
Eyes in the Dark: Distributed Scene
Understanding for Disaster Management

言語: eng

出版者: IEEE

公開日: 2018-03-01

キーワード (Ja):

キーワード (En): Distributed artificial intelligence,

scene understanding system, disaster management

作成者: LI, Liangzhi, 太田, 香, 董, 冕雄, BORJIGIN,

Wuyunzhaola

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10258/00009558URL

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 1

Eyes in the Dark: Distributed
Scene Understanding for Disaster Management

Liangzhi Li, Student Member, IEEE, Kaoru Ota, Member, IEEE, Mianxiong Dong, Member, IEEE,
Wuyunzhaola Borjigin, Student Member, IEEE

Abstract—Robotic is a great substitute for human to explore the dangerous areas, and will also be a great help for disaster
management. Although the rise of depth sensor technologies gives a huge boost to robotic vision research, traditional approaches
cannot be applied to disaster-handling robots directly due to some limitations. In this paper, we focus on the 3D robotic perception, and
propose a view-invariant Convolutional Neural Network (CNN) Model for scene understanding in disaster scenarios. The proposed
system is highly distributed and parallel, which is of great help to improve the efficiency of network training. In our system, two
individual CNNs are used to, respectively, propose objects from input data and classify their categories. We attempt to overcome the
difficulties and restrictions caused by disasters using several specially-designed multi-task loss functions. The most significant
advantage in our work is that the proposed method can learn a view-invariant feature with no requirement on RGB data, which is
essential for harsh, disordered and changeable environments. Additionally, an effective optimization algorithm to accelerate the
learning process is also included in our work. Simulations demonstrate that our approach is robust and efficient, and outperforms the
state-of-the-art in several related tasks.

Index Terms—Distributed artificial intelligence, scene understanding system, disaster management.

F

1 INTRODUCTION

D ISASTER is a persistent challenge to the human world.
In recent years, lots of new technologies have emerged

to improve our responses to various disasters. Although
many encouraging researches have been made, one grave
problem remains unsolved, i.e., how to safely explore dam-
aged architectures or other dangerous areas. In fact, there
are so many tragedies caused by secondary disasters that
people cannot overlook this problem any more. Robotic,
which is a great substitute for humans to carry out dan-
gerous tasks, becomes the first choice in these scenarios.

Since robots require a sufficient understanding of the
surrounding environment before any movements, scene
understanding ability is of great importance for robots
to be competent for these tasks. However, traditional 2D
methods struggle in such situations, because they give little
space information, which is very important for robots to
move around and interact with the world. Therefore, 3D
perception will become a vital topic in robotic for disaster
management. While many approaches have been proposed
in the field of 3D object detection and recognition, all these
researches cannot be applied to the disaster-handling robots
directly, due to some limitations existing in such situations.
To our best knowledge, few researchers are working on this
problem.

The obstacles lying between the disaster-handling robots
and existing 3D scene understanding methods mainly in-
clude the following facts. Firstly, most of the existing ap-
proaches require the RGB information as well as the depth
image. Although depth sensors are able to output stable and

• Authors are with the Department of Information and Electronic Engineer-
ing, Muroran Institute of Technology, Japan.
E-mail:{16096502, ota, mxdong, 16096505}@mmm.muroran-it.ac.jp

Manuscript received xx xx, 2017; revised xx xx, 2017.

robust 3D images regardless of illumination conditions, it is
very difficult for RGB cameras to take a picture in lower
light situations [1], which, however, is very common in
many disaster scenarios. And, RGB cameras can hardly ob-
tain consistent images in different illumination conditions.
Therefore, all the 3D scene understanding methods requir-
ing RGB data are not suited for disaster-handling robots.
Secondly, the Field of View (FOV) of robots is very limited
when exploring the damaged house. Many objects, e.g.
furniture and electronics, maybe tilted or even overturned
due to some external forces. In this situation, the on-board
sensors may get the objects’ image from some uncommon or
unanticipated view. Since it is very difficult to recognize the
objects from some specific views [2], the performance of tra-
ditional methods is usually unsatisfied. Another problem is,
learning-based perception systems require a great number
of data in their training process, which is a huge challenge
for traditional standalone approach [3].

To solve these problems, we desire to propose a Con-
volutional Neural Network (CNN) based robotic 3D scene
understanding method to improve robots’ feasibility and
adaptability in disaster scenarios, as shown in Fig. 1. A robot
equipped with depth sensors is sent to explore dangerous
environments. With the ability of 3D scene understanding,
robots can deal with various conditions and give great help
to disaster preparedness, relief and recovery. Every robot
is self-contained, but can also share its information and
understandings in the cloud platform. The proposed system
is highly distributed and parallel, which is of great help to
improve the efficiency of system training. Each robot has a
CNN network installed in its firmware. Robots can upload
its captured data to the nearby server for further fine-tuning,
and the updated parameters will be transferred back to
the robots to improve their adaptability to their current

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 2

Fig. 1. Robotic for Disaster Scenarios.

environments. Thanks to the previous works in distributed
wireless sensor networks and robotic [4] [5] [6] [7] [8], we
can focus on the perception method in this paper, and will
detail it in the following sections. The main contributions of
our work include:
• We propose a scene understanding method requiring

only depth information instead of unstable RGB data,
which gives robotic the ability to work in extreme
conditions. We use two different 3D encodings for ob-
ject proposal and classification, respectively, to further
improve the performance of scene understanding.

• We design a view-invariant module, which can extract
similar features from different views on a same object
and adapt robotic for disordered environments.

• We work out a multi-task learning method. In addition,
we also design a fast optimization method to accelerate
the optimization process of complex loss functions.

2 RELATED WORKS

2.1 Object Detection and Localization
This is an old topic emerging with the boom of 2D image
processing, detection, segmentation and classification. It is a
prerequisite of the object classification in images and scenes,
where lots of objects exist and mix together in a complicated
way. A simple and effective method to solve this problem is
the exhaustive search, i.e. searching all possible locations
with all possible scales, which is called sliding window.
Dalal and Triggs [9] use a conventional non-maximum
suppression to run with detection windows to detect object
instances. Harzallah et al. [10] apply SVM for each sliding
window to select a few candidate regions, and use a score
function on these regions to give out the final results.

However, the traditional methods working well in 2D
images cannot be directly adopted in 3D images. Much more
work needs to be done for 3D object proposal applications.
Gupta et al. [11] extends Multiscale Combinatorial Grouping
(MCG) framework [12] to 3D, and use RGB-D contours
to calculate object candidates using features of depth and
color images. Song and Xiao [13] present a CNN model
taking a 3D volumetric scene as input to predict the object
boundaries.

We desire to develop a CNN based object detection and
localization network, and adopt a single model for both
two tasks. We mainly focus on a multi-task loss function,
which makes the proposed method significantly different
from existing ones.

2.2 Object Classification

With the rise of artificial intelligence, object classification
has become a booming research area in recent years. Lots
of encouraging approaches [14] have been proposed in this
field, especially for 2D images. Krizhevsky et al. [15] design
a deep CNN model and achieve amazing classification
accuracy. They use a novel regularization method called
"dropout" to reduce overfitting which frequently happens
in deep learning. Their model is proved very effective and
becomes one pioneer in CNN based object classification
methods. Szegedy et al. [16] present a large CNN architec-
ture and set a new state-of-the-art for object classification.
They introduce a carefully crafted design which can increase
the size of network and keep the computational budget
constant.

Again, traditional 2D methods meet frustrations in 3D
world, due to the unique structure and characteristics of 3D
data. Many researchers try to address this problem from var-
ious angles. Socher et al. [17] adopt two CNN models to ex-
tract low-level features from RGB and depth data separately,
and an RNN model to combine these two parts and learn
high-order features. The research of Shi et al. [18] is the most
similar work with our method. They also achieve a rotation
invariant representations for 3D shape. The difference is
they adopt a row-wise max-pooling layer to change the low
layer features extracted by the convolutional layers, while
we implement view-invariant during learning process using
specially-designed loss functions. The view-invariant ability
improves the precision and adaptability of our method in
some extreme conditions.

