

Magnetic and transport properties of CeT2Al10(T= Fe, Ru, Os) under pressure

メタデータ	言語: en
	出版者: IOP Publishing
	公開日: 2018-03-13
	キーワード (Ja):
	キーワード (En):
	作成者: 川村, 幸裕, 大金, 優太, 西岡, 孝, 加藤, 治一, 松村,
	政博, 松林, 和幸, 上床, 美也
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/00009588
This work is licensed under a Creative Commons	

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Magnetic and transport properties of CeT_2AI_{10} (*T* = Fe, Ru, Os) under pressure

To cite this article: Yukihiro Kawamura et al 2011 J. Phys.: Conf. Ser. 273 012038

View the article online for updates and enhancements.

Related content

- <u>Hall effect of Ce(Ru_{1x}Fe_x)₂Al₁₀ single crystal Yukihiro Kawamura, Daishi Hirai, Takashi Nishioka et al.</u>

- <u>Fe substitution effect on the phase</u> <u>transition and hybridization gap in</u> <u>CeOs_Al₁₀</u> Yuji Muro, Keisuke Yutani, Jumpei Kajino et al.
- <u>Sample dependence of superconductivity</u> <u>for V₃Si under high pressure</u> Shigeki Tanaka, Atsushi Miyake, Tomoko Kagayama et al.

Recent citations

 <u>Muon-spin-relaxation and inelastic neutron</u> scattering investigations of the caged-type Kondo semimetals: CeT₂Al₁₀ (T = Fe. Ru and Os)
D T Adroja et al

Magnetic and transport properties of $\text{Ce}T_2\text{Al}_{10}$ (T = Fe, Ru, Os) under pressure

Yukihiro Kawamura¹, Yuta Ogane¹, Takashi Nishioka¹, Harukazu Kato¹, Masahiro Matsumura¹, Kazuyuki Matsubayashi² and Yoshiya Uwatoko²

¹Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan ²Institute for Solid State Physics, University of Tokyo, Kashiwa 305-0047, Japan

E-mail: b08d6a02@s.kochi-u.ac.jp

Abstract. The results of electrical resistivity ρ measurements for CeT_2AI_{10} (T = Fe, Ru, Os) under pressure are reported. The abrupt increase was observed at $T_0 \sim 27$ K for $CeRu_2AI_{10}$ and 29 K for $CeOs_2AI_{10}$ at ambient pressure. By applying pressure, T_0 for $CeRu_2AI_{10}$ and $CeOs_2AI_{10}$ suddenly disappeared at 4 GPa and 2 GPa, respectively. Although the ground state of $CeRu_2AI_{10}$ is metal at ambient pressure, ρ at low temperatures increased and the ground state became semiconductor at 2 GPa. The increase in ρ suppressed above 3 GPa and the ground state became metal above 5 GPa. Magnetic contribution to $CeRu_2AI_{10}$ above 4 GPa shows maximum, which seems to be attributed to Kondo coherence. These systematical change in $\rho(T)$ was also observed in $CeFe_2AI_{10}$ and $CeOs_2AI_{10}$. From the pressure dependence of the temperature of the maximum, we suggests that $CeFe_2AI_{10}$ and $CeOs_2AI_{10}$ is corresponding to 3.2 GPa and 1.3 GPa of $CeRu_2AI_{10}$.

1. Introduction

Heavy fermion compounds CeT_2Al_{10} (T = Fe, Ru, Os) crystallizes in the YbFe₂Al₁₀-type crystal structure(orthorhombic, space group Cmcm)[1, 2]. These compounds is characteristic of their new phase transition, which occurred at $T_0 \sim 27$ K on CeRu₂Al₁₀[3] and 29 K on CeOs₂Al₁₀[4], and for Kondo semiconducting behavior on CeFe₂Al₁₀[5]. At first the new phase transition is reported to be attributed to antiferromagnetic order[3]. However, ²⁷Al-NQR study for CeRu₂Al₁₀ denies it because the splitting of line spectrum below T_0 is different from antiferromagnetic order[6]. Besides, 27 K is too high to order antiferromagnet in this small concentration of magnetic system, where the nearest-neighbor of Ce exceeds 5Å. This is why this new phase transition is attracted much attention. Recently, μ^+ SR and neutron diffraction experiments revealed that this transition is due to long-range magnetic ordering of the Ce sublattice with a reduced moment of 0.34 μ_B [7]. However, the origin of very high T_0 and low value of the ordered moments has not clarified yet. In addition, the relation between Kondo semiconducting behavior and this phase transition is not clarified. The scaling behavior against pressure among isostructural Ce T_2 Al₁₀ (T=Ru, Os and Fe) may be one of the key aspects to reveal these issues.

