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Chapter 1 

Introduction and background 

 

1.1 Introduction of wear 

In many industrial fields such as chemical engineering, petroleum, metallurgy, 

mining and power industry etc., there must be some hostile work environments 

including high temperature, high pressure, high corrosion and much dust. The devices 

working in these environments may face a serious common problem, which is wear. 

Especially on the pipes of solid-fluid convey and corrosive liquid delivery systems, 

wear is particularly outstanding. Due to wear, microstructure, chemical composition, 

chemical and mechanical properties of material may change, crack and material 

removal may also occur, shortening the service lives and performances of components 

using these materials, even leading to catastrophic danger, so regular maintenances 

have to be made on these damaged devices, or new components have to be replaced 

for damaged components regularly, not only affecting operating safety but also 

causing economic loss as well. According to some estimations, approximately about 

one-third of the world’s energy resources are cost down by friction in one form or 

another [1], some surveys around 2~3 decades ago showed that wear and friction cost 

Canada in excess of $5 billion per year and cost the United States more than $100 

billion per year [2]. In the other hand, wear is also useful for mankind, dating back to 

thousands years ago, tools with sharp cutting edge such as knives, axes, swords and 

arrows were made by ancient people for hunt and war, and in recent years, some 

advanced machining processes based on wear were also proposed and put into 

application, such as water jet machining (WJM), electrochemical machining (ECM) 

and chemical machining (CHM) etc. [3]. 

Wear is defined by ASTM (American Society for Testing and Materials) as 

“damage to a solid surface, generally involving the progressive loss of material, due 
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to relative motion between that surface and a contacting substance or substances” [4]. 

According to different working mechanisms, wear can be classified into several 

categories: Adhesive wear, Slide wear, Erosive wear, Fretting wear, Fatigue wear and 

other forms of metal wear. However, in real cases, it is too difficult to distinguish one 

type of wear with another clearly, because wear is a complicated surface damage 

process caused by the interactions of two or more materials, usually accompanied 

with physical and chemical changes. In many cases one type of wear transfers into 

another, and two or more types of wear operate together [5, 6]. In scientific research, 

people tend to simplify the complex problem into several individual simple problem, 

these simple problems are analyzed separately so as to get a better understanding of 

the original complex problem. In this thesis, erosive wear is taken out separately from 

the complex wear phenomenon and selected as research subject.  

 

1.2 Introduction of erosive wear 

Erosive wear, also named as erosion, is deformation or loss occurred on the 

material surface caused by impact of small disperse solid particles. It is an important 

material failure mode in components like pipes, valves, pumps, turbine blades, 

powder mixers in many industrial devices for solid-gas delivery and pneumatic 

conveying system. Take blast furnace as an example, blast furnace is an usual device 

in modern iron-making industry, at the top of blast furnace, raw materials were 

charged into the blast furnace through rotating chute, so impact between raw materials 

and inner surface of rotating chute is very serious, leading to serious erosion on the 

inner surface of rotating chute, meanwhile, at the bottom of blast furnace, pulverized 

coal was injected into blast furnace through tuyeres, so serious erosion also occurs on 

the inner surface of pipelines by impact of pulverized coal particles, erosion 

phenomenon in blast furnace is shown in Fig. 1.1 schematically.  

Erosion is defined by ASTM as “progressive loss of original material from a solid 

surface due to mechanical interaction between that surface and a fluid, a 

multicomponent fluid, or impinging liquid or solid particles” [7]. The process of 

erosion is very complex, so it is difficult to describe erosion mechanisms. In general, 
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erosion mechanisms are different for different types of materials. For ductile materials 

such as pure metals and alloys, the impact of hard particles causes severe, localized 

plastic strain at the impact site on the surface. Material is removed when the strain 

exceeds the material’s strain-to-failure. For brittle materials, such as ceramic and 

intermetallic compounds, the force of impacting particle causes localized cracking at 

the surface. With subsequent impact, these cracks propagate and eventually link 

together, and as a result, material becomes detached from the surface [8]. The factors 

influencing erosions are also very complicated. These factors were broadly classified 

into 3 categories according to previous study: (i) impingement variables describing 

the particle flow (particle velocity, angle of impact, particle concentration) (ii) particle 

variables (particle shape, particle density, particle size) (iii) material variables 

(Young’s modulus, Poisson’s ratio, plastic behavior, failure behavior, hardening 

behavior, microstructure, hardness, toughness) [9], Fig. 1.2 shows the classification of 

these factors. In general, erosion for ductile material tend to reach maximum at impact 

angles ranging from 15deg. to 30deg., meanwhile erosion for brittle material tend to 

reach maximum at impact angles ranging from 80deg. to 90deg., and erosion for cast 

iron tend to reach maximum at impact angles ranging from 50deg. to 70deg., typical 

curves of relationship between erosion rate and impact angle are shown in Fig. 1.3 

[10].  

  In order to make it clear the effect of factors affecting erosion and erosion 

mechanisms for different types of materials. A great number of experiments were 

taken. Based on the results of these experiments, a large number of models were 

proposed to describe mechanisms of erosion, and also, a large number of empirical or 

semi-empirical equations were developed to predict the erosion amount on eroded 

materials. Meng reviewed the journal Wear from 1957 to 1992 and Wear of Materials 

(WOM) conferences from 1977 to 1991, the total number of involved papers was 

5466 (4726 in Wear, 740 in WOM), and found that more than 300 equations were 

proposed to describe frictional phenomena, of course a significant number of 

equations relate to wear but were not particularly amenable to analysis, so 28 erosion 

wear equations were listed in the appendix of this paper [11]. In section 1.3, several 
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models and equations of erosion proposed by previous researchers are briefly 

introduced.  

 

 

Fig. 1.1 Erosion phenomenon in blast furnace 

 

 

 

Fig. 1.2 Classification of factors affecting erosion 
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Fig. 1.3 Typical curves of erosion and impact angle for ductile/brittle materials and 

cast iron 

 

1.3 Erosion models 

1.3.1 Finnies’s model [12] 

  Finnie developed the first theoretical model for erosion. For erosion of ductile 

material, the model is derived from the motion of a single angular rigid abrasive 

particle striking a ductile material surface to displace or cut away part of material. The 

equation is expressed as Eq. 1-1, 
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            (1-1) 

  Where, Q is volume of removed material, m is the mass of abrasive particle, K is 

the ratio of vertical to horizontal force components, ψ is ratio of the depth of contact l 

to the depth of the cut (yt), as shown in Fig. 1.4. V is the velocity of abrasive particle, 

p is the plastic flow stress.  

Comparing to experimental results, the results of Eq. 1-1 agrees closely at low 

impact angles but underestimates at high impact angles, no erosion is obtained at 

impact angle 90deg. if calculates using Eq. 1-1, however erosion still exists at 90deg. 
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actually. The disagreement between equation result and actual result is because only 

one face of abrasive particle is considered to contact with material surface for Eq. 1-1, 

as shown in Fig. 1.4, however both faces may contact with material surface actually.  

 

 

Fig. 1.4 Schematic view of Finnie’s model for ductile material [12] 

 

1.3.2 Bitter’s model [13, 14] 

  Bitter assumed that erosion is sum of deformation wear Wd and cutting wear Wc. 

The repeated collisions of a large number of particles increases the elastic limit and 

eventually make it equal to strength of the impacted material, meaning that material 

become relatively hard and brittle and can no longer be plastically deformed. With 

further deformation, if the elastic limit is exceeded, the surface layer is destroyed and 

fragments of it are removed. If a particle strikes a horizontal surface at an acute angle, 

the material is subjected to shear, if shear strength is exceeded, destruction occur. 

  Based on Hertian contact theory and energy balance equation, an equation for 

deformation wear Wd is derived, as expressed in Eq. 1-2, 
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  Where, M and V are total mass and velocity of impact particles respectively, α is the 

attack angle, ε is the energy needed to remove a unit volume of material from the 

body by deformation wear, and Vel is threshold velocity of collision at which the 

elastic limit is just reached, Vel is computed using the collision of a sphere with a flat 

body, obtained by Eq. 1-3, 
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  Where, y is elastic load limit, d is density of sphere, q1 and q2 are possion’s ratio of 

sphere and flat body, E1 and E2 are Young’s modulus of sphere and flat body. 

Cutting wear Wc is expressed as Eq. 1-4, 
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  Eq. 1-4 is valid at Vsin(α)≥Vel, α0 is the impact angle at which the horizontal 

velocity component has just become zero when the particle leaves the body.   is 

cutting wear factor obtained experimentally. C and K1 are obtained using Eq. 1-5 and 

Eq. 1-6 respectively, 
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1.3.3 Hutching’s theory [15-17] 

  Hutching and his coworkers analyzed the process of material removal by observing 

the appearance and microscopic section view of craters. When particle impact on 

surface of specimen, the impact of particle exerts shear action on surface layer to form 

a lip at the exit end of crater. Above a critical velocity, the lip is detached from the 

surface by propagation of ruptures at the base of the lip, the craters formed in 

aluminum specimens at impact angle 18.5deg. and impact velocity 220 m/s and 210 

m/s are shown in Fig. 1.5 [15].  

  Erosion mechanism of particle impact on ductile material at oblique impact angle 

was further classified into two distinct modes of surface deformation, namely cutting 

and ploughing. Fig. 1.6 shows the schematic view of these two deformation modes 

under an angular particle impact [16]. When the angle between leading edge of 



8 

particle and material surface is larger, cutting deformation occurs. Cutting is also 

called as micromachining in [16]. Meanwhile, when the angle between leading edge 

of particle and material surface is small, ploughing deformation occurs. In [17], it is 

also noted that surface deformation by spherical particles impact is similar to 

ploughing deformation, as shown in Fig. 1.7. In the process of cutting deformation, it 

may also occur that cutting edge of the particle tends to bury itself deeply into the 

specimen rather than scooping out material as a chip. Material can be removed as a 

result of a particle breaking up during its cutting action. At this moment, a lip raised 

during the early stages of the impact is subsequently cut off by fragments of the 

particle [16].  

 

    

(a) 220m/s                          (b) 210m/s 

Fig. 1.5 Craters on aluminum specimens at impact angle 18.5deg., impact velocity 

is 220m/s and 210m/s [15] 

 

         

(a) Cutting deformation               (b) Ploughing deformation 

Fig. 1.6 Two modes of surface deformation impacted by an angular particle [16] 
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Fig. 1.7 Surface deformation impacted by a spherical particle [17] 

 

1.3.4 Levy’s theory [18] 

Levy argued that micromachining is not the mechanism of erosion on ductile 

material. Through analysis of the incremental erosion rate, it was found that initial 

erosion rate caused by the first initial batch of particles was much lower than that 

caused by subsequent batches of particles, as shown in Fig. 1.8. If micromachining 

was the mechanism of erosion, initial incremental erosion rate on uneroded surface 

should be higher than subsequent incremental erosion rate on eroded surfaces because 

work hardening of material surface due to machining action would have reduced 

machinability of the surface.  

A Platelet mechanism was proposed to explain the erosion on ductile materials. The 

surface material is extruded by impact of particles and platelets were formed, with 

subsequent particles impact, platelets spread by forging and finally remove from 

material surface. A large number of experiments were taken to validate this 

mechanism theory.  

 

 

Fig. 1.8 Incremental erosion rate of 1075 (240μm SiC; velocity V=30.5m/s; angle 

of impingement, 30deg.) [18] 
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1.3.5 Tilly’s model [19] 

  According to high speed photographic and metallographic observation, Tilly argued 

that erosion of ductile materials occurs in two stages. The first stage is when the 

impacting particle strikes the surface to produce an indentation and possibly remove a 

chip of metal. The second stage is when the particle breaks up and fragments are 

projected radially from the primary site. So the erosion in these two stages was 

analyzed separately. The primary erosion is expressed as Eq. 1-7, 
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Where, erosion (ε) is defined as the material removal by unit mass of impacting 

particles. d0 is a threshold size of particle, no erosion occurs below d0. d is size of 

particle. V0 is threshold velocity of particle, no damage occurs below V0. When 

particle size and velocity are with respect to d0 and V0, Vr is the velocity for maximum 

erosion 1



ε . V is any velocity of particle. The secondary erosion is expressed as Eq. 

