室蘭工業大学
学術資源アーカイブ
Muroran Institute of Technology Academic Resources Archive

Dn－geometry and singularities of tangent surfaces

メタデータ	言語：jpn
	出版者：京都大学数理解析研究所
	公開日：2018－03－13
	キーワード（Ja）：
	キーワード（En）：
	作成者：石川，剛郎，待田，芳徳，高橋，雅朋 メールアドレス： 所属：
URL	http：／／hdl．handle．net／10258／00009592

D_{n}-geometry and singularities of tangent surfaces

By
Goo Ishikawa* Yoshinori Machida** Masatomo Takahashi***

Abstract

The geometric model for D_{n}-Dynkin diagram is explicitly constructed and associated generic singularities of tangent surfaces are classified up to local diffeomorphisms. We observe, as well as the triality in D_{4} case, the difference of the classification for D_{3}, D_{4}, D_{5} and $D_{n}(n \geq 6)$, and a kind of stability of the classification in D_{n} for $n \rightarrow \infty$. Also we present the classifications of singularities of tangent surfaces for the cases $B_{3}, A_{3}=D_{3}, G_{2}, C_{2}=B_{2}$ and A_{2} arising from D_{4} by the processes of foldings and removings.

§ 1. Introduction

As was found by V.I. Arnol'd, the singularities of mappings are closely related to Dynkin diagrams (see [2][8]). The relations must be numerous. In this paper we are going to present one of them.

Associated to each semi-simple Lie algebra, there exists a geometric model which is a tree of fibrations of homogeneous spaces of the Lie group. We read out, from the Dynkin diagram or the root system, the associated geometric structure on the geometric model. More precisely, for each subset of vertices of Dynkin diagrams, we take the gradation on the Lie algebra. Then the gradation induces invariant distributions and cone structures on the quotients, which are called generalized flag manifolds, by the associated parabolic subgroups in the Lie group (see for instance [22][3]). Moreover the geometric structures which are homogeneous naturally induce singular objects to be

[^0]classified. The singularities of tangent surfaces are typical objects which we are going to study.

Recall the list of Dynkin diagrams of simple Lie algebras over \mathbb{C},

and recall the complex Lie algebra of type A_{n} (resp. B_{n}, C_{n}, D_{n}) is the complex Lie algebra $\mathfrak{s l}(n+1, \mathbb{C})($ resp. $\mathfrak{o}(2 n+1, \mathbb{C}), \mathfrak{s p}(2 n, \mathbb{C}), \mathfrak{o}(2 n, \mathbb{C}))$ of the classical complex Lie group $\mathrm{SL}(n+1, \mathbb{C})($ resp. $\mathrm{O}(2 n+1, \mathbb{C}), \mathrm{Sp}(2 n, \mathbb{C}), \mathrm{O}(2 n, \mathbb{C}))$.

We have constructed, in the split real form, the geometric model and classified singularities of tangent surfaces which naturally appear in homogeneous spaces, for the case $B_{2}=C_{2}$ in [15], and for the case G_{2} in [16]. Note that the construction over \mathbb{R} induces the complex construction after the complexification.

We observe that the Dynkin diagram has $\mathbb{Z} / 2 \mathbb{Z}$-symmetry in the cases A_{n} and D_{n} and \mathfrak{S}_{3}-symmetry only in the case D_{4}. The \mathfrak{S}_{3}-symmetry of Dynkin diagram (or root system) for D_{4} induces the triality of D_{4}-geometry (see [6][7][21][18]). Cartan showed that the group of outer automorphisms of Lie algebra of type D_{3} is isomorphic to \mathfrak{S}_{3} in [6]. We would like to call the above fact and all phenomena which arise from it triality of D_{4}-geometry. In [17], we realize the geometric model explicitly for Lie algebra of type D_{4} and study the triality of singularities of null tangent surfaces arising naturally from the geometric structures in D_{4}-geometry.

In this paper, we show the realization of the geometric models explicitly for Lie algebras of type $D_{n}, n \geq 3$, giving the stress on the speciality of D_{4} in the class D_{n} and relations with other Dynkin diagrams. Then we observe the difference of the classification lists of null tangent surfaces for D_{3}, D_{4}, D_{5} and $D_{n}(n \geq 6)$ (Theorems 6.1, 6.2, 6.3 and 6.4), and the stability of the classification lists of singularities of null tangent surfaces for D_{n} for $n \rightarrow \infty$. In fact, as is seen in the table of Theorem 6.4, the lists
become steady without any degenerations if $n \geq 6$.
The results in case D_{4} are closely related to the study of general relativity, for instance, the Kostant universe (see [9][11]). The singularities of null tangent surfaces are regarded as solution surfaces to a special kind of non-linear partial differential equation in the case D_{4} (see [17]). Apart from the mathematical interest, the general classification results for D_{n} given in this paper will make clear the appearance of singularities in the D_{4}-case.

In this paper we treat a special kind of semi-Riemannian geometry ([20]). This reminds us the sub-Riemannian geometry ([19]). A sub-Riemannian structure on a manifold is a Riemannian metric on a distribution, i.e., a subbundle of the tangent bundle of the manifold. In [16], we encounter, as one of geometric structures in the G_{2}-geometric model, the Cartan distribution, which has the growth $(2,3,5)$ and, then for each point of any integral curve to the Cartan distribution, there exists the unique tangent "abnormal geodesic" to the curve at the point. Thus we have the tangent surface to the curve, whose singularities are studied in [16]. Note that also F_{4}-geometry is related to sub-Riemannian geometry. Also we note that B_{n}-geometry, for instance, $O(n+1, n)$-geometry, is related to conformal geometry. We have a plan to study them in forthcoming papers. We refer the following table:

Geometry	semi-Riemannian geometry	sub-Riemannian geometry
Geodesic	null geodesic	abnormal geodesic
Invariance	conformal invariant	distribution invariant
Tangent surface	null tangent surface	abnormal tangent surface
Simple	D_{n}, B_{n}	$G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$
Lie algebra		

Note that A_{n} is related to projective geometry and C_{n} to symplectic (contact) geometry.

In $\S 2$, the D_{n}-geometry and the null projective space are explained, and, in $\S 3$, null tangent surfaces in the null projective space are introduced and a generic classification of singularities of null tangent surfaces is provided (Theorem 3.1). After introducing the null Grassmannians in $\S 4$, we construct the null flag manifold and the tree of fibrations for D_{n}-geometry in $\S 5$. We define the Engel distribution and give the detailed classification results of tangent surfaces in $\S 6$ (Theorems $6.1,6.2,6.3$ and 6.4). For the proofs of Theorems, we describe the flag and Grassmannian coordinates and projections of Engel integral curves in $\S 7$ and relate the orders of projections with the root decompositions of Lie algebras of type D_{n} in $\S 8$. Then we give the proof of Theorems in $\S 9$, using the known results in [13]. We give the explicit descriptions explained in previous sections for D_{3} case in $\S 10$. In $\S 11$, we show similar classifications of singularities of tangent surfaces for Dynkin diagrams arising from D_{4} by the processes of foldings and removings.

The authors thank to the referee for valuable comments to improve the paper.

§2. $\quad D_{n}$-geometry

Let $V=\mathbb{R}^{n, n}=\mathbb{R}_{n}^{2 n}$ denote the vector space $\mathbb{R}^{2 n}$ with metric of signature (n, n), $n \geq 1$. We will study the $\mathrm{O}(n, n)(=\operatorname{Aut}(V))$ invariant geometry, which is called the D_{n}-geometry. Similar arguments basically work also on the complex space $\mathbb{C}^{2 n}$ as well (cf. [11]). For the relation of D_{n}-geometry with twistor theory, see also [3].

Let us take coordinates $x_{1}, x_{2} \ldots, x_{n}, x_{n+1}, x_{n+2}, \ldots, x_{2 n}$ such that the inner product is written by

$$
\left(v \mid v^{\prime}\right)=\frac{1}{2} \sum_{i=1}^{2 n} x_{i} x_{2 n+1-i}^{\prime}, \quad\left(v, v^{\prime} \in V\right)
$$

A linear subspace $W \subset V$ is called null if $\left(v \mid v^{\prime}\right)=0 \quad\left(v, v^{\prime} \in W\right)$. As is easily shown, if $W \subset V$ is null, then $\operatorname{dim}(W) \leq n$.

Consider the set of null lines in V, called the null projective space,

$$
\begin{aligned}
\mathcal{N}_{1} & =\left\{V_{1} \mid V_{1} \subset V \text { null, } \operatorname{dim}\left(V_{1}\right)=1\right\} \\
& =\left\{[x] \in P(V) \mid \sum_{i=1}^{n} x_{i} x_{2 n+1-i}=0\right\} \subset P(V),
\end{aligned}
$$

which is regarded as a smooth quadric hypersurface of dimension $2 n-2$, in the projective space $P(V)=(V \backslash\{0\}) /(\mathbb{R} \backslash\{0\})$ of dimension $2 n-1$.

