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Abstract—Electrical load forecasting is still a challenging
open problem due to the complex and variable influences, e.g.
weather and time. Although, with the recent development of
Internet of Things (IoT) and smart meter technology, people
have obtained the ability to record relevant information on a large
scale, traditional methods struggle in analyzing such complicated
relationships for their limited abilities in handling non-linear
data. In the paper, we introduce an IoT-based deep learning
system to automatically extract features from the captured data,
and ultimately, give an accurate estimation of future load value.
One significant advantage of our method is the specially designed
two-step forecasting scheme, which significantly improves the
forecasting precision. Also, the proposed method is able to
quantitatively analyze the influences of some major factors, which
is of great guiding significance to select attribute combination and
deploy on-board sensors for smart grids with vast area, variable
climates and social conventions. Simulations demonstrate that
our method outperforms some existing approaches, and can be
well applied in various situations.

Index Terms—Smart grid, Internet of things (IoT), load fore-
casting, metering infrastructure, big data.

I. INTRODUCTION

Smart grid, as a power system for the future, has recently re-
ceived lots of attentions. Although many encouraging research
works have emerged in the relevant area, one grave problem
remains unsolved, i.e., electrical load forecasting. An accurate
estimation of future load variation is of great significance for
competitive and deregulated electricity markets, where the load
prediction is an important guidance, both for power companies
and electricity consumers, to make decisions and operations
[1].

The major obstacle in load forecasting is the numerous
impact factors. There are so many possible influences that it is
extremely difficult to find a meaningful relationship between
load variation and these factors. In fact, even the acquisition
of necessary data is not an easy case until quite recently. The
emerging of smart meter infrastructures [2], efficient sensing
methods [3], and Internet of Things (IoT) technologies [4]
give us a chance, for the first time, to record and analyze
possible influences on a large scale. With several equipped
sensors, smart meters can be used to independently capture
various environment data. Also, they can obtain the shared
data from IoT-enabled devices. All these data will be uploaded
to the central controller. Then a massive number of data can
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be accumulated for further analysis. However, it is still a
challenging problem to handle the data, due to the complex and
variable influences, especially the diverse weather conditions.
Indeed, most existing time-series forecasting approaches [5]
have some limitations when applied to electrical load pre-
diction. The classical statistical methods are criticized for
their limited abilities in handling non-linear data; and the
computational intelligence methods are facing problems like
inappropriate hand-crafted features, limited learning capacity,
inadequate learning, inaccurate estimation, insufficient guiding
significance, etc. Although there have been several attempts
based on the state-of-the-art machine learning methods, which
can partially resolve these problems, their performance can be
significantly improved using some ingenious design introduced
in the paper.

To solve these problems, we desire to utilize the state-of-the-
art deep learning methods [6] to automatically extract features
from the historical data, and give an accurate estimation of
future load value. For the sake of data collection, we imple-
ment an IoT-enabled system in an urban area of south China,
as shown in Fig. 1. Smart meters are adopted to record and
upload electrical and background data, with specially-designed
sensors and IoT-enabled devices. They are deployed in every
electricity consumption unit, and share their information with
the control center. Ultimately, we obtain a large dataset in
seven years from 2010 to 2016, including all conceivable
factors. Then the data is used for the network training and
influence analysis. As IoT and smart meters both have the
ability of bidirectional communication, the recommendations
and decision made by the control center can be sent to the
demand side. The IoT infrastructure in Fig. 1 is an important
part of the proposed system. The smart meters can connect
to all the IoT-enabled sensors, gadgets and appliances in the
electricity unit, for example, the smart homes. The proposed
system can deal with all these data, and based on that, perform
accurate load forecasting.

The main contributions of our work include:
• We propose an IoT-enabled load forecasting system based

on the state-of-the-art deep learning technologies. Com-
pared to the traditional time-series analysis methods, the
proposed method can perform accurate prediction without
hand-crafted features.

