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Abstract   

 

The thermal isomerization (TI) rates of methyl orange (MO) and 4-dimethylaminoazobenzene 

(DMAAB) in ethanol (EtOH) are measured. Usually TI rates of azobenzene dyes are known to 

be concentration independent. However, the TI rate of MO showed a concentration dependence 

whereas that of DMAAB did not. The TI rate of DMAAB in EtOH became larger by the addition 

of alkali halide. This phenomenon is caused mainly by the interaction between DMAAB and 

cation. MO is a derivative of DMAAB in which one end of the azobenzene is substituted by a 

SO3
-Na+ group. The interaction with the dissociated Na+ ion is considered to be an origin of the 

concentration dependence of the TI rate of MO. 
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1. Introduction  

The azobenzene dyes are molecular photoswitches [1, 2]. They undergo trans to cis 

isomerization by the irradiation with an UV-visible light (photoisomerization). The cis to trans 

isomerization proceeds spontaneously in the dark (thermal isomerization). There are two 

pathways by which thermal isomerization (TI) proceeds. One proceeds via the inversion of one 

of the azo nitrogen atoms (by means of the sp-hybridized transition state). The other proceeds via 

the rotation about the N=N bond. The former process is independent on the solvent polarity, but 

the latter process is enhanced in polar solvents [3]. Many studies have focused on the effect of 

the temperature [3, 4], the substituents [5-9], the pressure [4, 9], the solvent polarity [3, 10], the 

solvent viscosity [10, 11] and pH [6, 12] on the TI rate of azobenzene dyes.  

In most cases, the TI processes follow the first order kinetics. p-Hydroxyazobenzene [8, 

13,14] and methyl red [15] are exceptions. Their TI rates increase as the dye concentration 

increases. This tendency has been explained by the formation of dimers [13-15].  

There are many reports about the aggregation of azo dyes in aqueous solutions [6, 16-19]. We 

considered that the concentration dependence of TI rates of azo dyes may not be an unusual 

phenomenon, though usually the TI processes is expected to follow the first order kinetics. In 

this paper, we examined the TI process of methyl orange (MO). The aggregation behavior of MO 

in aqueous solution is well studied. The apparent spectral change of MO in water has been 

reported (dye concentration; -51016.4   and -21066.1   (mol/l)) [19]. The absorption peak of 

the dimer showed a 5 ~ 10 nm blue shift and a little decrease of the extinction coefficient [17]. 

The absorption band of MO dimer (at ~ 455 nm) is quite different from that of stacking MO 

aggregates (at ~ 375 nm [20] ) or that of salting-outed MO aggregates (at ~360 nm [21]). The 

structure of MO dimer seems to be different from that of salting-outed MO aggregates.  

The concentration dependence of the TI rate of MO has not been reported yet. However, if the 

aggregation phenomenon has a possibility of enhancing the TI process, MO may also show a 

concentration dependence of TI rates. When we began to study the TI rate of MO in water, we 

faced the following problem: The TI rate highly depends on the solvent pH value [14]. In acidic 

solution, the N=N group changes to the -NH-N- group and the TI process via the rotation 
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pathway proceeds faster. Thus, we should examine the TI rates in buffered aqueous solutions in 

order to avoid the influence of CO2.  However, the TI rates of MO in buffered aqueous solutions 

also depend on the buffer concentration [12]. It is not an easy task to distinguish the interaction 

between dye molecules from that between a dye molecule and buffer molecules.  

In this paper, to avoid this complexity, we measured the concentration dependence of TI rates 

of dimethylaminoazobenzene dyes, i.e. MO and 4-dimethylaminoazobenzene (DMAAB) in 

ethanol (EtOH), and discussed the possibility of the contribution of dimer formation to the TI 

process.  

 

 

2. Computational Details 

The density functional theory (DFT) calculations for optimizing the structures of DMAAB and 

MO were carried out using WinGamess Ver. 11 [22]. Theoretical UV/vis absorption spectra 

were obtained by time-dependent density functional theory (TDDFT) calculation. We employed 

the hybrid B3LYP xc-functional and the 6-31+G(d) basis set and the continuum C-PCM 

solvation model. The result was visualized using Winmoster [23].  

 

 

3. Experimental section  

The absorption spectra of MO in EtOH solutions were measured by a spectrometer (JASCO 

Ubest-30). 