1-8, 
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  Where, ψ is the second erosion factor. F is the degree of fragmentation which is a 

function of velocity, particle size and impact angle. F is expressed as Eq. 1-9, 
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  Where, W0 is the proportion of particles (by weight) within the specialized size 

range before testing and W is the proportion after testing. If all particles were broken 

into smaller fragments, F is 1. If 2



ε  is maximum secondary erosion, Eq. 1-8 

becomes Eq. 1-10,  
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  Where, Fd,v is fragmentation for particle size d and velocity V. 
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  Combined Eq. 1-7 and Eq. 1-10, the total erosion can be expressed as Eq. 1-11, 
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1.4 Numerical simulation of erosion 

  The previous researches mentioned in section 1.3 were based on erosion 

experiments. It is no doubt that experiment is a direct method for erosion research. 

However, experiment is a time-consuming and labor-intensive way for researches. 

Furthermore, as mentioned before, erosion is a complex process affected by many 

factors, these factors influence erosion simultaneously and synergistically, so it 

becomes difficult to get an insight into the effect of each factor experimentally so as 

not to understand erosion mechanism completely. In addition, it is also impossible to 

obtain all information during erosion process experimentally, such as stress, plastic 

strain, change of solid particle velocity and energy etc.. With advancement of 

computational technology, numerical simulation has become an effective and efficient 

way to overcome shortages of experiment, and has been put into application in 

erosion researches since 1990s.  

  Finite Element Method (FEM) is most widely used in areas of erosion researches. 

Shimizu et al. presented two-dimensional (2D) FE models to investigate the impact 

angle dependency of erosion on mild steel and ferritic spherical-graphite cast iron, the 

target material in FE models were impacted by single particle, plastic strain was used 

as evaluation [20-22]. In 2D FE models, impact particle was simplified as cylinder 

rather than sphere, so the simulations could not correctly reflect the actual conditions 

during erosion, some three-dimensional (3D) FE models were put forward in the 

subsequent erosion simulation. Molinari et al. performed 3D FE simulations of 

metallic plates by spherical particles impact with a view to develop an insight into the 

fundamental mechanisms of erosion, the roles of plastic flow, friction and adiabatic 

shearing during erosion were revealed [23]. Griffin et al. developed a 3D FE model 

with 5 solid particles to investigate the erosion process on an alumina scale/MA956 
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substrate, damage accumulation was computed by using two failure models, namely 

shear failure model and tensile failure model [24]. Eltobgy et al. investigated the 

erosion process of ductile material Ti-6Al-4V by building a FE model with 3 solid 

particles, Johnson-Cook material model was applied into the target material [25]. 

Aquaro et al. developed a FEM codes to simulate the erosions on brittle and ductile 

materials, the erosion criterions in these codes were based on the theoretical models 

proposed by previous researchers [9, 26, 27]. Yang et al. used Johnson-Cook and 

Johnson-Holmquist material models for ductile material Ti-6Al-4V and brittle 

material SiC ceramic respectively, investigated their erosion processes under impact 

of 100 SiC particles [28]. Liu used Wang’s model, investigated the effect of particle 

shapes on erosion of ductile materials impacted by 4 different shape particles, 

including cube, dodecahedron, icosahedron and sphere [29].  

  FEM has its intrinsic advantages for simulation, such as time- or memory-saving. 

However, there are still some limitations for applications of FEM, for example, when 

target material is impacted by tip of angular particles or particles with high velocity, 

distortion or tangle of meshes may occur on the target material, dramatically 

decreasing the accuracy of simulation results. Therefore, a Mesh-free method named 

as Smoothed Particles Hydrodynamics (SPH) was utilized in erosion simulation to 

overcome these limitations. In SPH, Lagrange meshes of FEM were replaced with a 

set of scattered particles, which could avoid mesh distortion or tangling due to large 

deformation of material. Papini et al. used SPH method to conduct impact simulation 

of angular particles on ductile material copper and Al6061-T6 [30-32], and particle 

embedment on ductile material Al6061-T6 during erosion [33]. Yang et al. used a 

coupled algorithm of SPH and FEM to investigate erosion process of 5 spherical 

particles impact on ductile material Ti-6Al-4V [34], and impact process of single 

spherical particle on ductile metal pipe with polymer coatings [35].  

A special simulation method, named as micro-scale dynamic model (MSDM), was 

proposed by Prof. D. Y. Li and his coworkers [36], and has been applied to simulate 

solid particles erosion on ductile, brittle, composite material and alloy etc. [37-44]. 

  Amongst the above simulations, erosion by large number of particles impact has 
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been involved in some numerical models. For example, in FE models of [28] and [29], 

target materials were impacted by 100 spherical particles, while in SPH models of [30] 

and [31], target materials were impacted by 105 irregular particles. However, in these 

models, the interactions between solid particles were totally ignored, which is an 

obvious shortage for these models. The numerical model of [30] is shown in Fig. 1.9. 

In addition, the FE method in the above simulations was also utilized in the research 

of an advanced machining process named as Abrasive Water Jet (AWJ) [45, 46], but 

in real cases of AWJ, solid particles are conveyed with fluid, but the simulation of this 

method did not take fluid into consideration. So although results of these models 

agreed well with test results so that these FE or SPH methods can be seen as a 

powerful tool to assist experiments, there were still disagreements between simulation 

conditions and test conditions. In recent years, Discrete Element Method (DEM) was 

applied into erosion simulations. Because of its strong ability to handle large number 

of particles, the interactions between particles can be simply defined. Besides, a 

coupled algorithm of Computational Fluid Dynamics (CFD) and Discrete Element 

Method (DEM) was also proposed recently, making simulation of solid-fluid delivery 

easier, so the CFD-DEM method provided an effective way to take simulation of 

erosion considering influences of fluid conveying solid particles. In [47], impact of 

different parameters on screening efficiency and mesh wear was studied using DEM. 

In [48], CFD-DEM was conducted in simulation of particulate flow in feed pipes, an 

approach combining experimental and numerical simulation was initiated to get a 

fundamental understanding of erosion mechanisms on pipe bends. In the simulations 

of [47] and [48], DEM was used to create solid particles. Whereas, in [49-52], Prof. 

Zang and his coworkers also applied DEM into impact simulation on glass, and the 

target material was built as an array of DEM particles, as shown in Fig. 1.10. Their 

work provided a new idea for erosion simulation in the future. 
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Fig. 1.9 Numerical model of 105 irregular particles impact in [30] (target material 

is built using SPH method) 

 

 

Fig. 1.10 Numerical model in [47] (target material is built using DEM) 

 

1.5 Structure of this thesis 

In the previous study of our laboratory, 2D FE models were built, as shown in Fig. 

1.11. There are some discrepancies between 2D FE model and actual erosion process, 

so some improvements were made in the work of this thesis. The main contents in 

each chapter are listed as below.  

In chapter 1, research introduction and background are described. 

In chapter 2, erosion experiments for this thesis are described. 

In chapter 3, 3D FE models of single particle impact on spheroidal carbide cast iron 

and spheroidal graphite cast iron were built. 

In chapter 4, 3D FE models of single particle impact on mild steel and spheroidal 

graphite cast iron were built. 

In chapter 5, a 3D FE model of 5 spherical particles impact on mild steel was built. 

Material failure criterion was applied into target material to make material loss appear. 
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In chapter 6, 3D numerical models were built using a coupled algorithm of SPH 

and FEM. The impact region on target material was built by SPH method to avoid 

mesh distortion and tangling when impacted by angular particles. 

In chapter 7, DEM was used to simulate raw materials flow in rotating chute. 

Erosion on inner surface of rotating chute was predicted. 

In chapter 8, general conclusions and prospects for future work are described. 

The structure of works in this thesis is shown in Fig. 1.12.  

 

 

Fig. 1.11 Previous FE models of our laboratory [20-22] 
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Fig. 1.12 Structure of works in this thesis 
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Chapter 2 

Experiments 

 

2.1 Introduction 

  In this chapter, experiments for this thesis are described. The specimens, apparatus, 

and experimental methods are given in detail. In order to compare experimental 

results and simulation results conveniently, experimental results are not given in this 

chapter, but will be given in the following chapters successively.  

 

2.2 Materials 

Three kinds of common steel were used as test materials in the works of this thesis, 

they are spheroidal graphite cast iron (hereinafter FCD in chapter 3 and FDI in 

chapter 4), spheroidal carbide cast iron (hereinafter SCI) and mild steel JIS SS400 

(hereinafter SS400). The reason to choose these 3 kinds of material is that the material 

matrix of FCD (or FDI) and SCI are similar to SS400, so FCD (or FDI) can be seen as 

combination of matrix and spheroidal graphite, and SCI can be seen as combination of 

matrix and spheroidal carbide, therefore it is convenient to compare the results of 

whether spheroidal graphite or spheroidal carbide presents or not, and how the 

spheroidal graphite or spheroidal carbide influences erosion performances of steels. 

The chemical compositions of FCD and SCI are listed in Table 2.1, chemical 

compositions and mechanical properties of FDI and SS400 are listed in Table 2.2. 

Photographs of microstructure for FCD and SCI are shown in Fig. 2.1. Test specimens 

were manufactured as cuboid with dimension of 50mm×50mm×10mm, test surfaces 

were ground to make roughness reach to Ra0.2mm. Appearance of specimen is shown 

in Fig. 2.2.  

  Two kinds of shapes of steel grits were used as impact particles, they were 

spherical grits and angular grits. The average diameter of these two kinds of steel grits 
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were both 700μm, the hardness of steel grits were 420Hv0.01. The photographs of 

steel grits are shown in Fig. 2.3.  

 

Table 2.1 Chemical compositions (mass%) of FCD and SCI 

 C Si Mn Mo V Fe others 

FCD 3.75 2.15 0.22 — — Bal. P, S 

SCI 2.79 0.96 0.54 3.06 12.7 Bal. P, S 

 

Table 2.2 Chemical composition (mass%) and mechanical properties of FDI and 

SS400 a 

 C Si Mn P S Cu Mg σB φ HB 

FDI 3.75 2.08 0.34 0.011 0.007 0.04 0.037 400 25.8 140 

SS400 0.12 0.13 0.46 0.022 0.028 — — 491 19.7 150 

a σB:Tensile strength (MPa); φ: Elongation (%); HB: Brinell hardness; 

 

 

 

    

(a) FCD                                  (b) SCI 

Fig. 2.1 Microstructure of FCD and SCI 
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Fig. 2.2 Appearance of specimen 

 

  

(a) Spherical grits                   (b) Angular grits 

Fig. 2.3 Appearance of impact particles 

 

2.3 Experimental method 

2.3.1 Apparatus 

Experiments were carried out by using blasting machine, whose photograph and 

schematic view is shown in Fig. 2.4. During tests, compressor increased the air 

pressure up to 5kgf/cm2, forming air flow with velocity of 100m/s, impact particles 

entrained in air flow were ejected from nozzle, velocity of impact particles were 

measured as 20m/s. Specimen was mounted on the stage of blasting machine, 

different impact angles can be got by adjusting the tilting direction of stage. The 

photograph of test stage is shown in Fig. 2.5. 
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(a) Photograph                            (b) Schematic view 

Fig. 2.4 Blasting machine 

 

     

Fig. 2.5 Test stage 

 

2.3.2 Erosion test 

In erosion test, specimen was impacted by a large number of particles under a 

duration time. Erosion test were conducted at impact angles ranging from 10deg. to 

90deg. in increment of 10deg.. The erosion test duration was 3600s and the amount of 

impact particles was 2kg/test. All the tests were conducted under room temperature. 

Erosion rate was used as assessment. Mass loss for each specimen was weighed 

using an electronic scale. It’s more accurate to evaluate material loss by volumetric 

loss than by mass loss because specimens have different densities. Erosion rate was 

calculated using following formulas [1-2], 
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)(g/cmspecimen  ofdensity  average

(g/s) secondper  loss mass
/s)(cm secondper  loss Volumetric

3

3            (2-1) 

(kg/s) secondper  particles solid ofamount  mass

/s)(cm secondper  loss Volumetric
/kg)(cm rateErosion 

3
3              (2-2) 

 

2.3.3 Single particle impact test 

  In this kind of test, specimen was impacted by single particle under three impact 

angles of 30deg., 60deg. and 90deg.. After test, the indentation depths of craters under 

these 3 impact angles were measured using microscope (VHX-2000, KEYENCE, 

Japan). 10 different indentation depths of craters were measured and then the mean 

value of these indentation depths were calculated and used for discussion in the 

following chapters. 