The purpose of this study is to clarify the relationship between each $\text{Ce}T_2\text{Al}_{10}$. In our previous study, we reported overall behavior of $\rho(T)$ for $\text{Ce}T_2\text{Al}_{10}$ under pressure. In this paper, we report

 $\rho(T)$ for CeT₂Al₁₀ in detail. In addition, we discuss pressure dependence of each characteristic temperature.

2. Experimental

Single crystals of $\text{Ce}T_2\text{Al}_{10}$ (T = Fe, Ru, Os) were grown by using Al self-flux method. The starting composition of $\text{Ce}T_2\text{Al}_{70}$ was placed in an Al_2O_3 crucible, sealed in a quartz ampule in vacuum and heated to 1000 °C and then cooled to 720 °C at a rate of 5 °C/h and the Al flux was removed by centrifugation. The remaining flux was removed by sinking 5 mol/L NaOH solution for 24 hours. The resulting single crystals were confirmed as single phase by powder X-ray diffraction. The electrical resistivity under 2 GPa was measured by the ac 4 terminal method with the frequency of 40 Hz and effective current is 3 mA. The pressure was applied by using piston cylinder type pressure cell with Daphne 7373 oil as a pressure transmitting oil. The pressure was calibrated by the temperature of the superconductivity on In. The electrical resistivity above 2 GPa was measured by the conventional dc 4 terminal method with effective current of 3 mA. The pressure was applied by cubic anvil cell with the mixture of Fluorinert FC70:FC77=1:1 as a pressure transmitting oil.

3. Results and Discussion

Figure 1. Temperature dependence of the magnetic contribution to the electrical resistivity ρ_{mag} (see text in detail) for CeRu₂Al₁₀ under pressure.

Figure 2. ρ_{mag} vs *T* for CeFe₂Al₁₀ under pressure.

Fig. 1 shows temperature dependence of the magnetic contribution to the electrical resistivity ρ_{mag} for CeRu₂Al₁₀ under pressure. We have evaluated the ρ_{mag} from the experiment by subtracting the phonon contribution ρ_{ph} of the appropriate La compound. At ambient pressure, $\rho(T)$ increases with decreasing temperature from room temperature to 27 K. At 27 K, $\rho(T)$ increases abruptly reflecting the appearance of the new phase transition. It exhibits a maximum at 23 K and then shows decreasing gap-like below 23 K. At 2 GPa, T_0 increases to 33 K. The value of ρ at low temperatures increases. This increase in ρ at low temperatures indicates ground state of this compound becomes semiconductor from metal. At 3 GPa, T_0 decreases to 29 K. With decreasing T_0 , $\rho(T)$ at low temperatures suppresses. The broad peak, which seems to be attributed to high density Kondo effect, is observed over 4 GPa, where the novel phase transition

disappears. The temperature of this maximum denotes T_{max} . The T_{max} increases monotonically with pressure.

Fig. 2 shows the temperature dependence of ρ_{mag} for CeFe₂Al₁₀. At ambient pressure, ρ_{mag} exhibits a maximum at $T_{\text{max}} \sim 70$ K and shows increasing at low temperatures. The former seems to be attributed to dense Kondo effect and the latter seems to be attributed to Kondo semiconducting gap. This behavior is similar to ρ_{mag} for CeRu₂Al₁₀ at 4 GPa. However, the rate of the increase in ρ_{mag} for CeFe₂Al₁₀ is higher than that for CeRu₂Al₁₀. On the other hand, ρ_{mag} for CeFe₂Al₁₀ does not show phase transition, which one can see that for CeRu₂Al₁₀ at 3 GPa. Thus, ρ_{mag} for CeFe₂Al₁₀ is considered to be attributed to that for CeRu₂Al₁₀ at the pressure between 3 GPa and 4 GPa. Increasing at low temperatures suppresses and T_{max} increases with pressure. Although semiconducting behavior at 0 GPa suddenly suppresses with pressure in this study.

Figure 3. ρ_{mag} vs T for CeOs₂Al₁₀ under pressure.