We performed the pump-probe experiment to measure the TI rates. In the whole measurement, 

the sample temperatures were kept at 21 ± 1 Co. MO and DMAAB in EtOH were excited by a 

pump beam of an LED (Thorlabs, COP1-A OLYMPUS, the center wavelength of 405 nm, the 

intensity of ~100 mW). The duration of the irradiation is 5 s. The TI rates were obtained by 

measuring the transmitted beam intensity of the probe beam of a Laser Diode (Century, BLM20-

445D-05, 445 nm, intensity 0.5μW) with a photo-detector (PD). The outputs of the PD were 

stored by a personal computer using a digital multi-meter or by a digital oscilloscope. The stored 
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signals were analyzed by a personal computer and the TI rates were obtained from the time 

dependences of the absorbance. 

MO, DMAAB, NaCl, KCL, NaBr, KBr and all alcohols except EtOH (from Junsei Kagaku) are 

from Kanto Kagaku. We left the prepared solutions in dark room for one night and then 

measured their TI rates.  

The TI rates of MO and DMAAB in EtOH were sensitive to impurities like water and detergent. 

We used one four-face-transparent 3mm45103   glass cell (3 and 10 mm probe-beam 

propagation lengths) to measure the TI rates of MO solution of 
6104.1  (mol/l) ~ 

4102.2 

(mol/l) and one four-face-transparent 3mm452010   cell (10 and 20 mm propagation lengths) 

to measure those of  6104.3   (mol/l) ~
6104.1   (mol/l). When measuring the TI rate of the 

same sample, we rinsed the cell twice by the sample solution. When measuring the TI rate of ~

510 (mol/l) dye solution, we used 3mm45103  and 3mm452010   cells, setting the probe 

beam propagation lengths of the two cells to be 10 mm. Then we compared the TI rates to check 

the influence of impurity in cells. 

 

 

4. Results and Discussion  

We measured the TI rates of MO and DMAAB (Figure 1) in EtOH (Concentration range: 

6107.1  (mol/l) - 
4102.2  (mol/l)). Figure 2 shows a temporal absorbance change of the MO 

in EtOH with the dye concentration -61082.6   (mol/l), obtained by the pump-probe experiment. 

The excitation of the sample solution induced the increase of the transmitted intensity of the 

probe beam. After the pump beam excitation, the intensity decreased due to the thermal 

isomerization of MO molecules. The sudden increase of the absorbance at t = 5 s is due to the 

leakage of the pump beam. The temporal change of the magnitude of the absorbance  )(tA  at 

445 nm was well fitted by a single exponential: 10 )exp()( AtkAtA TI   . The dotted curve is a 

single exponential fitting with a TI rate (kTI) of 0.156 s-1. For repeated experiments with the same 

MO solution the standard deviation of kTI was less than  6%, and for experiments with 

independently prepared solutions,  8%. For DMAAB solution the standard deviation for 

repeated experiments with a solution was found to be less than  16%, and for experiments with 
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independently prepared solutions,  14%. The TI rate of DMAAB in EtOH solution was larger 

than that in propanol. Also, the TI rate of MO in EtOH solution was larger than that in propanol. 

These dyes are inferred to isomerize via the rotation pathway. The TI rates of DMAAB in EtOH 

did not show a clear dye concentration dependence (Figures 3, red squares). However, the TI rate 

of MO showed a dye concentration dependence. The SO3
- group seems to concern with this 

tendency.  

Initially, we considered that there are two possible origins of the concentration dependence of 

TI rates of MO in EtOH.  

One possible origin is the ion pair association of the SO3
-Na+ group. In aqueous solution, MO 

molecules are dissociated completely [18]. Though the Na+ ions are also solvated in EtOH [24] 

and the association constants of sodium salts in lower alcohols are not so large (e.g. the ion pair 

association constants are 44 for NaCl in EtOH and 100 for NaI in propanol [25]), MO in EtOH 

may show an ion association equilibrium as below.  

 

       Naion MOpairion  MO 　　                
]ion MO[

]pairion  MO[
]Na[

-


eqK  

If a MO ion which has a SO3
- group isomerize slower than a MO ion pair which has a SO3

-Na+ 

group, the decrease of the ratio of the ion pair may cause the decrease of TI rates in dilute 

solution. In the case of either 1]Na[ 

eqK  or 1]Na[ 

eqK , MO ion pair or MO ion- is 

dominant, and we would see no dye concentration dependence of the TI rate. However, at dye 

concentration around 1]Na[ 

eqK , we would see a clear dye concentration dependence of the 

TI rate. 