2.3 Robotic

Robotic is a huge topic consisting of many areas. As the
paper is focused on robotic vision and proposes a 3D un-
derstanding method for mobile robot in disaster scenarios,
only some closely related works are reviewed in this section.

One of the key problem in robotic vision applications
is the acquisition of 3D information, i.e. 3D model and
surrounding environment. Fortunately, many efficient ap-
proaches have been proposed, e.g., Aleotti et al. [19] present
a method to automatically reconstruct the unknown ob-
jects. Vasquez-Gomez et al. [20] introduce a view planning
method for a mobile robot. In [21], we also propose a
robotic view planning and 3D reconstruction method, which
greatly improve the efficiency and quality in acquiring 3D
information. All these efforts contribute to increasing the
quantity of available 3D models and accelerating the speed
of robots when exploring unknown world.

2.4 Distributed Deep Learning

Although deep learning has achieved huge success in the
last few years, one major drawback is that the training
process remains very slow, especially for large datasets.
Distributed computing can serve as a good solution for this
problem.

Chung et al. [22] introduce their experiences on applying
parallel technologies to train deep networks. They adopt
a data-parallel Hessian-free optimization algorithm with
the IBM Blue Gene/Q system. Das et al. [23] work out a

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 3

TABLE 1
Main Notations

Notation Description

X Set of Input data
Y Set of ground-truth category labels Y = {yx1 , ..., yxn}
T Set of ground-truth 3D-box labels T = {tx1 , tx2 , ..., txn}
θ A layer in proposed network
cθ Neuron number of layer θ

hθ(xi) Output of layer θ
W Weights of proposed network,W = {W1,W2, ...,Wη}
Wθ Weight matrix of layer θ, Wθ = (w1

θ ,w
2
θ , ...,w

m
θ)

B Biases of proposed network, B = {B1,B2, ...,Bη}
Bθ Bias matrix of layer θ, Bθ = (b1θ , b

2
θ , ..., b

m
θ)

J(W,B) Loss function of proposed network
λ Term weights used in functions
p Parameter of Minkowski distance

distributed synchronous Stochastic Gradient Descent (SGD)
algorithm. They also analyze the scaling and optimal design
points for different networks. Different from the existing
approaches, the adopted distributed method in the paper
is specially designed for the robotic scene understanding. It
can increase the batch size while keeping the recognition
precision and communication costs. We will detail it in
Section 3.4.

3 SYSTEM OVERVIEW

3.1 Notation and Problem Definition

We use boldface uppercase letters to denote matrix, e.g. Wθ ,
lowercase letters for vectors, e.g. w(m)

θ , and calligraphic-
font letters to represent sets, e.g. W . Notations used in the
paper are listed in Table 1.

Given a collection of 3D images X , the goal of scene
understanding can be described as follows. For each input
image xi, the proposed method should detect and localize
as many as possible objectsO, and classify them with correct
labels L.

3.2 System Framework

Fig. 2 presents an overview of the proposed method. For
better understanding, a brief introduction on the main con-
cepts is given in this section.

For 3D scenes, two individual models are used to con-
duct the object proposal and classification task, respectively.
The objective of object proposal is to find any potential
objects in the images, and, if any, localize them with precise
locations and boundaries. This is an essential procedure for
the following classification process, as classification model
can only deal with a single object and is easily confused if
there are multiple objects in the classification area. There-
fore, the classification network will use the output of object
proposal to clarify what the object is. Before the introduc-
tion of these two models, an explanation on the 3D data
representations will be given, because input data must be
encoded before it is used.

In addition, we enable the learning process with dis-
tributed ability, which will be introduced in Section 3.4.

Fig. 2. Framework of the Proposed Method.

(a) (b) (c)

Fig. 3. 3D Scene Representation [24]. (a) Original point cloud. (b) 2D
colored representation. (c) 3D volumetric representation (resolution =
0.02 m).

3.3 3D Data Encoding

The first challenge of 3D computer vision is the data encod-
ing. Generally, the raw data captured by 3D sensors is in
the form of point cloud, as shown in Fig. 3(a). This original
scene comes from the RGB-D Object Dataset [24], which is
also one of the datasets used in our learning and testing
process. One common encoding method is to map the 3D
point into RGB space, depending on the distance between
the sensor and each point, as shown in Fig. 3(b), which
is called the 2D colored representation. Another method
is to transform the point cloud data into 3D volumetric
representation, as shown in Fig. 3(c).

Currently, both methods have their advocates. However,
according to [25], a CNN model trained with 2D-encoded
data can obtain a significantly better performance in clas-
sification tasks than the one trained with 3D representa-
tion. This is mainly because that the advantages of 2D
representation is very useful in classification tasks, e.g., the
availability of well-trained network and the high resolu-
tion of 2D images. Therefore, input images are encoded
to 2D representation in our classification model. However,
in object detection and localization task, we find 3D volu-
metric representation is more preferable, as introduced in
[26], owing to its excellent ability of preserving 3D spatial
information. For this reason, 3D volumetric encoding is used
in the detection and localization task. It is another difference
between our job and existing approaches that we select
different representations for different tasks, instead of using
one same representation in all applications.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 4

Fig. 4. The Distributed Design for the Deep Model Training.

3.4 Distributed Implementation

A major consideration when using deep learning systems is
how to deal with the large data. In order to achieve a high
precision, the deep models have to be trained with a huge
number of labeled images, which will take significant time if
only one computing node is used. To address this problem,
the distributed computing is an obvious solution. Using
distributed methods, the system can allocate the calculation
tasks among multiple computing nodes, leading to higher
efficiency and better load balance.

In the proposed 3D scene understanding system, the
deep model, which is deployed in every mobile robot,
should be updated with newly-labeled data. Therefore, fast
on-line training is essential to adapt the robots into their cur-
rent environments. Moreover, the uploaded data are located
in different servers, it is more efficient to use distributed
servers to process these data, than collecting them into one
central server. Although many existing approaches can be
applied to this scenario, we find it necessary to introduce
our specially-designed distributed implementation, as it can
keep the final precision while significantly increasing the
speed of back-propagation.

A common way to address the network training problem
is the mini-batch SGD, which can be expressed as

Pnew := Pold −
lr

|B|
∑
x∈B

∂J

∂P

where Pold is the existing parameters, Pnew is the updating
parameters, lr is the learning rate, B is the batch, |B| is the
batch size, x is the input data and J is the loss function.
Mini-batch SGD is the common training method when using
a standalone computing node. However, from the view of
distributed computing, mini-batch is an inefficient way due
to the frequently parameter synchronization, which results
in large communication costs. Therefore, in our implemen-
tation, we adopt a large-batch SGD in order to fully utilize
the advantages of distributed computing.

Large-batch SGD. Simply increasing the batch size may
result in the degradation of the network precision. There are
several points need to be noticed when using the distributed
large-batch SGD. First, the learning rate lr should also be
increased equally [27]. It is very important to match the
training curve between large-batch and mini-batch SGD,
which can improve the final precision of large-batch into
the level of the mini-batch. Another point is the loss values
should be normalized, which is also a key factor for the
training result. Different from the common normalization

approach, i.e., normalize each server’s loss by the server
number s, we find a more stable approach by normalizing
the servers’ loss by the total batch size s|B|, where |B|
represents the batch size [28]. An evaluation of the training
precision is presented in the experiment section, in order
to demonstrate the performance of our specially-designed
large-batch SGD method.

