REGULAR PAPER

CrossMark

11

12

13

14

15

16

17

18

19

20

30

31

32

Production characteristics of reactive oxygen/nitrogen species in water using atmospheric pressure discharge plasmas

Kazuhiro Takahashi^{1*}, Kohki Satoh¹, Hidenori Itoh¹, Hideki Kawaguchi¹, Igor Timoshkin², Martin Given², and Scott MacGregor²

¹Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan

²University of Strathclyde, Glasgow G1 1XW, U.K.

*E-mail: ktakahashi@mmm.muroran-it.ac.jp

Received November 30, 2015; revised January 27, 2016; accepted February 13, 2016; published online xxxx yy, zzzz

A pulsed discharge, a DC corona discharge, and a plasma jet are separately generated above a water surface, and reactive oxygen species and reactive nitrogen species (ROS/RNS) in the water are investigated. ROS/RNS in water after the sparging of the off-gas of a packed-bed dielectric barrier discharge (PB-DBD) are also investigated. H_2O_2 , NO_2^- , and NO_3^- are detected after plasma exposure and only NO_3^- after off-gas sparging. Short-lifetime species in plasma are found to play an important role in H_2O_2 and NO_2^- production and long-lifetime species in NO_3^- production. NO_x may inhibit H_2O_2 production through OH consumption to produce HNO_2 and HNO_3 . O_3 does not contribute to ROS/RNS production. The pulsed plasma exposure is found to be effective for the production of H_2O_2 and NO_2^- , and the off-gas sparging of the PB-DBD for the production of NO_3^- . © 2016 The Japan Society of Applied Physics

²¹ 1. Introduction

²³ In recent years, the study of plasma in contact with water has ²⁴ gained increasing attention and the water is known as plasma-²⁵ treated water (PTW; also called plasma-activated medium, ²⁶ plasma-activated water, and so on). PTW is produced by ²⁷ various types of discharge plasma such as gliding arc,^{1–3)} ²⁸ plasma jet,^{4–6)} and dielectric barrier discharge.^{7,8)} In general, ²⁹ many kinds of species, such as radicals, ions, and ozone (O₃), ³⁰ are produced in plasma, and some of the species in the ³¹ plasma in contact with water act as precursors of reactive ³² oxygen species and reactive nitrogen species (ROS/RNS) in ³³ water.

PTW containing the ROS/RNS is applied to various fields 34 $_{35}$ such as disinfection, $^{1,3-5,7,8)}$ agriculture, $^{2,9)}$ and plasma ³⁶ medicine.⁶⁾ Several groups suggested that hydrogen peroxide 37 (H₂O₂), peroxynitrous acid (HOONO), nitrite (NO₂⁻), nitric 38 acid (HNO₃), and/or synergistic effects between these ³⁹ species in water play a key role in bacterial inactivation, 40 plant germination and growth, and chemical and biological ⁴¹ effects. Naïtali et al.¹⁾ reported that PTW and acidified water, ⁴² containing 0.01 mmol/L H_2O_2 , 1.6 mmol/L NO_2^- , and $_{43}$ 0.13 mmol/L nitrate (NO₃⁻), show a lethal effect on *Hafnia* ⁴⁴ alvei. Kim et al.³⁾ found that PTW containing 2.94 mmol/L ⁴⁵ H₂O₂ contributes to 5-log reduction for *Escherichia coli*. ⁴⁶ Takaki⁹⁾ reported that water containing 0.12 mmol/L NO₃⁻ 47 contributes to the improvement of the growth rate of Brassica ⁴⁸ *rapa* var. *perviridis*. Furthermore, Matsui et al.¹⁰⁾ also 49 suggested that long-lifetime neutral particles in the gas 50 phase, such as O_3 , H_2O_2 , and HNO₃, and synergistic effects 51 between these species play a key role in the disinfection of 52 Geobacillus stearothermophilus spores. To utilize the PTW ⁵³ effectively and efficiently, it is important to control the ROS/ 54 RNS concentration and to clarify the interaction between 55 species in plasma and ROS/RNS in water as well as to ⁵⁶ investigate efficacy in the application fields, since PTW with 57 a wide-ranging ROS/RNS concentration is used for the 58 investigation of efficacy. Various types of discharge plasma 59 can produce the ROS/RNS; however, few studies have 60 focused on the correlation between the discharge plasma and 61 the ROS/RNS as far as we know.

