

電磁波導波路固有値問題のSakurai-Sugiura射影法を 用いたハイブリッドトレフツ有限要素解法への混入 解

メタデータ	言語: jpn					
	出版者: 日本計算数理工学会					
	公開日: 2018-02-15					
	キーワード (Ja):					
	キーワード (En): Hybrid Trefftz finite element method,					
Sakurai-Sugiura projection method, Electromagn						
waveguide, Propagation property, Nonlinear						
	eigenvalue problem					
	作成者: 嶋田, 賢男, 森田, 好人, 長谷川, 弘治, 佐藤, 慎悟					
	メールアドレス:					
	所属:					
URL	http://hdl.handle.net/10258/00009546					

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

電磁波導波路固有値問題のSakurai-Sugiura射影法を用いたハイ ブリッドトレフツ有限要素解法への混入解

SPRIOUS SOLUTIONS OF HYBRID TREFFTZ FINITE ELEMENT METHOD WITH SAKURAI-SUGIURA PROJECTION METHOD FOR ELECTROMAGNETIC WAVEGUIDE EIGENVALUE PROBLEMS

嶋田 賢男¹⁾,森田 好人²⁾,長谷川 弘治³⁾,佐藤 慎悟⁴⁾

Takao SHIMADA, Yoshihito MORITA, Koji HASEGAWA and Shingo SATO

1) 津山工業高等専門学校電気電子工学科	(〒708-8509	津山市沼 624-1,	E-mail: shimada@tsuyama-ct.ac.jp)
2) 室蘭工業大学大学院工学研究科	(〒 050-8585	室蘭市水元町 27-1,	E-mail: s1924209@mmm.muroran-it.ac.jp)
3) 室蘭工業大学大学院もの創造系領域	(〒 050-8585	室蘭市水元町 27-1,	E-mail: khasegaw@mmm.muroran-it.ac.jp)
4) 北見工業大学工学部電気電子工学科	(〒090-8507	北見市公園町 165,	E-mail: s-sato@mail.kitami-it.ac.jp)

Hybrid Trefftz finite element method (HTFEM) with a nonlinear eigenvalue problem solver, Sakurai-Sugiura projection method (SSM), for electromagnetic wave propagation problems is inspected for finding a procedure for discarding nonphysical solutions and dependence of computed eigenvalues on parameters of SSM. Numerical results of TEand TM-wave propagation constants on a three-layer-dielectric slab waveguide and a slab waveguide with periodic thin conductor show that estimating value of condition numbers of HTFEM matrices at computed solutions or changing an integral path in SSM may point out nonphysical solutions. Moreover, the three-layer-dielectric slab waveguide's results show that propagation constants computed by SSM with proper parameters converge.

Key Words: Hybrid Trefftz finite element method, Sakurai-Sugiura projection method, Electromagnetic waveguide, Propagation property, Nonlinear eigenvalue problem

1. はじめに

有限要素法は領域型解析法であるので、半無限領域の扱いになんらかの工夫が必要である.半無限領域を取り除き解 析端で電磁波が無反射となるように、完全整合層で解析領 域を囲んだり、吸収境界条件を領域端に適用するなどの方法 がある.また半無限領域を取り扱う特殊な要素を採用する 方法がある.本論文で扱うハイブリッドトレフツ有限要素法 (Hybrid Trefftz Finite Element Method:HTFEM)^(1, 2, 3, 4) は、この特殊な要素を採用する一例である.HTFEM は要素 境界上での連続条件をラグランジュの未定係数法で汎関数に 組み込むので、補間関数の異なる要素の併用が可能であり、 領域ごとに最適な補間関数を選ぶことができる.例えば、不 均質領域に対しては多項式を用いる通常要素で分割を行い、 一様均質領域に対しては系の支配方程式を満足する空間高調 波展開を用いたトレフツ要素1つで分割できる⁽⁴⁾.この手 法の利点として、吸収境界条件を設定する場合や完全整合層

2011 年 8 月 26 日受付, 2011 年 11 月 11 日受理

を用いる場合のように接続境界を媒質から離す必要がないた め、分割数を減らすことができる.しかし、伝搬定数を求め る場合、非線形固有値問題に帰着する欠点がある⁽⁴⁾.

この非線形固有値問題の解法として,著者らは Sakurai-Sugiura 射影法 (SS法)^(4,5,6,7)の適用を検討している.SS 法は,固有値を指定した複素領域内に存在する全固有値とそ の固有ベクトルを求めることができる.既に,周期的に完全 導体を装荷した漏洩誘電体スラブ導波路を例にSS 法が適用 可能なことを報告している⁽⁴⁾.しかし,SS 法のパラメータ によっては,不要解が混入し,その解が物理的に意味のある ものかどうかを界分布のみから判定するのが容易ではない場 合があった.