Then we have \mathcal{N}_{1} is diffeomorphic to $\left(S^{n-1} \times S^{n-1}\right) / \mathbb{Z}_{2}$, the quotient by the diagonal action $\left(x, x^{\prime}\right) \mapsto\left(-x,-x^{\prime}\right)$, when S^{n-1} is the standard sphere.

Since the tangent space $T_{V_{1}} \mathcal{N}_{1}$ at $V_{1} \in \mathcal{N}_{1}$ is isomorphic to V_{1}^{\perp} / V_{1} up to similarity transformations, the given metric on V induces the canonical conformal structure on \mathcal{N}_{1} of type $(n-1, n-1)$. In other words, the conformal structure on \mathcal{N}_{1} is defined, for each $x=V_{1} \in \mathcal{N}_{1}$, by the quadric tangent cone C_{x} of the conical Schubert variety

$$
S_{x}:=\left\{W_{1} \in \mathcal{N}_{1} \mid W_{1} \subset V_{1}^{\perp}\right\}=P\left(V_{1}^{\perp}\right) \cap \mathcal{N}_{1} \subset \mathcal{N}_{1}
$$

For the given (indefinite) conformal structure $\left\{C_{x}\right\}_{x \in \mathcal{N}_{1}}$ on \mathcal{N}_{1}, a tangent vector $v \in T_{x} \mathcal{N}_{1}$ is called null if $v \in C_{x}$. Moreover we call a curve $\gamma: I \rightarrow \mathcal{N}_{1}$ from an open interval I, a null curve if

$$
\gamma^{\prime}(t) \in C_{\gamma(t)}, \quad(t \in I)
$$

that is, if the velocity vectors of γ are null.
Recall that, on a semi-Riemannian manifolds (with an indefinite metric), a regular curve is called a geodesic if the velocity vector field is parallel for the Levi-Civita connection. A geodesic is called a null geodesic if it is a null curve. Then the class of null geodesics is intrinsically defined by the conformal class of the metric (see [20]).

In fact null geodesics on \mathcal{N}_{1} are null lines:
Proposition 2.1. ([9]) The null geodesics on \mathcal{N}_{1}, for the conformal structure $C \subset T \mathcal{N}_{1}$, are given by null lines, namely, projective lines on $\mathcal{N}_{1}\left(\subset P\left(\mathbb{R}^{n, n}\right)\right)$.

§3. Null tangent surfaces

Given a space curve in an affine space or a projective space, we can construct a surface, which is called the tangent surface, ruled by tangent lines to the curve (see [13]). A tangent surface has singularities at least along the original space curve, even if the original space curve is non-singular.

Even for curves in a general space, we do declare: Where there is a notion of "tangent lines", there is a tangent surface. We will take null geodesics (= null lines) tangential to null curves on the null projective space \mathcal{N}_{1} as "tangent lines".

A surface $f: U \rightarrow \mathcal{N}_{1}$ from a planar domain U, is called a null surface if

$$
f_{*}\left(T_{u} U\right) \subset C_{f(u)},(u \in U)
$$

We do not assume f is an immersion. We are very interested in singularities of null surfaces which we face naturally in D_{n}-geometry.

Then one of main theorems in this paper is
Theorem 3.1. (Local diffeomorphism classification of null tangent surfaces.)
For a generic null curve $\gamma: I \rightarrow \mathcal{N}_{1}$ in the special class of null curves which are projections of an Engel integral curve (see §6), the tangent surface $\operatorname{Tan}(\gamma)$, that is a surface in the $(2 n-2)$-dimensional conformal manifold \mathcal{N}_{1}, is a null surface with singularities. Moreover the tangent surface is locally diffeomorphic, at each point of γ, to the cuspidal edge or to the open swallowtail in D_{3} case,
to the cuspidal edge, the open swallowtail or to the open Mond surface in D_{4} case, to the cuspidal edge, the open swallowtail, the open Mond surface or to the open folded umbrella in $D_{n}(n \geq 5)$ case.

Here we mean the genericity in the sense of C^{∞} topology.
The cuspidal edge (resp. open swallowtail, open Mond surface, open folded umbrella) is defined as the local diffeomorphism class of tangent surface-germ to a curve of type $(1,2,3, \cdots)($ resp. $(2,3,4,5, \cdots),(1,3,4,5, \cdots),(1,2,4,5, \cdots))$ in an affine space. Here the type of a curve is the strictly increasing sequence of orders (degrees of initial terms, possibly infinity) of components in an appropriate system of affine coordinates. Note that, if a curve has a type $(1,2,3, \cdots)$ (resp. $(2,3,4,5, \cdots),(1,3,4,5, \cdots)$, $(1,2,4,5, \cdots))$ in a space of fixed dimension, the local diffeomorphism class of tangent surface-germs is uniquely determined ([13]). Their normal forms are given explicitly as follows:

$$
\begin{aligned}
\mathrm{CE} \quad & :\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{m}, 0\right), m \geq 3 \\
& (u, t) \mapsto\left(u, t^{2}-2 u t, 2 t^{3}-3 u t^{2}, 0, \ldots, 0\right) \\
\text { OSW }: & \left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{m}, 0\right), m \geq 4 \\
& (u, t) \mapsto\left(u, t^{3}-3 u t, t^{4}-2 u t^{2}, 3 t^{5}-5 u t^{3}, 0, \ldots, 0\right) \\
\text { OM }: & \left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{m}, 0\right), m \geq 4 \\
& (u, t) \mapsto\left(u, 2 t^{3}-3 u t^{2}, 3 t^{4}-4 u t^{3}, 4 t^{5}-5 u t^{4}, 0, \ldots, 0\right) .
\end{aligned}
$$

OFU : $\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{m}, 0\right), m \geq 4$, $(u, t) \mapsto\left(u, t^{2}-2 u t, 3 t^{4}-4 u t^{3}, 4 t^{5}-5 u t^{4}, 0, \ldots, 0\right)$.

CE

OSW

OM

OFU

Here CE means the cuspidal edge, OSW the open swallowtail, OM the open Mond surface, and OFU the open folded umbrella.

§4. Null Grassmannians

In general, consider the Grassmannians of null k-subspaces:

$$
\mathcal{N}_{k}:=\{W \mid W \subset V \text { null, } \operatorname{dim}(W)=k\}, \quad k=1,2, \ldots, n .
$$

Then we have $\operatorname{dim}\left(\mathcal{N}_{k}\right)=2 k n-\frac{k(3 k+1)}{2}$. In particular $\operatorname{dim}\left(\mathcal{N}_{1}\right)=2 n-2$ and $\operatorname{dim}\left(\mathcal{N}_{n}\right)=$ $\frac{n(n-1)}{2}$.

Example 4.1. In D_{1} case where $V=\mathbb{R}^{1,1}, \mathcal{N}_{1}$ consists of two points. In D_{2} case where $V=\mathbb{R}^{2,2}, \mathcal{N}_{1} \cong\left(S^{1} \times S^{1}\right) / \mathbb{Z}_{2}$ and $\mathcal{N}_{2} \cong S^{1} \sqcup S^{1}$. In D_{3} case where $V=\mathbb{R}^{3,3}$, $\mathcal{N}_{1} \cong\left(S^{2} \times S^{2}\right) / \mathbb{Z}_{2}$ and $\mathcal{N}_{3} \cong \mathrm{SO}(3) \sqcup \mathrm{SO}(3)$.

The Grassmannian \mathcal{N}_{n} of maximal null subspaces in $V=\mathbb{R}^{n, n}$ decomposes into two disjoint families $\mathcal{N}_{n}^{+}, \mathcal{N}_{n}^{-}: W, W^{\prime} \in \mathcal{N}_{n}$ belong to the same family if and only if $\operatorname{dim}\left(W \cap W^{\prime}\right) \equiv n(\bmod .2)$.

For any ($n-1$)-dimensional null subspace V_{n-1}, there exist uniquely n null subspaces $V_{n}^{ \pm} \in \mathcal{N}_{n}^{ \pm}$such that $V_{n-1}=V_{n}^{+} \cap V_{n}^{-}$.

If n is even, Schubert varieties, for $y=V_{n}^{ \pm} \in \mathcal{N}_{n}^{ \pm}$,

$$
S_{y}^{ \pm}:=\left\{W_{n} \in \mathcal{N}_{n}^{ \pm} \mid W_{n} \cap V_{n}^{ \pm} \neq\{0\}\right\} \subset \mathcal{N}_{n}^{ \pm}
$$

induce invariant cone fields $C_{y}^{ \pm}$on $\mathcal{N}_{n}^{ \pm}$of degree $\frac{n}{2}$, defined by a Pfaffian. Note that if n is odd, then $S_{y}^{ \pm}=\mathcal{N}_{n}^{ \pm}$.