In this work, we generated a pulsed discharge, a DC ²¹ corona discharge, an atmospheric pressure plasma jet, and a ²² packed-bed dielectric barrier discharge (PB-DBD) as a ²³ plasma source to produce ROS/RNS in water. We exposed ²⁴ deionized water to the pulsed discharge, DC corona dis-²⁶ charge, or plasma jet. We also sparged the off-gas of the ²⁶ PB-DBD into deionized water. Then, we investigated the ²⁷ concentration and production efficiency of the ROS/RNS in ²⁸ the water. ²⁹

2. Experimental procedure

2.1 Pulsed discharge

The experimental apparatus for a pulsed discharge is similar 33 to that used in a previous work.¹¹⁾ A needle electrode and a ³⁴ water bath electrode were placed in a cylindrical discharge 35 chamber to generate the pulsed discharge. The needle 36 electrode was a stainless-steel nail with a diameter of 37 1.5 mm and a length of 19 mm, the water bath electrode 38 was made of stainless steel with an inner diameter of 39 119 mm, a depth of 12 mm, and a capacity of 0.13 L, and the 40 cylindrical chamber was made of acrylic resin with an inner 41 diameter of 140 mm, a height of 100 mm, and a capacity of 42 1.54 L. Deionized water of 100 mL was poured into the water 43 bath electrode, and the distance between the tip of the needle 44 electrode and the water surface was fixed at 4 mm. Ar, N₂, 45 O₂, or a gas mixture of Ar/O₂, N₂/O₂, or Ar/N₂ was used ⁴⁶ as a background (BG) gas, and fed into the chamber at a 47 constant flow rate of 5 L/min. The gas mixture ratios were 48 Ar/O_2 , N_2/O_2 , and $Ar/N_2 = 80/20$, 60/40, 40/60, and 49 20/80%. 50

A pulsed high voltage with a pulse width of 500 ns ⁵¹ generated by a Blumlein generator, which has two coaxial ⁵² transmission lines (Fujikura 5D-2V) with a length of 50 m ⁵³ and a capacitance of 5 nF, was applied to the needle electrode ⁵⁴ to generate the pulsed discharge above the water surface. The ⁵⁵ coaxial transmission lines were charged to a negative voltage ⁵⁶ of 14.14 kV, and the pulse repetition rate was 20 pps (pulse ⁵⁷ per second). The applied voltage was measured using a high- ⁵⁸ voltage probe (Iwatsu Test Instruments HV-P30) and the ⁵⁹ discharge current was obtained by measuring the voltage ⁶⁰ drop across a non-inductive resistor connected in series ⁶¹

13

14

15

16

17

18

19

20

JAP PROOI

19

20

32

¹⁷ Fig. 1. (Color online) Schematic diagram of experimental apparatus for
 ¹⁸ plasma jet.

²¹ between the bath electrode and the ground. The input power
²² was calculated by multiplying the applied voltage and
²³ discharge current, and the input energy was obtained from
²⁴ the time integration of the input energy. Water samples of
²⁵ 1.2 mL were taken after plasma exposure and analyzed using
²⁶ a high-performance liquid chromatograph (HPLC; Shimadzu
²⁷ Prominence) equipped with an ion chromatography column
²⁸ (Shodex IC NI-424) in combination with an autosampler. The
²⁹ eluent of the HPLC was a mixed solution of 3 mmol/L acetic
³⁰ acid and 1.9 mmol/L potassium hydroxide, and the wave³¹ length of the absorbance detector was fixed at 220 nm.