• We design an ingenious two-step forecasting scheme,
which forecasts the daily total consumption at first, and
based on that, predict the intra-day load variation. This
method can significantly improve the forecasting preci-
sion, which is demonstrated in the experiment section.

• We work out an analysis method of possible influence
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Fig. 1. The load forecasting and analysis system based on IoT-enabled sensors
and devices.

factors. To our best knowledge, this is the first attempt
to gain insight into the relationship between the factors
and the actual load, which, we believe, will play a
tremendous role in selecting attribute combination and
deploying smart meters, especially for the smart grids in
some countries with vast territory and varied climates.

II. RECENT ADVANCES IN LOAD FORECASTING

A. IoT-enabled Smart Meter Systems

Smart meter is a modernized electrical device that records
the energy consumption and uploads it to the utility for billing
and further analysis. The most cutting-edge smart meters not
only have a two-way communication ability, but are equipped
with real-time sensors which can gather the data of relevant
factors. This kind of electricity meter is a vital part of advanced
metering infrastructure (AMI), a system keeping the whole
smart grid connected and informed. With AMI, the utility
can obtain necessary data from the client-side, and push
notifications and recommendations to the clients. Connected
smart meter is a fundamental component for the future smart
grid, and also a cornerstone of our research. Many researchers
are working on this area [7].

IoT, as a hot topic in recent years, is a good approach to
implement connected AMI systems. However, like any other
applications using IoT technologies, the underlying network
to connect smart meters must be carefully investigated. Some
researchers find it necessary to clarify the exact capacities of
existing wireless networks for the upcoming smart metering
traffic [8]. A few preliminary conclusions have been drawn, in-
cluding decreasing the communication interval and equipping
phasor measurement units (PMUs).

In addition, an efficient distributed communication archi-
tecture has been proposed for the connection of smart meters
[9], which can leverage data processing locally. Besides, with a
carefully selected control centers [10], the cost of deployment
and communication can be significantly decreased.

B. Time-series Forecasting Methods

Although time-series forecasting is a topic with a long
history, it is still an open problem due to its complexity. The
existing approaches are of two main types, namely, statistical
methods and computational intelligence methods.

The statistical method is an obvious and natural solution
when dealing with a series of numbers, including many algo-
rithms with different design principles [11]. There is a famous
exponential smoothing method called Holt-Winters (HW). HW
is a good choice when the time-series shows both trend and
seasonality. Two sub-models are included in HW, i.e., additive
model for data with additive seasonality, and multiplicative
model for data with multiplicative seasonality.

Although many classical statistical methods have emerged
over the past few decades, they are currently disfavored due
to their limited abilities in handling complicated nonlinear
relationships. Computational intelligence, one of the hottest
topic in current academia, becomes a key technology to
accurately analyze and forecast time-series data. And, among
all these computational intelligence methods, deep learning
is in evidence [12]. Deep learning is a newly developed and
fast-growing class of machine learning algorithms. A deep
network has multiple hidden layers between input and output
layers, in order to model complicated non-linear relationships.
With enough training materials, which usually are labeled
data, the parameters in a deep network can be well trained
to extract complex features from large data. Therefore, deep
learning methods have been successfully applied in lots of
fields, including scene understanding, natural language pro-
cessing, self-driving, audio recognition, etc. Because of its
strong automatic feature extraction and pattern recognition
ability, deep learning based methods are extremely suitable for
electrical load forecasting, where lots of influences exist. The
most similar approach with our proposed method is short-term
deep neural network (SDNN) model [13]. This model contains
three steps, i.e., data preprocessing, network training and
forecasting. The historical weather conditions and load values
are used as the network input. Compared to the aforementioned
deep learning based approaches, our method adopts a specially
designed two-step forecasting scheme, and takes into account
various influences to analyze their impact.