そこで、本論文では厳密解の存在する三層誘電体スラブ導 波路を対象として、求まる解の判別手順を検討するとともに 前報告⁽⁴⁾では確認していない固有値の収束性を調べている. さらに、周期的に完全導体を装荷した漏洩誘電体スラブ導波 路の不要解の判別を行い、SS 法を適用した HTFEM に基づ

Fig. 1 Metallic grating on a dielectric slab waveguide

く電磁波伝搬問題の解析法の妥当性を示している.

2. 問題設定

Fig.1 に示すようなカバー層(比誘電率 ε_1 ,比透磁率 μ_1 , h < y), 完全導体電極による周期摂動部 (比誘電率 $\varepsilon(x, y)$, 比 透磁率 $\mu(x, y)$, $0 \le y \le h$), 導波層(比誘電率 ε_2 , 比透磁率 μ_2 , $-d \leq y < 0$), 基板 (比誘電率 ε_3 , 比透磁率 μ_3 , y < -d) からなる周期構造漏洩誘電体スラブ導波路(構造周期p,電 極幅w,電極厚みh,導波層厚みd)の伝搬問題を考える.電 磁界を複素表示して時間依存性を exp(jωt) とし, z 軸方向の 界の変化を一様 $\left(\frac{\partial}{\partial z} \equiv 0\right)$ とする. 構造が x 軸方向に周期的な ので、フロケの定理により電磁界の成分 $\phi(x,y,z)$ は、複素伝 搬定数を $\gamma = \beta - j\alpha$ とすると,周期関数 $\tilde{\phi}(x+p,y) = \tilde{\phi}(x,y)$ を用いて $\phi(x, y, z, t) = e^{j(\omega t - \gamma x)} \tilde{\phi}(x, y)$ と表される.ここに, β は位相定数, α は減衰定数である.また, jは虚数単位で あり,ωは角周波数である.構造の周期性から,導波路1周 期分 $(x_0 \leq x \leq x_0 + p)$ を解析する. 無限遠方の境界 Γ_1 , Γ_4 には放射条件,境界 $\Gamma_5(x = x_0)$, $\Gamma_6(x = x_0 + p)$ には 周期条件を課す.なお、境界 Γ2 は一様なカバー層と周期摂 動部を含む領域との境界 (線分 $y = h, x_0 \le x \le x_0 + p$) で あり、
Γ₃は導波層と周期摂動部を含む領域との境界(線分) $y = 0, x_0 \le x \le x_0 + p$) である.

3. HTFEM による定式化

この問題に対する定式化は、既に報告した⁽⁴⁾ので、本論 文では簡単に記述する.解析領域をFig.1に示すように半無 限領域 Ω_1 , Ω_3 ,周期摂動部を含む領域 Ω_2 に分割する.領域 Ω_1 , Ω_3 は放射条件と周期条件を満足する平面波解となるよ うに空間高調波展開を補間関数とするトレフツ要素各1個で 分割する.不均質領域 Ω_2 をFig.2に示す4節点4辺矩形要 素⁽⁸⁾で分割し、各要素内での電界の*x*,*y*,*z*成分を

$$E_i = \{U_i\}\{\hat{E}_i\}, \quad i = x, y, z \tag{1}$$

と多項式近似する.ここに、 $\{U_i\}$ は要素の補間関数ベクト ルであり、 $\{\hat{E}_x\}$ 、 $\{\hat{E}_y\}$ は要素内における各辺上の電界ベクトルのx、y成分、 $\{\hat{E}_z\}$ は要素内における各節点での電界ベクトルのz成分である.

ここで領域Ω₂とトレフツ要素を接続するために,本手法 で用いるトレフツ要素の境界上の電界と領域Ω₂の境界上の 電界が一致するように離散化すると,最終的に解くべき非線

Fig. 2 Rectangular element with 4-edges and 4-nodes

形固有値問題の行列方程式は,

$$[T(\gamma)]\{\hat{E}\} = \{0\}$$
(2)

と得られる.ここで、 $\{\hat{E}\}$ は離散化した領域 Ω_2 の電界未知 列ベクトル、N行N列の $[T(\gamma)] \in \mathbb{C}^{N \times N}$ は γ について正則 な行列関数であり、

$$[T(\gamma)] = [A_0] + [A_+]e^{-j\gamma p} + [A_-]e^{j\gamma p} + [g_{kl}(\gamma)]$$
(3)

である.行列 $[A_0]$, $[A_+]$, $[A_-]$ は,定数を要素とする正方行 列であり、4節点4辺矩形要素による汎関数評価に起因する. $[g_{kl}(\gamma)]$ は、k 行 l列要素が γ に関する代数関数、有理関数、 指数関数を含む正方行列であり、トレフツ要素に起因する.