Fig. 3 shows the temperature dependence of $\rho_{\rm mag}$ for CeOs₂Al₁₀. At ambient pressure, $\rho(T)$ in CeOs₂Al₁₀ increases abruptly at $T_0 \sim 29$ K and exhibit a peak at 26 K followed by a minimum and increasing with decreasing temperature. The behavior of $\rho_{\rm mag}$ for CeOs₂Al₁₀ is similar to that for CeRu₂Al₁₀ at 2 GPa, although the value of a peak after T_0 is smaller than that for CeRu₂Al₁₀. At 0.52 GPa, the abrupt increase in $\rho_{\rm mag}$ below T_0 is suppressed. At 1.03 GPa, the kink appears instead of the abrupt increase. This kink decreases with increasing pressure. On the other hand, the increase at low temperature is gradually suppressed as the pressure increases. The ground state become metal above 2 GPa. Above 3 GPa, $T_{\rm max}$ gradually increases with pressure.

Fig. 4(a) shows the pressure dependence for T_0 . T_0 for CeRu₂Al₁₀ increases slightly with pressure at first and exhibit a maximum at around 2 GPa. At 4 GPa, T_0 disappears suddenly like first order transition. On the other hand, T_0 for CeOs₂Al₁₀ decreases slightly with pressure and suddenly disappears at 2 GPa. Fig. 4(b) shows the pressure dependence for T_{max} . T_{max} increases monotonically with pressure in each sample. The dotted line indicates least square fitting to the each data. T_{max} obtained from the data of pressure measurements using piston cylinder cell is considered to be higher than actual value, because the pressure is calibrated at low temperatures and expected to be higher at high temperatures. Thus, we used the data of ambient pressure measurements and of pressure measurements using cubic anvil cell as fitting data. The dT_{max}/dP is similar to each other. The pressure of the extrapolation to the x axis for CeFe₂Al₁₀, CeRu₂Al₁₀ and CeOs₂Al₁₀ is -1.9 GPa, 1.3 GPa and 0 GPa, respectively. This result suggests that CeFe₂Al₁₀ and CeOs₂Al₁₀ is corresponding to 3.2 GPa and 1.3 GPa of CeRu₂Al₁₀. Since the lattice constant of CeFe₂Al₁₀ is smaller than that of CeRu₂Al₁₀, this result is consistent with chemical pressure. However the lattice constant of CeRu₂Al₁₀ is almost same as but is smaller than that of CeOs₂Al₁₀. Although it contradicts to present results, the reason is not clarified.

Figure 4. (a) T_0 vs P for CeRu₂Al₁₀(open circle) and for CeOs₂Al₁₀ (open square). The data pointed at 0 K indicates that there is not any phase transition above 2 K. (b) T_{max} vs P for CeFe₂Al₁₀ (open triangle), CeRu₂Al₁₀ (open circle) and CeOs₂Al₁₀(open square). The dotted line indicates least square fitting to the each data(see text in detail).

4. Summary

 $\rho(T)$ for CeRu₂Al₁₀ increases abruptly at T_0 and exhibit a maximum at 23 K and then decreases with temperature. By applying pressure, T_0 slightly increases and $\rho(T)$ at low temperatures enhances. This behavior is similar to $\rho(T)$ for CeOs₂Al₁₀ at ambient pressure. At 4 GPa, Kondo semiconducting like behavior is observed, which is similar to $\rho(T)$ for CeFe₂Al₁₀ at ambient pressure. The broad peak, which is seems to be attributed to high density Kondo effect, is observed over 4 GPa. The temperature of this broad peak increases monotonically with pressure, which is also observed in $\rho(T)$ for CeOs₂Al₁₀ and CeFe₂Al₁₀. From these behaviors, we suggests that CeFe₂Al₁₀ and CeOs₂Al₁₀ is corresponding to 3.2 GPa and 1.3 GPa of CeRu₂Al₁₀.

References

- A. I. Tursina, S. N. Nesterenko, E. V. Murashova, I. V. Chernyshev, H. Noel and Y. D. Seropegin: Acta Cryst. E 61 (2005) i12.
- [2] V. M. T. Thiede, T. Ebel, W. Jeitschoko: J. Mater. Chem. 8 (1998) 125.
- [3] A. M. Strydom: Physica B 404 (2009) 2981.
- [4] T. Nishioka, Y. Kawamura, T. Takesaka, R. Kobayashi, H. Kato, M. Matsumura, K. Kodama, K. Matsubayashi and Y. Uwatoko: J. Phys. Soc. Jpn. 78 (2009) 123705.
- [5] Y. Muro, K. Motoya, Y. Saiga, and T. Takabatake: J. Phys. Soc. Jpn. 78 (2009) 083707.
- [6] M. Matsumura, Y. Kawamura, S. Edamoto, T. Takesaka, H. Kato, T. Nishioka, Y. Tokunaga, S. Kambe and H. Yasuoka: J. Phys. Soc. Jpn. 78 (2009) 123713.
- [7] D.D. Khalyavin et al., : cond-mat. /1006.1618v1.