We remark that, only if $n=4$, the cone $C_{y}^{ \pm}$is of degree 2 , and we have invariant conformal structures on $\mathcal{N}_{n}^{ \pm}$.

\S 5. D_{n}-flags

Now we proceed to construct the geometric model.
Let $V_{1} \subset V_{2} \subset \cdots \subset V_{n-1}$ be a flag of null subspaces in $V=\mathbb{R}^{n, n}$ with $\operatorname{dim}\left(V_{i}\right)=i$. Then, as is stated in $\S 4$, there exist uniquely $V_{n}^{+} \in \mathcal{N}_{n}^{+}$and $V_{n}^{-} \in \mathcal{N}_{n}^{-}$such that $V_{n-1}=V_{n}^{+} \cap V_{n}^{-}$. Note that $V_{n}^{+} \cup V_{n}^{-}$is contained in $V_{n-1}^{\perp}:=\{x \in V \mid(x \mid y)=$ 0 , for any $\left.y \in V_{n-1}\right\}$.

Consider the set $\mathcal{Z}=\mathcal{Z}\left(D_{n}\right)$ of all complete flags

$$
\begin{aligned}
& \subset V_{n}^{+} \subset V_{1} \subset \cdots \subset V_{n-1}^{\perp} \subset V_{2} \subset V_{n}^{-} \subset \\
& \subset V_{2}^{\perp} \subset V_{1}^{\perp} \subset V
\end{aligned}
$$

Note that the flag is determined by $V_{1}, \ldots, V_{n-2}, V_{n}^{+}$and V_{n}^{-}. Also the flag is determined by $V_{1}, \ldots, V_{n-2}, V_{n-1}$. In fact V_{n}^{+}and V_{n}^{-}are uniquely determined by V_{n-1}. The flag manifold $\mathcal{Z}\left(D_{n}\right)$ is of dimension $n(n-1)$. Moreover we have the sequence of natural fibrations

spelling out from the Dynkin diagram of type D_{n}. Here $\pi_{1}: \mathcal{Z} \rightarrow \mathcal{N}_{1}$ is the projection to the first component. Other projections are defined similarly.

§6. Engel distribution and tangent surfaces

We define the D_{n}-Engel distribution $\mathcal{E} \subset T \mathcal{Z}$ on the flag manifold \mathcal{Z} as the set of tangent vectors represented by a smooth curves on \mathcal{Z}

$$
\begin{aligned}
& V_{1}(t) \subset V_{2}(t) \subset \cdots \subset V_{n-2}(t) \subset V_{n}^{+}(t) \\
& \subset V_{n}^{-}(t)
\end{aligned}
$$

such that

$$
V_{1}^{\prime}(t) \subset V_{2}(t), V_{2}^{\prime}(t) \subset V_{3}(t), \ldots, V_{n-2}^{\prime}(t) \subset V_{n-1}(t)\left(=V_{n}^{+}(t) \cap V_{n}^{-}(t)\right) .
$$

Here $V_{i}^{\prime}(t)$ means the subspace generated by $f_{1}^{\prime}(t), \ldots, f_{i}^{\prime}(t)$ for a frame $f_{1}(t), \ldots, f_{i}(t)$ of $V_{i}(t)$.

A curve $f: I \rightarrow \mathcal{Z}$ is called an Engel integral curve if

$$
f^{\prime}(t) \in \mathcal{E}_{f(t)}, \quad(t \in I)
$$

Let $f: I \rightarrow \mathcal{Z}$ be an Engel integral curve and consider the projections $\pi_{1}, \ldots, \pi_{n-2}, \pi_{n}^{ \pm}$ of f to $\mathcal{N}_{1}, \mathcal{N}_{2}, \ldots, \mathcal{N}_{n-2}, \mathcal{N}_{n}^{ \pm}$.

The composition $\gamma=\pi_{1} \circ f: I \rightarrow \mathcal{N}_{1}$ is a null curve on the conformal manifold \mathcal{N}_{1} with well defined null tangent lines as explained in $\S 2$. In fact for each flag $V_{1} \subset V_{2} \subset \ldots$ in \mathcal{Z}, the "line" through $V_{1} \in \mathcal{N}_{1},\left\{W_{1} \in \mathcal{N}_{1} \mid W_{1} \subset V_{2}\right\}=P\left(V_{2}\right)$ is defined. Then the tangent surface $\operatorname{Tan}(\gamma): I \times \mathbb{R} P^{1} \rightarrow \mathcal{N}_{1}$ is a null surface.

We remark that the tangent surface of a null curve in \mathcal{N}_{1} is obtained also as a (closure of) two dimensional stratum of the envelope for the one parameter family of null cones (conical Schubert varieties) along the curve, which may be called the D_{n} evolute.

Moreover, for the projection of an Engel-integral curve $f: I \rightarrow \mathcal{Z}$ to any null Grassmannian $\mathcal{N}_{1}, \mathcal{N}_{n}^{+}, \mathcal{N}_{n}^{-}, \mathcal{N}_{2}, \mathcal{N}_{3}, \ldots, \mathcal{N}_{n-2}$, we have a notion of tangent lines and thus we have the tangent surfaces for all cases. For example, for each flag $z \in \mathcal{Z}$,

$$
z=\left(V_{1}, \ldots, V_{n-2}, V_{n}^{+}, V_{n}^{-}\right),
$$

the "tangent line" $\ell_{n}^{+}(z)$ through $\pi_{n}^{+}(z)=V_{n}^{+}$in \mathcal{N}_{n}^{+}is defined by

$$
\ell_{n}^{+}(z):=\pi_{n}^{+}\left(\left(\pi_{n-2}\right)^{-1}\left(\pi_{n-2}(z)\right) \cap\left(\pi_{n}^{-}\right)^{-1}\left(\pi_{n}^{-}(z)\right)\right),
$$

namely, by the set of null n-spaces $W \in \mathcal{N}_{n}^{+}$satisfying $V_{n-2} \subset W$ and $\operatorname{dim}\left(W \cap V_{n}^{-}\right)=$ $n-1$. Then the tangent surface $\operatorname{Tan}\left(\pi_{n}^{+} f\right)$ of $\pi_{n}^{+} f: I \rightarrow \mathcal{N}_{n}^{+}$are formed by the lines $\ell_{n}^{+}(f(t))$ through $\pi_{n}^{+} f(t),(t \in I)$. Note, for any $t \in I$, that the line $\ell_{n}^{+}(f(t))$ is tangent to the curve $\pi_{n}^{+} f$ at $\pi_{n}^{+} f(t) \in \mathcal{N}_{n}^{+}$.

Then we have
Theorem 6.1. $\left(D_{3}\right)$. For a generic Engel integral curve $f: I \rightarrow \mathcal{Z}\left(D_{3}\right)$, the singularities of tangent surfaces to the curves $\pi_{1} f, \pi_{3}^{+} f, \pi_{3}^{-} f$ on $\mathcal{N}_{1}, \mathcal{N}_{3}^{+}, \mathcal{N}_{3}^{-}$, respectively, at any point $t_{0} \in I$ is classified, up to local diffeomorphisms, into the following four cases:

\mathcal{N}_{1}	\mathcal{N}_{3}^{+}	\mathcal{N}_{3}^{-}
CE	CE	CE
OSW	M	M
CE	SW	FU
CE	FU	SW

The abbreviation SW (resp. M, FU) is used for the swallowtail (resp. Mond surface, folded umbrella). See [12][13].