4. 周回積分を用いた非線形固有値問題の解法 (SS法)

本章では、数値計算に必要なパラメータを説明するため に、Asakura らの文献⁽⁶⁾に従い解法の概略を述べる. なお SS 法には、近接した固有値計算が可能なように改良したブ ロック版が提案されているが、本論文ではプログラム作成が 容易な非ブロック版を用いる.

非線形固有値問題の式(2)を解くことを考える.

Čを正の向きをもつ複素平面上の Jordan 曲線とし, $\lambda_l (l = 1, 2, \dots, m)$ をČ内にある式 (2)の相異なる固有値とする.零ベクトルでない N 行 1 列の列ベクトル {V} $\in \mathbb{C}^N$ に対して 関数 $f(\gamma)$, 複素モーメント μ_k を

$$f(\gamma) = \{V\}^{H} [T(\gamma)]^{-1} \{V\}$$
(4)

$$\mu_k = \frac{1}{2\pi j} \int_{\check{\Gamma}} \gamma^k f(\gamma) d\gamma, \quad k = 0, 1, \cdots, 2m - 1$$
 (5)

と定義する.ここで、上添字Hは共役転置行列を表す.

数値計算の簡単化のために積分路 $\hat{\Gamma}$ を,中心o,半径 ρ の 円とし,台形公式で式(5)を数値積分すると,

$$\hat{\mu}_k = \frac{1}{N_s} \sum_{h=0}^{N-1} \left(\frac{c_h - o}{\rho} \right)^{k+1} f(c_h), \quad k = 0, 1, \cdots, 2m - 1 \quad (6)$$

となる.ここに標本点 ch は、円周上の Ns 個の等間隔点

$$c_h = o + \rho e^{\frac{2\pi 1}{N_s}(h+1/2)}, \quad h = 0, 1, \cdots, N_s - 1$$
 (7)

とし, 関数値を

$$f(c_h) = \{V\}^{\mathrm{H}}[T(c_h)]^{-1}\{V\}, \quad h = 0, 1, \cdots, N_s - 1 \qquad (8)$$

としている.ただし,積分路 Γ を単位円に移してある.この 単位円上で近似評価した Hankel 行列を

$$[\hat{H}_m] = [\hat{\mu}_{i+j-2}]_{i,j=1}^m \tag{9}$$

$$[\hat{H}_m^<] = [\hat{\mu}_{i+j-1}]_{i,j=1}^m \tag{10}$$

とすると,求める $[T(\gamma)]$ の近似固有値 $\hat{\lambda_l}$ は,一般化固有値 問題

$$\{ [\hat{H}_m^{<}] - \zeta [\hat{H}_m] \} \{ \hat{w} \} = \{ 0 \}$$
(11)

の固有値 $\hat{\zeta}_l(l=1,2,\cdots,m)$ から

$$\hat{\lambda}_l = o + \rho \hat{\zeta}_l, \quad l = 1, 2, \cdots, m \tag{12}$$

と求まり,固有ベクトル $\{\hat{x}_l\}$ は

$$\{\hat{x}_l\} = [\{\hat{s}_0\}, \{\hat{s}_1\}, \cdots, \{\hat{s}_{m-1}\}]\{\hat{w}_l\}, \ l = 1, 2, \cdots, m$$
 (13)

と求まる.ここに, $\{\hat{w}_l\}$ は一般化固有値問題 $\{[\hat{H}_m] - \zeta[\hat{H}_m]\}\{\hat{w}\}$ = $\{0\}$ の $\hat{\zeta}_l$ に対応する固有ベクトルで,

$$\{\hat{s}_k\} = \frac{1}{N_s} \sum_{h=0}^{N-1} \left(\frac{c_h - o}{\rho}\right)^{k+1} [T(c_h)]^{-1} \{V\}$$
(14)

である.

