
namenode in HDFS. �e master server slices DL training into smaller tasks and distributes such
tasks to workers for parallelized processing. Each worker is equipped with GPU devices to ensure
adequate performance on processing DL tasks.

Adam [30] is a distributed system, which consists of commodity hardware for training large
DNNs. In Adam architecture, the authors con�gured some servers for transformations from model
training servers to improve data delivery throughput. In model training, the authors of [30]
considered di�erent aspects of the distributed system, such as multi-threads, fast weight updates,
memory space, slow servers, and communications. �ey also implement a global parameter server
to manage all training servers for throughput optimization, delayed persistence, fault tolerance,
and communication isolation. Results show that Adam has good scalability and performance on
training DL models.

GeePS [35] is another distributed DL system. It focuses on data movement overheads from
training DNNs on distributed GPUs. GeePS introduces a new parameter server into the distributed
GPU-based DL system. �e parameter server supports parallel machine learning (including DL)
applications, running on distributed GPUs. �e authors of [35] design a memory management to
organize memory and cache space in each CPU and GPU. In the current implementation, GeePS
provides a set of APIs for machine learning applications. Also, it includes the necessary modules
for parallel and distributed processing, such as data storage, data movement, and synchronization.
Extensive experimental results show that GeePS achieves excellent scalability and performance in
training machine learning and DL networks.

WorkerWorkerWorker WorkerWorkerWorkerWorkerWorkerWorker WorkerWorkerWorkerWorkerWorkerWorker

Network Fabric

mastermaster

Distributed 
Filesystem

GPU

Fig. 2. Distributed DL system

2.3.3 High performance computing. High-performance computing technology is another ap-
proach to organize large amounts of computing devices for parallel processing of various tasks.
Coates et al. [33] proposed a high-performance computing (HPC) based DL system, which is
able to execute complex training tasks on general HPC clusters. �e authors set a cluster with
a balanced number of GPUs and CPUs, which is essential for large-scale DL according to their
observation. In their implementation, they optimized the GPU kernels for HPC infrastructure and
built a communication model across multiple GPUs. From their experimental results, HPC systems
may provide e�ective solutions for DL applications, with good scalability and performance.
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Network-on-chip (NoC) is an emerging technology to reduce the latency in communications
between di�erent chips in DL applications. NoC is usually used for speci�c designed multiple-chips
solutions. Choi et al. [31] proposed a hybrid NoC architecture that combines CPUs and GPUs on a
single chip for DL. Meanwhile, the hybrid network-on-chip architecture also introduces wireless
links in CPUs and GPUs communication. �e authors designed a customized wireless NoC (WiNoC)
to avoid the bandwidth bo�lenecks typical of traditional mesh NoCs. �ey also optimized the
network connectivity of the proposed WiNoC and the placement of wireless links. Experimental
results show that their NoC architecture achieves a lower full-system energy-delay-product as
compared to a mesh or a full wireline application-speci�c architecture.

Finally, DaDianNao [27] is another HPC-based DNN system, which consists of customized nodes
named DianNao [25]. As compared to the classical computing nodes of a HPC architecture, DianNao
nodes are speci�cally designed for DL. �e authors introduced multiple chips based nodes into
their DL computing cluster. In each node, they adopted eDRAM instead of SRAM to achieve a
higher storage density, and they used a fat tree like high-speed internal network to connect all tiles
for spreading neurons. Meanwhile, they introduced HyperTransport 2.0 and 2D mesh topology to
interconnect the nodes, and demonstrated that a carefully designed DaDianNao could outperform
GPU devices with much be�er energy e�ciency.

3 DNNS ON MOBILE
�e unprecedented potential of DNNs in solving a number of complex machine learning problems
has a clear appeal in the framework of mobile devices, where the availability of powerful pa�ern
recognition tools could create great opportunities for a new generation of smart apps. Possible
examples include augmented reality, automatic speech recognition and translation, object detection,
ego-motion estimation, just to mention a few. �e main problems to be solved, however, are
concerned with the complexity and memory requirements of the relevant algorithmic solutions,
and with the relevant energy consumption. In this section we will �rst address the solutions that
solely rely on the reduction of the algorithmic complexity of the DNN, and then provide further
insight on the speci�c so�ware and hardware solutions for mobile DNNs.

3.1 Reduced complexity algorithms for mobile DNNs
�e research in this area is rather intensive, although recent. Since the learning component is
typically conceived as an o�ine operation to be run once for all on a dedicated external hardware,
most of the research is focused on the inference component. Nonetheless, several problems remain
to be solved, mainly connected to the large number of parameters associated to the network layers
and the relevant computation. Classical methodologies applied to reduce the algorithmic complexity
involve di�erent kinds of simpli�cations, including pruning and compression algorithms, as well
as more basic approaches based on so�ware optimization.