 

2.4 Summarization 

  In this chapter, experiments are introduced in detail. The experimental results will 

be given successively in the following chapters and used as verification for simulation 

results. 
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Chapter 3 

Impact angle dependence of erosion for spheroidal carbide cast iron 

 

3.1 Introduction 

In this chapter, 3D single particle impact model for spheroidal carbide cast iron 

(SCI) was built, spheroidal graphite cast iron (FCD) was also built and used as 

comparative material. The impact angle dependence of erosion was discussed from 

viewpoint of stress and equivalent plastic strain on the surface of impacted material.  

 

3.2 FEM analysis 

The 3D single particle impact FEM models were established using LS-DYNA 971 

(Livermore Software Technology Corporation, Livermore, CA, USA), which is 

suitable for contact problems. Simulations of single particle impact (1 particle in each 

impact) using spherical particle were conducted. The FEM model is shown in Fig. 3.1. 

The velocity of impact particle was set as 20m/s, equaling to the actual velocity of 

impact particles in erosion tests. Simulation time was set as 0.01ms, target material 

was built as 10×10×10mm. Material parameters were set according to the mechanical 

properties of spheroidal carbide cast iron (SCI) and spheroidal graphite cast iron 

(FCD). In the simulation, diameters of spheroidal carbide (VC) and spheroidal 

graphite were set as 100μm, they were assigned in a line in the target material with 

same adjacent interval. Sphere with diameter 700μm was built as impact particle, 

impact angle were changed from 10deg. to 90deg. in increment of 10deg.. Because 

impact particles have no deformation approximately during erosion, the impact 

particle was set as rigid body, but target material is still set as elastic material. The 

material parameters of impact particle and target material are listed in Table 3.1 [1, 2].  

The tests of single particle impact were also conducted to verify the simulation 

results. The results of tests and simulation were compared and verified through 
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discussing the correlation of crater depths gotten by simulation and test.  

 

 

     

(a) Appearance of 3D model 

 

 

(b) Cross sectional view of 3D model 

Fig. 3.1 FEM model 

 

 

Table 3.1 Material parameters for simulation [1, 2] 

 SCI FCD 
Impact particle 

 
Target material Carbide(VC) Target material Graphite 

Mass density, kg/mm3 8.0×10-6 1.5×10-5 8.0×10-6 1.6×10-6 8.0×10-6 

Young's modulus, GPa 200 530 161 7 210 

Poission ratio 0.30 0.22 0.25 0.10 0.3 

Yield stress, MPa 500 6000 230 30 — 
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3.3 Results 

3.3.1 Simulation results 

The craters of single particle impact simulation under impact angle 30deg. are 

shown in Fig. 3.2. It is found that along the impact direction, tiny material piled up at 

the color change region from blue to red, which were in agreement with the 

phenomenon of tiny pile-up material on specimens due to rotation of impact particle 

at impact moment in tests. The simulation results under 3 impact angles of 30deg., 

60deg. and 90deg. are shown in Fig. 3.3. It is found that surface deformation occurred 

at all target materials, and it is also found that obvious deformation occurred on 

spheroidal graphite, but no deformation occurred on spheroidal carbide.  

The indentation depth of craters from simulation under 3 impact angles of 30deg., 

60deg. and 90deg. were measured. The relationship between simulation time and the 

indentation depth at the deepest point on target material after simulation were shown 

in Fig. 3.4. In Fig. 3.4, horizontal axis is simulation time (From the moment that 

impact particle contacted with target material to the moment that impact particle 

entirely departed away from target material), vertical axis is indentation depth. It is 

found that indentation became deeper along the sequence of impact angle 30deg., 

60deg. and 90deg.. In addition, it is also found that deformation recovered a little at 

all impact angles.  

 

3.3.2 Results of single particle impact tests 

The appearances of crater and indentation depth after single particle impact tests 

were observed and measured using microscope. The photographs of typical craters are 

shown in Fig. 3.5. It is found that tiny material piled up on specimens at impact angles 

30deg. and 60deg., which is in agreement with the simulation results. The indentation 

depth of spheroidal graphite cast iron became deeper with increasing of impact angle, 

they were 7.62μm, 14.88μ and 18.70μm at impact angle 30deg., 60deg. and 90deg. 

respectively. Similar tendency were also found on the indentation depth of spheroidal 

carbide cast iron, they are 3.00μm, 10.38μm and 15.48μm at impact angle 30deg., 

60deg. and 90deg. respectively. 
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3.3.3 Discussion of correlation between test results and simulation results 

The correlation diagram between indentation depths from simulation in section 

3.3.1 and those from single particle impact tests in section 3.3.2 are shown in Fig. 3.6. 

The correlation coefficient of indentation depth between simulation results and test 

results on FCD and SCI were calculated, both are 0.99, close to 1, demonstrating 

strong correlation between simulation results and test results. Therefore, in the 

following section, impact angle dependence of erosion are explained from view point 

of equivalent plastic strain and stress from single particle impact simulation. 

 

 

(a) FCD 

 

 

(b) SCI 

Fig. 3.2 3D observation of indentation depth on target material surface for FEM 

model 
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Fig. 3.3 Results of 3D FEM simulation for single particle impact 

 

 

     

(a) FCD                                (b) SCI 

Fig. 3.4 Indentation depth as function of impact time for specimens 
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(a) FCD 

 

 

(b) SCI 

Fig. 3.5 Observation of indentation on specimens in single particle impact tests 

 

   

(a) FCD                          (b) SCI 

Fig. 3.6 Correlation diagram of indentation depth between simulation results and test 

results 
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3.4 Discussion 

3.4.1 Discussion of von mises stress 

According to shear strain energy theory when the shear strain energy in the actual 

case exceeds shear strain energy at the time of failure the material fails. Von mises 

stress is in proportion to the square root of shear strain energy. Von mises stress is 

expressed by a combination of three principal stress, so it can be used as an evaluation 

of mechanical state for iron and steel materials. The Von mises stress by simulation 

are shown in Fig. 3.7. It is found that, as for spheroidal graphite cast iron, obvious 

deformation occurred on spheroidal graphite, obvious von mises stress also occurred 

at thick places of target materials besides material surface, and von mises stress on 

spheroidal graphite were lower than those on matrix around spheroidal graphite. 

Meanwhile, as for spheroidal carbide cast iron, von mises stress on spheroidal carbide 

were higher than those on matrix around spheroidal carbide, which is because the 

yield stress of spheroidal carbide is very high, up to around 6000MPa. 

 

 

Fig. 3.7 Von mises stress distribution of specimens by FEM simulation 

 



33 

3.4.2 Discussion of impact angle dependence based on equivalent plastic strain 

Erosion is a phenomena of material deformation and loss caused by repeated 

impact of solid particles, it can be seen as the results of deformation accumulation on 

material surface by single particle impact. So impact angle dependence of erosion can 

be explained through equivalent plastic strain on material surface. The cross sectional 

view of equivalent plastic strain distribution on spheroidal graphite cast iron and 

spheroidal carbide cast iron under impact angles of 30deg., 60deg. and 90deg. are 

shown in Fig. 3.8. It is found that equivalent plastic strain distribution of 90deg. is 

axisymmetric, and equivalent plastic strain of 30deg. is obvious in a small region. In 

addition, it is also found that equivalent plastic strain on the spheroidal graphite were 

larger than those on matrix around spheroidal graphite, and equivalent plastic strain 

on the spheroidal carbide were smaller than those on matrix around spheroidal carbide. 

The ratio of total equivalent plastic strain on FCD and SCI (total equivalent plastic 

strain on FCD and SCI were divided by total equivalent plastic strain on FCD at 

impact angle 90deg.) under different impact angles are shown in Fig. 3.9, and 

relationship between erosion rate and impact angle are shown in Fig. 3.10. It is found 

that both equivalent plastic strain and erosion rate increased firstly and then decreased, 

maximum value occurs around a higher impact angle, showing a similar tendency. In 

addition, it is also found that equivalent plastic strain and erosion rate of SCI changed 

much less at different impact angles comparing to FCD, showing that the impact 

angle dependence is very small. But the tendencies of both SCI curves are different, 

which is because the arrangement of VC in specimens for tests are much more 

complex than those in target material for simulation. According to discussions above, 

equivalent plastic strain at different impact angles can be regarded as a method to 

explain the features of impact angle dependence that erosion of FCD increases firstly 

and then decreases with maximum value occurring at a higher impact angle, and 

erosion of SCI changes a little at different impact angles. In other word, impact angle 

dependence of erosion can be approximately discussed through equivalent plastic 

strain of single particle impact.  

The difference between impact angle of erosion for FCD and SCI is due to the 
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influence of spheroidal graphite and spheroidal carbide in target material. Yield 

strength of spheroidal carbide is much higher than that of spheroidal graphite, up to 

5500MPa or higher. So it is inferred that the existence of spheroidal carbide with high 

yield strength in target material can largely restrain the impact angle dependence of 

erosion. 

 

 

Fig. 3.8 Equivalent plastic strain distribution of specimens by FEM simulation 

 

 

Fig. 3.9 Total equivalent plastic strain as function of impact angle for specimens 
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Fig. 3.10 Erosion rate as function of impact angle for specimens 

 

3.5 Conclusions 

In this chapter, 3D FEM models were built, and the impact angle dependence of 

erosion on spheroidal carbide cast iron were verified using simulation results from 

view point of stress and equivalent plastic strain.  

(i) As for spheroidal graphite cast iron, obvious deformation was found on the 

spheroidal graphite in target material. And von mises stress in matrix was higher than 

that on spheroidal graphite. 

(ii) As for spheroidal carbide cast iron, von mises stress on the spheroidal carbide 

was higher than that on the matrix around spheroidal carbide, but no deformation was 

found on the spheroidal carbide. The plastic deformation on spheroidal carbide cast 

iron was largely restrained because of the existence of spheroidal carbide with much 

higher yield stress comparing to spheroidal graphite in spheroidal graphite cast iron. 

(iii) There are similar curves for impact angle dependence of erosion and that of 

equivalent plastic strain, so impact angle dependence of erosion can be explained with 

that of equivalent plastic strain. 
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Chapter 4 

Finite element analysis of single particle impact on mild steel and 

spheroidal graphite cast iron 

 

4.1 Introduction 

In the previous study of our laboratory, Prof. K. Shimizu and his coworkers built 

FE models of single particle impact to investigate erosion mechanisms on spheroidal 

graphite cast iron (FDI) and mild steel SS400 [1-3]. However, there were 2 obvious 

shortages in the models, (i) due to 2-dimensional way, impact particles were 

simplified as cylinder rather than sphere, so the models were different from actual 

condition, (ii) only plastic strain was discussed, so the erosion mechanisms were only 

explained from viewpoint of deformation effect, cutting effect was not considered, 

therefore it was insufficient to explain the erosion mechanisms completely. Hence, the 

work in this chapter extended the FE models of [1-3], FE models of single particle 

impact on FDI and SS400 were built by 3D way, and the erosion mechanisms were 

explained from viewpoint considering combination of plastic strain and shear stress. 

 

4.2 Finite element modeling 

The impact process was simulated by means of explicit dynamic analysis software 

ANSYS/LS-DYNA. The FE models were built by using APDL (ANSYS Parametric 

Design Language) code to create K-file in ANSYS 15.0, and then the K-file were 

computed in LS-DYNA 971. The simulation time was set as 5×10-3 ms, time step was 

set as 1×10-4 ms.  

The FE models for SS400 and FDI are shown in Fig. 4.1 and Fig 4.2 respectively. 

Due to symmetry of whole models, only half of the models were built to improve 

computing speed, and y-displacement of nodes on symmetrical areas were fixed. 

Sphere stands for impact particle, initial velocity of impact particle was 20m/s, same 



38 

with velocity of steel grits in erosion tests. The diameter of impact particles were 

700μm, also same with average diameter of spherical steel grits in erosion tests. 