M

FU

Theorem 6.2. $\quad\left(D_{4}\right)$. For a generic Engel integral curve $f: I \rightarrow \mathcal{Z}\left(D_{4}\right)$, the singularities of tangent surfaces to the curves $\pi_{1} f, \pi_{4}^{+} f, \pi_{4}^{-} f, \pi_{2} f$ on $\mathcal{N}_{1}, \mathcal{N}_{4}^{+}, \mathcal{N}_{4}^{-}, \mathcal{N}_{2}$, respectively, at any point $t_{0} \in I$ is classified, up to local diffeomorphisms, into the following five cases:

\mathcal{N}_{1}	\mathcal{N}_{4}^{+}	\mathcal{N}_{4}^{-}	\mathcal{N}_{2}
CE	CE	CE	CE
OSW	CE	CE	CE
CE	OSW	CE	CE
CE	CE	OSW	CE
OM	OM	OM	OSW

Theorem 6.3. $\quad\left(D_{5}\right)$. For a generic Engel integral curve $f: I \rightarrow \mathcal{Z}\left(D_{5}\right)$, the singularities of tangent surfaces to the curves $\pi_{1} f, \pi_{5}^{+} f, \pi_{5}^{-} f, \pi_{2} f, \pi_{3} f$ on $\mathcal{N}_{1}, \mathcal{N}_{4}^{+}, \mathcal{N}_{4}^{-}$,
$\mathcal{N}_{2}, \mathcal{N}_{3}$, respectively, at any point $t_{0} \in I$ is classified, up to local diffeomorphisms, into the following 6 cases:

\mathcal{N}_{1}	\mathcal{N}_{5}^{+}	\mathcal{N}_{5}^{-}	\mathcal{N}_{2}	\mathcal{N}_{3}
CE	CE	CE	CE	CE
OSW	CE	CE	CE	CE
CE	OSW	CE	CE	CE
CE	CE	OSW	CE	CE
OM	CE	CE	OSW	CE
OFU	OM	OM	CE	OSW

Theorem 6.4. $\quad\left(D_{n}, n \geq 6\right)$. Let $n \geq 6$. For a generic Engel integral curve $f: I \rightarrow \mathcal{Z}\left(D_{n}\right)$, the singularities of tangent surfaces to the curves

$$
\pi_{1} f, \pi_{n}^{+} f, \pi_{n}^{-} f, \pi_{2} f, \pi_{3} f, \pi_{4} f, \ldots, \pi_{n-2} f
$$

on $\mathcal{N}_{1}, \mathcal{N}_{4}^{+}, \mathcal{N}_{4}^{-}, \mathcal{N}_{2}, \mathcal{N}_{3}, \mathcal{N}_{3}, \ldots, \mathcal{N}_{n-2}$, respectively, at any point $t_{0} \in I$ is classified, up to local diffeomorphisms, into the following $n+1$ cases:

\mathcal{N}_{1}	\mathcal{N}_{n}^{+}	\mathcal{N}_{n}^{-}	\mathcal{N}_{2}	\mathcal{N}_{3}	\mathcal{N}_{4}	\cdots	\mathcal{N}_{n-2}
CE	CE	CE	CE	CE	CE	\cdots	CE
OSW	CE	CE	CE	CE	CE	\cdots	CE
CE	OSW	CE	CE	CE	CE	\cdots	CE
CE	CE	OSW	CE	CE	CE	\cdots	CE
OM	CE	CE	OSW	CE	CE	\cdots	CE
OFU	CE	CE	CE	OSW	CE	\cdots	CE
CE	CE	CE	CE	CE	OSW	\cdots	CE
$\vdots ~$	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots
CE	OM	OM	CE	CE	CE	\cdots	OSW

§ 7. Flag and Grassmannian coordinates

Let $\left(V_{1}, V_{2}, \ldots, V_{n-2}, V_{n}^{+}, V_{n}^{-}\right) \in \mathcal{Z}\left(D_{n}\right)$ be a flag. We take $f_{1}, f_{2}, \ldots, f_{n-1} \in V=$ $\mathbb{R}^{n, n}$ such that $f_{1}, f_{2}, \ldots, f_{i}$ form a basis of $V_{i}, i=1,2, \ldots, n-2$ and $f_{1}, f_{2}, \ldots, f_{n-1}$ form a basis of $V_{n-1}=V_{n}^{+} \cap V_{n}^{-}$and they are written as

$$
\left\{\begin{array}{ccc}
f_{1} & =e_{1}+x_{2,1} e_{2}+\cdots+x_{n, 1} e_{n}+x_{n+1,1} e_{n+1}+x_{n+2,1} e_{n+2}+\cdots+x_{2 n, 1} e_{2 n} \\
f_{2} & = & e_{2}+\cdots+x_{n, 2} e_{n}+x_{n+1,2} e_{n+1}+x_{n+2,2} e_{n+2}+\cdots+x_{2 n, 2} e_{2 n} \\
\vdots & \\
f_{n-1} & = & e_{n-1}+x_{n, n-1} e_{n}+x_{n+1, n-1} e_{n+1}+x_{n+2, n-1} e_{n+2}+\cdots+x_{2 n, n-1} e_{2 n}
\end{array}\right.
$$

for some $x_{i, j} \in \mathbb{R}$. Moreover we take

$$
f_{n}=e_{n}+x_{n+1, n} e_{n+1}+x_{n+2, n} e_{n+2}+\cdots+x_{2 n, n} e_{2 n},
$$

from V_{n}^{+}so that $f_{1}, f_{2}, \ldots, f_{n-1}, f_{n}$ form a basis of V_{n}^{+}, and take

$$
f_{n+1}=x_{n, n+1} e_{n}+e_{n+1}+x_{n+2, n+1} e_{n+2}+\cdots+x_{2 n, n+1} e_{2 n},
$$

from V_{n}^{-}so that $f_{1}, f_{2}, \ldots, f_{n-1}, f_{n+1}$ form a basis of V_{n}^{-}.
Then we can choose some of $x_{i, j}$ as coordinates, so called flag coordinates, on $\mathcal{Z}\left(D_{n}\right)$. Similarly we have natural charts, so called Grassmannian coordinates, of $\mathcal{N}_{i},(1 \leq i \leq n-2)$ and $\mathcal{N}_{n}^{ \pm}$.

For example, the Grassmannian coordinates on \mathcal{N}_{n}^{+}are given as follows: take a frame $g_{1}, g_{2}, \ldots, g_{n}$ of an n-dimensional subspace W of $V=\mathbb{R}^{n, n}$ in a neighborhood of $W_{0}^{+}=\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle$ of the form:

$$
\left\{\begin{array}{cccccc}
g_{1} & =e_{1} & & & +y_{n+1,1} e_{n+1} & +\cdots \\
g_{2} & = & e_{2} & & +y_{2 n, 1} e_{2 n} \\
\vdots & & \ddots & & & \\
g_{n+1,2} e_{n+1} & +\cdots & +y_{2 n, 2} e_{2 n} \\
g_{n-1} & & & & e_{n-1} & +y_{n+1, n-1} e_{n+1} \\
g_{n} & = & & & +\cdots & +y_{2 n, n-1} e_{2 n} \\
g_{n} & +y_{n+1, n} e_{n+1} & +\cdots & +y_{2 n, n} e_{2 n}
\end{array}\right.
$$

for some $y_{i, j} \in \mathbb{R}$. Then the condition that $W \in \mathcal{N}_{n}^{+}$is given by the condition that the $n \times n$-matrix $Y=\left(y_{2 n+1-i, j}\right)_{1 \leq i, j \leq n}$ is skew-symmetric. Thus we choose, as coordinates, the components in the strictly upper triangle with respect to the diagonal "upward to the right". The condition that $\operatorname{dim}\left(W \cap W_{0}\right)>0$ is given by the condition that $\operatorname{det}(Y)=0$. Then, if n is even, the Schubert variety $\mathcal{S}_{W_{0}}$ is given by the condition that the Pfaffian of Y is equal to zero, which gives a cone of degree $\frac{n}{2}$, as stated in $\S 4$,

For naturally chosen charts as above on $\mathcal{Z}\left(D_{n}\right), \mathcal{N}_{i},(1 \leq i \leq n-2), \mathcal{N}_{n}^{ \pm}$, the projections $\pi_{i}, i=1,2, \ldots, n-2, \pi_{n}^{+}, \pi_{n}^{-}$are weighted homogeneous mappings respectively. Moreover the tangent lines in $\mathcal{N}_{i},(1 \leq i \leq n-2), \mathcal{N}_{n}^{ \pm}$are actually expressed as lines in the Grassmannian coordinates.

§ 8. Projections of Engel integral curves

Let $\mathfrak{g}=\mathfrak{o}(n, n)$ denote the Lie algebra of Lie group $O(n, n)$ (see [10][5]). With respect to a basis $e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 n}$ of $\mathbb{R}^{n, n}$ with inner products

$$
\left(e_{i} \mid e_{2 n+1-j}\right)=\frac{1}{2} \delta_{i, j}, \quad 1 \leq i, j \leq 2 n
$$

where $\delta_{i, j}$ is Kronecker delta, we have

$$
\begin{aligned}
\mathfrak{o}(n, n) & =\left\{A \in \mathfrak{g l}(2 n, \mathbb{R}) \mid{ }^{t} A K+K A=O\right\} \\
& =\left\{A=\left(a_{i, j}\right) \in \mathfrak{g l}(2 n, \mathbb{R}) \mid a_{2 n+1-j, 2 n+1-i}=-a_{i, j}, 1 \leq i, j \leq 2 n\right\},
\end{aligned}
$$

where $K=\left(k_{i, j}\right)$ is the $2 n \times 2 n$-matrix defined by $k_{i, 2 n+1-j}=\frac{1}{2} \delta_{i, j}$. Let $E_{i, j}$ denote the 8×8-matrix whose (k, ℓ)-component is defined by $\delta_{i, k} \delta_{j, \ell}$. Then