Pruning is a fundamental concept for the implementation of small footprint DNNs. It concerns
the possibility of reducing the number of network connections, by removing the less relevant
links. Pruning is a rather established complexity-reduction mechanism, already employed in the
optimization of NNs since the ’90s (see [83] for a early survey on the subject). �e �rst a�empts to
implement pruning strategies were based on heuristic assumptions, mainly related to the direct
proportionality between the magnitude of the networks weights and their saliency. A signi�cant
step forward was made by Le Cun et al. in 1990 [36], with the proposal of a new theoretical
framework based on the notion of optimal brain damage (OBD). According to the OBD theory, it is
always possible to cut one half or more of the weights of a working NN, to obtain a new network that
works equally or even be�er than the original. �e selection of the weights to be pruned is not based
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on their magnitude, but rather on the optimization of a saliency measure, calculated as the second
derivative of the objective function with respect to the parameters. Since the direct application of
this method will be too complex, the authors proposed a computationally feasible implementation
based on an iterative parameter selection strategy. Several works have been proposed in this
direction, using di�erent optimal pruning strategies. In [23] the node selection strategy is recast
to an optimization problem and it is iteratively solved using least squares. �e authors proposed
also a heuristic criterion that allows choosing the units to be removed in a suboptimal way. In the
same year, Stepniewski et al. [91] proposed the use of stochastic optimization techniques to solve
the same problem, using some methods very popular at that time, such as genetic algorithms and
simulated annealing.

More recently, with the increasing use of very deep networks in practical applications, the
research on pruning methodologies has a�racted new interest. In [34] the authors proposed
a regularization-based approach to induce sparsity during the training of a Convolutional NN.
�e regularizer forces the learning algorithm to reduce the number of non-zero connections,
thus dramatically reducing the memory and runtime requirements of the deployed network. An
experimental result on AlexNet demonstrated that it is possible to reduce the memory consumption
by a factor of four without signi�cant performance loss. One of the problems of pruning concerns the
sparsity of the resulting connections, which implies the need of additional information to represent
the locations of preserved connections, and may have negative impacts on the computation. Works
have been proposed to solve this problem by imposing some constraints to the locations of non-null
parameters. �ese approaches are known as structured pruning techniques. An interesting example
of structured pruning can be found in [17], where a particle �ltering approach is used to decide on
the network connections and paths to be removed and a retraining is performed to compensate the
performance loss. In a successive work [100] an approach called Structured Sparsity Learning (SSL)
is proposed that uses a regularization technique to derive a compact structure from a bigger DNN,
while obtaining a hardware-friendly structured sparsity.

Coming to the methods based on compression, the main underlying idea is to shrink the network
through typical coding strategies, such as scalar and vector quantization, simpli�cation, hashing
and other approaches. In [89], the authors propose to build compact DL pipelines, suitable for
mobile devices due to their lower storage and power constraints. For this purpose, they introduce a
uni�ed framework to learn structured parameter matrices, i.e., matrices characterized by a number
of parameters signi�cantly lower than the matrix size. Although the idea may be generalized, the
authors adopt some Toepliz-like matrices, characterized by fast function and gradient evaluation.
Results show that the proposed approach provides about 3.5 times compression as compared to
standard networks, while ensuring nearly equal performance. A di�erent approach is presented by
J. Wu et al in [104]. Here, to achieve complexity reduction as well as to limit storage requirements,
the authors propose to quantize both �lter kernels in convolutional layers and weighting matrices
in fully connected layers. �is technique allows achieving speed-ups in the order of 6, with a
compression of about 20 times and negligible performance loss. �e intuition of [26] to reduce
the memory requirements of very deep networks is to introduce a so-called hashing trick. In their
HashedNets, the authors introduce a low-cost hash function whose goal is to cluster connection
weights into hash buckets that share the same parameter value. �anks to the inherent redundancy
of the network, this strategy allows saving substantial storage space without loosing in performance.
In [90], a new idea for DNN compression is proposed that takes place during the training phase. In
order to make the parameters more tractable, a regularization term is added to the cost function of
the fully-connected layers, to force the coe�cients binarization. �is allows applying a product
quantization of the trained weights, as already investigated in [42], achieving a high compression
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gain. In [15], Alvarez and Petersson introduce DecomposeMe, a technique to learn the CNN features
with simple 1D convolutions. �ey also demonstrate that this procedure not only provides a sharp
reduction of computational and storage requirements, but in some cases can also achieve be�er
classi�cation accuracy. Recently, some interesting proposals have been made to combine di�erent
mechanisms of simpli�cation. For instance, [44] demonstrates the e�ectiveness of combining
pruning with quantization and entropy coding. �is method can reduce the storage requirements
by a factor 35 on ImageNet, as compared to AlexNet, without loosing accuracy.