Hankel 行列の次数は、積分路内の固有値の個数 *m* である. しかしながら、 $M \ge m$ である M を推定し、 $\sigma_1 \ge \cdots \ge \sigma_M$ を Hankel 行列 [\hat{H}_M] の特異値、 δ を小さな値として K 個の 特異値が $\sigma_i \ge \delta$ ($i = 1, 2, \cdots, K$)、残りの M - K 個が $\sigma_i < \delta$ ($i = K + 1, \cdots, M$) となる K を定め、本節の手続き中の *m* を K に置き換えると、十分な精度の固有値が得られる ⁽⁵⁾.

以上から, 非ブロック版 SS 法の実行に必要な設定値は, 以 下となる. γ の複素平面上の積分径路の中心 o と半径 ρ , 積 分の標本点数 N_s , 最終的に解く Hankel 行列の次数 K を定 めるための整数 M と値 δ である. なお列ベクトル {V} の成 分は, ランダム関数で発生させて良い.

5. 不要解の判定手続きの検討

5.1. 三層誘電体スラブ導波路の解析

Fig.1 の完全導体電極による周期摂動部を除去した Fig.3 の三層誘電体スラブ導波路 ($k_0p = 2.1$, d = 0.5p, $\varepsilon_1 = \varepsilon_3 =$ 1.0, $\varepsilon_2 = 11.8$, $\mu_1 = \mu_2 = \mu_3 = 1.0$)の伝搬問題を例に解 の判定を考える.ここに, k_0 は真空中の波数である.この 導波路の TM₀ モード, TE₀ モード, TE₁ モードの伝搬定数 γ はそれぞれ, $\gamma p = 4.33015$, 6.07580, 2.30491 と解析的に 求まる.領域 Ω_1 , Ω_3 をトレフツ要素各1 個で分割し,トレ フツ要素の接続境界を 32 等分割,空間高調波展開の打ち切 り次数 M_c を 32 とし, -32 次から 32 次までの空間高調波 を用いている.SS 法のパラメータを M = 8, $\delta = 10^{-11}$ と し,式(12)の固有値 $\hat{\lambda}_{lp}$ とその場合の行列 $[T(\hat{\lambda}_{lp})]$ の条件数 $C([T(\hat{\lambda}_{lp})])$ を計算した結果を Table 1 に示す.条件数は, 2 ノルムを用いて,行列 $[T(\hat{\lambda}_{lp})]$ の最小特異値 σ_{\min} と最大特異 値 σ_{\max} の比 $\sigma_{\min}/\sigma_{\max}$ で算出した.特異値分解には Intel[®] Math Kernel Library の zgesvd を用いた.ここに, (a), (b)

Fig. 3 A three-layer-dielectric slab waveguide

は積分路の円内に TM₀ あるいは TE₀ モードの γp を含む各 3 円の結果である.また,求まった固有値 $\hat{\lambda}_{l} p$ の複素平面 γp 上の位置を Fig.4 に示す.

Table 1(a) の 3 円では, K = 8となり, TM₀ モードの解 (l=1)の他に7個の解があると判定した.しかしながら解析 解から、この円内にはTM0モードのみが存在する.周期構造 導波路として解析して求まった解の内*l*=1,2の解は解析的 に求めた値と小数点以下4桁程度一致しており、ここでは示 さないが界分布からも +x 軸方向に伝搬する TM₀ モードの 解, -x軸方向に伝搬する TE₁ モードの解である. なおl=2の解 $\hat{\lambda}_{l}p$ は, $\Re(\hat{\lambda}_{2}p) - 2\pi = -2.30491$ であり, 周期構造とし て解析したために求まったものである.また1>3の解では, $[T(\hat{\lambda}_l p)]$ の条件数が l = 1, 2と比べ 10² と小さいことからも 式 (2)の解ではないと考えられる.ここで,行列 $[T(\hat{\lambda}_2 p)]$ の 条件数が円1では 10^4 , 円 $2(N_s = 64)$ では 10^7 程度と異なる が、円1では伝搬定数が複素数となっており、TE1モードの 伝搬する解の近似度が低いため条件数が小さくなっている. このように、大小判定の閾値が不明であるものの条件数が大 きくないものは,SS法に由来するものと考えられる.また, $N_s = 32$ とした3円の $\hat{\lambda}_l p(l \ge 3)$ の値は, Fig.4(a)からわか るように,円1と円2,円2と円3,円3と円1のいずれで も異なっており、積分路に依存することからSS 法に由来す ることがわかる. さらに, 円2の $N_s = 32$, 64の結果から, 数値積分の標本点数 N。が異なると SS 法に由来して混入す る解は異なることがわかる.