$$
\mathfrak{h}:=\left\langle E_{i, i}-E_{2 n+1-i, 2 n+1-i} \mid \varepsilon_{i} \in \mathbb{R}, 1 \leq i \leq n\right\rangle_{\mathbb{R}}
$$

is a Cartan subalgebra of \mathfrak{g}. Let $\left(\varepsilon_{i} \mid 1 \leq i \leq n\right)$ denote the dual basis of \mathfrak{h}^{*} to the basis $\left(E_{i, i}-E_{2 n+1-i, 2 n+1-i} \mid 1 \leq i \leq 4\right)$ of \mathfrak{h}. Then the root system is given by $\pm \varepsilon_{i} \pm \varepsilon_{j}, 1 \leq i<j \leq n$, and \mathfrak{g} is decomposed, over \mathbb{R}, into the direct sum of root spaces

$$
\begin{aligned}
\mathfrak{g}_{\varepsilon_{i}-\varepsilon_{j}} & =\left\langle E_{i, j}-E_{2 n+1-j, 2 n+1-i}\right\rangle_{\mathbb{R}}, \mathfrak{g}_{\varepsilon_{i}+\varepsilon_{j}}=\left\langle E_{i, 2 n+1-j}-E_{j, 2 n+1-i}\right\rangle_{\mathbb{R}}, \\
\mathfrak{g}_{-\varepsilon_{i}+\varepsilon_{j}} & =\left\langle E_{j, i}-E_{2 n+1-i, 2 n+1-j}\right\rangle_{\mathbb{R}}, \mathfrak{g}_{-\varepsilon_{i}-\varepsilon_{j}}=\left\langle E_{2 n+1-j, i}-E_{2 n+1-i, j}\right\rangle_{\mathbb{R}},
\end{aligned}
$$

$(1 \leq i<j \leq n)$ (cf. [4]).
The simple roots are given by

$$
\alpha_{1}:=\varepsilon_{1}-\varepsilon_{2}, \quad \alpha_{2}:=\varepsilon_{2}-\varepsilon_{3}, \quad \ldots, \quad \alpha_{n-1}:=\varepsilon_{n-1}-\varepsilon_{n}, \quad \alpha_{n}:=\varepsilon_{n-1}+\varepsilon_{n} .
$$

As an example, we illustrate the root decomposition of $\mathfrak{o}(5,5)\left(D_{5}\right)$, by labeling the roots just on the left-upper-half part:

| 0 | α_{1} | $\alpha_{1}+\alpha_{2}$ | $\alpha_{1}+\alpha_{2}$
 $+\alpha_{4}$ | $\alpha_{1}+\alpha_{2}$
 $\alpha_{3}+\alpha_{5}$
 $+\alpha_{5}$ | $\alpha_{1}+\alpha_{2}$
 $+\alpha_{3}+\alpha_{4}$
 $+\alpha_{5}$ | $\alpha_{1}+\alpha_{2}$
 $+\alpha_{3}+\alpha_{4}$
 $+\alpha_{5}$ | $\alpha_{1}+\alpha_{2}$
 $+2 \alpha_{3}+\alpha_{4}$
 $+\alpha_{5}$ | $\alpha_{1}+\alpha_{2}$
 $+2 \alpha_{3}+\alpha_{4}$
 $+\alpha_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-\alpha_{1}$ | 0 | α_{2} | $\alpha_{2}+\alpha_{3}$ | $\alpha_{2}+\alpha_{3}$
 $+\alpha_{4}$ | $\alpha_{2}+\alpha_{3}$
 $+\alpha_{5}$ | $\alpha_{2}+\alpha_{3}$
 $+\alpha_{4}+\alpha_{5}$ | $\alpha_{2}+2 \alpha_{3}$
 $+\alpha_{4}+\alpha_{5}$ | |
| $-\alpha_{1}-\alpha_{2}$ | $-\alpha_{2}$ | 0 | α_{3} | $\alpha_{3}+\alpha_{4}$ | $\alpha_{3}+\alpha_{5}$ | $\alpha_{3}+\alpha_{4}$
 $+\alpha_{5}$ | | |
| $-\alpha_{1}-\alpha_{2}$
 $-\alpha_{3}$ | $-\alpha_{2}-\alpha_{3}$ | $-\alpha_{3}$ | 0 | α_{4} | α_{5} | | | |
| $-\alpha_{1}-\alpha_{2}$
 $-\alpha_{3}-\alpha_{4}$ | $-\alpha_{2}-\alpha_{3}$
 $-\alpha_{4}$ | $-\alpha_{3}-\alpha_{4}$ | $-\alpha_{4}$ | 0 | | | | |
| $-\alpha_{1}-\alpha_{2}$
 $-\alpha_{3}-\alpha_{5}$ | $-\alpha_{2}-\alpha_{3}$
 $-\alpha_{5}$ | $-\alpha_{3}-\alpha_{5}$ | $-\alpha_{5}$ | | | | | |
| $-\alpha_{1}-\alpha_{2}$
 $-\alpha_{3}-\alpha_{4}$
 $-\alpha_{5}$ | $-\alpha_{2}-\alpha_{3}-\alpha_{5}$
 $-\alpha_{3}-\alpha_{4}$
 $-\alpha_{5}$
 $-\alpha_{1}-\alpha_{2}$
 $-\alpha_{2}-2 \alpha_{3}$
 $-\alpha_{3}-\alpha_{4}-\alpha_{5}$
 $-\alpha_{5}$ | | | | | | | |
| $-\alpha_{1}-\alpha_{2}$
 $-2 \alpha_{3}-\alpha_{4}$
 $-\alpha_{5}$ | | | | | | | | |

For D_{4}-case, see [17]. Also for $D_{n}, n=3$ or $n \geq 6$, we have similar root decomposition of $\mathfrak{g}=\mathfrak{o}(n, n)$.

By explicit representations of Engel systems, we have the following:

Lemma 8.1. Given (abstract) weights $w_{2,1}, w_{3,2}, \ldots, w_{n-1, n-2}, w_{n, n-1}, w_{n+1, n-1}$ of

$$
x_{2,1}, x_{3,2}, \ldots, x_{n-1, n-2}, x_{n+2, n+1}=-x_{n, n-1}, x_{n+2, n}=-x_{n+1, n-1}
$$

the weights of other variables are determined by the Engel differential system, and then the weights of components of the projections $\pi_{i},(1 \leq i \leq n-2), \pi_{n}^{ \pm}$to $\mathcal{N}_{i},(1 \leq i \leq$ $n-2), \mathcal{N}_{n}^{ \pm}$are given by the unique expressions of the corresponding roots by simple roots.

See [17] for the detailed calculations for D_{4}-case.
We can perform the calculations also for general D_{n}-cases. For example the orders of components of the curve $\pi_{1} f$ in \mathcal{N}_{1} for an Engel integral curve f are given by the weights

$$
\begin{gathered}
w_{2,1}=\operatorname{ord}\left(x_{2,1} f\right), \quad w_{3,2}=\operatorname{ord}\left(x_{3,2} f\right), \ldots, \quad w_{n-1, n-2}=\operatorname{ord}\left(x_{n-1, n-2} f\right), \\
w_{n, n-1}=\operatorname{ord}\left(x_{n, n-1} f\right)=\operatorname{ord}\left(x_{n+2, n+1} f\right) \\
w_{n+1, n-1}=\operatorname{ord}\left(x_{n+1, n-1} f\right)=\operatorname{ord}\left(x_{n+2, n} f\right)
\end{gathered}
$$

as follows:

$$
\left\{\begin{array}{l}
w_{2,1}, \\
w_{3,1}=w_{2,1}+w_{3,2} \\
\vdots \\
w_{n-1,1}=w_{2,1}+w_{3,2}+\cdots+w_{n-2, n-3}+w_{n-1, n-2} \\
w_{n, 1}=w_{2,1}+w_{3,2}+\cdots+w_{n-2, n-3}+w_{n-1, n-2}+w_{n, n-1}, \\
w_{n+1,1}=w_{2,1}+w_{3,2}+\cdots+w_{n-2, n-3}+w_{n-1, n-2}+w_{n+1, n-1} \\
w_{n+2,1}=w_{2,1}+w_{3,2}+\cdots+w_{n-2, n-3}+w_{n-1, n-2}+w_{n, n-1}+w_{n+1, n-1}, \\
w_{n+3,1}=w_{2,1}+w_{3,2}+\cdots+w_{n-2, n-3}+2 w_{n-1, n-2}+w_{n, n-1}+w_{n+1, n-1} \\
\vdots \\
w_{2 n-1,1}=w_{2,1}+2 w_{3,2}+\cdots+2 w_{n-2, n-3}+2 w_{n-1, n-2}+w_{n, n-1}+w_{n+1, n-1}
\end{array}\right.
$$

For other projections we have similar calculations. Then we have

Lemma 8.2. Let $f: I \rightarrow \mathcal{Z}\left(D_{n}\right)$ be a generic Engel-integral curve. Then, for any $t_{0} \in I$ and for any flag chart $\left(x_{i, j}\right)$ on $\mathcal{Z}\left(D_{n}\right)$ centered at $f\left(t_{0}\right)$, we have the following
$(n+1)$-cases.