3.2 So�ware Frameworks for the Mobile
Although some of the so�ware frameworks discussed in section 2.2 do include a speci�c support
for running on mobile platforms (e.g. MXNet [6], TensorFlow [12], and Android-versions of Ca�e
[1] and Torch [11]), their primary goal is to enable the de�nition and training of deep network
architectures. As such, they are optimized for running on powerful GPUs, where it makes perfect
sense to train a deep network, rather than performing inference on resource-constrained mobile
devices. For the la�er role, more specialized so�ware libraries have been proposed, typically
working on networks already trained on one of the aforementioned frameworks, in combination
with powerful GPUs or computing clusters.

�e DeepLearningKit [16] is a framework for using convolutional neural networks on iOS-
running mobile devices that have a GPU (and GPU-powered tvOS devices, as well as conventional
OS X computers). It supports performing inference using networks already trained with Ca�e
[53]. DeepX [59] is a so�ware accelerator for optimizing at runtime the computation, memory and
energy requirements of the inference stage of trained deep networks. It works by decomposing the
network’s computations into simpler blocks, which can be e�ciently orchestrated and each of them
can be executed on di�erent device processors (e.g., GPUs, CPUs), thus achieving a good utilization
of the mobile devices’ computing capabilities and being able to control the balance between speed
and consumption of the device’s resources (i.e. energy). Experimental results show that DeepX
allows sharp energy, memory and computation savings, with a very limited impact on the accuracy.

CNNdroid [64] is a GPU-accelerated library for the execution of trained deep CNNs on Android-
based mobile devices. It can work with networks trained with Ca�e [53], Torch [10] or �eano
[14], and can make use of both GPU- and CPU-computing capabilities of the device.

DeepSense [51], a mobile GPU-based deep convolution neural network (CNN) framework, is
designed to run CNNs on mobile devices that are equipped with GPUs. DeepSense is able to execute
various CNN models for di�erent applications such as image recognition, object detection, and
face recognition in so� real time. In order to do that, DeepSense focuses on understanding the
di�erences between server and mobile GPUs, and studying the e�ectiveness of various optimization
strategies. �is application can help to develop console applications that run solely on mobile
devices without connecting to servers.

Boda-RTC [73] is an open source system that can satisfy the requirements of competitive
computational speed and portability towards running CNNs on mobile devices. �is system can
allow developers to rapidly develop new computational kernels for existing hardware targets and
to tune existing computational kernels for new hardware targets. �e foundation of this system is
to use a code-generation approach to target the vendor-neutral OpenCL platforms.

3.3 Hardware for Mobile DNNs
New generations of mobile chipsets may bring high-performance GPUs into mobile devices, thus
enabling the execution of DL algorithms in mobile environments. More and more works are
appearing that focus on hardware solutions for mobile DNNs, trying to solve fundamental issues
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such as energy e�ciency, integration of systems on a single chip (SoC), large-scale parallelization
[98].��In the next paragraphs we will analyze some of the most interesting solutions so far proposed.
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Fig. 3. FPGA-accelerated DL architecture

3.3.1 FPGA. Because of the ease of development and a�ordable cost, Field-Programmable Gate
Array (FPGA) is a very useful tool for supporting new hardware applications. FPGA is a recon�g-
urable chip for the development of particular applications. Users can deploy programs into FPGA
to achieve hardware acceleration of speci�c applications, such as mobile DNNs. �e performance
of traditional CPU or GPU-based computing is limited by the von Neumann architecture, in which
instructions and data are fetched from an external memory. In DL, this problem becomes even more
serious because of the memory bound techniques. FPGAs are not limited by the von Neumann
architecture that implements the data and instruction path found in common logic functions.
Meanwhile, FPGAs can explore distributed memory on the chip and large degrees of pipelines,
which are intrinsically appropriate for the feed-forward nature DL [58].

FPGA manufacturers o�en provide various development tools for development and deployment.
Meanwhile, developers can partially recon�gure FPGAs in a dynamic way to optimize large DL
networks. In Fig.3, we show an example of a typical FPGA-accelerated DL architecture. In a FPGA
chip, there are mainly three types of units: logic blocks, IO blocks, and programmable interconnects
[18]. All units can be programmed for di�erent purposes. Usually, a single FPGA chip cannot
support the entire DL procedure. A host processor is used to manage the interaction with general
data and applications. To manage the data exchange, the FPGA chip shares a piece of memory with
the host processor. �e la�er pre-processes the input data and stores them back into the memory,
from where the FPGA reads them and runs the DL acceleration. �en, the results are wri�en back
into the shared memory, from where the host processor can read them and classify the results.