Communication. The communication cost mainly con-
sists of two parts, the intra-server communication and the
inter-server communication. The former one is to sync the
calculated parameters among the graphics processing units
(GPUs) in a same server; the latter one is to transfer the
parameters across different servers. Six main phases are in-
cluded: (1) the parameters among local GPUs are collected;
(2) the collected parameters are summed locally; (3) the
results are transferred to each server; (4) the results are
aggregated into the final parameters; (5) the final parameters
are sent to each server; (6) then broadcasted to each GPU.
Phase (1)(2)(6) belongs to the intra-server communication,
which can be significantly accelerated using GPU kernels.
Therefore, the main cost is resulted from the inter-server
communication, including phase (3)(4)(5). Although the
aforementioned communication procedure will bring some
cost to the network training, a distributed system can give
a huge boost to the computing efficiency. There have been
several methods to implement this approach in a distributed
environment. We have had many different attempts to im-
prove the efficiency while keep the precision, and found this
solution quite recently.

We implement this training system as an Apache Spark
application, referring to the software configuration of [3].
There are one control server and some distributed comput-
ing servers. Each computing server is equipped with multi-
ple GPUs. As shown in Fig. 4, the distributed framework has
complete training abilities. At first, the control server starts
the tasks by sending out the computing command. Then
each computing server will fine-tune its received parame-
ters, and sync them among local GPUs. After the parameters
are aggregated, they will be transferred to the central server,
following the server sync command from the control server.
Then the aggregation of the collected parameters will be
sent to each computing server as the updating parameters.
After that, the computing servers will start another iteration
of the fine-tuning. And when the loss value is converged,
the control server will transfer the final parameters to the
remote deep models, which are deployed in each mobile
robot.

In addition, we conduct several evaluations in Section

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 5

6.6 to demonstrate its performance.

4 3D OBJECT PROPOSAL

4.1 ODLN Model

Object proposal is very important for the whole scene
understanding process, because it can greatly decrease the
recognition area and accelerate the classification network.
A CNN-based Object Detection and Localization Network
(ODLN) is proposed in this section to accurately propose
potential object candidates for subsequent calculations. As
previously mentioned, we desire to propose a scene un-
derstanding method without the requirement of RGB data
which is full of uncertainty. As a result, it is very difficult
to work out a selective search scheme like [29] and [13],
in which color information is indispensable for similarity
calculation. Therefore, we design a region selection method
which is very similar with sliding window. By constantly
selecting all possible regions in FOV, all objects could be
included in at least one region, and get imported into ODLN
for further calculation. We also adopt an auxiliary labeling
method to help people mark a massive number of raw data
and improve the practicability of supervised learning. The
region selection algorithm and auxiliary labeling method are
presented in Algorithm 1. Several hand-crafted features [30]
are used to perform auxiliary labeling on initial dataset,
these features are learnt with SVM. Fig. 6 shows the ef-
fects of the auxiliary labeling method and the proposed
ODLN model. Although the hand-crafted features are out-
performed by self-learning ODLN, it can save people lots
of time by labeling the scene data automatically, especially
when a large dataset is used for learning. The templates
used for region selection include 10 cuboids in different
sizes.

The network architecture of ODLN is presented in Fig.
5. There are two specially-designed modules and three ordi-
nary convolutional layers behind the input layer, following
by two individual sub-networks which will output detection
and localization results respectively.

The input of ODLN is the volumetric representation of
3D objects in each region with their labels. The objective of
ODLN is to judge whether there is a single object in the
input region, and its exact boundaries and orientation.

Inspired by [31] and [16], we design the Scale-Insensitive
Convolutional (SIC) module. There are three convolutional
kernels with different size in one SIC module, which can
extract the features from the input data in different scale.
SIC module gives ODLN the ability to cope with 3D objects
in various sizes.

Two sub-networks are behind the convolutional net-
works for detection and localization. The detection network
outputs a value between [0, 1] representing the possibility y
that there is a single object in current region. The localization
network is to predict the object’s center point {x, y, z},
dimensions {`, w, h} and Euler angles {α, β, γ}, as shown
in lower right corner of Fig. 5. Both sub-networks have two
fully-connected layers for further analysis and abstracting
on the features originate from the lower layers. Specially, we
design a multi-task loss function to train two sub-networks
at a same time, which is detailed in 4.2.

3D
 In

pu
t

SI
C

M
od

ul
e

1

C
on

v
1

SI
C

M

od
ul

e
2

C
on

v
2

C
on

v
3 Detection

Network

Localization
Network

Softmax
Loss

Smooth
L1 Loss

Conv

Conv

Conv
Conv

Fig. 5. Network Architecture of ODLN.

(a) (b) (c)

Fig. 6. 3D Scene [24] Labeling(resolution = 0.02 m). (a) Auxiliary label-
ing. (b) Manual amendment. (c) Actual proposal result using ODLN.

In short, 3D data in every possible region is imported
into ODLN with their labels, which have the information
including whether the region has an object and its locations.
After forward propagation, ODLN can use the calculated
values, their labels and the proposed loss function to adjust
weights and optimize the network. During this process,
ODLN can be gradually trained into a desirable network.

Algorithm 1: Region Selection and Object Proposal
Input: 3D Scene Data S , Region Templates T
Output: Object Proposals P
proposal_list = null;
for v ∈ S do /* Traversal of voxels. */

for t ∈ T do /* Try all Templates. */
if is_auxiliary_labeling then

/* Perform auxiliary labeling */
Compute

Score(v) = λ1ψpointcloud + λ2ψfreespace

+ λ2ψheightprior + λ2ψheightcontrast
(1)

if Score(v) > threshold then
Append v to proposal_list.

else /* Imported to ODLN Model. */
Score(v),Location(v) = ODLN← v ;
if Score(v) > threshold then

Append Location(v) to proposal_list.

return proposal_list;

4.2 Learning with Multi-task Loss Function
Given n input data X = {x1, x2, ..., xn} in ODLN, there are
several different labels for each input data xi, i.e., ground-
truth labels Y = {yx1 , yx2 , ..., yxn} and 3d-box labels T =

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 6

{tx1
, tx2

, ..., txn}, where t ∈ {x, y, z, `, w, h, α, β, γ} stand-
ing for locations, dimensions and orientations respectively.
In regard to the possible labels, y ∈ {y∗1 , y∗2 , ..., y∗m} and t
should be real values. Specially, in the detection subnetwork
of ODLN, m = 2 and y ∈ {0, 1}. hcls(xi) is the output
of Softmax classification layer, and hloc(xi) is the one of
Smooth L1 Localization layer.

Inspired from the Multi-task Loss in [13] and [32], we
design a loss function for ODLN as follows.

J(W,B,X ,Y, T) =λ1Jcls(W,B,X ,Y)
+ λ2Jloc(W,B,X , T) + λ3Jdec(W)

(2)

where Jcls, Jloc and Jdec are sub-loss functions for different
objectives, and λ1, λ2 and λ3 are weights to custom the
relative importance of each term.

Jcls is the softmax loss function for measuring the accu-
racy of the final detection result, i.e. whether a region owns
one single object or not. It can be expressed as

Jcls(W,B,X ,Y)

= − 1

n

[
n∑
i=1

m∑
j=1

1{yxi = y∗j } log
eh

(j)
cls (xi)∑m

φ=1 e
h
(φ)
cls (xi)

]

= − 1

n

[
n∑
i=1

1∑
j=0

1{yxi = y∗j } log p(yxi = y∗j |xi;W;B)
]

= − 1

n

[
n∑
i=1

yxi log(hcls(xi)) + (1− yxi) · log(1− hcls(xi))
]

(3)

where h(j)cls (xi) varies from 0 to 1, according to the possibili-
ties that there is one single object in this region.

Jloc is utilized to predict the object’s localization. Essen-
tially, it is a regression of objects’ boundary. According to
the smooth L1 loss in 2D bounding-box regression method
of Fast R-CNN [32], Jloc is defined as

Jloc(W,B,X , T) =∑
t∈{x,y,z,`,w,h,α,β,γ}

1

n

n∑
i=1

smoothL1(h
(t)
loc(xi)− txi)

(4)

and

smoothL1(z) =

{
0.5z2, |z| < 1

|z| − 0.5, |z| ≥ 1
(5)

where t represents the coordinates of the object’s cen-
ter point {x, y, z}, dimensions {`, w, h} and Euler angles
{α, β, γ}.