33 2.2 Corona discharge

34 The experimental apparatus for a corona discharge is similar ³⁵ to that used in a previous work.¹²⁾ A comb-shaped electrode ³⁶ and a plastic container were placed in an acrylic discharge 37 chamber with a length of 140 mm, a width of 260 mm, and a ³⁸ height of 100 mm. The comb-shaped electrode consisted of ³⁹ four clusters, each of which has 26 (13×2) combs, with a 40 width of 1.6 mm and a length of 15 mm, placed at intervals 41 of 4 mm. Deionized water of 100 mL was poured into the 42 container, and the distance between the tip of the electrode 43 and the water surface was fixed at 15 mm. An aluminum foil 44 was immersed into the water and earthed. A gas mixture of 45 N_2/O_2 or Ar/O_2 was used as a BG gas and fed into the 46 chamber at a constant flow rate of 2L/min. The BG gas 47 mixture ratios were $Ar/O_2 = 80/20, 60/40, and 40/60\%$, and ⁴⁸ $N_2/O_2 = 60/40$ and 40/60%. A positive DC high voltage 49 of 14.7–15.4 kV was applied to the electrode to generate a ⁵⁰ corona discharge between the electrode and the water surface, ⁵¹ with an input power of 6 W. The input energy was obtained ⁵² from the time integration of the input power. Water samples of ⁵³ 1.2 mL were analyzed using the HPLC after plasma exposure. 54

55 2.3 Plasma jet

Figure 1 shows a schematic diagram of the experimental apparatus for the plasma jet. The atmospheric pressure plasma jet reactor consisted of a T-shaped glass tube, a copper tube, and an aluminum sheet. The copper tube was inserted into an end of the main tube of the T-shaped glass tube, and the aluminum sheet was bound around the main 28

29

53

54

tube and earthed. The gap length between the copper tube 1 and the aluminum sheet was fixed at 10 mm. An Ar or He gas 2 was fed into the main tube through the copper tube at a 3 constant flow rate of 10 or 5 L/min, respectively. A gas 4 mixture of N₂/O₂, the mixture ratio of which is N₂/O₂ = 5 100/0, 80/20, 60/40, 40/60, 20/80, and 0/100%, was mixed 6 into the plasma jet from the side tube of the T-shaped glass 7 tube at a constant flow rate of 0.1 L/min.

An AC high voltage of 6.0–7.0 kV amplitude generated by 9 a neon-sign transformer (Kodera Electronics CR-N16) was 10 applied to the copper tube to generate the plasma jet. The 11 input power was calculated by the Lissajous figure method, 13 12 and the input energy was obtained from the time integration 13 of the input power. The applied voltage was measured using 14 a high-voltage probe (Tektronix P6015A), and the charge 15 amount was obtained by measuring the voltage drop across a 16 ceramic capacitor with a capacitance of 10 nF, connected in 17 series between the aluminum sheet and the ground. The 18 voltage drop was measured using a high-voltage differential 19 probe (GW Instek GDP-100). Deionized water of 200 mL 20 was poured into a beaker placed below the plasma jet. The 21 distance between the water surface and the outlet end of the 22 main tube was fixed at 65 or 15 mm. The Ar gas flow rate was 23 fixed at 5 L/min when the distance was fixed at 15 mm. The 24 water was exposed to the plasma jet, and then water samples 25 of 1.2 mL were taken and analyzed using the HPLC after 26 plasma exposure. 27

2.4 Packed-bed dielectric barrier discharge

The experimental apparatus for a packed-bed dielectric barrier ³⁰ discharge (PB-DBD) is similar to that used in a previous ³¹ work.¹⁴⁾ A PB-DBD reactor consisted of a glass tube filled ³² with soda-lime glass balls, an inner rod electrode, and an outer ³³ mesh electrode. The diameters of the glass tube, glass balls, ³⁴ and rod electrode were 22, 3.0, and 2.0 mm, respectively. Ar, ³⁵ N₂, O₂, or a gas mixture of Ar/O₂, N₂/O₂, or Ar/N₂ was ³⁶ used as a BG gas and fed into the reactor at a constant flow ³⁷ rate of 2 L/min. The gas mixture ratios were Ar/O₂, N₂/O₂, ³⁸ and Ar/N₂ = 80/20, 60/40, 40/60, and 20/80%.