Gokhale et al. [41] proposed a di�erent embedded DL accelerator with a FPGA-based implemen-
tation. �e authors try to reuse and concatenate data to reduce the limitations of memory access
on custom hardware. �eir work maximizes node-level parallelization in DNNs with available
resources in the accelerator. Meanwhile, the accelerator transforms DNNs into operation codes for
executing applications at the hardware level. �e authors of [41] compared the performance of
their accelerator with GPU and CPU in performance evaluation, showing that the performance per
Wa� is much be�er than that of GPU-based solutions.

3.3.2 ASIC. Speci�c chips usually perform be�er than FPGA-based solution, at the price of a
higher cost and implementation complexity. As a customized chip for a speci�c usage, ASIC-based
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DL acceleration is a potential solution for mobile DNNs. ASIC solutions with dedicated design
will typically perform be�er than FPGA-based solutions. Nevertheless, unlike FPGA solutions,
ASIC chips usually need to be taped in the ASIC manufacturer, which brings much higher costs. A
further drawback of ASIC with respect to FPGA is that they provide lower elasticity, as they cannot
support dynamic partial recon�guration to meet requirements of di�erent applications.

DianNao [25] is a typical ASIC-based accelerator for machine learning applications. In speci�c
chip design, an important problem is the memory usage. DianNao’s design focuses on memory
usage through an accelerator architecture and control. �e authors also implement the accelerator
for both small and large neural networks. In the design of DianNao, energy e�ciency is a major
issue, and the authors reduce the energy consumption through minimizing memory transfer, which
is responsible of most energy consumption in DL processing.

Chen et al. [28] proposed a DL acceleration chip call Eyeriss, which achieves good energy-
e�ciency thanks to its delicate design and implementation. Eyeriss uses a processing element array
with a four-level memory structure, for di�erent steps in convolutional neural networks (CNN). �e
authors also designed a CNN data�ow for energy e�ciency optimization, through recon�guring
the spatial architecture in mapping CNN shapes to computation. NoC is introduced in the chip
design for both multicast and point-to-point data delivery, to support optimized data �ow. For
further improving energy e�ciency, Eyeriss adopts run-length compression and processing element
data gating to exploit zero-data in CNNs. Experimental results show that Eyeriss has signi�cant
potential for accelerating DL applications in a mobile environment.

3.3.3 Mobile chip. Several manufacturers are currently providing mobile chips for accelerating
DL-based applications. NVIDIA proposed the Jetson series, which are Tegra chipsets for general
purpose computing [77]. NVIDIA tailored their desktop GPUs to meet the requirements of the
mobile environments, and the Tegra chipsets can perform be�er than mobile processors on DL,
as well as other accelerable applications. Since NVIDIA CUDA is the most successful general
purpose GPU-based platform for DL, other companies also built NVIDIA chipsets on their mobile
products [76]. As the biggest mobile processor vendor, �alcomm also introduced speci�c chips
into the newest Snapdragon system-on-chip (SoC), to accelerate DL applications [81]. �alcomm
chose a di�erent way to support DL that builds upon Zeroth, a chipset designed for neuromorphic
and cognitive computing, in their products. �is solution is similar to the high performance
meromorphic chip, IBM TrueNorth [52], which is designed for large scale DL clusters, and provides
higher performance per Wa� than general purpose GPU-based solutions.

Adding DL development tools to existing mobile chips, especially mobile vision processing unit
(VPU), is another solution for accelerating DL in mobile devices. Movidius and Google brought a
powerful Myriad 2 chip MA2450 with the relevant development tools into mobile devices [13]. �e
newly developed chip supports existing DNNs such as TensorFlow or Ca�e, a�er translating DNN
to Myriad 2 VPU [74]. �e performance of the VPU-based solution is be�er than the on-chip GPUs
available in commercial mobile devices.

4 APPLICATIONS
Many emerging mobile application could greatly bene�t of arti�cial intelligence capabilities to
locally close the loop between sensing and action. For instance, the ability of using the sensors
installed on a portable device to acquire and recognize voice, sounds, images, video, as well as
other indirect information (location, orientation, shaking, etc.), would allow extending the power
of the device in a number of di�erent ways. Nevertheless, these applications have to cope with
the complexity of operating in the wild, with unknown environments, noisy data sources and
unconstrained scenarios, where traditional machine learning tools o�en provide very limited
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accuracy. DL has been proven to be one of the most promising approaches to overcome such
limits and achieve more robust and reliable inference [60]. However, although DL techniques have
been already applied with success in many �elds and with di�erent information sources, just a
few DL-based mobile applications have been produced untill now, mainly due to the barrier of
low-power computational resources o�ered by mobile devices [62].