Our DFT calculation suggested that the bond length of the N=N group of neutral cis-methyl 

orange (cis-MO) molecule which has a SO3Na group is slightly longer than that of cis-MO ion. 

This result shows a possibility that a cis-MO ion pair whose structure is similar to that of neutral 

cis-MO molecule may isomerize via the rotation about the N=N group easier than a cis-MO ion, 

due to the decrease in the double bond character. 

The absorption peak of trans-MO ion and that of neutral trans-MO molecule calculated by the 

TDDFT appeared at almost the same position (442.4 nm = 2.80eV, 445.6 nm = 2.78 eV, 
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respectively). We note that TDDFT errors are expected to be in 0.2 - 0.3 eV range, in the case of 

B3LYP [26]. The experimental peak appeared at ~ 418 nm (2.97 eV). We consider that the 

change of the ratio of the ion pair would not cause a large change of UV/vis spectrum. Actually, 

in the UV/vis spectra of trans-MO in EtOH, we observed no noticeable change of the absorption 

spectrum which depends on the dye concentration (Figure 4). Thus, the ion-pair association is a 

possible origin of the concentration dependence of the TI rate and is not against the observed 

UV/vis spectra of MO.  

The other possible origin is aggregation. The MO molecules aggregate in aqueous solution. 

We consider that if MO molecules also aggregate in EtOH and the TI rate of a monomer is 

smaller than that of an aggregate, the TI rates will decrease in dilute solution. There is no 

noticeable change of the absorption spectrum of trans-MO in EtOH which depends on the dye 

concentration (Figure 4), whereas the dimerization of trans-MO molecules in water causes a 5 ~ 

10 nm blue shift and the decrease of the absorption intensity [17]. Therefore, aggregation may be 

not the origin of the concentration dependence of the TI rate. However, there remains a 

possibility that the aggregation of MO in EtOH does not show a noticeable blue shift. We 

considered that another experiment is needed to confirm whether the aggregation of MO occurs 

in EtOH.     

The TI rate of MO showed a dye concentration dependence. However, DMAAB does not. If 

this tendency is caused by the absence of the aggregation behavior of DMAAB, the electrostatic 

interaction of the SO3
- group should be concerned with dye aggregation. If there is such 

interaction, the addition of Na+ ions would change the SO3
- group to SO3Na group, hinder the 

electrostatic intermolecular interaction and the TI rate of MO solution would decrease. On the 

other hands, if the ion pair association equilibrium is the origin of the concentration dependence 

of the TI rate, the addition of Na+ ions decreases the ratio of the free ion and the TI rate of MO 

solution will increase. In both cases, the TI rate of DMAAB solution is expected to be unchanged.  

Based on these inferences, we added a small amount of NaCl aqueous solution to the MO-EtOH 

solution and DMAAB-EtOH solution, and measured the TI rates of both solutions (NaCl 

aqueous solution/dye-EtOH solution, 1:99 v:v). To distinguish the influence of water from that 

of salt ions, we also added the same amount of water to another dye solutions, and measured 
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their TI rates. The addition of 1 volume% pure water made the TI rates of MO solution and 

DMAAB solution slightly larger (Table 1).  

The TI rate of MO solution was increased largely by adding NaCl aqueous solution. We 

initially expected that the TI rate of DMAAB solution would not be changed. However, the 

addition of NaCl aqueous solution made the TI rate of DMAAB solution much larger.  

The result of the experiment with DMAAB solution shows that the TI process is enhanced by 

the interaction between dimethylaminoazobenzene moiety and Na+ / Cl- ion. Then, which of the 

two ions enhance the TI process? To answer this question, we added NaCl, KCl, NaBr and KBr 

aqueous solutions to DMAAB-EtOH solutions and measured TI rates (Table 2). We did not use 

NaI due to its deliquescence property. We also did not use NaF because NaF aqueous solution is 

alkalescent and the TI rates depend on pH value of the solution. We added 1 volume% of 

electrolyte solutions (concentration: 1.39  10-1 (mol/l)) to the DMAAB-EtOH solutions 

(concentration: 1.3910-5 (mol/l)). The molar ratio of dye/electrolyte was set to be 1/100 in these 

solutions. The concentrations of electrolytes in dye solution are below their solubility in EtOH 

(i.e. 3.6010-3 (mol/l) for KCl, 7.4310-3 (mol/l) for NaCl, 1.9610-1 (mol/l) for NaBr [27] and 

8.9710-3 (mol/l) for KBr [28] at 298K).  