Impact angle ranged from 10deg. to 90deg. in increment of 10deg.. Cuboid stands for 

target material, the dimension of whole target material was 2mm×1mm×0.5mm. The 

models were meshed by using 8-node brick element solid164. The contact region on 

target material was meshed by finer grid, the dimension of finer grid region was 

0.6mm×0.3mm×0.15mm. The horizontal and vertical edge length of each element in 

finer grid region was 0.01mm. All freedom degrees of nodes on the bottom and 

outside areas were fixed. 

Target material of FDI was built as combination of matrix and spheroidal graphite 

particles. Material parameter of matrix is same with that of SS400. The diameter of 

spheroidal graphite particles was set as 30mm, same with the actual average diameter 

of spheroidal graphite according to observation on ground surfaces of FDI specimens. 

Totally 39 spheroidal graphite particles were built in the models, they were arranged 

in two layers (layer A and layer B). The interval distance between two adjacent 

spheroidal graphite particles in same layer was 80μm. The vertical distance between 

centers of spheroidal graphite particles in two layers was 60μm. The arrangement of 

spheroidal graphite particles in layer A and layer B are shown in Fig. 4.3. Considering 

complexities of graphite position in real FDI, the positions of spheroidal graphite 

particles in this study were classified into 4 kinds, namely A-30, B-30, A-50 and B-50, 

which are shown in Fig. 4.4. “A” means that layer A was placed as the first layer in 

the model so that a graphite particle was just under impact particle. Similarly, “B” 

means that layer B were placed as the first layer so that 2 graphite particles were 

locating in two sides under impact particle. “30” or “50” means that the distance 

between centers of spheroidal particles in first layer and upper surface of target 

material was 30μm or 50μm.  

In order to discuss simulation results of finer grid surface with different thickness 

conveniently, target material was divided into different parts. The parts were assigned 

with material according to Fig. 4.1 (b) and Fig. 4.2 (b). Material parameters were 

listed in Table 4.1. During simulation for FDI, although graphite is a material with 
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strong anisotropy, they were still set as isotropic material to improve the convergence 

speed and reduce the computation complexity, hourglass control needed to be 

switched on and hourglass coefficient was set as 0.15 to avoid “negative volume” 

error. Impact particles were set as rigid bodies to save CPU time. The contact between 

impact particle and target material was defined by using ESTS 

(Eroding-Surface-To-Surface), impact particle was set as master part, target material 

was set as slave part, both static and dynamic friction coefficient were set as 0.1.  

 

 

 

(a)Whole view 

 

 

 

 (b) View in y-direction 

Fig. 4.1 FE model for SS400 
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(a)Whole view 

 

 

 

 (b) View in y-direction 

Fig. 4.2 FE model for FDI 
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(a) View in y-direction 

 

 

(b) View in z-direction 

Fig. 4.3 Arrangement of spheroidal graphite particles in layer A and layer B 

 

    

(a) A-30                            (b) B-30 

 

    

(c) A-50                            (d) B-50 

Fig. 4.4 Positions of spheroidal graphite particles in FDI 
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Table 4.1 Material Parameters 

 
Density 

(kg/m3) 

Young’s 

Modulus (GPa) 

Possion’s 

ratio 

Yield stress 

(MPa) 

Impact Particle 8000 210 0.3 — 

SS400 8000 206 0.3 491 

Matrix 8000 206 0.3 491 

Spheroidal graphite 2300 20 0.25 30 

 

4.3 Results and discussion 

4.3.1 Crater 

The distribution in z-direction at impact angle 30deg. from FE simulation is shown 

in Fig. 4.5. The craters at impact angle 30deg., 60deg. and 90deg. after single particle 

impact test is shown in Fig. 4.6. It can be seen that shapes of craters on SS400 and 

FDI showed same, but crater depth on FDI was apparently deeper than that on SS400.  

The crater depth of FDI under 4 different positions of spheroidal graphite particles 

was extremely close, so crater depth due to these 4 different graphite positions were 

not listed in detail here, but the mean values of crater depths on FDI under 4 different 

graphite positions were calculated and used in Fig. 4.7. Meanwhile, crater depths of 

10 different craters on each specimen at impact angle 30deg., 60deg., 90deg. were 

measured and the mean values of these 10 crater depths at each impact angle were 

calculated and used in Fig. 4.7. Fig. 4.7 shows the relationships between crater depth 

and impact angle. It was found that crater depths increased with increasing of impact 

angle in the form of quadratic curve, and craters of FDI were deeper than those of 

SS400. That was because yield stress of graphite was much lower than that of SS400 

(equivalent to matrix of FDI), so the presence of soft material graphite made craters 

deeper. It was also found that difference of crater depths between SS400 and FDI 

from FEM was larger than that from test, which was because the amounts, shapes, 

sizes and arrangements of graphite in actual FDI are much more complicated than FE 

models here, but the trends of test curves and FEM curves were so similar that it was 

still considered that FE results were acceptable. 
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(a) SS400 

 

     

(b) FDI (A-30)                     (c) FDI (A-50) 

 

      

(d) FDI (B-30)                     (e) FDI (B-50) 

Fig. 4.5 Distribution of z-displacement at impact angle 30deg. from FE simulation 
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Fig. 4.6 Appearance of crater from single particle impact test 

 

 

 

Fig. 4.7 Crater depth vs impact angle 
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4.3.2 Dependence of impact angle from test 

The relationships between erosion rate and impact angle after erosion tests were 

shown in Fig. 4.8. It can be seen that erosion rate of FDI was higher than that of 

SS400, and maximum erosion rate occurred at impact angle 20deg. for SS400 and 

60deg. for FDI, demonstrating typical dependence of impact angle for ductile material 

and cast iron respectively. In section 4.4.3, the dependence of impact angle are 

explained from FE results. 

 

    

(a) SS400                              (b) FDI 

Fig. 4.8 Erosion rate vs impact angle from test 

 

4.3.3 Dependence of impact angle from FE simulation 

It is well known that erosion occurs due to the combination of deformation and 

cutting effect on material surface. Meanwhile, deformation effect mainly comes from 

plastic strain, and cutting effect mainly comes from shear stress. An example of 

distribution of plastic strain and shear stress for SS400 and FDI are shown in Fig. 4.9 

and Fig. 4.10 respectively (impact angle is 30deg.). Erosion is occurred on the 

material surface, so maximum plastic strain and shear stress on material surface at the 

final simulation time were discussed in this section. 

Distribution of plastic strain and shear stress on material surface with thickness 

0~20μm for SS400 and FDI are shown in Fig. 4.11 and Fig. 4.12 respectively (impact 

angle is 30deg.). Maximum plastic strain and maximum shear stress on material 
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surface with thickness 0~20μm could be seen. In the same way, we could also get the 

maximum plastic strain and maximum shear stress at other impact angles and material 

surface with thickness 0~10μm. The maximum plastic strain and maximum shear 

stress were used in following discussion.  

Fig. 4.13 shows the relationship between plastic strain as well as shear stress and 

impact angle on material surfaces of SS400 and FDI (A-30) with different thickness 

0~10μm and 0~20μm. It can be seen that plastic strain with different thicknesses was 

same, meaning that the maximum plastic strain occurs at areas with thickness 0~10μm, 

where is extremely close to the places impacted by impact particle. Meanwhile, shear 

stress with different thicknesses showed a little different, shear stress of 0~20μm is a 

little higher than those of 0~10μm at some impact angles, meaning that at these 

impact angles maximum shear stress occurs at thickness of 10~20μm, but the overall 

trends were similar and curves with thickness 0~20μm changed more obviously. 

Therefore, maximum plastic strain and shear stress on material surface with 0~20μm 

for SS400 and 4 different FDI models were shown in Fig. 4.14 for further discussion. 

It can be seen that as for plastic strain, curves of FDI (A-30) and FDI (B-30) 

changed obviously at different impact angles, and curves of SS400, and FDI (A-50) 

and FDI (B-50) changed relatively less obviously. Meanwhile, as for shear stress, 

curves of FDI (A-30) and FDI (B-30) kept almost constant at different impact angles, 

curves of FDI (A-50) and FDI (B-50) changed a little obvious, and curve of SS400 

changed more obvious. Besides, in real experiments, spheroidal graphite could be 

observed on the ground surfaces of FDI specimens, meaning that FDI (A-30) and FDI 

(B-30) were more similar to actual FDI specimens than those of FDI (A-50) and FDI 

(B-50). From a whole view on Fig. 4.14, as for SS400, plastic strain changed small 

and shear stress changed large, so shear stress plays main role on erosion of SS400. 

Meanwhile as for FDI, plastic strain changed large and shear stress changed small, so 

plastic strain plays main role on erosion of FDI.  

Therefore it was inferred that shear stress and plastic strain play main role on 

erosion of SS400 and FDI respectively, and maximum shear stress occurred at impact 

angle 20deg. on SS400 and maximum plastic strain occurred at 50deg. and 80deg. on 
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FDI (A-30) and FDI (B-30) respectively, which agreed with erosion rate curve of 

SS400 and FDI in Fig. 4.8. Furthermore, except that plastic strain curve of FDI (A-50) 

and FDI (B-50) showed a little smaller than that of SS400, plastic strain and shear 

stress of FDI were all larger than those of SS400, which can explain the phenomena 

that erosion rate of FDI was higher than that of SS400. 

 

 

 

(a) SS400 

 

  

(b) FDI (A-30)                     (c) FDI (A-50) 

 

   

(d) FDI (B-30)                     (e) FDI (B-50) 

Fig. 4.9 Distribution of plastic strain at impact angle 30deg. 
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(a) SS400 

 

   

(b) FDI (A-30)                     (c) FDI (A-50) 

 

   

(d) FDI (B-30)                     (e) FDI (B-50) 

Fig. 4.10 Distribution of shear stress at impact angle 30deg. 
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(a) SS400 

 

    

(b) FDI (A-30)                     (c) FDI (A-50) 

 

     

(d) FDI (B-30)                     (e) FDI (B-50) 

Fig. 4.11 Distribution of plastic strain on material surface with thickness 0~20μm at 

impact angle 30deg. 
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(a) SS400 

 

     

(b) FDI (A-30)                     (c) FDI (A-50) 

 

     

(d) FDI (B-30)                     (e) FDI (B-50) 

Fig. 4.12 Distribution of shear stress on material surface with thickness 0~20μm at 

impact angle 30deg. 

 

    

(a) Plastic strain                  (b) Shear stress 

Fig. 4.13 Plastic strain and shear stress vs impact angle on material surface with 

different thickness of SS400 and FDI (A-30) 
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(a) Plastic strain                   (b) Shear stress 

Fig. 4.14 Plastic strain and shear stress vs impact angle on material surface of SS400 

and FDI with different graphite positions 

 

4.4 Conclusions 

3D FE models of single particle impact on mild steel SS400 and spheroidal 

graphite cast iron FDI were built. The mechanisms of erosion on SS400 and FDI were 

discussed. 

(i) Craters of SS400 and FDI after single particle impact showed similar shapes, 

however, the presence of much softer material graphite made craters of FDI deeper 

than that of SS400. 

(ii) Erosion tests indicated that erosion of FDI was higher than that of SS400, and 

maximum erosion occurred at impact angle 20deg. for SS400, and 60deg. for FDI 

respectively. Considering the combination of deformation and cutting effect, erosion 

tests results could be explained from viewpoint of plastic strain and shear stress on 

material surfaces from FE simulation. 

(iii) Simulation results indicated that except a little smaller plastic strain of FDI 

(A-50) and FDI (B-50) than that of SS400, both plastic strain and shear stress on FDI 

were generally higher than those on SS400. As for FDI, plastic strain reached to 

maximum at 50deg. for FDI (A-30) and 80deg. for FDI (B-50), shear stress was 

unchanged at different impact angles. While, as for SS400, plastic strain changed little 

at different impact angles, shear stress changed obviously with maximum shear stress 

at 20deg.. So plastic strain and shear stress play main role on erosion of FDI and 
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SS400 respectively, which explained the dependence of impact angle for erosion rate 

curves gotten from erosion tests. 
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Chapter 5 

 

A comparative study of material loss and crater deformation on 

ductile material during erosion simulation using 2 different material 

models 

 

5.1 Introduction 

In the studies from chapter 3 to chapter 4, erosion simulation were conducted by FE 

model of single particle impact, plastic strain and stress after impact were discussed, 

but material loss did not appear on the material surface, which did not agree with the 

actual phenomenon of erosion.  