Two major models are used to deploy DL applications on the mobile: (1) the client-server
model, and (2) the client-only model. �e former uses the mobile device as a sensor (without data
preprocessing), or a smart sensor (with some data preprocessing), whose data are sent to a server
or simply the cloud, which runs the DL engine and sends back the results to the client. In this
framework, maintaining a good connectivity is the utmost requirement to e�ectively operate the
whole system. �e la�er model foresees running DL directly on the mobile device. �is solution
can operate without the need of a network connection and may produce faster results, but has
to deal with the lack of resources of the device, thus requiring suitable so�ware and hardware
solutions. Both models have been considered in current proposals.

Mobile DL tools proposed so far rely on di�erent capabilities such as object detection, human
activity analysis, sound and speech recognition, environmental sensing, and other. �ese capabilities
can be then integrated into di�erent application domains that range from e-health, to security,
well-being, resource optimization, games and entertainment, etc. In the next subsections we will
review some of the most interesting mobile applications proposed so far that utilize DL, addressing
some of the above categories.

4.1 DNNs for Health & Wellbeing
Many interesting mobile apps have been recently proposed in the area of health and well-being. In
[57], the user may calculate the amount of calories eaten by taking pictures of the food he eats.
�e application runs in client-server mode. Whenever the user takes a picture of his/her meal, the
system provides an estimate of the relevant amount of calories. �e app is based on a DNN that
classi�es food images. �e smartphone is only used to take the picture (sensing) and transferring
it to the cloud (transmission), where all image processing steps are performed. Additional data
relevant to position and orientation are directly extracted from the embedded phone sensors to
improve detection performance. Another app with similar functionalities is Snap, Eat, RepEat,
described in [70]. It runs again in client/server mode, and informs the user about the amount
of calories of a meal, but it provides two operation modes: (i) context-aware, where it uses GPS
information and/or restaurant names tagged by users in order to provide a-priori information
on the food, or (ii) in-the-wild, where it uses no additional information to restrict the dictionary.
DL is applied to distinguish food and non-food images (GoogleNet and ImageNet), and food item
(AlexNet CNN). In [79], a distributed application classi�es food objects in the plate and provides
calorie information, using image processing techniques running directly on the smartphone, and
DL running on the cloud. DeepFoodCam [95] is a completely client-mode application that runs
on iOS and Android devices (both smartphones and tablets). �is application implements the
inference component of a deep convolutional neural network (DCNN) on the mobile; moreover, the
multi-scale network-in-networks (NIN) is integrated into DeepFoodCam to allow users to adjust the
trade-o� between recognition time and accuracy. Also other sources of information can be used to
detect the food consumption. For instance, iHearFood [40] is an application that uses o�-the-shelf
bluetooth headsets and smartphones to unobtrusively monitor and detect users’ eating episodes by
analyzing the chewing sound. Four categories of food are de�ned: liquid, (e.g., yogurt or soup),
so� (e.g., pizza or fries), hard (e.g., steak or burger), and crispy (e.g., apple and chips). A Deep
Boltzmann Machine - Deep Neural Network (DBM-DNN) model is used for recognition, due to
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its known performance in sound recognition. �is application requires internet connectivity to
manage the connection with the server.

Human activity monitoring is another interesting area in health-related applications. Several
apps have been proposed for detecting the users’ behavior, making use of heterogeneous sensors.
For instance, [111] is an application that predicts personal daily activity budget using a wearable
mobile sensor and DL. �e energy expenditure is known as an important step in tracking personal
activity and preventing chronic diseases. �e application uses two di�erent sensors to gather
accelerometer data (mobile phone) and pulsation (heart-rate monitor). A multi-channel CNN
operating in client-server mode is then utilized to learn and predict user’ behaviors. �e authors
claim that DL can bring higher accuracy compared to other non-neural machine learning methods.
DeepEar [63] is a mobile audio sensing framework that analyzes the acquired audio stream with a
DNN, to infer a broad set of human behaviors and contexts. It is implemented to run on smartphones
with e�ective energy consumption (only 6% of the smartphone’s ba�ery daily), using a cloud-free
DSP-based implementation. �e app provides an estimate of the level of stress and emotions, and
identi�es speakers.

On a more speci�c medical domain, PhoneGap [55] is a smartphone e-health application de-
signed to assist physicians in identifying thyroid lesions and diseases through images taken by a
smartphone camera. PhoneGap analyzes images to detect thyroid cytopathology using di�erent
machine learning methods including convolutional neural networks (CNN). �e results are linked
to the semantic web to provide an explanation of the disease to the users. [54] is an app that
determines the heart rate of an individual during intensive motion (e.g., sports), by applying DL on
smartphone accelerometer and PPG (photoplethysmography) signals recorded by a smartphone or
a wearable device. �e cloud connectivity of the device is requested to collect and classify selected
PPG signals in real-time. �ese signals are then used to train a deep belief network with Restricted
Boltzmann Machines (RBM) to estimate heart rate.