Table 1(b) の円では, 3 個から 5 個の解が得られている. $l = 2 \text{ の解} \hat{\lambda}_{2p}$ は, $\Re(\hat{\lambda}_{2p}) - 4\pi = -6.07578$ なので-x軸方 向に伝搬する TE₀ モードであり, 界分布からも確認できる. またこの解 $\hat{\lambda}_{2p}$ は, その場合の行列 [$T(\hat{\lambda}_{2p})$]の条件数が円 4 では 10⁶, 円 5($N_s = 64$)では 10⁷ 程度となっており, $l \ge 3$ の解に比べ条件数が大きい.なおこの解は, Fig.4(b)からわ かるように, SS 法に指定した求解範囲外であるので,条件 数等の判定を行わずに解から除去して良い.また円 1, 円 2 で求まる TE₁ モードの解 (l = 2)も求解範囲外なので求める 解から除去して良い.

以上から, 求解円盤領域 *C*_o と同じ中心で半径が大きな円 盤領域 *C*_L で SS 法により解を計算し, 条件数が大きく領域 依存性が小さな解を物理的解, 条件数が小さく求解領域が異 なると一致するものがない解を SS 法の適用により混入する 解と本論文では判定することにする. なお条件数は必ずしも 調べる必要はなさそうであるが, 求解領域への解依存性が小 さいという判定基準が不明であるため, 利用する.

(b) TE_0 mode

Fig. 4 Distribution of computed eigenvalues of a three-layer dielectric slab waveguide in case of M=8 and $\delta=10^{-11}$

5.2. 周期構造漏洩三層誘電体スラブ導波路の解析

前節 5.1 の三層誘電体スラブ導波路に完全導体 (w/p = 0.5, h/p = 0.5)を周期的に装荷した Fig.1 に示す問題を考える. 領域 Ω_2 には、Fig.2 に示す矩形要素を用い, x, y 軸方向に 32 等分割する. 領域 Ω_1 , Ω_3 のトレフツ要素ならびに SS 法のパラメータを Fig.3 の三層誘電体スラブ導波路と同じ 設定とし、計算した結果を Table 2 に示す. また、求まっ た固有値の複素平面上の分布を Fig.5 に示す. 求める解は、 TE 波ならびに TM 波に対応する $\gamma p = 5.70243 - j0.03545$, $\gamma p = 5.40284 - j0.33514 0 2 つである ^(4, 9). この求める 2 つ$ の解は、いずれの円でも正しく求められており、円7と円8 $(<math>N_s = 64$)の [$T(\hat{\lambda}_{l}p)$] の条件数は 10^{13} 以上と十分大きくなっ ている. その他の解、すなわち円7 での5 個、円8 と円9 で 0 6 個の解は、Fig.5 から値が異なっていることがわかり、ま た $\hat{\lambda}_{l}p$ に対応する条件数も 10^4 程度と大きくはなく、SS 法に 由来するものと考えられる.

以上の2例から, *M*, δの設定によって *K* が真の固有値数 より大きくなった場合でも,円の半径を大きくした領域と求 解領域で求まる解の移動を調べることで,移動しない物理的 解と SS 法の適用により混入する移動する解の判別が可能で あると考えられる.

Fig. 5 Distribution of computed eigenvalues of metallic grating on a dielectric slab waveguide in case of M=8 and $\delta=10^{-11}$

6. 伝搬定数の収束性

5.1 節で考えた三層誘電体スラブ導波路を考える. ここに 導波路構造ならびにトレフツ要素の接続境界の分割を同様と する.解に大きな影響を与えるのは近似 Hankel 行列の要素 値と考えられるので,積分路の円の形状(半径 ρp と中心位 置 op)と数値積分標本点数 N_s の影響を調べる.残りの SS 法のパラメータは推定固有値数 M と固有値数を判定するパ ラメータ δ である. δ の値は,近似 Hankel 行列の次数 K に 関係するため,線形固有値問題の求解精度に影響を与える.