III. FORECASTING SYSTEM: CONCEPT AND DESIGN

When starting with the research of electrical load, we
wonder what on earth are the possible influences. And which
factors do have a role in the load variation? We decide to
begin with the analysis of historical record, and try to find
some inspirations. Fig. 2 presents an electrical load record
of a large city in south China. The data is sampled every
five minutes, from January 2014 to June 2016. As can be
seen, there are some obvious patterns in the load variation.
On one hand, these records reflect an annual periodicity. The
power load peaks between June and October every year, and
hits bottom around February, which has significant seasonal
characteristics. On the other hand, there is also an obvious
daily periodicity, i.e., the load value keeps high in the daytime,
and drastically drops down at night.



IEEE COMMUNICATIONS MAGAZINE, VOL. XX, NO. XX, XXX 2017 3

Date

2014
2015

2016 Tim
e

0h

6h

12h

18h

24h

Lo
ad

 (1
09

W
)

6

9

12

Fig. 2. Urban electrical load in China (sampled every five minutes).

Although with some simple data analysis like this, the pre-
sented load patterns can lead to a few preliminary conclusions,
it is very difficult to truly understand the complex relationship
between the power consumption and influence factors. In
fact, weather and some other factors play much more parts
in electrical load variation, and also in more complicated
ways, which is far beyond the capacity of humanity and
traditional load forecasting methods. Besides, we empower
the smart meters with the ability to communicate with other
IoT-enabled devices in the system, leading to more extensive
input attributes. As shown in Fig. 1, the IoT infrastructure is
a fundamental component, because it monitors the factors and
sends the data to the control center. The IoT infrastructure
consists of the IoT-enabled devices, including the smart me-
ters, gadgets and appliances, and the communication network.
For economy and reliable communication, we adopt Power
Line Communication (PLC), which can transfer low bit-rate
data with low costs [14], and ZigBee, which can exchange
data wirelessly within a 100m range such as in a home or
building, as the communication network. And smart meters,
just as the sink nodes in the wireless sensor network (WSN),
are responsible for collecting data from the household devices
and sensors, and uploading the data to the control center every
30 seconds. The captured data is extremely complicated and
contains lots of useful information. We desire to learn these
patterns with a deep learning based system to give out an
accurate estimation of the future electrical load.

As mentioned above, we notice that several researchers have
attempted to utilize deep learning in load forecasting, but many
of them are facing a problem of low precision. Frequently, the
existing approaches give inaccurate daily consumptions even
when they have the ability to predict short-term load precisely.
It is a serious problem because many participants of electricity
markets regard the daily consumption value as an important
reference for decision-making. A too large estimation may lead
to energy waste, while a too small value can possibly cause
an insufficient supply. We adopt a specially designed two-step
forecasting scheme to address this problem.

The framework of the proposed load forecasting system is
presented in Fig. 3. In our method, two individual models
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Fig. 3. The framework of the proposed load forecasting system.

are used to respectively predict the daily consumption and
intra-day variation, i.e., daily consumption estimation network
(DCEN) and intra-day load forecasting network (ILFN). There
are two major reasons that we design the two-step forecasting
scheme. One reason is, the estimation value of DCEN is
not only a helpful guidance for electrical companies and
consumers, but an important input to ILFN model, which
takes the daily consumption value as a reference and also a
limitation. Therefore, with the proposed scheme, the estimated
variation can be much closer to the actual load values. The
other reason is that electrical load is influenced by various
factors, which is usually in unit of days, such as the daily
maximum or minimum temperature, daily precipitation, daily
sunshine duration and, of course, the date. And, the relevant
data is also most often obtained in the unit of days. Based on
these facts, we concentrate all the possible factors at the DCEN
model to accurately predict the daily consumption, and only
adopt several basic factors to support the intra-day forecasting,
in order to simplify the network structure,

There are ten hidden layers in the proposed DCEN model.
Layer one and layer two each has 4096 neurons, layer 3∼5
each has 2048 neurons, and layer 6∼10 each has 1024
neurons. We envisaged implementing DCEN as an extremely
complicated model to hold and analyze the super large data.
However, we found that the data engineering is a more efficient
way for this task. With well-selected input, even a common
deep model can extract sufficient features and give meaningful
information for the load forecasting. We will demonstrate this
in the experiment section.