	$w_{2,1}$	$w_{n, n-1}$	$w_{n+1, n-1}$	$w_{3,2}$	$w_{4,3}$	\ldots	$w_{n-1, n-2}$
a_{0}	1	1	1	1	1	\ldots	1
a_{1}	2	1	1	1	1	\ldots	1
a_{n-1}	1	2	1	1	1	\ldots	1
a_{n}	1	1	2	1	1	\ldots	1
a_{2}	1	1	1	2	1	\ldots	1
a_{3}	1	1	1	1	2	\ldots	1
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots
a_{n-2}	1	1	1	1	1	\ldots	2

Here $w_{i, j}$ is the vanishing order of the component $x_{i, j} f$ at t_{0}. Then the sets of orders on components for the projections $\pi_{1} f, \pi_{n}^{+} f, \pi_{n}^{-} f, \pi_{2} f \ldots, \pi_{n-2} f$, are given as in the following table if $n \geq 6$:

cases	$\pi_{1} f$	$\pi_{n}^{+} f$	$\pi_{n}^{-} f$	$\pi_{2} f$	$\pi_{3} f$	\cdots	$\pi_{n-2} f$
a_{0}	$1,2,3, \ldots$	\cdots	$1,2,3, \ldots$				
a_{1}	$2,3,4,5, \ldots$	$1,2,3, \ldots$	$1,2,3, \ldots$	$1,2,3, \ldots$	$1,2,3, \ldots$	\cdots	$1,2,3, \ldots$
a_{n-1}	$1,2,3, \ldots$	$2,3,4,5, \ldots$	$1,2,3, \ldots$	$1,2,3, \ldots$	$1,2,3, \ldots$	\cdots	$1,2,3, \ldots$
a_{n}	$1,2,3, \ldots$	$1,2,3, \ldots$	$2,3,4,5, \ldots$	$1,2,3, \ldots$	$1,2,3, \ldots$	\cdots	$1,2,3, \ldots$
a_{2}	$1,3,4,5, \ldots$	$1,2,3, \ldots$	$1,2,3, \ldots$	$2,3,4,5, \ldots$	$1,2,3, \ldots$	\cdots	$1,2,3, \ldots$
a_{3}	$1,2,4,5, \ldots$	$1,2,3, \ldots$	$1,2,3, \ldots$	$1,2,3, \ldots$	$2,3,4,5, \ldots$	\cdots	$1,2,3, \ldots$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots
a_{n-2}	$1,2,3, \ldots$	$1,3,4,5, \ldots$	$1,3,4,5, \ldots$	$1,2,3, \ldots$	$1,2,3, \ldots$	\cdots	$2,3,4,5, \ldots$

Here $1,2,3, \ldots$ (resp. $2,3,4,5, \ldots, 1,3,4,5, \ldots, 1,2,4,5, \ldots)$ means that there are components having the orders $1,2,3$ (resp. 2, 3, 4, 5, 1, 3, 4, 5, 1, 2, 4,5) and that orders of other components are at least 3 (resp. 5).

The list of orders for D_{4} is given in [17]. Also for D_{5} we can calculate orders from the table of root decomposition of $\mathfrak{o}(5,5)$ as above.

Then we obtain the normal forms of the tangent surfaces, by applying the general theory on tangent surfaces [13], which are expressed using the notion of "openings".

§ 9. Tangent surfaces of curves and openings

We treat singularities of tangent surfaces in local coordinates where "tangent lines" are actually given as lines.

Let $\gamma: I \rightarrow \mathbb{R}^{N+1}$ be a C^{∞} curve,

$$
\gamma(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{N+1}(t)\right) .
$$

Take $t_{0} \in I$ and set $\operatorname{ord}\left(x_{i}(t)-x_{i}\left(t_{0}\right)\right)=a_{i}$, the order of the leading term with respect to $t-t_{0}$. We do not assume that a_{i} is strictly increasing, but suppose, by changing the numbering if necessary, that

$$
0<a_{1}<a_{2} \leq \min \left\{a_{i} \mid i \geq 3\right\}
$$

Set $\alpha(t)=t^{a_{1}-1}$ and define

$$
f_{i}(t, s):=x_{i}(t)+\frac{s}{\alpha(t)} x_{i}^{\prime}(t),(1 \leq i \leq N+1)
$$

so that

$$
f(t, s)=\operatorname{Tan}(\gamma):=\gamma(t)+\frac{s}{\alpha(t)} \gamma^{\prime}(t): I \times \mathbb{R} \rightarrow \mathbb{R}^{N+1}
$$

is a parametrization of the tangent surface of γ.
Consider the Wronskians

$$
W_{i, j}(t)=\left|\begin{array}{cc}
x_{i}^{\prime}(t) & x_{j}^{\prime}(t) \\
x_{i}^{\prime \prime}(t) & x_{j}^{\prime \prime}(t)
\end{array}\right|
$$

Lemma 9.1. (cf. Lemma 4.5 of [13]) For the exterior differential of f_{i}, we have, on a neighborhood of $t_{0} \times \mathbb{R}$ in $I \times \mathbb{R}$,

$$
d f_{i}=\frac{W_{i, 2}}{W_{1,2}} d f_{1}+\frac{W_{1, i}}{W_{1,2}} d f_{2},(1 \leq i \leq N+1)
$$

and $\frac{W_{i, 2}}{W_{1,2}}, \frac{W_{1, i}}{W_{1,2}}$ are C^{∞}.

Proof. We have

$$
d f_{i}=\frac{x_{i}^{\prime}}{\alpha} d s+\left(x_{i}^{\prime}+s\left(\frac{x_{i}^{\prime}}{\alpha}\right)^{\prime}\right) d t .
$$

In particular we have

$$
\left(\begin{array}{ll}
d f_{1} & d f_{2}
\end{array}\right)=\left(\begin{array}{ll}
d s & d t
\end{array}\right)\left(\begin{array}{cc}
\frac{x_{1}^{\prime}}{\alpha} & \frac{x_{2}^{\prime}}{\alpha} \\
x_{1}^{\prime}+s\left(\frac{x_{1}^{\prime}}{\alpha}\right)^{\prime} & x_{2}^{\prime}+s\left(\frac{x_{2}^{\prime}}{\alpha}\right)^{\prime}
\end{array}\right)
$$

therefore we have

$$
\left(\begin{array}{ll}
d s & d t
\end{array}\right)=\left(\begin{array}{ll}
d f_{1} & d f_{2}
\end{array}\right) \frac{\alpha^{2}}{s W_{1,2}}\left(\begin{array}{cc}
x_{2}^{\prime}+s\left(\frac{x_{2}^{\prime}}{\alpha}\right)^{\prime} & -\frac{x_{2}^{\prime}}{\alpha} \\
-x_{1}^{\prime}-s\left(\frac{x_{1}^{\prime}}{\alpha}\right)^{\prime} & \frac{x_{1}^{\alpha}}{\alpha}
\end{array}\right) .
$$

Then we have

$$
d f_{i}=\left(\begin{array}{ll}
d s & d t
\end{array}\right)\binom{\frac{x_{i}^{\prime}}{\alpha}}{x_{i}^{\prime}+s\left(\frac{x_{i}^{\prime}}{\alpha}\right)^{\prime}}=\left(\begin{array}{ll}
d f_{1} & d f_{2}
\end{array}\right) \frac{1}{W_{1,2}}\binom{W_{i, 2}}{W_{1, i}},
$$

which shows the first equality. The order of $W_{1,2}$ is equal to $a_{1}+a_{2}-3$ and the order of $W_{i, j}$ is at least $a_{i}+a_{j}-3$. Note that $W_{i, i}=0$. Therefore, for any i, j with $1 \leq i, j \leq n$, the quotient $W_{i, j} / W_{1,2}$, which is C^{∞} outside of $t_{0} \times \mathbb{R}$, extends to a C^{∞} function to a neighborhood of $t_{0} \times \mathbb{R}$ in $I \times \mathbb{R}$. Thus we have the result.

In the above situation, we call f is an opening of $\left(f_{1}, f_{2}\right):\left(I \times \mathbb{R}, t_{0} \times \mathbb{R}\right) \rightarrow \mathbb{R}^{2}$ (see [13] for the details of openings).