Fig.6 は、求めた複素伝搬定数 $\hat{\gamma}p$ の相対誤差 $\left|\frac{\hat{\gamma}p}{\gamma_{o}p}-1\right|$ の op ならびに K 依存性を調べたものである.ここに $\rho p = 0.4$ とした.また γ_{ap} は、解析的に求めた厳密解である.TE₀ モードの K = 1 の場合には,標本点数が 60 以下と少ない場 合に解の精度の円の中心位置 op 依存性は大きいが,他方同 じ TE₀ モードの K = 2の場合と TM₀ モードの K = 8の 場合での中心位置 op 依存性は小さい. これは, K = 1 とす るために設定するδが10⁻⁵程度となっており,ハンケル行 列の線形固有値問題の次元数を不適切に小さく置き換えた ためと考えられる.これは、 TM_0 モードの場合のK = 4の 場合にも起きており、この場合には円の位置 op により収束 値が異なっている.この結果は、物理的な解の個数 m を K に設定するよりも、小さな値δからKを決定して線形固有 値問題を解き,SS法により混入する解を除去する方が解の 精度の点からは望ましいことを示唆している.TE0 モード の K = 2,4,8, TM₀ モードの K = 8,12 の場合に,標本点 数 N_s が 20 程度の小さいところで不規則な振動がみられる が、N_sが30程度と大きくなると、どちらのモードの伝搬定 数も一定値に収束していることがわかる. 解が一定値となり 厳密解に近付かないのは、トレフツ要素の接続境界の分割数 D = 32 と空間高調波展開の打ち切り次数 M_c = 32 を一定値 としているためである.

次に、この三層誘電体スラブ導波路の HTFEM 解析でト レフツ要素の接続境界の分割数 D ならびに空間高調波展開 の打ち切り次数 M_cを変え、求まる伝搬定数の相対誤差のト レフツ要素の接続境界の分割数依存性を調べる.SS 法のパ

Table 1	Eigenvalues $\lambda_l p$ and condition number $C([T(\lambda_l p)])$ in eq.(3) of a three layer dielectric slab
	waveguide

	(a) TM_0 mode								
	$\mathrm{Circle1}(op\!=\!4.4,\rho p\!=\!0.3)$		Circle2(op =	$4.4, \rho p = 0.4)$		Circle3($op = 4.15 + j0.1, \rho p = 0.3$)			
	$N_s = 32$	$N_s = 64$	$N_s = 64$		$N_{s} = 32$		$N_s = 32$		
l	$\hat{\lambda}_l p \qquad C(T[\hat{\lambda}_l p])$	$\hat{\lambda}_l p$	$C(T[\hat{\lambda}_l p])$	$\hat{\lambda}_l p$	$C(T[\hat{\lambda}_l p])$	$\hat{\lambda}_l p$	$C(T[\hat{\lambda}_l p])$		
1	$4.33021 + j0.00000$ 2.667×10^{9}	4.33021 + j0.00000	$8.875\!\times\!10^7$	4.33021 + j0.00000	$2.268\!\times\!10^7$	4.33021+j0.00000	$4.052\!\times\!10^6$		
2	$3.97835 - j0.00039$ 2.898×10^{4}	3.97827+j0.00000	$1.546\!\times\!10^7$	3.97828+j0.00000	$6.741\!\times\!10^6$	3.97827 - j0.00000	$5.224\!\times\!10^7$		
3	$4.16801 + j0.19025 \ 1.543 \times 10^{2}$	4.13004 + j0.30175	$1.546\!\times\!10^2$	4.01621+j0.33791	$1.548\!\times\!10^2$	4.15758+j0.43815	$1.558\!\times\!10^2$		
4	$4.13399 + j0.15044 \ 1.542 \times 10^{2}$	4.13366+j0.27615	$1.545\!\times\!10^2$	4.14498+j0.31048	$1.547\!\times\!10^2$	4.15599+j0.38222	$1.552\!\times\!10^2$		
5	$4.02895 + j0.16155 \ 1.542 \times 10^{2}$	4.14358+j0.21831	$1.544\!\times\!10^2$	4.12204+j0.26928	$1.545\!\times\!10^2$	4.16300+j0.31156	$1.547\!\times\!10^2$		
6	$4.14690 + j0.10923 \ 1.542 \times 10^{2}$	4.15754+j0.14733	$1.542\!\times\!10^2$	4.14046+j0.18374	$1.543\!\times\!10^2$	4.17194+j0.21571	$1.544\!\times\!10^2$		
7	$4.16534 + j0.05466 \ 1.542 \times 10^{2}$	4.17189+j0.07512	$1.542\!\times\!10^2$	4.16208+j0.09478	$1.542\!\times\!10^2$	4.18146+j0.11287	$1.542\!\times\!10^2$		
8	$4.17810 + j0.01533$ 1.542×10^{2}	4.18023 + j0.02057	$1.542\!\times\!10^2$	4.17799+j0.02596	$1.542\!\times\!10^2$	4.18392+j0.03023	$1.542\!\times\!10^2$		
	(b) TE_0 mode								
	$\operatorname{Circle4}(op\!=\!6.0,\rho p\!=\!0.3)$	Circle5($op = 6.0, \rho p = 0.4$)			Circle6($op = 5.9, \rho p = 0.3$)				
	$N_s = 32$	$N_s = 64$		$N_{s} = 32$		$N_s = 32$			
l	$\hat{\lambda}_l p \qquad C(T[\hat{\lambda}_l p])$	$\hat{\lambda}_l p$	$C(T[\hat{\lambda}_l p])$	$\hat{\lambda}_l p$	$C(T[\hat{\lambda}_l p])$	$\hat{\lambda}_l p$	$C(T[\hat{\lambda}_l p])$		
1	$6.07576 + j0.00000 \ 1.102 \times 10^{13}$	6.07576+j0.00000	1.088×10^{14}	6.07576+j0.00000	1.465×10^{12}	6.07576+j0.0000	1.940×10^{13}		
2	$6.49059 + j0.00002 1.218 \times 10^6$	6.49059 - j0.00000	$6.472\!\times\!10^7$	6.49059-j0.00000	1.136×10^{11}	6.48742-j0.0006	$9 6.252 \times 10^3$		
3	$6.36066 + j0.00031$ 1.834×10^{2}	5.64518 + j0.01443	$1.545\!\times\!10^2$	5.44460+j0.01599	4.272×10^{2}	6.41385-j0.2992	$8 1.550 \times 10^2$		
4	$5.80848 + j0.02111 1.600 \times 10^{2}$	-	-	6.13452-j0.11240	2.153×10^{2}	-	-		
5	$4.79873 - j0.00660$ 1.544×10^{2}	-	-	-	-	-	-		