Reviewing the previous studies of published papers, it is found that if a certain 

material damage criterion is applied into the material model, material damage or crack 

could be got during simulation. In the areas of erosion research, there have been 

several simulations involving material loss [1-11]. The material models of these 

studies could be simply classified into 2 types: (i) using complex material models 

such as Johnson-Cook or Johnson-Holmquist material models [4-6], and (ii) using 

yield stress or tensile strength directly [1-3, 7-11].  

For ductile material, Johnson-cook (J-C) [12, 13] was mainly used due to its fully 

considering various effects such as strain hardening, plastic strain rate and 

thermal-softening into material behaviors. However, large numbers of experiments 

have to be done to get appropriate J-C material parameters, besides, the J-C material 

parameters depend strongly on steel suppliers and experimental conditions, greatly 

limiting its application. Conversely, yield stress is surely to be marked for each type 

of steel, so simple material model considering only yield stress could be seen as an 

effective substitute for Johnson-Cook material model, and has also been used in some 
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previous simulations.  

Hence, in this chapter, we established a 3D FE model of target material impacted 

by 5 serial particles, Johnson-cook material model and simple material model together 

with “shear failure” criterion were applied to target material respectively. Through 

investigating results of erosion simulation on mild steel ASTM A36 (similar with 

SS400), the difference of erosion performance on ductile material using these two 

different material models were discussed. Experimental results were used to verify 

simulation results.  

 

5.2 Simulation 

5.2.1 Material models 

5.2.1.1 Johnson-Cook material model [12, 13] 

Johnson-Cook material model consists of Johnson-Cook (J-C) constitutive equation 

and failure equation. The Johnson-Cook (J-C) constitutive equation is expressed as Eq. 

(5-1), 
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                  (5-1) 

Where, σ is yield stress. The first, second and third bracket account for the effect 

of plastic strain, plastic strain rate and thermal-softening respectively. ε and 0ε
  are 

equivalent plastic strain rate and reference strain rate respectively. T indicates current 

temperature. The meanings of other constants are listed in Table. 5.1. 

  The Johnson-Cook (J-C) failure equation is expressed as Eq. (5-2), 
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       (5-2) 

Where, fε  is plastic strain at failure, p is the average of three principal stresses 

and q is Von-Mises stress.  

ASTM A36 (similar with SS400) was used as target material with Johnson-Cook 

material models. The material parameters are listed in Table 5.1 [14, 15]. The 

reference strain rate 0
  of ASTM A36 was set as 1 s-1 in simulation. 
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5.2.1.2 Simple material model 

In simple material model, the effect of strain hardening, plastic strain rate and 

thermal-softening on yield stress σ  and plastic strain at failure fε  
are neglected. 

Yield stress σ  is replaced by a constant value σf. “Shear failure”, also assumed as a 

constant value εf and replaced for fε  
in J-C failure equation, was used to simulate 

material failure. The simulation in this study were conducted under 5 different shear 

failure εf of 0.5, 0.7, 0.9, 1.1 and 1.03. The material parameters of SS400 with simple 

material model are also listed in Table 5.1. 

 

5.2.1.3 Material failure 

For both material models, material failure occurs due to the accumulation of 

individual damages, it is expressed as Eq. 5-3, 
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                                 (5-3) 

Where, ω is damage parameter, 
pl

ε0  is initial value of equivalent plastic strain, 

pl
εΔ  is equivalent plastic strain at each individual damage, 

pl

fε  is plastic strain at 

failure. When ω reaches to 1, material failure occurs, and failure elements remove 

from target material. 
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Table 5.1 Material parameters of ASTM A36 and SS400 

Material parameters Symbol Unit ASTM A36 SS400 

Density ρ kg/m3 7800 

Young’s modulus E GPa 200 

Poisson’s ratio ν — 0.3 

Johnson-Cook material model 

Yield stress at zero strain A MPa 283.86 — 

J-C Hardening coefficient B MPa 496.2 — 

J-C Strain-hardening index n — 0.2282 — 

J-C strain rate constant c — 0.022 — 

J-C thermal exponent m — 0.9168 — 

Melting temperature Tm ℃ 1538 — 

Specific heat capacity Cp J/(kg·K) 486 — 

J-C failure constant d1 — 0.4025 — 

J-C failure constant d2 — 1.107 — 

J-C failure constant d3 — -1.899 — 

J-C failure constant d4 — 0.009607 — 

J-C failure constant d5 — 0.3 — 

Simple material model 

Yield stress σf MPa — 491 

Shear failure εf — — 0.5~1.1, 1.03 

 

5.2.2 Finite Element Modeling 

  The erosion simulation was conducted using a general commercial FEM software, 

ABAQUS/Explicit (Version 6.14). Fig. 5.1 shows the FE model, 5 impact particles 

were impacted serially to a same place on the target material one by one. Only half 

model was built to improve computing speed, so symmetric surfaces were fixed in Y 

direction. All of bottom and outside surfaces of target material were fixed in freedom 

degrees. The model were meshed using a 8-node linear brick element with reduced 

integration and hourglass control (C3D8R), the contact region of target material were 

meshed in finer grid to improve accuracy of results. The edge length of element in 

contact region was 0.0075mm. There were 1024 elements and 24640 elements for 

each impact particle and target material respectively. Impact particles were built as 

rigid bodies to save CPU cost. The density, Young’s modulus and Poisson’s ratio of 
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impact particles were 7800kg/m3, 200GPa and 0.3, respectively. Coulomb friction was 

used to define the interaction between target material and impact particles, no 

interaction was defined between impact particles. Diameter and initial velocity of 

impact particles were 0.7μm and 20m/s respectively, same with those in erosion tests. 

Impact angles ranged from 10deg. to 90deg. in increment of 10deg.. The simulation 

time was set as 1.75×10-4 s, step time was set as 1.75×10-6 s. After each simulation, 

number of failure elements on target material were counted and used as material loss 

hereinafter. 

 

 

Fig. 5.1 FE model and mesh 

 

5.3 Results and discussion 

5.3.1 Effect of shear failure for simple material model 

In this section, the simulations were conducted under friction coefficient μ=0.2. 

Fig. 5.2 shows the relationship between material loss and impact angle under 5 

different shear failure εf of 0.5, 0.7, 0.9, 1.1 and 1.03. It is seen that with increasing 

of shear failure, material loss decreased, otherwise, the impact angle for maximum 

material loss shifted from higher to lower. That is because that shear failure is an 

indicator for ductility of material, when shear failure decreases, ductility becomes 

poorer, material becomes more brittle and vulnerable to be fractured. In addition, it is 
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well-known that maximum erosion occurs at impact angle 80~90deg. for brittle 

material, 50~70deg. for cast iron and 20~40deg. for ductile material, meaning that 

with increasing of ductility, the impact angle for maximum erosion shifts from 

higher impact angle to lower one, which is consistent with the phenomenon as 

illustrated in Fig. 5.2. Through modifying the shear failure and then comparing 

material loss with Johnson-Cook model, it is found that maximum material loss 

using simple material model under shear failure εf=1.03 was similar with that using 

Johnson-Cook material model, so εf=1.03 was used in following discussion. Fig.5.3 

shows the target material with maximum material loss using simple model under 

εf=1.03 and Johnson-Cook model after 5 particles impact. 

For both FEM results under 2 different material models, maximum material loss is 

normalized to 1, ratio of material loss at each impact angle with respect to maximum 

material loss were calculated using ML(θ)/MLmax, here, ML(θ) is material loss at 

impact angle θ, MLmax is maximum material loss. In the same way, ratio of 

normalized erosion rate from erosion tests was also calculated. Ratio of erosion at 

different impact angles were shown in Fig. 5.4. No material loss at high impact 

angles of FEM was because only 5 solid particles were impacted to target material, 

insufficient to make material loss occur at high impact angle in simulation, but 3 

curves have similar trend, so it was considered that FEM results using both different 

material models agreed well with erosion test results. 
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Fig. 5.2 Relationship between Material loss and impact angle under different shear 

failure εf for simple material model (μ=0.2) 

 

 

(a) Johnson-Cook model 

 

 

(b) Simple material model (εf=1.03) 

Fig. 5.3 Target material with maximum material loss of 2 different material models 

(μ=0.2) 
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Fig. 5.4 Ratio of erosion vs impact angle from FEM and erosion tests 

 

5.3.2 Effect of friction coefficient 

The erosion surfaces from erosion tests were shown in Fig. 5.5. It can be seen that 

erosion surfaces at low impact angles was corrugate and wrinkled, whereas the 

erosion surfaces at high impact angle became smoother. The corrugate and wrinkled 

surfaces were vanishing with increasing of impact angle, indicating that erosion 

surfaces were torn more seriously at low impact angles than high impact angles. That 

was because there is friction between solid particles and material surfaces, the 

coarseness of particles exert much more scratching and tearing actions on material 

surface at low impact angles than those at high impact angles. The role of friction on 

erosion is shown in Fig. 5.6 schematically. So it is considered that friction plays an 

important role on erosion. Therefore, the effect of friction were discussed in this 

section. 

The relationship between material loss and impact angle under different friction 

coefficients were shown in Fig. 5.7. It is found that for both material models, 

material loss increased with increasing of friction coefficient. Besides, the curves of 

μ=0.1 and 0.2 were largely different with each other, also largely different with 3 

curves of μ=0.3~0.5, and 3 curves of μ=0.3~0.5 were nearly overlapped, which 

indicates that increasing of friction coefficient had obvious increasing effect on 
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erosion at low friction coefficients, but had unobvious increasing effect on erosion at 

high friction coefficients. 

Maximum material loss of 2 different material models under friction coefficients 

μ=0.1 and 0.5 were shown in Fig. 5.8, so it is clearly seen that maximum material 

loss of Johnson-Cook model was a little higher than that of simple model under 

friction coefficient μ=0.1, in contrast, became a little lower than that of simple model 

under friction coefficient μ=0.5, indicating that increasing of friction coefficient 

exerts more obvious effect on increasing of erosion for simple material model than 

that for Johnson-Cook material model.  

 

 

 

Fig. 5.5 Appearance of erosion surfaces for SS400 

 

 

   

(a) Oblique impact angle                 (b) Normal impact angle 

Fig. 5.6 Schematic of role of friction during erosion 
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(a) Johnson-Cook model                   (b) Simple material model 

Fig. 5.7 Relationship between material loss and impact angle from FEM under 

different friction coefficients 

 

 

Fig. 5.8 Comparison of maximum material loss of 2 different material model under 

friction coefficients μ=0.1 and 0.5 

 

5.3.3 Craters of single particle impact 

In this section, the deformation on target material at simulation time t=2.8×10-5 s 

are discussed, at this time, target material was impacted only by the first particle. Fig. 

5.9 shows the distribution of displacement in Z direction under friction coefficient 

μ=0.2. It can be seen that craters under Johnson-Cook and Simple material model 

has similar shapes, also similar with craters gotten from single particle impact tests 
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as shown in Fig. 5.10. However, the deformation of craters under 2 different material 

models showed a little different. In order to compare the differences clearly, crater 

depths and pile-up heights of a tiny material at rebound side at each impact angle 

under 2 different material models were shown in Fig. 5.11.  

It is found that, crater depth increased with increasing of impact angle in a 

quadratic curve way, and all craters of simple model were deeper than those of 

Johnson-Cook model. Pile-up height increased firstly and then decreased with 

increasing of impact angle with maximum material pile-up occurring around the 

impact angles for maximum erosion, and all material pile-up of Johnson-Cook model 

were also higher than those of simple model. The curves of 2 different material 

models were verified with curves of test. These curves indicates that simple model 

could cause larger deformation than Johnson-Cook model during simulation, but 2 

material models are both acceptable due to the consistence with test results.  
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(a) 30deg., Johnson-Cook model             (b) 30deg., Simple model 

 

        

(c) 60deg, Johnson-Cook model             (d) 60deg, Simple model 

 

        

(c) 90deg., Johnson-Cook model             (d) 90deg., Simple model 

Fig. 5.9 Distribution of displacement in Z direction after first particle impact from 

FEM (μ=2, impact direction is along positive x-axis) 
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Fig. 5.10 Appearance of craters after single particle impact test 

 

     

(a) Crater depth                       (b) Pile-up height 

Fig. 5.11 Crater depth and pile-up height at different impact angle (μ=0.2 for FEM) 

 

5.4 Conclusions 

In this chapter, FEM simulations for erosion on ductile material were conducted 

using 2 different material models, namely Johnson-Cook material model and simple 

material model. The differences of these 2 material models were discussed.  