A sinusoidal high voltage of 5.7–12.0 kV amplitude ⁴⁰ generated by the neon-sign transformer was applied between ⁴¹ electrodes to generate the PB-DBD. The input energy was ⁴² obtained from the time integration of input power calculated ⁴³ by the Lissajous figure method. The off-gas from the reactor ⁴⁴ was introduced through a Teflon tube with a length of 60 cm ⁴⁵ and an inner diameter of 3.96 mm and sparged into deionized ⁴⁶ water of 100 mL in a flask. Water samples of 1.2 mL were ⁴⁷ taken and analyzed using the HPLC after off-gas sparging. ⁴⁸ Furthermore, the PB-DBD off-gas was analyzed using a ⁴⁹ Fourier transform infrared spectrophotometer (JASCO FT/ ⁵⁰ IR-4200) equipped with a gas cell (Infrared Analysis 10-PA), ⁵¹ which has an optical path length of 10 m.

3. Results and discussion

In HPLC analysis, H_2O_2 , NO_2^- , and NO_3^- were detected in ⁵⁵ the sampled water. Figure 2 shows the H_2O_2 concentrations ⁵⁶ in the sampled water as functions of specific energy, which is ⁵⁷ defined as the input energy per unit volume of water. H_2O_2 ⁵⁸ was produced in the cases of pulsed discharge, corona ⁵⁹ discharge, and plasma jet, but not in the case of PB-DBD off-⁶⁰ gas sparging; therefore, short-lifetime active and/or energetic ⁶¹

JJAP PROOI

13 14

15

16

19

23

24

25

27

28

29

30

33

33

59

Fig. 2. (Color online) H_2O_2 concentrations in sampled water as functions of specific energy: (a) pulsed discharge, (b) corona discharge, (c) plasma jet, and (d) PB-DBD.

³⁴ species in the plasma in contact with water probably ³⁵ contribute to H_2O_2 production. When water is exposed to ³⁶ plasma, vaporized water molecules can be dissociated as ³⁷ follows:^{15–17}

³⁸ $H_2O + e \rightarrow OH + H + e,$ (1)

$$H_2O + e \to H_2O^+ + 2e, \qquad (2)$$

1

$$H_2O^+ + H_2O \to H_3O^+ + OH.$$
 (3)

 $^{\mbox{\tiny 42}}$ Then, H_2O_2 can be produced from OH radicals represented $^{\mbox{\tiny 43}}$ as $^{18,19)}$

⁴⁴ OH + OH
$$\rightarrow$$
 H₂O₂ (k = 1.5 × 10⁻¹¹ cm³·mol⁻¹·s⁻¹), (4)

⁴⁶ where *k* is the rate constant. Although water vapor is ⁴⁷ contained within the concentration of 20 ppm as impurities in ⁴⁸ the BG gas of the PB-DBD, the concentration of OH radicals ⁴⁹ can be quite small, so that H_2O_2 produced by the reaction ⁵⁰ shown by Eq. (4) is negligible.

⁵¹ H_2O_2 concentrations in the pulsed discharge monotonically ⁵² increased with the specific energy, while the amount of H_2O_2 ⁵³ in the BG gas containing N₂ was found to be smaller than that ⁵⁴ in the other BG gas. This may be due to the inhibition of ⁵⁵ H_2O_2 production by species containing N atom(s). The H_2O_2 ⁵⁶ production efficiency of 31.2 µmol/kJ at a maximum was ⁵⁷ obtained when an Ar/O₂ mixture was used. The H_2O_2 ⁵⁸ concentrations in the corona discharge tended to increase ⁵⁹ with Ar or N₂ content in the mixture gas, and the maximum ⁶⁰ H_2O_2 production efficiency of 7.6 µmol/kJ was obtained in ⁶¹ Ar/O₂ = 80/20%. When the plasma jet was used, the amount of H_2O_2 was small and slightly increased with the shortening ³⁴ of the distance between the plasma and the water surface. The ³⁵ H_2O_2 production efficiency in Ar without the N_2/O_2 mixture ³⁶ was $1.7 \,\mu$ mol/kJ, which is significantly lower than that in ³⁷ pulsed discharge. Van Gils et al.⁵⁾ investigated the H_2O_2 ³⁸ concentrations in water exposed to an Ar plasma jet, and ³⁹ reported that the H_2O_2 production efficiency was $0.7 \,\mu$ mol/kJ ⁴⁰ at a maximum. This value differs slightly from the efficiency ⁴¹ of this work, so that pulsed discharge may be suitable for ⁴² highly efficient H_2O_2 production. ⁴³