4.2 DNNs for Security
�ere are di�erent areas of security where mobile applications can bene�t of DL technologies. An
area which received great a�ention is the detection of malware on mobile devices. DrodSec [107]
tries to detect android malware by using deep belief networks with RBM. �is applications builds
upon more than 200 features extracted from both static and dynamic analysis of Android apps, to
create a malware-detection model capable of classifying malware is smartphones. DroidDetector
[106] is also an application running on smartphones that can automatically detect if an app contains
a malware. �e core of this application is its online DL-based Android malware detection engine.
Features that fall in required permissions, sensitive APIs, and dynamic behaviors categories are
extracted to feed a Deep Belief Network (DBN) for detecting malware. DeepSign [37] is designed to
accurately classify new malware variants using DBNs implemented with a deep stack of denoising
autoencoders. �is application is claimed to overcome the disadvantage of conventional signature-
and token-based methods, which fail in detecting most of the new variants of malware. One of
the advantages of this application is that it can generate a signature of a malware by training a
related DNN with any raw input from a sandbox. Another advantage is that DeepSign is completely
agnostic to the type of malware behavior that is logged. Deep4MalDroid [50] is an Android malware
detection system using a Linux-kernel-system-call-graph-based DL framework. First, the code
routines of each given Android application can be automatically executed by using the component
traversal, a dynamic analysis method developed for Deep4MalDroid, instead of relying on user
interactions or a random event generator. �en, the weighted directed graphs of system calls are
constructed by using a list of Linux kernel system calls extracted by using the component traversal.
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Finally, Android malware is detected by using a DL architecture with Stacked AutoEncoders (SAEs)
model.

DL can also be used for biometry. As an example, [109] describes an application to recognize
the iris using mobile devices. �ree image pre-processing algorithms are performed on the mobile
to extract optimized ordinal measures (OM) features that are then encoded for local iris texture.
Next, a CNN is run to learn pairwise features that will be used to measure the correlation between
two irises. Finally, the score level is reported by fusing the selected OMs and the learned pairwise
features. �e application works in client-server mode.

Concerning the application of DNNs for security, it has to be mentioned that, despite their
impressive results, recent research has shown that deep networks can be easily fooled by adversarial
examples, namely, images/pa�erns that are slightly obfuscated to mislead classi�cation by the
addition of a barely-perceivable adversarial noise. �is fact could have a large impact on the use
of DNNs for security applications and life-critical tasks (e.g., self-driving cars). Some interesting
works in this direction are starting to appear in the scienti�c literature [72] [93] [88] [22].

4.3 DNNs for Ambient Intelligence
Other interesting applications of DNNs can be found in the framework of smart environments. A
nice example is DeepCamera [80], a smartphone application that recognizes the places-of-interest
(PoIs) by using a deep convolution network, which is further compressed into a shallow net to
ful�ll real-time constraints. Both spatial and visual features are extracted and used to recognize the
PoIs. SpotGarbage [71] uses the smartphone camera to automatically detect and localize garbage in
the real world, using a deep architecture of fully connected CNNs, called GarNet. �e optimization
of the network leads to a reduction of 87.9% in memory usage, to allow direct processing on the
smartphone. Both client-server and client-only modes are possible. GarNet is trained with GINI
(Garbage IN Images) dataset, constructed by crowd annotations. SpotGarbage can also get feedback
from users to further update the GarNet model.

It is possible to use mobile sensing also to detect anomalous events in the surrounding environ-
ment. For instance, MobiEar [67] is designed to assist deaf people, alarming them in the presence
of dangerous situations with the help of visual signs (e.g., a �ashing light) or vibrations. In order
to accurately recognize acoustic events from various environments with diverse ambient noise
pa�erns, MobiEar uses a CNN to extract the generic environment-free acoustic features, which are
then input to an elastic event classi�cation model. �ese two models allow the user to subscribe
the events of interest, assigning them to unique models. �e models are trained on the cloud and
installed on smartphones. �ese models are also updated by using new information fed by the
users’ interaction processes.