In what follows, we take $t-t_{0}$ and $x-\gamma\left(t_{0}\right)$ as coordinates.
Lemma 9.2. For a C^{∞} curve-germ $\gamma=\left(x_{1}, \ldots, x_{N+1}\right):(\mathbb{R}, 0) \rightarrow\left(\mathbb{R}^{N+1}, 0\right)$, $N \geq 2$, suppose, at $t=0$, ord $\left(x_{1}\right)=1, \operatorname{ord}\left(x_{2}\right)=2, \operatorname{ord}\left(x_{3}\right)=3$ and $\operatorname{ord}\left(x_{i}\right) \geq 3,(3<$ $i \leq N+1)$. Then the tangent surface $\operatorname{Tan}(\gamma)$ is locally diffeomorphic to the cuspidal edge.

Proof. By Lemma 9.1, we see $\operatorname{Tan}(\gamma)$ is an opening of $\operatorname{Tan}\left(x_{1}, x_{2}\right)$ which is locally diffeomorphic to the fold map-germ $\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{2}, 0\right)$. Moreover we have that $\operatorname{Tan}(\gamma)$ is locally diffeomorphic to the versal opening of the fold map-germ, and therefore it is locally diffeomorphic to the cuspidal edge (Proposition 6.9 and Theorem 7.1 of [13]). Note that the theory of [13] is applied to the case γ is not necessarily of finite type. For example, if the image of γ is included in a proper linear subspace, then γ is not of finite type. However the theory of [13] is applied even to such a case.

Similarly we have, by Proposition 6.9 and Theorem 7.1 of [13]:
Lemma 9.3. Let $\gamma=\left(x_{1}, \ldots, x_{N+1}\right):(\mathbb{R}, 0) \rightarrow\left(\mathbb{R}^{N+1}, 0\right), N \geq 3$, be a C^{∞} curve-germ.
(1)(OSW) If $\operatorname{ord}\left(x_{1}\right)=2, \operatorname{ord}\left(x_{2}\right)=3, \operatorname{ord}\left(x_{3}\right)=4, \operatorname{ord}\left(x_{4}\right)=5$ and $\operatorname{ord}\left(x_{i}\right) \geq$ $5,(4<i \leq N+1)$ at 0 , then the tangent surface $\operatorname{Tan}(\gamma)$ is locally diffeomorphic to the open swallowtail.
(2)(OM) If $\operatorname{ord}\left(x_{1}\right)=1, \operatorname{ord}\left(x_{2}\right)=3, \operatorname{ord}\left(x_{3}\right)=4, \operatorname{ord}\left(x_{4}\right)=5$ and $\operatorname{ord}\left(x_{i}\right) \geq$ $5,(4<i \leq N+1)$ at 0 , then the tangent surface $\operatorname{Tan}(\gamma)$ is locally diffeomorphic to the open Mond surface.
(3)(OFU) If ord $\left(x_{1}\right)=1, \operatorname{ord}\left(x_{2}\right)=2, \operatorname{ord}\left(x_{3}\right)=4, \operatorname{ord}\left(x_{4}\right)=5$ and $\operatorname{ord}\left(x_{i}\right) \geq$ $5,(4<i \leq N+1)$ at 0 , then the tangent surface $\operatorname{Tan}(\gamma)$ is locally diffeomorphic to the open folded umbrella.

Proof of Main Theorems 3.1, 6.2, 6.3, 6.4. Except for $n=3$, Theorem 3.1 follows from Theorems 6.2, 6.3, and 6.4. Theorems 6.2, 6.3, 6.4 follow from Lemmata 8.2, 9.2, 9.3. The case $n=3$ of Theorem 3.1 is shown in $\S 10$.

$\S 10 . \quad D_{3}$-case

Let us examine the case $n=3$. The system of flag coordinates is given by

$$
x_{21}, x_{31}, x_{41}, x_{51}, x_{32}, x_{42}
$$

and the projections $\pi_{1}: \mathcal{Z}\left(D_{3}\right) \rightarrow \mathcal{N}_{1}, \pi_{3}^{ \pm}: \mathcal{Z}\left(D_{3}\right) \rightarrow \mathcal{N}_{3}^{ \pm}$are given as follows:

$$
\begin{gathered}
\pi_{1}\left(x_{21}, x_{31}, x_{41}, x_{51}, x_{32}, x_{42}\right)=\left(x_{21}, x_{31}+x_{32} x_{21}, x_{41}+x_{42} x_{21}, x_{51}-x_{42} x_{32} x_{21}\right), \\
\pi_{3}^{+}\left(x_{21}, x_{31}, x_{41}, x_{51}, x_{32}, x_{42}\right)=\left(x_{41}, x_{42}, x_{51}+x_{42} x_{31}\right) \\
\pi_{3}^{-}\left(x_{21}, x_{31}, x_{41}, x_{51}, x_{32}, x_{42}\right)=\left(x_{31}, x_{32}, x_{51}+x_{41} x_{32}\right)
\end{gathered}
$$

The Engel system on $\mathcal{Z}\left(D_{3}\right)$ is given by

$$
\left\{\begin{array}{l}
d x_{31}+x_{21} d x_{32}=0 \\
d x_{41}+x_{21} d x_{42}=0 \\
d x_{51}-x_{21} x_{42} d x_{32}-x_{21} x_{32} d x_{42}=0
\end{array}\right.
$$

The orders of components of $\pi_{1} f, \pi_{3}^{+} f$ and $\pi_{3}^{-} f$ for a generic Engel integral curve f are given by the following table (cf. Lemma 8.2):

cases	$\pi_{1} f$	$\pi_{3}^{+} f$	$\pi_{3}^{-} f$
a_{0}	$1,2,2,3$	$1,2,3$	$1,2,3$
a_{1}	$2,3,3,4$	$1,3,4$	$1,3,4$
a_{2}	$1,2,3,4$	$2,3,4$	$1,2,4$
a_{3}	$1,2,3,4$	$1,2,4$	$2,3,4$

Proof of Theorem 6.1 (and Theorem 3.1, $n=3$). It is known that the singularity of tangent surfaces of a curve of type $(2,3,4)$ (resp. $(1,3,4),(1,2,4)$) is diffeomorphic to the swallowtail (resp. Mond surface, folded umbrella) (see [12]). In the case (a_{1}), let $h_{1}, h_{2}, h_{3}, h_{4}$ be the components of $\pi_{1} f$ of order $2,3,3,4$ respectively. Write

$$
h_{2}=a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+\cdots, h_{3}=b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+\cdots, h_{4}=c_{4} t^{4}+c_{5} t^{5}+\cdots,
$$

with $a_{3} \neq 0, b_{3} \neq 0, c_{4} \neq 0$. Set $k_{1}=h_{1}, k_{2}=h_{2}$,

$$
k_{3}:=b_{3} h_{2}-a_{3} h_{3}=\left(b_{3} a_{4}-a_{3} b_{4}\right) t^{4}+\left(b_{3} a_{5}-a_{3} b_{5}\right) t^{5}+\cdots,
$$

and

$$
k_{4}:=c_{4} k_{3}-\left(b_{3} a_{4}-a_{3} b_{4}\right) h_{4}=\left\{\left(b_{3} a_{5}-a_{3} b_{5}\right) c_{4}-\left(b_{3} a_{4}-a_{3} b_{4}\right) c_{5}\right\} t^{5}+\cdots .
$$

Generically we have that $b_{3} a_{4}-a_{3} b_{4} \neq 0$ and $\left(b_{3} a_{5}-a_{3} b_{5}\right) c_{4}-\left(b_{3} a_{4}-a_{3} b_{4}\right) c_{5} \neq 0$. Then the orders of $k_{1}, k_{2}, k_{3}, k_{4}$ are $2,3,4,5$ respectively. Therefore we see that $\pi_{1} f$ is of type $(2,3,4,5)$ for a generic f. Then, by Lemmata $9.2,9.3$, we have the results.

\S 11. Foldings and removings

We consider the natural problem: How are the D_{n}-cases related to other Dynkin diagrams ?

For example, we have the following sequence of diagrams from the D_{4}-diagram by "foldings" and "removings":

In fact, for each Dynkin diagram P, we can associate a tree of fibrations T_{P} such that a folding of Dynkin diagram $P \rightarrow Q$ corresponds to an embedding $T_{Q} \rightarrow T_{P}$ between trees of fibrations, and a removing $R \rightarrow S$ corresponds to a local projection $T_{R} \rightarrow T_{S}$ between trees of fibrations.

In this section we present the results for the cases obtained from the Dynkin diagram D_{4} by foldings and removings. In each case we can define "Engel distribution" (standard distribution) on each flag manifold as in D_{n}-cases, and we can consider "a diagram of classification results" on singularities of tangent surfaces associated to generic "Engel integral curves".