The TI rates became larger by adding electrolyte (Table 2). However, the UV/vis spectra of 

DMAAB did not show a noticeable spectral change despite the excess addition of electrolyte 

(Figure 5). The effect of Na+ ion on the TI rate was smaller than that of K+ ion. An ion with a 

small ionic radius such as Na+ ion is solvated effectively in EtOH. Therefore, the interaction of 

solvated Na+ ion with an anion is smaller than that of solvated K+ ion. For example, the ion pair 

association constant of NaCl is smaller than that of KCl in EtOH (At 298 K, the ion pair 

association constants of NaCl and KCl are 44 and 95, respectively [25].). We infer that there is 

an electrostatic interaction between cation and DMAAB molecule, which enhance the TI process, 

and the interaction of DMAAB molecule with K+ ion is larger than that with Na+ ion.  

Then, how about the effect of anions? In EtOH, the small Cl- ion is solvated more effectively 

than Br- ion. For example, the ion pair association constant of Me4NCl is smaller than that of 

Me4NBr in EtOH (At 298 K, the ion pair association constants of Me4NCl and Me4NBr are 122 

and 146, respectively [29].) The ion pair association constant of Bu4NCl is also smaller than that 
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of Bu4NBr (At 298 K, the ion pair association constants of Bu4NCl and Bu4NBr in EtOH are 39 

and 75, respectively [29].). The electrostatic interaction of solvated Cl- ion with a cation is 

smaller than that of solvated Br- ion in EtOH. Although the data somewhat scatter, our repeated 

measurements showed that the effect of Br- ion on the TI rate was similar to that of Cl- ion (Table 

2). We note that the effect of Na+ ion on the TI rate was apparently smaller than that of K+ ion for 

every experiment. We infer that (1) there is no interaction between DMAAB and anions, or (2) 

there is some interaction between them, which does not have an apparent effect on the TI rates. 

The TI rate seems to be determined mainly by the interaction between DMAAB and cation. 

Finally, we consider the origin of the concentration dependence of the TI rate of MO EtOH 

solution again. We initially considered that there were two possible origins of this phenomenon, 

i.e. the aggregation and the ion pair association of the SO3
-Na+ group. 

First, we consider the possibility of aggregation. The TI rate of MO showed dye concentration 

dependence, while DMAAB does not. If the concentration dependence of the TI rate of MO is 

caused by the aggregation, the origin of the aggregation would be the electrostatic interaction 

between dimethylaminoazobenzene moiety of a MO molecule and the SO3
- group of another MO 

molecule. However, a large effect of the anion on the TI rates of DMAAB was not observed in 

the experiments with electrolytes. If there is some interaction between 

dimethylaminoazobenzene moiety of a MO molecule and the anionic group of another MO 

molecule, the interaction would not enhance the TI process of MO. Moreover, in the UV/vis 

spectra of trans-MO in EtOH (Figure 4), there is no noticeable shift or a change of the absorption 

intensity which depends on the dye concentration whereas the dimerization of trans-MO 

molecules in water causes a 5 ~ 10 nm blue shift and the decrease of the absorption intensity [17]. 

We infer that the aggregation behavior is not responsible for the concentration dependence of 

MO solutions. 

The other possible origin was the ion pair association of the SO3
-Na+ group. Our DFT 

calculation suggests that a trans-MO ion pair isomerizes via the rotation about the N=N group 

faster than a trans-MO ion does, due to the decrease in the double bond character. However, it is 

difficult to confirm the validity of this inference experimentally.  The results of experiment with 

electrolytes showed the third possible origin; the enhancement of TI process by cation. MO is a 
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sodium salt. At higher dye concentrations, the concentration of the Na+ ions increase and the 

interaction between dimethylaminoazobenzene moiety and Na+ ion would also increase. We 

consider that the increase of this interaction is one origin of the concentration dependence of the 

TI rate of MO solution (A possible scheme is shown in Fig. 6.). 

The TI rates of MO in buffered aqueous solutions increase at higher buffer concentrations 

(supporting Info. of Ref. [12]). This phenomenon can be explained by a similar interaction 

between MO and cations. We also consider that although TI rates of azo dyes usually do not 

depend on the dye concentrations, the dyes with ionic groups may show concentration 

dependence at a certain concentration range. For example, the TI rates of methyl red in octanol 

increases as the dye concentration increases above the dye concentration of 
6106~    mol/l [15]. 