Jdec(W) is a weight decay term which penalizes large
values of the parameters to decrease the magnitude of the
weightsW and help prevent over-fitting. It is computed by
the following function.

Jdec(W) =‖ W ‖22 (6)

The proposed loss function takes object’s detection and
localization into account at a same time, which is a huge
advantage compared to the common-used loss functions.
As a result, the output of ODLN can be directly used as the
input of object classification network. The performance of
ODLN is evaluated in 6.1.

5 3D OBJECT CLASSIFICATION

5.1 VTCN Model

A View-invariant 3D Classification network (VTCN) is pro-
posed in this section. As mentioned above, 2D encoded im-
age is adopted as the input of network. The depth value can
be transformed to RGB data using the following formula.

depth 7→
(h, s, v)

(0∼360, 1, 255)
7→ (r, g, b) (7)

Therefore, VTCN has a similar structure with common 2D
image classification CNN models, e.g. AlextNet [15], which
is used as the prototype of the proposed VTCN model.
To develop a classification model used in disordered and
extreme scenarios, we desire to develop a view-invariant
CNN model for feature extraction. We gain inspiration from
[33] and proposed a new method which can be used with
3D data. A View-invariant (VI) Module consisting of two
fully-connected layers is added between the 6th and 7th
layer of AlexNet model. We also present a new object
category subdivision method to give VTCN the ability to
deal with multi-view images. With the well-learnt low-layer
features brought by AlexNet, the high-layer features can
get fine-tuned using 3D data in 2D representation. This
learning process is conducted using specially-designed loss
functions.

The class subdivision method and learning process will
be detailed below, respectively.

5.2 View-subclass Definition

One of the most significant differences between VTCN and
other methods is, one object category is not regarded as one
single class. As is known to us, even a same object looks very
different in different views. For example, it is very difficult
to recognize a can if the viewpoint is directly below it. There
would be even greater difficulties for robots with only depth
information. Given these facts, we subdivide the existing
object categories into several "view-subclasses", which will
be the ground-truth label imported into VTCN model, as
shown in Fig. 7.

So how to definite a view-sub-class? Interestingly, this is
very similar to robotic view planning problem. In view plan-
ning methods, a next-best-view (NBV) is generated during
each iteration of model reconstruction, then the depth sensor
is moved to NBV to conduct the next scan. In the same way,
several NBVs can be generated for each object category and
each of them is used as a cluster center for one view-sub-
class. Fortunately, we have worked out an efficient robotic
view planning method in [21], which can be directly used in
VTCN. Because this algorithm is not the main topic in the
paper, it will merely be given a brief introduction.

At first, NBV candidates are generated at all possible
viewpoints in the whole working space, using the hierarchi-
cal generation and filtration algorithm proposed in our past
work [21]. And they are evaluated using the score function
presented below.

N(p) = ω1 volume(p) + ω2 overlap(p) (8)

where volume(p) represents the number of newly-observed
voxels, overlap(p) is the coincidence region between the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 7

Fig. 7. View-subclass Division and the Input of VTCN.

new view and existing views. These two terms can control
the number and orientation of the view-sub-class for each
object category. N(p) is the view point’s score. And, the
view with highest N(p) score is selected as a new view-
subclass.

After the sub-class centers are generated, they are extend
to the whole working space. All of the viewpoints will be
subjected a view-sub-class, depending on their similarities
with the class centers. Given the points set P obtained in
view v, the similarity function can be described as

Similarity =
Pv
⋂
Pcenterν

Pv
⋃
Pcenterν

(9)

Then every view belongs to a center ν, which owns a view-
sub-class, with the highest similarity score.

5.3 Learning View-invariant Features

Suppose there are n object view-subclasses, then the input
data of VTCN can be defined as{
X = {X1,X2, ...,Xn}
Xi = {x(1)i , x

(2)
i , ..., x

(im)
i }

⇒ X =

{
{x(1)1 , x

(2)
1 , ..., x

(1m)
1 }, ..., {x(1)n , ..., x(nm)

n }
} (10)

where X is the set of all input samples, and Xi is the set
of all the views of one single view-subclass. Each view-
subclass has im elements. Then the total number of input
data SIZE(X) =

∑n
i im. The labels of input images can be

represented by Y = {yX1
, yX2

, ..., yXn}.
Like Eq. (2), the loss function can be written as

J(W,B, {Xi},Y) = λ1Jcls(W,B, {Xi},Y)
+ λ2Jview(W,B, {Xi})
+ λ3Jdec(W) (0 ≤ i ≤ n)

(11)

The difference is that Eq. (11) needs {Xi} as the view-
subclass information to learn view-invariant features.

Similarly, Jcls(W,B, {Xi},Y) can be described as

Jcls(W,B, {Xi},Y)

= − 1

n

[
n∑
i=1

im∑
r=1

ccls∑
j=1

1{yxi = y∗j } log
eh

(j)
cls (x

(r)
i)∑m

φ=1 e
h
(φ)
cls (x

(r)
i)

]

= − 1

n

[
n∑
i=1

im∑
r=1

ccls∑
j=1

1{yx = y∗j } log p(yx = y∗j |x
(r)
i ;W;B)

]
(12)

where ccls is the neuron number of final layer, i.e., the total
number of output features. And, Jdec(W) is same with Eq.
(6).

Then, the key problem is how to design a view-clustering
function to give VTCN the ability to extract similar features
from different views of a same object. Therefore, the dif-
ferences in a view-sub-class Xi should be calculated and
deteriorated during the learning process. Based on these
assumptions, we define

Jview(W,B, {Xi})

=
1

pn

[
n∑
i=1

im∑
r=1

‖ hvim(x
(r)
i)− hvim(Xi) ‖pp

]

=
1

pn

[
n∑
i=1

im∑
r=1

ccls∑
k=1

(h
(k)
vim(x

(r)
i)− h(k)vim(Xi))

p

] (13)

and

h
(k)
vim(Xi) =

1

im

im∑
r=1

h
(k)
vim(x

(r)
i) (14)

where hvim is the output of VI Module.
So the main objective is to optimize the following func-

tion
(Ŵ, B̂) = arg

W,B
min J(W,B, {Xi},Y) (15)

It is extremely difficult to perform this function on the en-
tire dataset. Therefore, a batch Stochastic Gradient Descent
(SGD) strategy is adopted in network learning, i.e. perform
the optimization on a batch sampled from the whole dataset
in each iteration. Although SGD has been proved successful
on the functions like Jcls and Jdec, some more work is
needed before it can be applied to the newly proposed Jview
function. The stochastic and back-propagation method of
Jview should be figured out to improve the computational
efficiency.

Define bt is one batch and

Hθ,bt =

hθ(x1)
hθ(x2)

...
hθ(xnb)

 (16)

is a matrix consisting of all the outputs of layer θ in a batch.
So the right-hand side of Eq. (13) can be expressed as

Jview(W,B,Xbt) =

‖Hvim,bt − hvim(Xbt)11×nb ‖pp
pnb

(17)

where

Hvim,bt = WvimHvim-1,bt +Bvim11×nb (18)

w.l.o.g., assume that the average of feature is consistent
during one iteration, and define AVG = hvim(Xbt)11×nb

Then

∇Jview =

[∂Jview(W,B,Xbt)

∂Wvim

∂Jview(W,B,Xbt)

∂Bvim

]

=

[(Hvim,bt −AVG)p−1

nb

∂Hvim,bt

∂Wvim

(Hvim,bt −AVG)p−1

nb

∂Hvim,bt

∂Bvim

] (19)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 8

Finally, the derivative of weights W and biases B of the
last layer in VI Module can be expressed as

∂Jview(W,B,Xbt)

∂Wvim

=

sign(Hvim,bt −AVG)

nb
Hvim-1,bt , p = 1

(Hvim,bt −AVG)p−1

nb
Hvim-1,bt , otherwise

(20)

and
∂Jview(W,B,Xbt)

∂Bvim

=

sign(Hvim,bt −AVG)

nb
, p = 1

(Hvim,bt −AVG)p−1

nb
, otherwise

(21)

The weights and biases are updated as

Wvim := Wvim − lr
∂Jview
∂Wvim

Bvim := Bvim − lr
∂Jview
∂Bvim

(22)

where lr is the learning rate. Then the stochastic is back-
propagated to the lower layers. After a number of iterations,
the loss function can convergence and give VTCN the ability
to extract view-invariant features.