Figure 3 shows the NO_2^- concentrations in the sampled ⁴⁴ water as functions of specific energy. NO_2^- was produced by ⁴⁵ exposure to the pulsed discharge, corona discharge, and ⁴⁶ plasma jet when the BG gas contained N₂, but not by the ⁴⁷ sparging of the PB-DBD off-gas; therefore, short-lifetime ⁴⁸ active and/or energetic species in the plasma in contact with ⁴⁹ water probably contribute to NO_2^- production. Furthermore, ⁵⁰ the NO_2^- concentration in the pulsed discharge was found ⁵¹ to increase and then decrease with the increase in specific ⁵² energy. When water is exposed to plasma in the BG gas ⁵³ containing N₂, the following reactions²⁰⁾ can occur:

$$N_2 + e(fast) \rightarrow 2N + e(slow), \qquad (5)^{56}$$

$$N + OH \rightarrow NO + H$$

$$(k = 4.9 \times 10^{-11} \,\mathrm{cm}^3 \cdot \mathrm{mol}^{-1} \cdot \mathrm{s}^{-1}),$$
 (6) 58

$$NO + OH + M \rightarrow HNO_2 + M$$

$$(k = 7.4 \times 10^{-31} \,\mathrm{cm}^{6} \cdot \mathrm{mol}^{-2} \cdot \mathrm{s}^{-1}),$$
 (7)

1

JJAP PROO

13 14

15

16

19

23

24

25

27

28

29

30

33

34

38

39

33 34

Fig. 3. (Color online) NO₂⁻ concentrations in sampled water as functions of specific energy: (a) pulsed discharge, (b) corona discharge, (c) plasma jet, and $_{37}$ (d) PB-DBD.

³⁵ where M is the third body. Then, HNO₂ dissolves in water ³⁶ and dissociates into NO₂⁻ and H⁺ in acid-base equilibrium ³⁷ ($pK_a = 3.3$) represented by^{5,21})

$$HNO_2 \rightleftharpoons NO_2^- + H^+. \tag{8}$$

⁴⁰ Furthermore, HNO₂ reacts with H_2O_2 to form HOONO ⁴¹ by^{5,22)}

⁴² $HNO_2 + H_2O_2 \rightarrow HOONO + H_2O.$ (9)

⁴⁴ HOONO is an unstable species and rapidly turns into NO_3^- ⁴⁵ and H⁺.²²⁾

⁴⁶ HOONO
$$\rightarrow$$
 NO₃⁻ + H⁺. (10)