(i) For simple material model, increasing of shear failure not only can cause 

increasing of material loss, but also can cause the impact angle for maximum material 

loss shifting from higher to lower, indicating that increasing of shear failure can 

decrease the ductility of material. Material loss using simple model of shear failure 

εf=1.03 was similar with that using Johnson-Cook model, so shear failure εf=1.03 was 

used for following discussion. 

(ii) Effect of friction coefficient on material loss for both material models showed 

similar, which was that increasing of friction coefficient cause more material loss, 

with obvious increasing effect under low friction coefficients μ=0.1~0.3 and 
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unobvious increasing effect under high friction coefficients μ=0.3~0.5. However, 

material loss increased a little more rapidly by using Johnson-Cook model than that 

by using simple model. 

(iii) Through investigating the craters after single particle impact under both 

different material models, craters became deeper in a quadratic curve way with 

increasing of impact angle, material pile-up became highest around the impact angle 

for maximum erosion on ductile material, indicating that deformation under both 

material models showed similar. However, a little deeper crater and higher material 

pile-up under simple model than those under Johnson-Cook model indicated that 

simple model can cause larger deformation than Johnson-Cook model. 
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Chapter 6 

 

Impact simulation of angular particles on mild steel using a coupled 

method of finite element and smoothed particle hydrodynamics 

 

6.1 Introduction 

In simulations from chapter 3 to chapter 5, Finite Element Method (FEM) was used 

to build the models of target material, FE models of target material were built using 

Lagrange meshes, which is appropriate for spherical particle impact, because their 

meshes kept regular after spherical particle impact. However, when target material is 

impacted by tip of angular particles, distortion or tangle meshes would occur on the 

target material, dramatically decreasing the accuracy of simulation results. The 

appearance of Lagrange mesh after spherical particle impact and angular particle 

impact are shown in Fig. 6.1. So a mesh-free method named as Smoothed Particles 

Hydrodynamics (SPH) has been used to overcome the shortage of Lagrange meshes. 

However, SPH method usually takes much more computational cost than FEM, as a 

result, a method coupling SPH and FEM was proposed to combine the respective 

advantages of FEM and SPH. 

In this chapter, a 3D numerical model coupling SPH and FEM was built via 

ANSYS/LS-DYNA to study impact performance of angular particles on mild steel. 

Firstly, simulations of spherical particles impact were also conducted and the 

difference between angular particles impact and spherical particles impact were 

investigated. Secondly, angular particles with different shapes were built by varying 

the angularity but keeping the whole volume of angular particle unchanged, the effect 

of angularity of angular particles on mild steel during impact process were discussed.  
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(a) Spherical particle 

 

 

(b) Angular particle 

Fig. 6.1 Deformation on target material under spherical particle and angular particle 

impact using Lagrange meshes 

 

6.2 Brief description of SPH theory 

Smoothed Particles Hydrodynamics (SPH) is a mesh-free method invented by Lucy 

[1] and Gingold and Monaghan [2]. It was initially used for modeling astrophysical 

phenomena such as exploding stars and dust clouds without boundaries. With 

development of SPH theory, up to now, SPH method has been extensively used in a 

wide range of problems in both fluid and solid mechanics because of its strong ability 

to incorporate complex physical formulations into SPH simulation, such as 

multi-phase flow [3], heat conduction [4], explosion [5, 6], mechanical machining [7, 

8] and high speed impact [9, 10] etc..  
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There are two basic steps for SPH formulations, first step is kernel approximation 

and second step is particle approximation [11].  

For an arbitrary continuum function f(x), it can be expressed as Eq. 6-1, 

 
Ω

)()()( xxxxx dff                              (6-1) 

Where δ(x) is Dirac delta function. Kernel approximation means that the δ(x) 

function is replaced with a certain smoothed function. The kernel approximation of a 

function f(x) in SPH method is expressed as Eq. 6-2, 

 
Ω

)()()( xxxxx dh,Wff                         (6-2) 

Where, W(x-x’, h) is a smoothing function, h is the smoothing length defining the 

influence or support area of the smoothing function W, and Ω is integral region. 

W(x-x’, h) should have a central peak value, satisfying with three conditions named as 

even, unity and compact [11]. The most common smoothing function is the cubic 

B-spline function [11, 12], which is originally used by Monaghan and Lattanzio [13], 
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Where C is a constant which depends on space dimension, C=1/h, 15/7πh2 and 

3/2πh3 are used in one-, two- and three-dimension respectively.  

Particle approximation is second basic process for SPH formulations. Particle 

approximation is the process that computational domain is represented with a finite 

number of discrete particles, then the continuous form of kernel approximation in Eq. 

(6-2) can be written in discretized form of a summation of the neighboring particles as 

followed, 

 


N

j
jj

j

j
h,Wf

ρ

m
f

1

)()()( xxxx                      (6-4) 

Where, N is the total number of particles within computational domain, mj and ρj 

are the mass and density of the particles j, respectively. 
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The process of SPH simulation should be satisfied with conservation equations for 

mass, momentum and energy [14]. The discretized form of three conservation 

equations can be written as followed, 

Conservation of mass:         
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Conservation of momentum:
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Conservation of energy:
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Where Wij=Wij(xj-xi, h), σi and σj are stress tensors for particles i and j respectively, 

and vij is relative velocity vector between particle i and j.  

 

6.3 Simulation 

6.3.1 Johnson-Cook material model 

6.3.1.1 Constitutive equation and failure equation [15-17] 

Johnson-Cook constitutive equation was used to simulate flow stress behavior of 

target material. It is expressed as Eq. 6-8, 
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Where, σ  is Von-mises stress, ε  is equivalent plastic strain, A is the yield stress 

at zero strain, B and n are strain-hardening constants, C is hardening strain rate 

constant, ε and 0ε
  are equivalent plastic strain rate and reference strain rate 

respectively, T, Tr and Tm are current temperature, room temperature and melting 

temperature respectively, m is temperature constant.  

Johnson-Cook failure equation is expressed as Eq. 6-9, 
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Where, p is the average of three principal stresses and q is Von-Mises stress, d1, d2, 

d3, d4, d5 are J-C material failure constants.  
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Material failure occurs due to accumulation of individual damages, as expressed in 

Eq. 6-10, 

 )(
fε

εΔ
ω                           (6-10) 

Material failure occurs when ω reaches to 1. 

 

6.3.1.2 Equation of State (EOS) [15] 

The Mie Gruneisen equation of state is used to describe the volumetric compression 

behavior of ductile material under shockwave. It is expressed as Eq. 6-11, 
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Where, p is pressure, E0 is the internal energy per initial volume, C is the 

interception of the Vs(shock velocity)-Vp(particle velocity) curve, S is the coefficients 

of the slope of Vs-Vp curve, γ0 is unitless Gruneisen constant, α is the first order 

volume correction to γ0. The compression factor μ is defined as Eq. 6-12, 

1
0


ρ

ρ
μ                       (6-12) 

Where, ρ and ρ0 are current density and initial density respectively.  

In the simulations, mild steel ASTM A36 (similar with SS400) was used as target 

material, the material parameters were listed in Table 6.1.  
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Table 6.1 Material parameters of ASTM A36 [15, 16] 

Material parameters Symbol Unit ASTM A36 

Density ρ kg/m3 7800 

Young’s modulus E GPa 200 

Poisson’s ratio ν  0.3 

J-C yield stress at zero strain A MPa 283.86 

J-C Hardening coefficient B MPa 496.2 

J-C Strain-hardening index n  0.2282 

J-C strain rate constant c  0.022 

J-C thermal exponent m  0.9168 

Melting temperature Tm ℃ 1538 

Specific heat capacity Cp J/(kg·K) 486 

J-C failure constant d1  0.4025 

J-C failure constant d2  1.107 

J-C failure constant d3  -1.899 

J-C failure constant d4  0.009607 

J-C failure constant d5  0.3 

Elastic bulk wave velocity C0 m/s 4570 

Slope of Vs vs Vp curve S  1.49 

Gruneisen constant γ0  2.17 

 

 

6.3.2 Numerical modeling 

Numerical models are shown in Fig. 6.2, angular particles were simplified as cones 

in the simulations. Half models were built to save computing cost, so Y-displacement 

of nodes on symmetrical surfaces should be constrained. Target material consists of 

SPH region and FE region, two regions were tied using keyword 

Contact_Tied_Nodes_To_Surface. There were 27000 SPH particles in the model, 

mass of each SPH particle was 3.611×10-11 kg. Impact particles were set as rigid 

bodies to improve computing speed. Several impact particles were impacted to the 

center of SPH region serially one by one. Density, Young’s modulus and Poisson’s 

ratio of impact particles were set as 8000kg/m3, 210GPa and 0.3 respectively. The 
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interactions between impact particles and SPH region were defined using keyword 

Contact_Automatic_Nodes_To_Surface, both static friction coefficient and dynamic 

coefficient were set as 0.1. The simulation time was set as 0.035ms×N, where N was 

the number of impact particles. All bottom and outside surfaces of target material 

were set as non-reflecting boundaries.  

Diameter of spheres was 700μm, same with the average diameter of steel grits in 

experiments. In terms of dimensions of cones, in order to investigate the effect of 

angularity, the cone with bottom diameter Dbottom=700μm and conic angle θ=60deg. 

was selected as standard cone, several shapes of cones were built by varying conic 

angle θ but with same volume of standard cone, the reason to build cones in this way 

is that cones with same volume have same kinetic energy before their impacts to 

target material. Conic angle were named as angularity here, the dimensions of cones 

were listed in Table 6.2. Roundness of angular tips of cones were 0.01mm. The cones 

with different angularity used in this work were shown in Fig. 6.3. In order to simplify 

the initial motion of cones, whole models should satisfy that the gravity center of first 

cone located in global origin. 
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(a) Sphere impact 

 

 

 (b) Cone impact 

Fig. 6.2 Numerical models 
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Table 6.2 Dimensions of cones 

Axial cross section of cone Dbottom (μm) θ (deg.) 

 

651.89 50 

700 60 

746.50 70 

792.91 80 

840.66 90 

 

 

                

(a) θ=50deg.                   (b) θ=60deg. 

 

              

(c) θ=70deg.                   (d) θ=80deg. 

 

           

(e) θ=90deg.                   (f) θ=100deg. 

Fig. 6.3 Cones with different conic angle θ 
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6.4 Results and discussion 

6.4.1 Comparison of sphere impact and cone impact 

Material removal is caused by deformation on target material, when deformation 

reaches to a certain extent, material removal occurs. So plastic strain were chosen as 

the evaluator for following discussion. The distribution of plastic strain after 5 

particles impact are shown in Fig. 6.4. The cone in this section is standard cone.  

It is seen that, a crater appeared on the impact region after sphere impact, maximum 

plastic strain occurred on the crater surface of rebound side at low impact angle 

around 10~30deg., meanwhile, at impact angle 30deg., a little obvious plastic strain 

occurred at the subsurface of target material, with further increasing of impact angle, 

plastic strain at subsurface became more and more obvious, and when impact angle 

became higher than 50deg., maximum plastic strain occurred at subsurface of target 

material. In terms of cone impact, an inverted conic notch appeared at impact region, 

plastic strain mainly concentrated at the nearby region of notch at all impact angles. 

At low impact angle around 10~50deg., a tiny material protruded at the rebound side 

of notch, maximum plastic strain occurred at the root of protruded material. Material 

removal is most likely to occur due to fracture of protruded material by further 

particles impact, as shown in Fig. 6.5. Whereas at high impact angles such as 

70~90deg., the notch became larger, but protruded material became vanishing, 

making material removal difficult at high impact angles, which explained why erosion 

at high impact angles is smaller than that at low impact angles. As shown in Fig. 6.4 

(j), at normal impact angle 90deg., notch had a similar shape with tip of cone, 

maximum plastic strain occurred at the side wall of notch, demonstrating that plastic 

strain at normal impact causes due to friction between cone and side wall of notch.  