In addition, ‖ hvim(x
(r)
i) − hvim(Xi) ‖pp is the

Minkowski distance of order p between hvim(x
(r)
i) and

hvim(Xi). When p = 1, Minkowski distance degenerates
into Manhattan distance, and when p = 2, it becomes
Euclidean distance. For better learning efficiency, the p value
should be carefully selected. Therefore, an experiment is
conducted in 6.3 to explore the relationship between p value
and the training performance. In addition, a mathematical
proof is presented in the appendix to find a solution which
can guarantee the adaptability of our system in different
datasets.

6 PERFORMANCE EVALUATION

To fully reach the potentiality of the proposed networks,
several existing datasets combined with our newly-scanned
3D data are utilized in the training and testing process. Our
networks are complicated enough to contain more than one
dataset without under-fitting. The adopted datasets include
NYU Dataset v2 [34], A large dataset of object scans [35], RGB-
D Object Dataset [24], Bigbird dataset [36] and SceneNN dataset
[37].

6.1 ODLN Performance
The proposed ODLN not only detect objects in images, but
localize them with exact position, dimension and orienta-
tion. To compare ODLN with some existing approaches,
the following formulas are adopted to evaluate the perfor-
mance.

Recall =
TP

TP+FN
(23)

Precision =
TP

TP+FP
(24)

where TP, FP and FN mean true positive, false positive and
false negative, respectively. It is common for the perfor-
mance experiments of object proposal methods to present
the relationship between Recall and Precision, because both
Recall and Precision change with the settings of proposed
object number.

In this experiment, all of the detection methods take 950
labeled 3D scenes, which contains 53 object categories, as
the training material, and 50 raw point cloud data as the
test set. Fig. 8 shows the comparison of ODLN and repre-
sentative existing approaches, e.g. Sliding Shapes [38], SVM
method [39] trained on Point Cloud & 3D Model Dataset
and [39] trained on only Point Cloud. To demonstrate the
adaptability for disaster scenarios, there are two versions
of dataset prepared for our experiment: one normal dataset
and its variant in which the brightness of RGB images is
turned down and a part of depth information is removed
manually. The first row in Fig. 8 presents the results of the
normal dataset, and the second row presents the results
of the variant dataset. Five categories are selected in the
experiment, i.e., chair, bed, sofa, table and toilet.

As shown in Fig. 8, ODLN method performs better in
the variant dataset. It is mainly because we desire to design
a method not relying on instable RGB data from the begin-
ning, and the proposed ODLN is not affected by the missing
of RGB data. However, the incomplete depth data do give
some impact on its performance. But still, it can outperform
others in these difficult situations. Of course, ODLN does
not show much advantage in the normal dataset, especially
compared with Sliding Shapes method. But in our opinion,
the normal dataset is too idealized and have little practical
significance, considering the disaster scenarios.

6.2 View-invariance Test

A demonstrating test is conducted to validate the effect
of VI Module in VTCN model. As shown in Fig. 9, nine
views of bunny model are selected in this experiment. They
belong to three different view-subclasses. Therefore, there
will be nine features extracted from these views, and each
set of three should be similar. The first row of Fig. 9 shows
each scan view of the bunny model. The second row is the
2D representation of obtained 3D data, which is also the
input of VTCN model. The third and fourth row present
their features before and after the process of VI Module,
respectively. The features are sampled out from the 4096
outputs of VTCN’s last layer. It can be seen that, without
VI Module, the features looks very different even in a same
view-subclass, while with VI Module, views in one subclass
become consistent and generate fairly alike features. To
further figure out the differences, their variance is calculated
using the following formula.

σ = (Fa − Fb)
T (Fa − Fb) (25)

The last row of Fig. 9 shows the variance curves of the fea-
tures before and after the process of VI Module. Compared
with the blue dotted line, the red one is smooth and steady,
which gives a good proof to the proposed view-invariance
method.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 9

Fig. 8. Comparison of 3D Object Proposal Methods. Five object categories are adopted, i.e., chair, bed, sofa, table, and toilet. The first row shows
the results conducted on a normal dataset, and the second gives the results of a more difficult variant.

Fig. 9. Results of View-invariance Experiment. The first row is several views to scan the model; the second row is the 2D representation of the 3D
data; the third row is 50 sampled features which are extracted without VI Module; the fourth row is the same 50 features extracted with VI Module;
the last row gives the variance of each view-subclass.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 10

(a)

(b)

Fig. 10. Results of p Value Selection Experiment. (a) The regularized
loss curves with different settings of p and learning rate. (b) The compu-
tational cost of different p values.

LSVM DPa VTCN1 VTCN2 Hum
0%

20%

40%

60%

80%

100%

P
re

c
is

io
n

Depth Only

(a)

FCNN CRNN CNNF NSVM Hum
0%

20%

40%

60%

80%

100%

P
re

c
is

io
n

Depth + RGB

(b)

Fig. 11. Comparison Results of Classification Experiments. (a)Input data
only contains depth information. (b) Input data contains both depth and
RGB information.

6.3 p Value Selection
A set of experiment is designed to find the appropriate
p value in the Minkowski distance for the loss function
of VI Module. As discussed in 5.3, the setting of p value
is very important for the training efficiency. To clarify the
relationship between them, several tests are conducted us-
ing different settings. As expected, their results follow a
specific rule. Fig. 10(a) presents four representative curves.
A regularized loss is adopted in this experiment to measure
the learning speed with different settings fairly.

Ji,reg =

∣∣∣∣∣J
(1)
i

J
(1)
i

,
J

(2)
i

J
(1)
i

, · · ·
∣∣∣∣∣ (26)

where i represents the identifier number of each experiment
with different p values. It can be seen, with the increase of
p value, the learning process slows down significantly even
with a larger learning rate. However, on the other hand,
they are also more stable with a larger p when close to the
convergent point.

Fig. 10(b) shows the relationship between computational
cost and p values. The computational cost is defined as the

complexity of calculation. Several unit operations are added
in optimization algorithm to give out a uniform measure
for estimated computational cost, whose value is defined in
0∼50. As shown in Fig. 10(b), the estimated cost increases
with the p value, but not changes drastically as supposed.
Therefore, the selection of a larger p is feasible because of
the acceptable extra computational cost.

The results in this section are consistent with our theories
and give us a helpful guide to select p values. A mathemat-
ical proof is presented in the appendix, in order to find the
precise relationship between p value and training efficiency,
and guarantee the adaptability of our system in various
datasets.