⁴⁸ In this work, the pH drop of the water after pulsed discharge ⁴⁹ exposure was observed, and the pH decreased below 4.0 after ⁵⁰ 5 min exposure (corresponding to a specific energy of 32 ⁵¹ kJ/L) and 3.0 after 30 min exposure (corresponding to a ⁵² specific energy of 208 kJ/L) in N₂/O₂ = 80/20%. Therefore, ⁵³ NO₂⁻ in the water may be converted into NO₃⁻ through the ⁵⁴ reactions shown by Eqs. (8)–(10), resulting in the drop of ⁵⁵ the NO₂⁻ concentration with the increase in specific energy. ⁵⁶ NO₂⁻ concentrations in the corona discharge and plasma jet ⁵⁷ showed a tendency to saturate, and this result is also probably ⁵⁸ due to the drop in the pH of the water. The maximum NO₂⁻ ⁵⁹ production efficiency of 5.0 µmol/kJ was obtained using the ⁶⁰ pulsed discharge in N₂/Ar = 20/80% at the specific energy ⁶¹ of 25 kJ/L. In the PB-DBD, the BG gas contains water vapor within ³⁵ the concentration of 20 ppm as impurities, and the concentration is six orders of magnitude lower than that of N₂. OH ³⁷ radicals can be produced from a trace of water vapor, but ³⁸ the concentration of OH radicals can be much lower than that ³⁹ of N atoms produced from N₂ in the PB-DBD; therefore, the ⁴⁰ reaction shown by Eq. (4) can be negligible and the reactions ⁴¹ shown by Eqs. (6) and (7) can occur. However, NO₂⁻ was ⁴² not detected, so that the concentration of NO₂⁻ in the water ⁴³ was below the detection limit (20 nmol/L) or NO₂⁻ was ⁴⁴ rapidly converted into other species. ⁴⁵

Figure 4 shows the NO₃⁻ concentrations in the sampled ⁴⁶ water as functions of specific energy. When water is exposed ⁴⁷ to plasma in the BG gas containing N₂, the following ⁴⁸ reactions^{18,23} may occur in addition to the reactions shown ⁴⁹ by Eqs. (5)–(7): ⁵⁰

$$NO + O + M \rightarrow NO_2 + M$$
 51

$$(k = 8.9 \times 10^{-32} \,\mathrm{cm}^{6} \cdot \mathrm{mol}^{-2} \cdot \mathrm{s}^{-1}),$$
 (11) 53

$$NO_2 + OH + M \rightarrow HNO_3 + M$$
 ⁵⁴

$$(k = 2.6 \times 10^{-30} \,\mathrm{cm}^{6} \cdot \mathrm{mol}^{-2} \cdot \mathrm{s}^{-1}). \tag{12}$$

Then, HNO₃ dissolves in water and completely dissociates ⁵⁷ into NO₃⁻ and H⁺. The reactions shown by Eqs. (8)–(10) ⁵⁸ also contribute to NO₃⁻ production. Furthermore, the pro- ⁵⁹ duction of HNO₂ and HNO₃ by the reactions shown by ⁶⁰ Eqs. (7) and (12) causes OH consumption, so that H₂O₂ ⁶¹

JJAP PROOI

13 14

15

16

19

23

24

25

27

28

29

33

34

35

17

19

20

21

22

23

24

25

27

28

20

33

34 35

³⁰ **Fig. 4.** (Color online) NO_3^- concentrations in sampled water as functions of specific energy: (a) pulsed discharge, (b) corona discharge, (c) plasma jet, and ³⁰ (d) PB-DBD.

can occur.²⁸⁾

³⁶ production by the reaction shown by Eq. (4) is inhibited, ³⁷ resulting in the decrease in the H_2O_2 amount in the BG gas ³⁸ containing N₂.

NO₃⁻ was also produced by off-gas sparging. In the PB-39 40 DBD, a trace of OH radicals is produced from water vapor 41 contained in the BG gas as impurities, as described above, so ⁴² that the reaction shown by Eq. (12) has little contribution to 43 HNO₃ production. Thus, other reactions by long-lifetime ⁴⁴ species to produce NO_3^- may occur in off-gas sparging. The ⁴⁵ NO₃⁻ concentrations in the pulsed discharge monotonically $_{46}$ increased with the specific energy, and the NO₃⁻ production 47 efficiency of 5.1 µmol/kJ was obtained at a maximum. In the ⁴⁸ corona discharge, NO₃⁻ tended to increase with Ar or N₂ ⁴⁹ content in the mixture gas, and the NO₃⁻ production 50 efficiency of 8.0 µmol/kJ was obtained. When the plasma $_{51}$ jet was used, the amount of NO₃⁻ was small and slightly 52 increased with N₂ mixing. In the case of off-gas sparging, $_{53}$ NO₃⁻ was produced in the N₂/O₂ mixture and its amount was found to increase with N2 content. The maximum 54 55 NO₃⁻ production efficiency of 11.3 µmol/kJ was obtained in 56 N₂/O₂ = 80/20%.