Relationship between plastic strain and impact angle are shown in Fig. 6.6. For 

sphere impact, maximum plastic strain of SPH particles on the crater surfaces were 

used in Fig. 6.6, which is because although maximum plastic strain of whole SPH 

region occurred at subsurface at high impact angles, it is impossible for material 

removal to occur there. For cone impact, maximum plastic strain were used in Fig. 6.6, 

which is because maximum plastic strain just occurred at the nearby region of notch. 
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The curves in Fig. 6.6 have same trend with curves of erosion rate and impact angle as 

shown in Fig. 6.7, so the simulation were acceptable.  

   

(a) 10deg. (Sphere impact)             (b) 10deg. (Cone impact) 

   

(c) 30deg. (Sphere impact)             (d) 30deg. (Cone impact) 

   

(e) 50deg. (Sphere impact)             (f) 50deg. (Cone impact) 

   

(g) 70deg. (Sphere impact)             (h) 70deg. (Cone impact) 

   

(i) 90deg. (Sphere impact)             (j) 90deg. (Cone impact) 

Fig. 6.4 Plastic strain on target material after 5 particle impact at impact angles 

10deg., 30deg., 50deg., 70deg. and 90deg. (impact direction was from left to right for 

10deg., 30deg., 50deg. and 70deg.) 
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(a) 2 particles 

 

  

(b) 5 particles 

 

   

(c) 7 particles 

Fig. 6.5 Process of material removal for cone impact after 2, 5 and 7 particles 

impact at impact angle 20deg. 
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(a) Sphere impact                    (b) Cone impact 

Fig. 6.6 Relationship between plastic strain and impact angle from simulation 

 

 

Fig. 6.7 Relationship between erosion rate and impact angle from experiment 

 

6.4.2 Effect of angularity for single cone impact 

When target material were impacted with one cone, the target material was 

damaged, making shape of target material different for subsequent cones impact, in 

order to keep simulation conditions in common for different cones, target material 

without damage after single cone impact were discussed in this section, the 

simulations were at oblique impact angle 30deg. and normal impact angle 90deg., 

simulation time was 0.035ms. 

Energy evolution of single standard cone impact are shown in Fig. 6.8. It is seen 

that during impact process, kinetic energy decreased whereas internal energy 
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increased, meaning that kinetic energy of particle converted into internal energy, of 

course, sliding energy due to friction were also converted from kinetic energy, but it 

was too small to be shown here. Therefore, the reduction of kinetic energy could be 

seen as an evaluator of breakage for particle impact on material, and was used to 

discuss the effect of angularity of cone combining with penetration depth and plastic 

strain. The simulation results under different cones impact are shown in Fig. 6.9.  

As shown in Fig. 6.8 and Fig. 6.9 (a), kinetic energy of normal impact decreased 

much more obviously than that of oblique impact, which is because cone rotated after 

oblique impact however no rotation existed for cone after normal impact, as 

illustrated in Fig. 6.10. And with increasing of angularity of cone, rotation of cone 

became difficult thus leading to an increase for reduction of kinetic energy for cone 

under oblique impact, however angularity almost have no influence on reduction of 

kinetic energy for cone under normal impact. So from Fig. 6.9 (a), it is concluded that 

breakage of cone under normal impact on target material was much larger than that 

under oblique impact, and larger angularity also exerted more breakage than smaller 

angularity.  

Fig. 6.9 (b) shows relationship between penetration depth and angularity. It is seen 

that with increasing of angularity, penetration depth became shallower, which is 

because cone with larger angularity had larger contact area, so larger resistance to 

vertical motion were generated, causing shallower penetration depth. And, it is also 

seen that penetration depth under normal impact were deeper than those under oblique 

impact, which is because normal component of velocity was larger than that under 

oblique impact.  

Cone impact at oblique angle exerted more ploughing action than that at normal 

angle, leading to more plastic strain at oblique angle than that at normal angle. As for 

oblique impact, with increasing of angularity, cone became difficult to rotate, so cone 

with larger angularity gave more ploughing action on material than that with smaller 

angularity, which can explain the phenomena that plastic strain increased with 

increasing of angularity at oblique impact as shown in Fig. 6.9 (c). As for normal 

impact, when angularity became larger, the normal force to the side wall of notch Fn 
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also became larger so that friction force between cone and side wall of notch became 

larger, meanwhile larger angularity made shallower penetration so that relative motion 

between cone and side wall of notch became lower, meaning that the duration time of 

the friction would decrease. So there is a critical angularity between Fn and relative 

motion to make the friction biggest so as to make a peak value of plastic strain, Fig. 

6.9 (c) showed the critical angularity is 70deg.. 
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Fig. 6.8 Energy evolution of single standard cone impact at impact angle 30deg. 
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Fig. 6.9 Simulation results under single cone impact with different conic angles 
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(a) Oblique impact                      (b) Normal impact 

Fig. 6.10 Schematic of movement of single cone for oblique and normal impact 

 

6.5 Conclusions 

A coupled method of SPH and FEM was applied into numerical models of angular 

particles impact on mild steel. The difference comparing with spherical particles 

impact and the effect of angularity were discussed. Angular particles were simplified 

as cones. 

(i) For spherical particles impact, maximum plastic strain occurs at the surfaces of 

rebound side of craters at low impact angles (about <50deg.), and at the subsurface of 

impact region at high impact angles (about ≥50deg.). But for cone impact, maximum 

plastic strain always occurs at the nearby region of impact region at all impact angles, 

a tiny material protrudes from the impact region due to cone impact, with repeated 

impacted, protruded material grows and finally removes from material surface.  

(ii) Through investigating reduction of kinetic energy, whole breakage of cones on 

target material at normal impact angle (90deg.) are higher than those at oblique 

impact angle (30deg.), with increasing of angularity of cones, kinetic energy 

decreases obviously under oblique impact, and approximately keep unchanged under 

normal impact. Plastic strain under oblique impact are higher than those under normal 

impact, and larger angularity increases plastic strain under oblique impact, and a peak 

value of plastic strain under normal impact occurs at angularity 70deg.. Cones under 

normal impact penetrates deeper than those under oblique impact, and larger 

angularity makes penetration depth shallower.  
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Chapter 7 

 

Erosive prediction on liners of rotating chute using a coupled 

simulation of DEM and FEM 

 

7.1 Introduction 

Rotating chute is an important apparatus to discharge raw materials into blast 

furnace in iron-making industry. Generally, the inner surface of rotating chute is 

installed with arrays of liners. In working process, rotating chute is placed above the 

blast furnace, raw materials including ore and coke are charged into blast furnace 

under gravity through rotating chute, so impacts between raw materials and liners 

become unavoidable, making serious erosion on the surface of liners, therefore the 

liners have to be maintained or exchanged regularly, greatly affecting work efficiency 

and running cost of production. Hence, in order to reduce production risks and 

improve economic benefits, it is necessary to conduct researches of erosion on the 

liners of rotating chute. 

The trajectory of raw materials in rotating chute is difficult to be described, they 

not only move along the longitudinal direction of rotating chute due to gravity, but 

also move in opposition to the rotating direction due to rotation. In addition, the size 

of raw material particles, rotating velocity, inclination angle of chute, surface 

conditions of liners also have great influences on the trajectory of raw materials flow. 

Some mathematical models have been developed to describe the motion of raw 

materials particles [1, 2], but some actual working conditions were ignored for 

simplicity in these models so that they still could not correctly reflect the motion of 

raw materials in rotating chute, so the prediction of which liners in rotating chute are 

under erosion is still an urgent and practical problem. Therefore, in this work, a 

method was proposed to handle this problem.  
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Discrete Element Method (DEM) has become an effective way to simulate granular 

particles flows since its original invention by P. A. Cundall [3]. In this work, the 

movement of raw materials in rotating chute was simulated using DEM, and then 

pressure of raw materials on surface of rotating chute was transferred into Finite 

Element (FE) Model of rotating chute, finally, the stress status of rotating chute were 

obtained by FE calculation. This work provides a useful and efficient guideline for 

erosive prediction on rotating chute.  

 

7.2 Brief description of DEM theory [4-8] 

The motion of a particle in DEM simulation can be classified into translational and 

rotational motions. All motions are governed by Newton’s second law of motion. 

During simulation, a particle of granular system collides with wall and neighboring 

particles. Fig. 7.1 shows a schematic view of interaction between two neighboring 

particles i and j. The governing equations for particle i are expressed as Eq. 7-1 and 

Eq. 7-2, 
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Where mi, Ii, ui and ωi are mass, moment of inertia, translational velocity and 

angular velocity of particle i, respectively. K is the total number of its neighboring 

particles. Particle i is under gravitational force (mig) and sum forces generated from 

interaction with neighboring particles. Fig. 7.2 shows schematic view of particle i 

under interactions by neighboring particles around it. The forces generated from 

interaction between particle i and particle j can be classified into 4 types: normal 

elastic force (Fcn, ij), normal damping force (Fdn, ij), tangential elastic force (Fct, ij) and 

tangential damping force (Fdt, ij). These 4 types of forces are dependent on normal (δn) 

and tangential deformation (δt). The torques generated from interaction between 

particle i and particle j can be classified into 2 types: Tt, ij and Tr, ij. Tt, ij arises from 

tangential force, and Tr, ij arises from rolling friction.  
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The normal elastic force (Fcn, ij) is expressed as Eq. 7-3, 

nF
23/

nncn,ij δk                                       (7-3) 

Where δn=|δn,ij|, normal vector n is calculated from the normal deformation (δn,ij), 

n=δn,ij/|δn,ij|. kn is expressed as Eq. 7-4, 
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Rij and E* are expressed as Eq. 7-5,  
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Where Ri, Ei and νi are radius, Young’s modulus and Possion’s ratio of particle i 

respectively. 

The normal damping force (Fdn, ij) is expressed as Eq. 7-6, 
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Where e is restitution coefficient. The velocity in normal (un,ij) and tangential 

direction (ut,ij) are expressed as Eq. 7-7, 

nnuu  )( ijijn, ;                       n , i jijt,ij uuu  ; 

    
nnuuu iijjijij RωRω                    (7-7a, b, c) 

The tangential elastic force (Fct, ij) is expressed as Eq. 7-8, 
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         (7-8a, b, c) 

Where δt is the tangential overlap and Gi is shear modulus of particle i.  

The tangential damping force (Fdt, ij) is expressed as Eq. 7-9, 

    t , i jtd t , i j η uF  ;  ijnijijt mδRG
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2

22 
       (7-9a, b) 

The tangential elastic force (Fct, ij) and tangential damping force (Fdt, ij) are under 
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the condition below, 

ijcn,sijdt,ijct, FFF                                  (7-10) 

Where μs is the static friction.  

The torque by rolling forces (Tt, ij) is expressed as Eq. 7-11, 

)( dt,ijct,ijit,ij R FFnT                              (7-11) 

The torque by friction forces (Tr, ij) is expressed as Eq. 7-12, 

ωFT  cn,ijrr,ij μ ;          ii ωωω               (7-12) 

Where μr is the rolling friction. 

 

 

 

 

Fig. 7.1 Schematic view of interaction between two particles 
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Fig. 7.2 Schematic view of sum forces by neighboring particles on particle i 

 

7.3 Numerical model 

  EDEM and ANSYS workbench were used for DEM and FEM simulation in this 

work respectively. The inner surface of rotating chute is installed with array of liners. 

Only erosion on liners was investigated, so it is not necessary to build the whole 

assembly model of rotating chute, only array of liners in rotating chute was built in 

the simulation, the actual array of liners and numerical one are shown in Fig. 7.3. The 

size of rotating chute and liners is shown in Fig. 7.4, which is based on an actual one. 

In order to explain which liner is under erosion hereinafter conveniently, the liners on 

the rotating chute are numbered as shown in Fig. 7.5. Ore was used as solid particles 

of raw materials, cast steel was used as material of liners. The material properties are 

listed in Table. 7.1 [9].  