By using the split octonions we constructed the geometric model for G_{2}-case (see [16] for details). The geometric model consists of double fibrations

$$
\mathcal{Y} \stackrel{\Pi_{\mathcal{Y}}}{\longleftrightarrow} \mathcal{Z} \xrightarrow{\Pi_{\mathcal{X}}} \mathcal{X}
$$

with $\operatorname{dim}(\mathcal{Z})=6, \operatorname{dim}(\mathcal{Y})=\operatorname{dim}(\mathcal{X})=5$. The Engel distribution in G_{2}-case is given by

$$
\mathcal{E}=\operatorname{Ker}\left(\Pi_{\mathcal{Y}_{*}}\right) \oplus \operatorname{Ker}\left(\Pi_{\mathcal{X}_{*}}\right) \subset T \mathcal{Z}
$$

Then we see that \mathcal{E} is of rank 2 and with the small growth vector $(2,3,4,5,6)$ and the big growth vector $(2,3,4,6)$.

A curve $f: I \rightarrow(\mathcal{Z}, \mathcal{E})$ from an open interval I is called an Engel integral curve if $f_{*}(T I) \subset \mathcal{E}(\subset T \mathcal{Z})$. The tangent surface of $\Pi_{\mathcal{Y}} f\left(\right.$ resp. $\left.\Pi_{\mathcal{X}} f\right)$ is given by $\Pi_{\mathcal{Y}} \Pi_{\mathcal{X}}^{-1} \Pi_{\mathcal{X}} f(I)$ (resp. $\left.\Pi_{\mathcal{X}} \Pi_{\mathcal{Y}}^{-1} \Pi_{\mathcal{Y}} f(I)\right)$.

Theorem 11.1. $\quad\left(G_{2},[16]\right)$. For a generic Engel integral curve $f: I \rightarrow(\mathcal{Z}, \mathcal{E})$, the pair of types of $\Pi_{\mathcal{Y}} f, \Pi_{\mathcal{X}} f$ at any point $t_{0} \in I$ is given by one of the following three cases:

$$
\begin{gathered}
\text { I : }((1,2,3,4,5),(1,2,3,4,5)) \text {, } \\
\text { II : }((1,3,4,5,7),(2,3,4,5,7)) \text {, } \\
\text { III : }((2,3,5,7,8),(1,3,5,7,8)) .
\end{gathered}
$$

The pair of diffeomorphism classes of tangent surfaces of curves $\Pi_{\mathcal{Y}} f$ and $\Pi_{\mathcal{X}} f$ at any point $t_{0} \in I$ is classified, up to local diffeomorphisms, into the following three cases:

> I : (cuspidal edge, cuspidal edge),
> II : (open Mond surface, open swallowtail), III : (generic open folded pleat, open Shcherbak surface).

The open Shcherbak surface is the singularity of tangent surface of a curve of type $(1,3,5,7,8)$. Note that the local diffeomorphism class of tangent surfaces of curves of type $(1,3,5,7,8)$ is uniquely determined (Proposition 7.2 of [16]).

We exhibit only classification results for the remaining cases $B_{3}, A_{3}=D_{3}, C_{2}=B_{2}$ and A_{2}.
B_{3}-case. Starting from $V=\mathbb{R}^{3,4}$, we have the following table:

⑤	(6)	7
$C E$	$C E$	$C E$
$O S W$	$C E$	$C E$
$U F U$	$O S W$	$C E$
$O M$	$O M$	$O S W$

Here numbers of the first line give the dimensions of Grassmannians corresponding to vertices of the Dynkin diagrams. The abbreviation UFU is used for "unfurled folded umbrella", which is the tangent surface of a curve of type $(1,2,4,6,7)$.
$A_{3}=D_{3}$-case. Starting from $V=\mathbb{R}^{4}$, we have the following essentially same table
that D_{3} (cf. [12]):

(3)	(3)	(4)
$C E$	$C E$	$C E$
$S W$	$F U$	$C E$
M	M	$O S W$
$F U$	$S W$	$C E$

$C_{2}=B_{2}$-case. Starting from $V=\mathbb{R}^{4}$ (symplectic), or $\mathbb{R}^{2,3}$, we have the following classification ([15]):

(3)	(3)
cuspidal edge	cuspidal edge
Mond surface	swallowtail
generic folded pleat	Shcherbak surface

A_{2}-case. $([15])$. Starting from $V=\mathbb{R}^{3}$, we have :

(2)	(2)
fold	fold
beak-to-beak	Whitney's cusp
Whitney's cusp	beak-to-beak

References

[1] J.F. Adams, $\operatorname{Spin}(8)$, triality, F_{4} and all that, in the selected works of J. Frank Adams, vol.2, pp. 435-445.
[2] V.I. Arnol'd, S.M. Gusein-Zade, A.N. Varchenko, Singularities of differentiable maps. Volume I: The classification of critical points, caustics and wave fronts, Monographs in Math. 82, Birkhäuser (1986).
[3] R.J. Baston, M.G. Eastwood, The Penrose Transform. Its Interaction with Representation Theory, Oxford Math. Monographs. Oxford Science Publ. The Clarendon Press, Oxford Univ. Press, New York, (1989).
[4] N. Bourbaki, Groupes et Algebres de Lie, Chapitre 4 a 6, Hermann (1968), Springer (2007).
[5] A. Čap, J. Slovák, Parabolic Geometries I, Background and General Theory, Math. Surveys and Monographs, 154, Amer. Math. Soc., Providence, RI, (2009).
[6] E. Cartan, Le principe de dualité et la théorie des groupes simple et semi-simple, Bull. Sci. Math, 48 (1925) 361-374.
[7] C. Chevalley, The Algebraic Theory of Spinors and Clifford Algebras, Collected works, vol. 2, Springer-Verlag (1997). Chapter 2.
[8] V. V. Goryunov, Unitary reflection groups associated with singularities of functions with cyclic symmetry, Uspekhi Mat. Nauk 54-5(329) (1999), 3-24, English translation Russian Math. Surveys 54-5 (1999), 873-893
[9] V. Guillemin, S. Sternberg, Variations on a Theme by Kepler, Amer. Math. Colloquium Publ. 42, Amer. Math. Soc. (1990).
[10] S. Helgason, Differential geometry, Lie groups, and Symmetric spaces, Pure and Applied Math., 80, Academic Press, Inc. New York-London, (1978).
[11] L.P. Hughston, Applications of $\mathrm{SO}(8)$ spinors, Gravitation and geometry, Monogr. Textbooks Phys. Sci., 4, Bibliopolis, Naples, (1987), pp. 243-277.
[12] G. Ishikawa, Generic bifurcations of framed curves in a space form and their envelopes, Topology and its Appl., 159 (2012), 492-500.
[13] G. Ishikawa, Singularities of tangent varieties to curves and surfaces, Journal of Singularities, 6 (2012), 54-83.
[14] G. Ishikawa, Y. Machida, Singularities of improper affine spheres and surfaces of constant Gaussian curvature, Intern. J. of Math., 17-3 (2006), 269-293.
[15] G. Ishikawa, Y. Machida, M. Takahashi, Asymmetry in singularities of tangent surfaces in contact-cone Legendre-null duality, Journal of Singularities, 3 (2011), 126-143.
[16] G. Ishikawa, Y. Machida, M. Takahashi, Singularities of tangent surfaces in Cartan's split G_{2}-geometry, Hokkaido University Preprint Series in Mathematics \#1020, (2012). (submitted).
[17] G. Ishikawa, Y. Machida, M. Takahashi, Geometry of D_{4} conformal triality and singularities of tangent surfaces, Hokkaido University Preprint Series in Mathematics \#1051, (2014). (submitted).
[18] M. Mikosz, A. Weber, Triality in $\mathfrak{s o}(4,4)$, characteristic classes, D_{4} and G_{2} singularities, preprint (December 2013). http://www.mimuw.edu.pl/~aweber/publ.html
[19] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, 91, Amer. Math. Soc. (2002).
[20] B. O'Neill, Semi-Riemannian Geometry With Applications to Relativity, Pure and Applied Mathematics 103, Academic Press (1983).
[21] I.R. Porteous, Clifford Algebras and the Classical Groups, Cambridge Studies in Adv. Math., 50, Cambridge Univ. Press (1995).
[22] J. Tits, Les groupes de Lie exceptionnels et leur interprétation géométrique, Bull. Soc. Math. Belg. 8 (1956), 48-81.

[^0]: Received April 20, 201x. Revised September 11, 201x.
 2000 Mathematics Subject Classification(s): Primary 58K40; Secondly 57R45, 53A20.
 Key Words: Dynkin diagram, null tangent line, null surface.
 *Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan.
 e-mail: ishikawa@math.sci.hokudai.ac.jp
 **Numazu College of Technology, Shizuoka 410-8501, Japan. e-mail: machida@numazu-ct.ac.jp
 *** Muroran Institute of Technology, Muroran 050-8585, Japan.
 e-mail: masatomo@mmm.muroran-it.ac.jp