Figure 5 shows the absorbance spectra of the PB-DBD off-gas before and after sparging, obtained by infrared be absorption spectroscopy. Absorption peaks corresponding to nitrous oxide (N₂O; 2224 cm⁻¹),²⁴ dinitrogen pentaoxide (N₂O₅; 1247, 1704, and 1745 cm⁻¹),²⁵) HNO₃ (1312, 1346, and 1698 cm^{-1} ,²⁶⁾ and O₃ (1042 cm^{-1})²⁷⁾ were detected in ³⁶ the N₂/O₂ mixture. It was suggested above that a trace of ³⁷ NO₂⁻ might be produced in water via the reaction shown ³⁸ by Eq. (7); however, NO₂⁻ was not detected. O₃ was ³⁹ observed in the off-gas as shown in Fig. 5 and O₃ can ⁴⁰

$$NO_2^- + O_3 \rightarrow NO_3^- + O_2.$$
 (13)⁴

Furthermore, considering that NO_2^- was not detected, the 45 rate of reaction can be sufficiently high.

dissolve in water; therefore, the reaction shown by Eq. (13) 41

It was described that a trace of HNO₃ is produced via the ⁴⁷ reaction shown by Eq. (12). In addition, HNO₃ may also be ⁴⁸ produced by the reaction shown by Eq. (14),¹⁸⁾ since N_2O_5 ⁴⁹ and water vapor are contained in the off-gas before sparging, ⁵⁰ as shown in Fig. 5.

$$N_2O_5 + H_2O \to 2HNO_3.$$
 (14)

The intensities of absorption peaks corresponding to N_2O_5 ⁵⁴ and HNO₃ were reduced by sparging, while there were little ⁵⁵ changes in the intensities of absorption peaks corresponding ⁵⁶ to N_2O and O_3 . This indicates that HNO₃ in the off-gas ⁵⁷ dissolves in water and HNO₃ is produced in liquid phase ⁵⁸ by the reaction shown by Eq. (14), contributing to NO_3^- ⁵⁹ production, and that N_2O and O_3 do not produce ROS/RNS ⁶⁰ in water.

17

32

33

44

45

46

49

50 51

52 53

54

55

4. Conclusions

JAP

14

15 16 17

18

We have investigated reactive oxygen species and reactive 19 20 nitrogen species (ROS/RNS) in water, exposed directly to a pulsed discharge, a DC corona discharge, and a plasma jet 21 sparged the off-gas of a packed-bed dielectric barrier 22 Of ²³ discharge (PB-DBD). H_2O_2 , NO_2^- , and NO_3^- are produced ²⁴ after plasma exposure and only NO₃⁻ after off-gas sparging. 25 Short-lifetime species in plasma such as OH radicals act as ²⁶ the precursors of H_2O_2 and NO_2^- , and long-lifetime species 27 including N₂O₅ act as the precursor of NO₃⁻. NO_x may ²⁸ inhibit H_2O_2 production through OH consumption to produce ²⁹ HNO₂ and HNO₃. O₃ is found not to be the precursor of 30 ROS/RNS. In this work, the highest production efficiencies $_{31}$ of H₂O₂ and NO₂⁻ are obtained to be 31.2 and 5.0 μ mol/kJ, $_{32}$ respectively, by pulsed-plasma exposure, and that of NO₃⁻ is 33 obtained to be 11.3 µmol/kJ by the off-gas sparging of the 34 PB-DBD.