  Simulation conditions were categorized into 3 cases to discuss the effect of 

diameter of raw material particles d, inclination angle of chute θ, rotating velocity ω 

respectively, as shown in Table 7.2. The particles generator in the simulation is placed 

at center of inclination, initial vertical velocity of particles is set as 6m/s (along 

negative direction of z-axis), which is calculated from the actual distance between 

center of inclination and feeding inlet. The discharging mass rate of particles was 

100kg/s. Simulation time of DEM was set as 2s.  
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(a) Actual 

 

 

(b) Numerical 

Fig. 7.3 Arrays of liners in rotating chute 

 

 

 



93 

 

 

 

 

 

(a) Side view 

 

 

(b) Sectional view 

Fig. 7.4 Size of rotating chute 
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Fig. 7.5 Number of liners of rotating chute 

 

Table 7.1 Material properties [9] 

 Unit Ore Liner 

Density kg/m3 2890 7800 

Shear Modulus GPa 2.4 70 

Possion’s ratio — 0.28 0.3 

Restitution coefficient — 0.4 0.4 

Static friction coefficient — 0.4 0.6 

Rolling friction coefficient — 0.01 0.01 

Where restitution coefficient of ore and liner indicates the coefficient of ore-ore and ore-liner, so 

do the static friction coefficient and rolling friction coefficient 

 

Table 7.2 Simulation conditions 

 Symbol Unit Case 1 Case 2 Case 3 

Diameter of particles d mm 10~50 20 20 

Inclination angle of chute θ deg. 50 30~70 50 

Rotating velocity ω rpm 8 8 4~12 
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7.4 Results and discussion 

7.4.1 Flow of raw materials 

An example of velocity distribution of raw materials flow is shown in Fig.7.6. It is 

seen that the stream of raw materials flow is not along the longitudinal direction of 

rotating chute, but have a deviation to the inner side wall opposition to rotating 

direction. According to this figure, we can get the No. of liners along the stream of 

raw materials flow so as to get which liners would be under erosion. As shown in Fig. 

7.6, the No. of liners with obvious erosion under simulation condition d=20mm, 

θ=50deg., ω=8rpm were C4, D4, E4, E3, F3, G3, G2, H2, I2, J2, J2, K2, K1, L2, L1. 

Of course, we can also get the No. of liners under other simulation conditions. 

The pressure on liners of rotating chute from these particles were saved as a file 

with “.axdt” form, and then imported into ANSYS workbench for FE calculation to 

get the stress state of these liners.  
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(a) Side view 

 

 

(b) Bottom view 

Fig. 7.6 Velocity distribution of raw materials flow in rotating chute (d=20mm, 

θ=50deg., ω=8rpm) 

 

7.4.2 Stress state on liners 

The distribution of von mises stress on liners of case 1 are shown in Fig. 7.7, the 

distribution of von mises stress on liners of case 2 are shown in Fig. 7.8, and the 

distribution of von mises stress on liners of case 3 are shown in Fig. 7.9. It is seen that 

the largest von mises stress occurred on the liner right beneath the vertical falling flow 

of raw materials, and obvious erosion on liners of rotating chute were along the 
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stream of raw materials flow.  

The relationship between largest von mises stress on rotating chute and diameter of 

solid particles d (inclination angle θ and rotating velocity ω) are shown in Fig. 7.10, 

so influences of these three factors on largest erosion of rotating chute due to raw 

materials flowing can be found clearly. It is seen that largest von mises stress under 

different solid particles diameter d were around 2300~3000MPa, largest von mises 

stress under different inclination angle θ ranged from 1000 to 3300MPa, largest von 

mises stress under different rotating velocity ω were around 2000~2900MPa, meaning 

that inclination angle θ influences erosion of rotating chute much more obvious than 

solid particles diameter d and rotating velocity ω.  

It is found that with increasing of inclination angle θ, erosion decreased firstly and 

then increased with lowest value at inclination angle θ=40deg.. The increase of θ 

shortened the distance between inclination center and impact point (the length is 

1175/sinθ in this model), making impact between liners and raw materials weaker, 

which can explain why the von mises stress decreased from 30~40deg. But with 

increasing of θ, raw materials became easy to pile up at the impact region on rotating 

chute, so the amount of raw materials at impact region increased, causing an increase 

of von mises stress. Velocity distribution of raw material particles at low inclination 

angle θ=30deg. and high inclination angle 70deg. of case 2 are shown in Fig. 7.11, it 

is found that no raw materials pile-up occurred at θ=30deg., meanwhile obvious raw 

materials pile-up occurred at θ=70deg..  

 

 

 

 

 

 

 

 

 



98 

 

 

 

 

          

(a) d=10mm                      (b) d=20mm 

 

      

(c) d=30mm                       (d) d=40mm 

 

 

(e) d=50mm 

Fig. 7.7 Stress distribution of case 1 
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(a) θ=30deg.                      (b) θ=40deg. 

 

    

 (c) θ=50deg.                      (d) θ=60deg. 

 

 

(e) θ=70deg. 

Fig. 7.8 Stress distribution of case 2 
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(a) ω=4rpm                      (b) ω=6rpm 

 

      

(c) ω=8rpm                      (d) ω=10rpm 

 

 

(e) ω=12rpm 

Fig. 7.9 Stress distribution of case 3 
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(a) Diameter of raw material particles 

 

 

(b) Inclination angle 

 

 

(c) Rotating velocity 

Fig. 7.10 The relationship between largest von mises stress on rotating chute and 

diameter of solid particles d, inclination angle θ, rotating velocity ω 
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(a) θ=30deg.  

 

(b) θ=70deg. 

Fig.7.11 Velocity distribution of raw materials flow in rotating chute under low 

inclination angle θ=30deg. and high inclination angle θ=70deg. 

(d=20mm, ω=8rpm) 

 

7.5 Conclusions 

  A coupled simulation of Discrete Element Method (DEM) and Finite Element 

Method (FEM) was used to predict the erosion on rotating chute. The movement of 

raw materials in rotating chute was simulated using DEM, and pressure of discrete 

particles on rotating chute were imported into FE model of rotating chute, and the 

stress state of rotating chute could be got. This work offered a useful and efficient way 

to predict erosion on rotating chute. 
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Chapter 8 

 

General conclusions and prospects for future work 

 

8.1 General conclusions 

In this thesis, an important material damage mode, erosion, is studied by using 

numerical simulations. The whole work can be classified into 5 individual studies. 

The conclusions of this work are summarized as follows:  

1. 3D Finite Element (FE) model of single spherical particle impact on spheroidal 

carbide cast iron (SCI) and spheroidal graphite cast iron (FCD) were built via 

LS-DYNA. The erosion performances for these two materials were discussed using 

equivalent plastic strain and von mises stress on target material after single spherical 

particle impact. The simulation results showed no difference in equivalent plastic 

strain on SCI at different impact angles, but largest equivalent plastic strain occurred 

around 60~80deg. on FCD. The tendency of equivalent plastic strain at different 

impact angles is same with that of erosion rate at different impact angles obtained 

from erosion tests. Therefore, it is possible to verify impact angle dependence of 

erosion by discussing plastic deformation on materials. The phenomenon of lower 

erosion on SCI than that on FCD as well as almost no difference for erosion on SCI at 

different impact angles can be explained by the existence of spheroidal carbides with 

high yield stress in SCI, indicating that spheroidal carbides can restrain the plastic 

deformation on the eroded surface. 

2. 3D Finite Element (FE) model of single spherical particle impact on mild steel 

(SS400) and spheroidal graphite cast iron (FDI) were built via ANSYS/LS-DYNA. 

The reason to use these two kinds of material is that FDI can be seen as combination 

of matrix and spheroidal graphite, the mechanical properties of matrix is similar with 

that of SS400, so it is convenient to discuss the influence of spheroidal graphite. 
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Considering that erosion is combination of cutting effect and deformation effect by 

impact particles, the erosion mechanisms for these two materials were explained using 

a combining discussion of plastic strain and shear stress on material surface after 

single spherical particle impact. The simulation results showed that plastic strain and 

shear stress on FDI showed both higher than those on SS400, which could explain 

that erosion on FDI is higher than that on SS400 experimentally. Meanwhile, as for 

SS400, plastic strain changed little at different impact angles, but shear stress changed 

obviously with maximum shear stress occurring at impact angle 20deg.. And as for 

FDI, shear stress kept unchanged at different impact angles, but maximum plastic 

strain occurred around 50~80deg.. So it is inferred that plastic strain and shear stress 

play main role on erosions of FDI and SS400 respectively.  

3. 3D Finite Element (FE) model of 5 spherical particles impacting on a mild steel 

ASTM A36 (similar with SS400) was built via ABAQUS. Material loss on target 

material was got by using two different material models, namely Johnson-Cook 

material model and simple material model with shear failure criterion. The erosion 

performances under these 2 different material models were discussed. (i) As for 

simple material model, increasing of shear failure not only lowered material loss, but 

also shifted the impact angle for maximum material loss from higher to lower. 

Material loss of shear failure εf =1.03 was nearly similar with that under 

Johnson-Cook material model. (ii) Higher friction coefficient made more material loss 

under both material models, but simple material model played more obvious effect on 

increasing of material loss than Johnson-Cook material model. (iii) Craters under 

these 2 different material models showed similar shapes, but simple material model 

caused larger deformation than Johnson-Cook material model. 

4. A coupled method of Finite Element (FE) and Smoothed Particles 

Hydrodynamics (SPH) was used in simulations of angular particles impact on mild 

steel. The simulation was conducted via ANSYS/LS-DYNA. Angular particles were 

simplified as cones. Different cones can be got by varying the conic angle but keeping 

volume of cones same, which can make these different cones have same kinetic 

energy when they are impacting on target material. Simulation results showed that a 
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tiny material is easy to protrude from material surface for cones impact at low impact 

angles, and maximum plastic strain always occurs at the nearby region of notch, 

especially occurs at the root of protruded material when impact angle is low. Normal 

impact of cone provides greater breakage than oblique impact. With increasing of 

angularity, breakage increases for oblique impact but keeps nearly unchanged for 

normal impact. Normal impact of cones penetrates deeper than those of oblique 

impact, and larger angularity makes penetration depth shallower. Oblique impact of 

cones make larger plastic strain than normal impact, and larger angularity makes 

plastic strain larger for oblique impact, whereas a peak value of plastic strain exists at 

70deg. for normal impact. 

5. For a specified apparatus rotating chute, a coupled simulation of Discrete 

Element Method (DEM) and Finite Element Method (FEM) was used to predict the 

erosion state on liners of rotating chute. The simulation was conducted via EDEM and 

ANSYS workbench. Through DEM, the movement of raw materials in rotating chute 

was simulated, we can get which liners were under erosion by observing the stream of 

raw materials flow. And then the pressure of raw material particles on liners were 

transferred into FE model of rotating chute, the mechanical state on liners of rotating 

chute could be computed, we can get the stress distribution on liners so as to know 

which liners are easily eroded. It is found that the maximum stress always occurs at 

the liners just under the falling raw material flow, which means that these liners are 

easily for erosion occurring. By using this method, influences of diameter of raw 

material particles, inclination angle of chute, rotating velocity were also discussed. 

Simulation results showed that inclination angle influences erosion on rotating chute 

much more obvious than diameter of raw material particles and rotating velocity. 

Erosion on rotating chute decreases firstly and then increases, first decrease is because 

distance between pouring point and impact point becomes short with increasing of 

inclination angle, following increase is because large number of raw material is easy 

to pile up at high inclination angle. 
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8.2 Prospects for future work 

Erosion is a very complicated process of deformation and loss on material surface. 

It is strongly affected by many factors, and the impact particles for erosion are always 

entrained in some fluid such as air or liquid, meanwhile, the process of erosion may 

also occur accompanying with some physical or chemical transitions on material 

surface. Considering these reasons, several recommendations as follows are given for 

erosion problems in the future work:  

1. Angular particles were simplified as cones in this work, but the shapes and 

orientations of angular particles in actual cases are very complex. So it is necessary to 

conduct researches for erosion when impact particles have other shapes, and the 

impact process of particle with different orientations. 

2. Although mass loss has been worked out, the relation of erosion factors on mass 

loss of target material, such as impact velocity, diameters of impact particles, impact 

angles etc., is still unclear. In the future work, a relation between these factors should 

be found, it is better to derive an equation of mass loss for these factors. 

3. Erosion usually occurs in devices for solid-fluid conveying. For example, in our 

experiments, the impact particles were also entrained in air flow. However, in the 

simulations of this work, the fluid around impact particles was not considered. So, in 

the future work, it is better to consider a coupled simulation of solid and fluid into 

erosion problems. 

4. The erosive prediction method for rotating chute in this work was conducted 

using numerical simulation, the results have not been verified with actual works. It is 

better to compare the simulation results with actual results to verify its validation. 
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