As mentioned above, the key problem in DCEN model is
the selection and preprocessing of the input data. A massive
number of data is acquired by the proposed IoT system.
Among them, we pick the following data as the input. As
the most instructive reference, the daily consumption of past
7 days is selected; to reflect any periodic characteristics, the
time relevant attributes are also adopted, including the date,
the Chinese lunar date, day of the week; as the most important
and complicated data, weather relevant attributes are of great
significance to the DCEN model, including the temperature,
air pressure, vapor pressure, precipitation, evaporation, wind
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TABLE I
FEATURES COMPARISON OF FORECASTING SYSTEMS.

Existing systems IoT-enabled system

Data source On-board sensors IoT devices

Granularity Community House / Room

Data scope Limited sensors Extended by devices

Controllability Controlled by provider Controlled by residents

Deploy cost Expensive sensors Low-cost sharing

Adaptability Fully applicable Available in IoT network

speed and sunshine duration. These data are preprocessed to
give out the maximum, minimum and average values, and
then normalized to generate the final inputs, which include 7
electrical attributes, 3 time relevant attributes and 22 weather
relevant attributes.

After obtaining the daily consumption data, we adopt ILFN
model to estimate the intra-day load variations. ILFN is also a
classic deep model with five hidden layers. And each layer has
512 neurons. The difference is that ILFN needs fewer input
attributes, compared to DCEN model, because all the possible
influences have been handled by DCEN, and most of them
can be neglected in ILFN. The input only includes several
basic factors and the recent load variation. In detail, the input
data includes the estimated daily consumption value, the time
relevant attributes, the load values in the last five time units
and some relevant readings. DCEN and ILFN are performed
for each electrical consumption unit for more nuanced and
accurate forecasting. This is mainly benefited by the lower-
granularity data from IoT-enabled system. Table I gives the
comparison between traditional systems and the IoT-based
system. It can be seen that, the proposed system is able to
monitor the detail information of the residents’ house, and give
solid data support for the forecasting system. These valuable
data can be a useful addition to the records captured by the on-
board sensors, such as the operation log of smart appliances,
which can be important reference for the residents’ energy
usage habits. As one of the most important factor, some
detailed weather condition data can only be captured by the
households sensors, such as the indoor temperature, sunshine
duration and indoor air quality, which differentiate in every
house but have a strong effect on the energy consumption.

IV. INFLUENCE ANALYSIS

We need to go a step further than merely implementing a
forecasting system. Although the proposed DCEN and ILFN
model can make accurate predictions, it is no doubt necessary
to figure out the mechanism behind the network structure,
rather than simply leaving it as a black box. We start with
clarifying the focus of the system, in other words, what
the system really concerns among all the input attributes,
including the historical load, weather factors, and time relevant
information. This is very important not only for this research,
but for other load forecasting applications in different area,
because the analysis of forecasting mechanism can serve as

a useful guidance for system design. For example, the 32
attributes we select in the proposed instance are probably not
suitable for other smart grids, especially the Chinese lunar
date, which is only of significance to some area in China. So
how to find the “right” attributes for a specific area? Influence
analysis is an efficient way to perform this task. In the stage
of system design, researchers can push all the possible factors
into a prototype system, and after adequate training, analyze
the contributions of each attribute. Ultimately, the researchers
are able to obtain the accurate combination of possible factors.
It is an economy solution to know the factors that truly matters
before the large-scale deployment of smart meters and sensors.
Besides, following the trend of IoT, an increasing number of
devices will be IoT-enabled. Therefore, the smart meters will
get much more complicated input data in the future, and the
influence analysis will play a key role in discriminating the
value of various data source. In addition, influence analysis can
also be used as a technical measure for the network overfitting,
which is a common and serious problem in the training
process, but with few effective measuring means for a long
time. Overfitting frequently occurs when the deep model is too
complicated while having insufficient input data. An overfitted
model may have good statistical results on the training mate-
rials, but usually perform poorly on actual applications, due
to its overreacts to the minor fluctuations. Through influence
analysis, researchers can obtain some information regarding
whether the overfitting occurs or not. It is mainly because that,
an overfitted network usually extracts meaningless features
from the raw data, which are impossible to comprehend in
most cases. On the contrary, well-trained networks analyze
the data in a human-like way. This difference can become
an effective standard of distinguishing the overfitted networks
from normal ones.