35 Acknowledgment 36

This work is partially supported by The Royal Society 37 International Exchanges Scheme. 38

39 <u>4</u>0

50

51

54

55

56

57

58 59

60

61

- 1) M. Naïtali, G. Kamgang-Youbi, J.-M. Herry, M.-N. Bellon-Fontaine, and J.-L. Brisset, Appl. Environ. Microbiol. 76, 7662 (2010). 42
- 2) D. P. Park, K. Davis, S. Gilani, C.-A. Alonzo, D. Dobrynin, G. Friedman, 43 A. Fridman, A. Rabinovich, and G. Fridman, Curr. Appl. Phys. 13, S19 44 (2013).
- 45 3) H.-S. Kim, K. C. Wright, I.-W. Hwang, D.-H. Lee, A. Rabinovich, A. Fridman, and Y. I. Cho, Int. Commun. Heat Mass Transfer 42, 5 (2013). 46
- 4) Q. Zhang, Y. Liang, H. Feng, R. Ma, Y. Tian, J. Zhang, and J. Fang, Appl. 47 Phys. Lett. 102, 203701 (2013).
- 48 5) C. A. J. van Gils, S. Hofmann, B. K. H. L. Boekema, R. Brandenburg, and 49 P. J. Bruggeman, J. Phys. D 46, 175203 (2013).

- 6) S. Mohades, M. Laroussi, J. Sears, N. Barekzi, and H. Razavi, Phys. Plasmas 22, 122001 (2015)
- 7) A. Kojtari, U. K. Ercan, J. Smith, G. Friedman, R. B. Sensenig, S. Tyagi, 19 S. G. Joshi, H.-F. Ji, and A. D. Brooks, J. Nanomed. Biother. Discov. 4, 120 20 (2013)
- 21 M. J. Travlor, M. J. Pavlovich, S. Karim, P. Hait, Y. Sakiyama, D. S. Clark, 8) 22 and D. B. Graves, J. Phys. D 44, 472001 (2011). 23
- 9) K. Takaki, Dennetsu 51, 64 (2012) [in Japanese].
- 10) K. Matsui, N. Ikenaga, and N. Sakudo, Jpn. J. Appl. Phys. 54, 01AG06 24 (2015).
- 25 H. Shiota, H. Itabashi, K. Satoh, and H. Itoh, Electr. Eng. Jpn. 184 [1], 1 11) (2013)
- 12) Y. Itoh, K. Satoh, and H. Itoh, Denki Gakkai Ronbunshi A 132, 807 (2012) 27 [in Japanese].
- 13) H.-E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, 20 and J. F. Behnke, Vacuum 71, 417 (2003).
- K. Takahashi, K. Satoh, and H. Itoh, IEEJ Trans. Fundam. Mater. 134, 60 ³⁰ 14) (2014)31
- Y. Itikawa and N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005). 15)
- 16) W. Lindinger, Phys. Rev. A 7, 328 (1973).
- 17) R. P. Joshi and S. M. Thagard, Plasma Chem. Plasma Process. 33, 17 (2013).
- 18) R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. 35 Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, Atmos. Chem. Phys. 4, 1461 36 (2004)37
- 19) S. Mededovic and B. R. Locke, J. Phys. D 40, 7734 (2007)
- 20) R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, and 38 J. Troe, J. Phys. Chem. Ref. Data 18, 881 (1989). 39
- 21) P. Lukes, E. Dolezalova, I. Sisrova, and M. Clupek, Plasma Sources Sci. 40 Technol. 23, 015019 (2014). 41
- 22) S. Goldstein, J. Lind, and G. Marényi, Chem. Rev. 105, 2457 (2005).
- 23) L. D'Ottone, P. Campuzano-Jost, D. Bauer, and A. J. Hynes, J. Phys. Chem. 42 A 105, 10538 (2001). 43
- T. Shimanouchi, Tables of Molecular Vibrational Frequencies 24) Consolidated (National Bureau of Standards, Washington, D.C., 1972) Vol. I, p. 9.
- 25) E. L. Varetti and G. C. Pimentel, J. Chem. Phys. 55, 3813 (1971).
- W.-J. Chen, W.-J. Lo, B.-M. Cheng, and Y.-P. Lee, J. Chem. Phys. 97, 7167 26) 47 (1992)48
- 27) T. Shimanouchi, J. Phys. Chem. Ref. Data 6, 993 (1977).
- 28) S. A. Penkett, Nature 240, 105 (1972).

- 56 57 58
- 59
 - 60 61