Another interesting domain is user interaction. In [99], the authors develop a client-server mode
application that utilizes Google’s project Soli to construct a sensor for micro-interactions in mobile
and wearable computing. �e app is able to detect gestures in a fast, accurate and unobtrusive mode.
In order to do that, an end-to-end trained combination of CNNs and recurrent neural networks
(RCN) is built, receiving as input high temporal resolution data. High-frequency and short range
radar input data, collected from Soli’s sensors that records sliding index �nger over thumb gestures,
are pre-processed and sent to the NN, whose output will be fed to RCN to predict gestures. [66]
prevents users to be distracted by unimportant noti�cations being sent to a smartwatch from a
smartphone. �e app is trained to decide whether a noti�cation to be relayed to the smartwatch is
important or not, based on a DL-based binary classi�er. �is network receives as input a set of
features extracted from the sensor data. �e model is trained on a server, but runs in client-only
mode.
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4.4 DNNs for Translation and Speech Recognition
Google Translate is a well known service that can run on mobile devices both in online and o�ine
modes. �is service uses Phrase-Based Machine Translation (PBMT) as the key algorithm. Later,
Neural Machine Translation (NMT), based on DNN, was introduced to reduce the engineering
complexity of previous phrase-based statistical translation systems [92]. Both Google and Microso�
are using from late 2016 similar NMT-based translation engines in their applications. �e Google
implementation [105], namely Google’s Neural Machine Translation System(GNMT), is based on
the principle of example-based machine translation and was trained with millions of examples.
Google also introduces a personalized speech recognition system running on Nexus 5 Android
smartphones [69]. �is system utilizes quantized DNNs to create a system with fewer requirements
of memory and computational footprint but acceptable accuracy to run on low-resource mobile
devices. Microso� developed a variant of NMT, applying it to all its speech translation services,
including Microso� Translator and Skype Translator. �ey also introduced a cloud-based API
(the Translator Speech API ) 1, o�ering speech translation services, using DL as the core algorithm.
�is service can be called through the REST open interface, so that developers can integrate a
speech recognition service into their applications easily. Nevertheless, mobile applications using
this service can only work with internet connection (client-server mode). NMT technology was
also released as open source by the Harvard NLP group with the OpenNMT package 2.

Amazon Polly3 is a Amazon AI text-to-speech service that applies advanced DL technologies to
turn text into lifelike speech. By using this service, Android developers can quickly build speech-
enabled apps that work in multiple languages. Amazon Lex 4 is a Amazon AI speech-to-text service
that can be integrated to mobile apps (both iOS ans Android platforms) to enhance conversational
interfaces for any applications using voice and text. �is service is built upon DL techniques.
Also IBM has recently introduced a speech-to-text and text-to-speech service API 5 that allows
developers adding speech recognition capabilities to their applications. �is service is built upon
convolutional neural networks, and works in client-server mode.

5 DISCUSSION, OPEN DIRECTIONS AND CONCLUSIONS
In this paper we went through the basics of DL for multimedia, and focused on the main components
of DL for mobile environments: the low-complexity DL algorithms, the so�ware frameworks that
are optimized for mobile (or, in general, resource-constrained) environments, and the specialized
hardware that is or can be part of mobile devices for supporting the computationally expensive
processes of deep network training and inference. We also highlighted several applications of DL
in the mobile, which give us an overview of the di�erent possibilities for real-life usage of this
technology.

Concerning the open issues at the core technology level, we argue that there is room and need
for progress in all fronts. DL architectures for the desktop/server environment are becoming
more and more complex, with the number of layers sometimes exploding from the twenty or
so that we could �nd in state-of-the-art implementations just �ve years ago, to one thousand
or more; this brings improved performance, but also new challenges in porting these advanced
architectures and the performance that they can achieve in resource-constrained mobile platforms.
Living up to this challenge calls for techniques for optimizing such architectures by “compressing“

1h�ps://www.microso�.com/en-us/translator/speech.aspx
2www.opennmt.net
3h�ps://aws.amazon.com/amazon-ai/
4h�ps://aws.amazon.com/amazon-ai/
5h�ps://www.ibm.com/watson/developercloud/doc/speech-to-text/
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them (in amount of computations and in memory footprint) without loss of learning performance;
developing new hardware that can optimally cater to the needs of these architectures (o�en going
beyond general-purpose processors) and to the energy constraints that exist in the mobile world;
and developing new or extending the existing so�ware frameworks for the mobile, which are
necessary for coupling the deep network architectures and the computing capabilities of the mobile
devices in an optimal way.

Concerning the applications of DL in the mobile, we believe that so far we have seen only the tip
of the iceberg. �ere are already several applications that can be found in the literature (some of
them surveyed in Section 4, above), and these are su�cient for answering ’Yes’ to the question Can
DL Revolutionize Mobile Sensing? that was raised in [62]. Multimedia processing and DL can indeed
be integrated to work in mobile devices. �e early and still popular approach of using the mobile
devices just as sensor and actuator devices, while the main processing and data storage services for
DL are located in servers, can indeed support some interesting application scenarios. Nevertheless,
as mobile devices become more powerful, we will be seeing more and more applications running
DL engines on the mobile, alleviating the burden of maintaining internet connectivity (which is
also power-consuming) and complex server infrastructure. And this will open a new world of
possibilities for mobile applications, that have the potential to make the currently “smart“ mobile
devices look like the early cell-phones of the 90s, compared to the DL-enabled mobile devices of
the near future. Stay tuned!
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[90] Guillaume Soulié, Vincent Gripon, and Maëlys Robert. Compression of Deep Neural Networks on the Fly, pages 153–160.
Springer International Publishing, 2016.