6.4 Classification Performance of VTCN
A comparison experiment is performed to evaluate the clas-
sification performance of the proposed VTCN with several
state-of-the-art methods. In this experiment, there are 53
categories of 3D labeled objects in the training and testing
dataset. For each category, there are 100 instances in the
training set, and 10 instances in the testing set. The results
are shown in Fig. 11. Two set of experiments are designed.
Although one same dataset is adopted in all experiments,
one set is conducted without RGB information. The left
figure presents the performance of depth-only methods,
including Linear SVM [24], DPano [18], and the proposed
VTCN method; the right one shows the RGBD methods,
i.e., Fus-CNN [40], CNN-RNN [17], CNN-Features [41], and
Kernel SVM [24]. Our VTCN method is tested without
VI Module (VTCN1) and with VI Module (VTCN2), re-
spectively, in order to present the performance difference
between with and without the view-invariant ability. For
better understanding, a manual classification test is also
performed. It can be seen that our method improves a
lot with the view-invariant ability of VI Module, and out-
performs other depth only methods significantly. Although
with similar view-invariant feature, VTCN can still outper-
form DPano method. However, different from our approach,
DPano adopts a row-wise max-pooling layer to change the
low layer features extracted by the convolutional layers,
which needs a semi-panoramic view of the objects. This
solution can lead to serious problems in some actual scenes,
which will be discussed in Section 6.5. But in this test, we
have given DPano the necessary views to perform the recog-
nition. Still, its precision is lower than ours, because VTCN
further refines the object category using the view-subclass
algorithm. The performance of VTCN is slightly inferior to
RGBD methods, however, we believe, the actual conditions
of disaster scenarios do limit the acquisition of RGB data. It
is worthwhile to leave out the unstable color data and work
on the 3D information for a scene understanding method,
which is more robust and adaptable.

6.5 Disaster Adaptability
Although the above evaluations have indicated the perfor-
mance of four different approaches and clearly demonstrate
the advantage of our method in common scene understand-
ing tasks, we find it is necessary to conduct an additional
experiment for the disaster scenarios, because the extreme
conditions of the disaster scenes may be a huge challenge

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 11

(a) (b) (c)

Fig. 12. Simulated Disaster Scenarios for System Evaluation.

to the perception methods. In order to simulate the disaster
scenarios, we work out a new dataset consisting of more
than 300 scenes. These scenes are selected from the adopted
datasets, which have been introduced in Section 6. All of
these images are made highly disordered and broken, and
only contains the depth information, as shown in Fig. 12,
which is very similar to some dark, extreme disaster situa-
tions.

We adopt the complete scene understanding system,
including the trained ODLN and VTCN presented in Sec-
tion 6.1 and 6.4, without extra training process. The new
dataset is merely used as the test data. The objective is
to evaluate the system performance in simulated disaster
scenes. The system will first use ODLN to find possible
objects, and then use the VTCN to recognize them. The
classification precisions are recorded as the final result.
With VI Module, the proposed system can achieve 55.61%
in this test, while without VI module, it is 47.71%. As
comparison, we also combine ODLN, VTCN with several
other approaches for the same test data. The ODLN&Linear
SVM [24] is 30.39%, the ODLN&DPano [18] is 37.16%, the
SVM [39]&VTCN(with VI module) is 18.33%. Due to the
difficult situation, the results are generally not very high.
However, the combination of VTCN, ODLN and VI module
does bring a significant improvement to the precision, which
can give a boost to the development of disaster robotic.
In addition, since the system cannot obtain the complete
depth information of the objects, DPano method has no
sufficient view to perform panoramic recognition, therefore,
its performance on this dataset is not very good, if compared
to its precision in Section 6.4.

6.6 Distributing Efficiency
In order to evaluate the proposed distributed training
method, we adopt the Amazon Elastic Compute Cloud
(EC2) service as the test environment. We apply ten
p2.8xlarge instances. Each of them has one Intel Xeon E5-
2686v4 Processor and 8 NVIDIA K80 GPUs. All of the
instances support GPUDirect technology, which enables the
peer-to-peer GPU communication. The instances are con-
nected by wired network. One instance is the control server,
and others serve as the computing servers, as introduced in
Section 3.4.

These servers are used for the training of our deep mod-
els, using the aforementioned datasets. We conduct the com-
plete training process several times with two different batch
sizes, i.e., 512 and 16k, to demonstrate the advantages of the
proposed large-batch SGD over the traditional mini-batch
SGD. The results are shown in Fig. 13. The X-coordinate is
the adopted GPUs, and the Y-coordinate is the computing

8 24 40 56 72
Number of computing GPUs

1

3

5

7

9

C
o

m
p

u
ti
n

g
 e

ff
ic

ie
n

c
y Optimal

Large-batch

Mini-batch

Fig. 13. Speedup of the distributed deep models. The dotted line is the
optimal upper limit under full GPU utilization and zero communication
cost. The red line is the proposed large-batch SGD; the blue line is a
common mini-batch method.

efficiency, which represents the speedup compared to the
standalone training. The dotted line is the optimal upper
limit, which is under full GPU utilization and zero com-
munication cost. The red line is the proposed large-batch
SGD and the blue line is a common mini-batch method. It
can be seen, that the large-batch SGD can approximately
achieve a linear scaling, due to the significant decrease of
the communication overhead. On the contrary, the mini-
batch SGD suffers from an increasing communication cost
and perform badly in highly distributed environments.

Another big difference is that our method can keep
network precision with a large batch size. As compari-
son, we test the recognition performance of three trained
networks. All of the three networks are trained using the
same dataset, but with different training methods. One
network is trained with the large-batch SGD, referring to the
implementation introduced in Section 3.4, and its precision
is 72.08%. The second network is trained with the normal
large-batch SGD without any extra settings, and get a result
of 65.79%. The third one is trained with the mini-batch SGD,
scoring 72.65%. We can see that, compared with the third
network, a large batch size does, to some extent, deteriorate
the training effect. However, with the proposed large-batch
configuration, this deterioration can be minimized and has
little influence on the final precision.

6.7 Robotic Simulation
Robot Operating System (ROS) [42] is adopted as the sim-
ulation environment in this experiment. As shown in Fig.
14, a mobile robot moves along a path and takes three
scans. The understanding results are generated by a system
using the proposed method. To validate the feasibility of
our method in dark scenes, only depth data is imported
into the system. It can be seen, the proposed method is able
to output correct labels for most objects. In Fig. 14(b), our
system successfully recognizes the table with a confidence
of 0.849, and the lamp with 0.424. It also generates several
candidates with different confidences. For example, in Fig.
14(c), the system gives some labels to the desk in yellow
zone including desk, table, cabinet, etc. Among them, desk
is with the highest confidence, and becomes the final output
label. The total precision is 91.0% with 10 runs. The results
demonstrate that the proposed method is stable and robust,

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 12

(a) (b)

(c) (d)

Fig. 14. Robotic Scene Understanding Simulation.

and can be well applied to complicated indoor scenes. In
addition, we also use some existing approaches to perform
the same task under the same condition. In fact, this is a
similar test, compared to the one in Section 6.5, with more
ordered environment and lower difficulty. The results are
listed below. The ODLN&Linear SVM [24] is 35.62%, the
ODLN&DPano [18] is 67.64%, the SVM [39]&VTCN(with
VI module) is 41.81%.

7 CONCLUSION

A CNN-based robotic 3D scene understanding method is
proposed in the paper. The most significant advantage of
the method is its view-invariant ability and no requirement
on RGB data, which are essential in disordered and extreme
disaster scenarios. We propose several loss functions to per-
form multi-task learning process on the proposed models.
And we also work out an optimization algorithm to improve
the learning speed. The simulations demonstrate that the
proposed method is effective, and outperforms many state-
of-art approaches in several comparison experiments.

A limitation of the proposed system is that we still need
labeled data in the training process. Therefore, in the future
work, we will work on the automatic labeling problem to
further decrease the system cost.

APPENDIX A
PROOF OF THE TRAINING EFFICIENCY

Since Eq.(17) is the core component of the proposed loss
functions, we should provide a formal proof in order to
guarantee its training efficiency on different experiment
datasets. The derivation of Eq.(17) has been presented in
Section 5.3, however, the p value still has uncertain effect on
the learning speed. Therefore, we will give a detailed proof
on the relationship between the p value and the training
efficiency. First, the following three lemmas are needed to
prove the final theorem.