Table 2 Eigenvalues $\hat{\lambda}_l p$ and condition number $C([T(\hat{\lambda}_l p)])$ in eq.(3) of metallic grating on a dielectric slab waveguide

	Circle7(op=5.5-j0)	$0.1, \rho p = 0.3)$	Circle8($op = 5.5 - j0.1, \rho p = 0.4$)				Circle9($op = 5.5 - j0.2, \rho p = 0.3$)	
	$N_{s} = 32$		$N_{s} = 64$		$N_{s} = 32$		$N_s = 32$	
l	$\hat{\lambda}_l p$	$C(T[\hat{\lambda}_l p])$	$\hat{\lambda}_l p$	$C(T[\hat{\lambda}_l p])$	$\hat{\lambda}_l p$	$C(T[\hat{\lambda}_l p])$	$\hat{\lambda}_l p$	$C(T[\hat{\lambda}_l p])$
1	5.40284 - j0.33514	$1.993\!\times\!10^{16}$	5.40284 - j0.33514	$7.196\!\times\!10^{16}$	5.40284 - j0.33514	$1.990\!\times\!10^{16}$	$5.40284\!-\!{\rm j}0.33514$	8.800×10^{16}
2	5.70243 - j0.03545	5.539×10^{14}	5.70243 - j0.03545	$8.000\!\times\!10^{13}$	5.70243 - j0.03545	$2.238\!\times\!10^{14}$	5.70243 - j0.03545	5.018×10^{14}
3	5.34973 - j0.30079	$3.093\!\times\!10^4$	5.10266 - j0.00893	$1.366\!\times\!10^4$	5.34785 - j0.44106	$1.629\!\times\!10^4$	$5.42371\!-\!{\rm j}0.31973$	$7.477\!\times\!10^4$
4	$5.53415\!-\!\mathrm{j}0.32942$	$1.469\!\times\!10^4$	5.37354 + j0.22353	$1.366\!\times\!10^4$	5.09843 - j0.00086	$1.366\!\times\!10^4$	5.44507 - j0.08417	$1.366\!\times\!10^4$
5	$5.12355\!-\!\mathrm{j}0.05814$	$1.366\!\times\!10^4$	5.67347 - j0.05446	$1.366\!\times\!10^4$	6.97366 - j0.16473	$1.366\!\times\!10^4$	5.24100 - j0.05698	$1.366\!\times\!10^4$
6	5.77381 + j0.09689	$1.366\!\times\!10^4$	5.00209 - j0.48473	$1.366\!\times\!10^4$	5.68743 + j0.06103	$1.366\!\times\!10^4$	5.96372 + j0.86781	$1.366\!\times\!10^4$
7	3.60659 - j0.16208	$1.366\!\times\!10^4$	5.88296 + j0.00694	$1.366\!\times\!10^4$	4.10983+j0.07105	$1.366\!\times\!10^4$	4.65607 - j0.09855	$1.366\!\times\!10^4$
8	-	-	5.52906 - j0.48525	$1.366\!\times\!10^4$	7.05048 + j0.97921	$1.366\!\times\!10^4$	5.82036 - j0.49987	$1.366\!\times\!10^4$