For these purposes, we design a novel visualization method
to analyze the contributions from each input attribute to the
final output. We notice, a trained network have fixed parame-
ters, including weights and biases. Therefore, the final output
is merely related to the input. And if we change one input unit
of an input attribute, the output result will also be changed,
which gives a way to infer the contribution of one single input
attribute. The analysis algorithm is explained below. First, each
attribute in each input sample is fine-tuned to generate new
output results. Then each new output value is compared with
the former results to show their own contributions. At last, the
normalized differences are presented in heatmap form.

An example of the proposed influence analysis is shown
in Fig. 4. The analysis is conducted with a well-trained
network. For simplicity, only some relevant attributes, which
have significant influence on the final forecasting result are
presented in the figure, including the date, the Chinese lunar
calendar date, the day of the week, the temperature and the
air pressure. The influences are shown in color. And the red
areas have bigger influences than the blue areas. Since all the
attributes are normalized and get changed at a same extent,
the generated heatmap can give an intuitive representation
regarding which parts of the attributes give the most influence
to the forecasting results.

Among all the presented heatmaps, the temperature attribute
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Fig. 4. The generated heatmap for influence analysis.

has the most significant effect on the final output, according
to the highlighted zone around 25 Celsius degree in the
temperature channel. As can be seen, the highlighted zone
is converged around 25 degree, which is mainly because 25
degree is a sensitive cut-off point to determine whether to use
the air conditioner. When the temperature is lower than 25
degree, there is no cooling needs. On the other hand, when
the temperature is much higher than 25 degree, the cooling
needs always exist, and a minor temperature change has little
influence on the power consumption. Traditionally, there is no
demand for heating in south China. Therefore, low temperature
also has little influence on the electrical load. We are very
surprised at the rationality and interpretability when we see
the visualization results for the first time. And, not only the
temperature but other attributes show meaningful heatmaps.
For example, the date channel and lunar date channel both
have highlighted zones around several legal holidays, when
the factories are usually closed and, as a result, the electrical
load drops down. Lunar date is a traditional calendar in China,
and many holidays are based on lunar date. Therefore, we set
the attribute of lunar date to reflect some specific periodical
patterns in China. In the week channel, the influence value
of weekends is higher than the one of weekdays, because the
weekends are also rest days for many industries. As for the
air pressure, according to several existing research, there is
a strong inverse correlation between the air pressure value
and electrical load. It is because that the lower air pressure
frequently results in the oppressive weather, which fuels the
increase in cooling needs. Besides the channels presented in
the figure, we also analyze the influence of historical load data,
i.e., the daily consumption of past 7 days. Their normalized
influence values are 0.07, 0.011, 0.009, 0.007, 0.005, 0.008
and 0.007, respectively for the past days from yesterday to 7
days ago. It can be seen, the closest point in time has the most
significant effect on the forecasting result.

As expected, the visualization results demonstrate that, the

proposed system can draw rational conclusions with intel-
ligible inferential process. The analysis method enables re-
searchers to select attribute combinations and judge overfitting
networks.