Lemma 1. The convergence rate of the gradient descent method
using different types of distances will follow

ManhattanDistance >EuclideanDistance

> ChebyshevDistance
(27)

Proof. This lemma can be expressed as the following
statement. For two arbitrary points P (x0, y0) and Q(x1, y1),
when P → Q,

dM (DP,DQ) ≥ dO(DP,DQ) ≥ dQ(DP,DQ) (28)

where D is an arbitrary point.
Without loss of generality, we can assume D is the origin
point O(0, 0). Define x0 > y0 > y1 and x0 > x1, then

dM (OP,OQ) = x0 + y0 − x1 − y1

dO(OP,OQ) =
√
x20 + y20 −

√
x21 + y21

dQ(OP,OQ) = x0 − x1

(29)

First, compare dM (OP,OQ) with dO(OP,OQ). We can start
with the comparison between

√
x20 + y20 −

√
x21 + y21 and√

(x0 − x1)2 + (y0 − y1)2. Then we can get√
x20 + y20 −

√
x21 + y21 <

√
(x0 − x1)2 + (y0 − y1)2

< |x0 − x1|+ |y0 − y1|
(30)

Therefore, dM (OP,OQ) ≥ dO(OP,OQ).
Second, compare dO(OP,OQ) with dQ(OP,OQ)

x0 − x1√
x20 + y20 −

√
x21 + y21

=

√
x20 + y20 +

√
x21 + y21

x0 + x1 +
(y0−y1)(y0+y1)

x0−x1

(31)

Since P → Q, we can get x0 → x1 and y0 → y1 with a
same approaching speed. Therefore, Eq.(31) ≤ 1. Therefore,
dO(OP,OQ) ≥ dQ(OP,OQ) �

Lemma 2. There exists an intermediate point that enables us to
express the Minkowski distance with the Euclidean distance. In
other words, for two arbitrary points P (x0, y0) and Q(x1, y1),
there exists a point M(xm, ym) to make

dp(P,Q) = dO(P,M) + dO(M,Q) (32)

Proof. Without loss of generality, we can assume Q is the
origin point O(0, 0). Then

dp(O,P) = (xp0 + yp0)
1
p (33)

When 1 < p < 2, we can get xp0+y
p
0 < (x0+y0)

p. Therefore,
dp(O,P) < |x0|+ |y0|.
We need to prove that there always exists a point M(xm, y0)
which makes

xm + y0 = (xp0 + yp0)
1
p (34)

Because

(xm + y0)
p =

p∑
i=0

Cipx
i
my

p−i
0 (35)

so it can be expressed as

xp1 +

p−1∑
i=1

Cipx
i
my

p−i
0 = xp0 (36)

With the Intermediate Value Theorem, we can know Eq.(34)
and (36) are valid.
When p > 2, we have (xp0 + yp0)

1
p < (x20 + y20)

1
2 .

Similarly, we can prove that there exists a point M(x0, ym)

to make (xp0 + yp0)
1
p = (x20 + y2m)

1
2 . �

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 13

Lemma 3. Lemma 2 is valid for spaces with more than two
dimensions. In other words, the distances can be projected into
lower-dimension spaces.

Proof. We have x = (x1, · · · , xn)T , y = (y1, · · · , yn)T and
dp(x, y) = [

∑n
i=1(xi − yi)p]

1
p .

We need to prove that there exists a point ξ = (ξ1, · · · , ξn)T
to make

dp(x, y) = d0(x, ξ) + do(y, ξ) (37)

i.e.,[n∑
i=1

(xi − yi)p
] 1
p

=
[n∑
i=1

(xi − ξi)2
] 1

2

+
[n∑
i=1

(yi − ξi)2
] 1

2

(38)
which can be expressed as

n∑
i=1

(xi − yi)p =
{[n∑

i=1

(xi − ξi)2
] 1

2

+
[n∑
i=1

(yi − ξi)2
] 1

2

}p
(39)

Similarly, using the Intermediate Value Theorem, we know
that there exists ξ = (ξ1, · · · , ξn)T to make this equation
true. �

Lemma 4. Lemma 1 is also valid for spaces with more than two
dimensions.

Proof. It can be deducted using Lemma 2 and 3. �

Theorem 1. For the proposed loss function Jview(W,B, {Xi}),
the training efficiency can be improved by decreasing the p value,
i.e.,

∇Jpview ≥ ∇Jp+1
view

(40)

Proof. It can be deducted using Lemma 1, 2, 3 and 4. �

According to the theorem, a smaller p value will increase
the back-propagated stochastic and improve the optimiza-
tion efficiency, which is also demonstrated in the experiment
6.3. On the other hand, a larger p value, resulting in a
smaller stochastic, may also stable the learning process.
Therefore, it is reasonable to set a small p in the early stage
of training to get higher efficiency, and gradually increase
p for stable convergence. The above proof guarantees that
the proposed method can get a good learning speed with
different datasets.

ACKNOWLEDGMENT

This work is partially supported by JSPS KAKENHI Grant
Number JP16K00117, JP15K15976, and KDDI Foundation.

REFERENCES

[1] Z. Imani and H. Soltanizadeh, “Person reidentification using local
pattern descriptors and anthropometric measures from videos of
kinect sensor,” IEEE Sensors Journal, vol. 16, no. 16, pp. 6227–6238,
Aug 2016.

[2] Y. Kong, Z. Ding, J. Li, and Y. Fu, “Deeply learned view-invariant
features for cross-view action recognition,” IEEE Transactions on
Image Processing, vol. 26, no. 6, pp. 3028–3037, June 2017.

[3] M. A. Alsheikh, D. Niyato, S. Lin, H. p. Tan, and Z. Han, “Mobile
big data analytics using deep learning and apache spark,” IEEE
Network, vol. 30, no. 3, pp. 22–29, May 2016.

[4] H. Jiang, S. Zhang, G. Tan, and C. Wang, “Connectivity-based
boundary extractionof large-scale 3d sensor networks: Algorithm
and applications,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 4, pp. 908–918, 2014.

[5] M. M. Rashid, I. Gondal, and J. Kamruzzaman, “Share-frequent
sensor patterns mining from wireless sensor network data,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 12, pp.
3471–3484, 2015.

[6] X. Hao, P. Jin, and L. Yue, “Efficient storage of multi-sensor object-
tracking data,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 10, pp. 2881–2894, 2016.

[7] G. Zhan and W. Shi, “Lobot: Low-cost, self-contained localization
of small-sized ground robotic vehicles,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 24, no. 4, pp. 744–753, 2013.

[8] Y. Pei and M. W. Mutka, “Stars: Static relays for remote sensing
in multirobot real-time search and monitoring,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 10, pp. 2079–2089,
2013.

[9] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE,
2005, pp. 886–893.

[10] H. Harzallah, F. Jurie, and C. Schmid, “Combining efficient object
localization and image classification,” in 2009 IEEE 12th Interna-
tional Conference on Computer Vision. IEEE, 2009, pp. 237–244.

[11] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich fea-
tures from rgb-d images for object detection and segmentation,”
in European Conference on Computer Vision. Springer, 2014, pp.
345–360.

[12] P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik,
“Multiscale combinatorial grouping,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp.
328–335.

[13] S. Song and J. Xiao, “Deep sliding shapes for amodal 3d object
detection in rgb-d images,” arXiv preprint arXiv:1511.02300, 2015.

[14] X. Liu, L. Lu, Z. Shen, and K. Lu, “A novel face recognition
algorithm via weighted kernel sparse representation,” Future Gen-
eration Computer Systems, 2016.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012, pp. 1097–1105.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 1–9.

[17] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng,
“Convolutional-recursive deep learning for 3d object classifica-
tion,” in Advances in Neural Information Processing Systems, 2012,
pp. 665–673.

[18] B. Shi, S. Bai, Z. Zhou, and X. Bai, “Deeppano: Deep panoramic
representation for 3-d shape recognition,” IEEE Signal Processing
Letters, vol. 22, no. 12, pp. 2339–2343, 2015.

[19] J. Aleotti, D. L. Rizzini, R. Monica, and S. Caselli, “Global regis-
tration of mid-range 3d observations and short range next best
views,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2014, pp. 3668–3675.