ラメータを $\rho p = 0.4$, M = 8と設定して, 複素伝搬定数 $\hat{\gamma}p$ の相対誤差 $\left|\frac{\hat{\gamma}p}{\gamma_a p} - 1\right|$ を調べたものをFig.7に示す. Fig.7(a) に示す TE₀ モードでは, 積分路の円の中心をop = 6.0, δ は K = 1,8となるようにしており, Fig.7(b) に示す TM₀ モード ではop = 4.4, δ は K = 8,12となるように設定した. Fig.6 に示した収束していない解に当たる不適切な $K \ge N_s$ の組に 対応する TE₀ モードの $K = 1, N_s = 32$ の場合と TM₀ モー ドの $K = 8, N_s = 16$ の場合には, トレフツ要素の接続境界 の分割数 D あるいは空間高調波展開の打ち切り次数 M_c を 増やしても図示した範囲からは, 解は厳密解に収束しないと 考えられる. 他方, Fig.6 の収束値を与える適切な $K \ge N_s$ の組では, TE₀ モード, TM₀ モードともに M_c が D と同じ 場合に誤差が最も少なく、いずれの M_c でもDが大きくなる と誤差が減少している. $M_c = D$ の場合の誤差は、この図示 した4点で直線近似すると、TE、TMモードでそれぞれ、お よそ分割数Dの3.0乗、2.9乗で収束していることがわかる.

7. むすび

本論文では、三層誘電体スラブ導波路、周期的に完全導体を装荷した漏洩誘電体スラブ導波路を例にSS 法を用いた HTFEM より求まる解の判別方法を検討した.また求まる 固有値の収束性を調べた.SS 法に起因して混入する解は、 HTFEM から導かれる非線形固有値問題の係数行列の条件数 の大きさと積分路の変更による解の変化により、求める物理

(b) TM_0 mode

Fig. 6 Dependence of relative error of the propagation constant γp on number of preparation points N_s for $\rho p = 0.4$

的な解と判別可能であることを確認した.また,本HTFEM 解析法により求めた伝搬定数の誤差は,分割数と空間高調波 展開の打ち切り次数を増やすと単調に減少することを確認 した.

今後は,SS法により解が混入する原因の検討を行い,除 去方法を確立する必要がある.

参考文献

- A.P. Zielinski and O.C. Zienkiewicz : Generalized finite element analysis with T-complete boundary solution functions, Int. J. Numer. Methods Eng., **21**(1985), pp. 509–528.
- Q.-H. Qin : The Trefftz Finite and Boundary Element Method, (2000), WIT Press.
- (3) O.C. Zienkiewicz, R.L. Taylor and J.Z. Zhu: The Finite Element Method Its Basis & Fundamentals 6th Edition, (2005), Butterworth-Heinemann.
- (4) 森田好人,嶋田賢男,長谷川弘治,佐藤慎悟:開放型電 磁波導波路固有値問題の Sakurai-Sugiura 射影法を用い たハイブリッド・トレフツ有限要素解析法,計算数理工 学論文集, 10(2010), pp. 87–92.

- Fig. 7 Dependence of relative error of the propagation constant γp on number of divisions D and the highest order of space harmonic expansion M_c
- (5) J. Asakura, T. Sakurai, H. Tadano, T. Ikegami and K. Kimura : A numerical method for polynomial eigenvalue problems using contour integral, Tech. Report Department Comput. Sci. Univ. Tsukuba, CS-TR-08-15(2008).
- (6) J. Asakura, T. Sakurai, H. Tadano, T. Ikegami and K. Kimura : A numerical method for nonlinear eigenvalue problems using contour integrals, Jpn. SIAM Lett., 1(2009), pp. 52–55.
- (7) T. Ikegami, T. Sakurai and U. Nagashima : A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method, J. Comput. Appl. Math., 233(2009), pp. 1927–1936.
- (8) X.Q. Sheng and S. Xu : An efficient high-order mixededge rectangular element method for lossy anisotropic dielectric waveguides, IEEE Trans. Microw. Theory Tech., 45(1997), pp. 1009–1013.
- (9) M. Matsumoto, M. Tsutsumi and N. Kumagai : Radiation characteristics of a dielectric slab waveguide periodically loaded with thick metal strips, IEEE Trans. Microw. Theory Tech., MTT-35(1987), pp. 89–95.