V. PERFORMANCE EVALUATION

To show the actual forecasting performance of our method
and demonstrate the effectiveness of the specially designed
two-step forecasting scheme, several simulations are con-
ducted in this section. The input is the actual record of an
urban area in China. We create an instance [15] of the proposed
models, and train the system with the input data. As shown
in Fig. 5(a), we perform two forecasting tests in a period of
one hour. The red line indicates the forecasting results which
are generated with both of the proposed DCEN and ILFN
models, the green line represents the results generated with
only ILFN model, and the dotted line is the actual load value.
It can be seen that, although both forecasting lines are close
to the truth value, the green line shows some offset as a
whole, when the two-step forecasting is not adopted. More
precisely, nearly all prediction values in the green line are
bigger than the actual value, leading to an inaccurate daily
total consumption, which is much bigger than the truth value.
In contrary, the red line is well distributed in both sides of
the dotted line, which may result in a more accurate total
consumption. A quantitative analysis experiment is performed
to give a precise performance comparison between these two
tests, also with another two existing approaches, i.e. the state-
of-the-art deep learning based SDNN model [13] working on
the same 32 attributes including electrical data, time relevant
data and weather data, and the classical HW method working
with merely electrical record.

We adopt three mathematical indexes to quantitatively mea-
sure their performance. Fig. 5(b) gives the comparison result.
The mean absolute percentage error (MAPE) is a famous
measure of forecasting precision in statistics. MAPE is scale-
independent, and is favored when compare predict accuracy
between different datasets. The root mean square deviation
(RMSD) is another accuracy index, but can only be used
to compare prediction errors of different models for a same
dataset, as it is scale-dependent. RMSD is normalized with the
mean value of the measurements in the paper, namely, coef-
ficient of variation of the RMSD (cvRMSD). In addition, we
design a new measure named total consumption relative error
(TCRE) to show the effect of our two-step forecasting scheme.
TCRE is calculated using the actual daily consumption value
and the sum of all estimations in one day. All of these three
measures express as percentages.

In Fig. 5(b), the first group represents the result of the
proposed two-step approach, the second group indicates the
prediction without DCEN model, the third group is the SDNN
model, and the last group represents the HW method. As
can be seen, even without DCEN, the proposed method can
achieve a state-of-the-art performance similar to SDNN. How-
ever, it is significantly outperformed by the proposed two-step
approach in the measure of TCRE. These numerical results
once again demonstrate the necessity and effectiveness of our
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Fig. 5. Evaluation results of the forecasting methods. (a) Forecasting results (12 predictions in 60 minutes). (b) Comparison of forecasting precision.
(c) Comparison in an IoT-enable building.

two-step forecasting method. Compared to other approaches,
the proposed method performs much better in the prediction
precision of both intra-day load variation and daily total
consumption.

To demonstrate the effect of the extensive data from IoT-
enabled devices, we perform an additional comparison exper-
iment in a residential building in the same city. As shown in
Fig. 5(c), the first group is the results of the proposed method
using lower-granularity data, which is monitored per house;
while the second group represents the results using higher-
granularity data, which is captured as the whole building. We
can see the first group outperforms the second one in all of
the three indexes. This improvement can be attributed to the
differences of temperature, humidity, sunshine duration, indoor
air quality among the rooms in the building. Through IoT-
enabled devices, the system obtains the ability to accurately
forecast the energy consumption for every electrical unit,
and as a result, improve its prediction precision of the total
consumption.

VI. CONCLUSION

An IoT-based electrical load forecasting method is proposed
in the paper. A huge advantage of the method is its two-
step forecasting scheme, which significantly increases the
prediction precision for daily total consumption. Another
major difference is that, we adopt deep learning methods to
learn complicated patterns form all the possible influences,
and achieve a state-of-the-art forecasting performance in the
evaluations. In addition, we also propose an analysis method to
find the relationship between the influences and the electrical
load, and design a heatmap generation method to show the
specific impacts of each attribute on forecasting results. This
analysis method is also of much guiding significance for
the smart grids in other countries, especially for the ones
with vast territory and varied climates. The results prove its
effectiveness.

One limitation is that, in the proposed system, a huge
number of data needs to be transferred on the communication
network, which can bring a big challenge to the existing
infrastructures. One feasible solution is to adopt edge servers

near the client side for better computing balance and less
communication cost, which is also included in our future
works.
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