[20] J. I. Vasquez-Gomez, L. E. Sucar, and R. Murrieta-Cid, “View
planning for 3d object reconstruction with a mobile manipula-
tor robot,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2014, pp. 4227–4233.

[21] L. Li and N. Xiao, “Volumetric view planning for 3d reconstruction
with multiple manipulators,” Industrial Robot: An International
Journal, vol. 42, no. 6, pp. 533–543, 2015.

[22] I. H. Chung, T. N. Sainath, B. Ramabhadran, M. Pichen, J. Gun-
nels, V. Austel, U. Chauhari, and B. Kingsbury, “Parallel deep
neural network training for big data on blue gene/q,” in SC14:
International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov 2014, pp. 745–753.

[23] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan,
D. Kalamkar, B. Kaul, and P. Dubey, “Distributed deep learning
using synchronous stochastic gradient descent,” arXiv preprint
arXiv:1602.06709, 2016.

[24] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view rgb-d object dataset,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on. IEEE, 2011, pp. 1817–1824.

[25] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-
view convolutional neural networks for 3d shape recognition,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 945–953.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2017 14

[26] J. Liebelt and C. Schmid, “Multi-view object class detection with a
3d geometric model,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, June 2010, pp. 1688–1695.

[27] A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” arXiv preprint arXiv:1404.5997, 2014.

[28] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
sgd: Training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677,
2017.

[29] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” International journal of
computer vision, vol. 104, no. 2, pp. 154–171, 2013.

[30] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler,
and R. Urtasun, “3d object proposals for accurate object class
detection,” in Advances in Neural Information Processing Systems,
2015, pp. 424–432.

[31] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio,
“Robust object recognition with cortex-like mechanisms,” IEEE
transactions on pattern analysis and machine intelligence, vol. 29, no. 3,
pp. 411–426, 2007.

[32] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1440–1448.

[33] G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant
convolutional neural networks for object detection in vhr optical
remote sensing images,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 54, no. 12, p. 7405, 2016.

[34] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor
segmentation and support inference from rgbd images,” in ECCV,
2012.

[35] S. Choi, Q.-Y. Zhou, S. Miller, and V. Koltun, “A large dataset of
object scans,” arXiv:1602.02481, 2016.

[36] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel, “Bigbird:
A large-scale 3d database of object instances,” in 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2014,
pp. 509–516.

[37] B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-F. Yu, and
S.-K. Yeung, “Scenenn: A scene meshes dataset with annotations,”
in International Conference on 3D Vision (3DV), 2016.

[38] S. Song and J. Xiao, “Sliding shapes for 3d object detection in depth
images,” in European Conference on Computer Vision. Springer,
2014, pp. 634–651.

[39] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-
svms for object detection and beyond,” in 2011 International Con-
ference on Computer Vision. IEEE, 2011, pp. 89–96.

[40] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Bur-
gard, “Multimodal deep learning for robust rgb-d object recog-
nition,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on. IEEE, 2015, pp. 681–687.

[41] M. Schwarz, H. Schulz, and S. Behnke, “Rgb-d object recognition
and pose estimation based on pre-trained convolutional neural
network features,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2015, pp. 1329–1335.

[42] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

Liangzhi Li received the B.Sc and M.Eng de-
grees in Computer Science from South China
University of Technology (SCUT), China, in 2012
and 2016, respectively. He is currently pursu-
ing the Ph.D. degree in Electrical Engineering
at Muroran Institute of Technology, Japan. His
main fields of research interest include machine
learning, big data, and robotics.

Kaoru Ota was born in Aizu-Wakamatsu, Japan.
She received M.S. degree in Computer Science
from Oklahoma State University, USA in 2008,
B.S. and Ph.D. degrees in Computer Science
and Engineering from The University of Aizu,
Japan in 2006, 2012, respectively. She is cur-
rently an Assistant Professor with Department
of Information and Electronic Engineering, Muro-
ran Institute of Technology, Japan. From March
2010 to March 2011, she was a visiting scholar
at University of Waterloo, Canada. Also she was

a Japan Society of the Promotion of Science (JSPS) research fellow
with Kato-Nishiyama Lab at Graduate School of Information Sciences at
Tohoku University, Japan from April 2012 to April 2013. Her research
interests include Wireless Networks, Cloud Computing, and Cyber-
physical Systems. Dr. Ota has received best paper awards from ICA3PP
2014, GPC 2015, IEEE DASC 2015, and IEEE VTC 2016-Fall. She
is an editor of IEEE Communications Letters, Peer-to-Peer Network-
ing and Applications (Springer), Ad Hoc & Sensor Wireless Networks,
International Journal of Embedded Systems (Inderscience) and Smart
Technologies for Emergency Response & Disaster Management (IGI
Global), as well as a guest editor of ACM Transactions on Multimedia
Computing, Communications and Applications (leading), IEEE Commu-
nications Magazine, etc. Also she was a guest editor of IEEE Wire-
less Communications (2015), IEICE Transactions on Information and
Systems (2014), and Ad Hoc & Sensor Wireless Networks (Old City
Publishing) (2014). She was a research scientist with A3 Foresight
Program (2011-2016) funded by Japan Society for the Promotion of
Sciences (JSPS), NSFC of China, and NRF of Korea.

Mianxiong Dong received B.S., M.S. and Ph.D.
in Computer Science and Engineering from The
University of Aizu, Japan. He is currently an As-
sociate Professor in the Department of Informa-
tion and Electronic Engineering at the Muroran
Institute of Technology, Japan. Prior to joining
Muroran-IT, he was a Researcher at the Na-
tional Institute of Information and Communica-
tions Technology (NICT), Japan. He was a JSPS
Research Fellow with School of Computer Sci-
ence and Engineering, The University of Aizu,

Japan and was a visiting scholar with BBCR group at University of
Waterloo, Canada supported by JSPS Excellent Young Researcher
Overseas Visit Program from April 2010 to August 2011. Dr. Dong was
selected as a Foreigner Research Fellow (a total of 3 recipients all over
Japan) by NEC C&C Foundation in 2011. His research interests include
Wireless Networks, Cloud Computing, and Cyber-physical Systems. He
has received best paper awards from IEEE HPCC 2008, IEEE ICESS
2008, ICA3PP 2014, GPC 2015, IEEE DASC 2015 and IEEE VTC 2016-
Fall. Dr. Dong serves as an Editor for IEEE Communications Surveys
and Tutorials, IEEE Network, IEEE Wireless Communications Letters,
IEEE Cloud Computing, IEEE Access, and Cyber-Physical Systems
(Taylor & Francis), as well as a leading guest editor for ACM Trans-
actions on Multimedia Computing, Communications and Applications
(TOMM), IEEE Transactions on Emerging Topics in Computing (TETC),
IEEE Transactions on Computational Social Systems (TCSS), Peer-to-
Peer Networking and Applications (Springer) and Sensors, as well as a
guest editor for IEEE Access, Peer-to-Peer Networking and Applications
(Springer), IEICE Transactions on Information and Systems, and Inter-
national Journal of Distributed Sensor Networks. He has been serving
as the Program Chair of IEEE SmartCity 2015 and Symposium Chair
of IEEE GLOBECOM 2016, 2017. Dr. Dong was a research scientist
with A3 Foresight Program (2011-2016) funded by Japan Society for the
Promotion of Sciences (JSPS), NSFC of China, and NRF of Korea. He
is the recipient of IEEE TCSC Early Career Award 2016.

Wuyunzhaola Borjigin received a B.S. degree
and M.S. degree in School of Mathematical, In-
ner Mongolia University, China. She is currently
working toward the Ph.D degree in the Emerg-
ing Networks and Systems Lab and Wireless
Networks Lab, the Department of Information
and Electronic Engineering, Muroran Institute
of Technology, Muroran, Hokkaido, Japan, un-
der the guidance of Prof. Mianxiong Dong. Her
research interests include wireless networks,
cloud computing, and cyber-physical systems.