This tendency was previously explained assuming the formation of dimers. Methyl red is a 

derivative of DMAAB in which the o-position of the aromatic ring of the azobenzene is 

substituted by a COO-H+ group. We consider that this phenomenon may be another example of 

the enhancement of TI process by the interaction between dye and a cation dissociated from 

ionic group. H+ ion is known to enhance the TI process.   

 

5. Conclusion 

The measurements of the TI rates of DMAAB and MO in EtOH solutions showed that the TI 

rate of MO is concentration dependent, while the TI rate of DMAAB is independent on the dye 

concentration. The TI rates of DMAAB in EtOH solutions were increased by the addition of 

electrolyte solutions (NaCl, KCl, NaBr and KBr aqueous solutions). The excess addition of 

electrolyte made no noticeable spectral change of the UV/vis spectra of DMAAB. 

The effect of Na+ ion on the TI process of DMAAB was smaller than that of K+ ion, whereas 

the influence of Cl- ion on the TI rate was almost the same as that of Br- ion. We consider that 

there is an electrostatic interaction between cation and DMAAB molecule, which enhances the 

TI process. We also consider that the interaction between anions and DMAAB is not large 

enough to have an effect on the TI process, and the TI rate is enhanced mainly by the interaction 

of DMAAB with cation. 
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 There are two possible origins of the concentration dependence of TI rates for MO solutions in 

EtOH. One is the ion pair association of the SO3
-Na+ group. Our DFT calculation suggested that 

there is a possibility that a cis-MO ion pair isomerizes via rotation about the N=N group easier 

than a cis-MO ion. However, it is difficult to confirm the validity of this inference 

experimentally. The other is the enhancement of the TI process by cation. MO is a sodium salt. 

At higher dye concentrations, the interaction between dimethylaminoazobenzene moiety and Na+ 

ion would increase. We consider that the increase of this interaction would be one origin of the 

concentration dependence of MO in EtOH solution.  

We suppose that other dyes with ionic groups such as SO3Na and COOH, may show similar 

concentration dependence at a certain concentration range. 
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Figures 

 

 

 

 

Figure 1.  Structures of dimethylaminoazobenzene dyes 
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Figure 2. Temporal changes of absorbance of MO in EtOH ( -61082.6   (mol/l)) The pump beam 

excited the sample for 5.0 s. The dashed curves are single exponential fittings with TI rates of 

0.156 s-1.     
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Figure 3.  Concentration dependence of thermal isomerization rates of DMAAB (red squares) 

and MO (black circles) in EtOH. 
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Figure 4 Absorbance of MO in EtOH. The dye concentrations are -4102.18 , -41009.1  ,

-51045.5  , -51072.2  , -51036.1  , -61082.6  , and -61014.3   (mol/l). All the curves coincide 

well with each other. 
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Figure 5. Spectra of trans-DMAAB in EtOH. The absorption curves are DMAAB in ethanol 

solution (black solid curve), DMAAB in EtOH solution with an addition of water (red solid 

curve), addition of NaBr (blue solid curve), addition of NaCl (black dashed curve), addition of 

KBr (red dashed curve), and addition of KCl (blue dashed curve). 

 

 

 

 

 

Figure 6. Interaction between a Na+ ion and MO molecule 
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Tables 

 

solution additive (*) 

TI rates (s-1) 

before 

addition  

after 

addition 

MO 

ethanol 

solution 

(*1)  

water  (1 volume%) 0.23 0.59 

NaCl aqueous solution (*3)  

(1 volume%) 
0.26 1.6 

DMAAB 

ethanol 

solution 

(*2)  

water  (1 volume%) 0.028 0.049 

NaCl aqueous solution (*3)  

(1 volume%) 
0.027 0.67 

 

 

Table 1. The change of TI rates of dimethylazobenzene dyes in EtOH 

Concentration: * 1: 3.0510-5 (mol/l).  * 2: 4.4410-5 (mol/l). *3: 0.86 (mol/l)  

 

 

 

 

additive (*) 

TI rates (s-1) 

before 

addition  

after 

addition 

 water 0.02  0.04  

KCl aqueous solution 0.03  0.23  

NaCl aqueous solution 0.03  0.11  

KBr aqueous solution 0.02  0.21  

 NaBr aqueous solution 0.02  0.10  

 

Table 2.  The change of TI rates of DMAAB-EtOH solutions by adding electrolyte solutions    

* Dye concentration is 1.3910-5 (mol/l).   

The addition of electrolyte aqueous solutions makes the ratio of dye/electrolyte 1/100. 
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The addition of electrolyte aqueous solutions makes the ratio of dye/electrolyte 1/100. 

 

 