[91] Slawomir W. Stepniewski and Andy J. Keane. Pruning backpropagation neural networks using modern stochastic
optimisation techniques. Neural Computing & Applications, 5(2):76–98, 1997.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2016.

https://www.movidius.com/solutions/machine-vision-algorithms/machine-learning
https://www.movidius.com/solutions/machine-vision-algorithms/machine-learning
http://www.nvidia.com/object/tegra-phones-tablets.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
https://www.qualcomm.com/news/releases/2016/05/02/qualcomm-helps-make-your-mobile-devices-smarter-new-snapdragon-machine
https://www.qualcomm.com/news/releases/2016/05/02/qualcomm-helps-make-your-mobile-devices-smarter-new-snapdragon-machine


Deep Learning for Mobile Multimedia: A Survey 1:21

[92] Ilya Sutskever, Oriol Vinyals, and �oc V. Le. Sequence to sequence learning with neural networks. In Proceedings of
the 27th International Conference on Neural Information Processing Systems, NIPS’14, pages 3104–3112, Cambridge,
MA, USA, 2014. MIT Press.

[93] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. In Proceedings of the International Conference on Learning Representations, 2014.

[94] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Sco� Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Computer Vision and Pa�ern Recognition
(CVPR), 2015.

[95] Ryosuke Tanno, Koichi Okamoto, and Keiji Yanai. Deepfoodcam: A dcnn-based real-time mobile food recognition
system. In Proceedings of the 2Nd International Workshop on Multimedia Assisted Dietary Management, MADiMa ’16,
pages 89–89, New York, NY, USA, 2016. ACM.

[96] Vladimir N. Vapnik. �e Nature of Statistical Learning �eory. Springer-Verlag New York, Inc., New York, NY, USA,
1995.

[97] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust
features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, ICML
’08, pages 1096–1103, 2008.

[98] Joel Emer Vivienne Sze. Chip could bring deep learning to mobile devices. h�p://www.eurekalert.org/pub releases/
2016-02/miot-ccb020316.php, 2016.

[99] Saiwen Wang, Jie Song, Jaime Lien, Ivan Poupyrev, and Otmar Hilliges. Interacting with soli: Exploring �ne-grained
dynamic gesture recognition in the radio-frequency spectrum. In Proceedings of the 29th Annual Symposium on User
Interface So�ware and Technology, UIST ’16, pages 851–860, New York, NY, USA, 2016. ACM.

[100] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural
networks. CoRR, abs/1608.03665, 2016.

[101] J. Weng, N. Ahuja, and T. S. Huang. Cresceptron: a self-organizing neural network which grows adaptively. In
[Proceedings 1992] IJCNN International Joint Conference on Neural Networks, volume 1, pages 576–581, 1992.

[102] Paul J. Werbos. Applications of advances in nonlinear sensitivity analysis, pages 762–770. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1982.

[103] Bernard Widrow and Marcian E. Ho�. Associative Storage and Retrieval of Digital Information in Networks of Adaptive
“Neurons”, pages 160–160. Springer US, Boston, MA, 1962.

[104] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. �antized convolutional neural networks for
mobile devices. In 2016 IEEE Conference on Computer Vision and Pa�ern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pages 4820–4828, 2016.

[105] Yonghui Wu, Mike Schuster, Zhifeng Chen, �oc V. Le, Mohammad Norouzi, Wolfgang Macherey, and et al. Google’s
neural machine translation system: Bridging the gap between human and machine translation. CoRR, abs/1609.08144,
2016.

[106] Z. Yuan, Y. Lu, and Y. Xue. Droiddetector: android malware characterization and detection using deep learning.
Tsinghua Science and Technology, 21(1):114–123, Feb 2016.

[107] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. Droid-sec: Deep learning in android malware detection.
SIGCOMM Comput. Commun. Rev., 44(4):371–372, August 2014.

[108] Ma�hew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Networks, pages 818–833. Springer
International Publishing, 2014.

[109] Q. Zhang, H. Li, Z. Sun, Z. He, and T. Tan. Exploring complementary features for iris recognition on mobile devices.
In 2016 International Conference on Biometrics (ICB), pages 1–8, June 2016.

[110] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging sgd. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garne�, editors, Advances in Neural Information Processing Systems 28,
pages 685–693. Curran Associates, Inc., 2015.

[111] J. Zhu, A. Pande, P. Mohapatra, and J. J. Han. Using deep learning for energy expenditure estimation with wearable
sensors. In 2015 17th International Conference on E-health Networking, Application Services (HealthCom), pages
501–506, Oct 2015.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
January 2016.

http://www.eurekalert.org/pub_releases/2016-02/miot-ccb020316.php
http://www.eurekalert.org/pub_releases/2016-02/miot-ccb020316.php

