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Abstract
With the rapid development of Internet, the human race has entered the informa-

tion society and the network era. Internet could provide people with more and more
information and services; however, people have to face enormous data and useless
information when they enjoy the convenience brought by Internet. Recommender
system (RS) has emerged in response to this challenge, which can advise users when
making decisions and help users discover items they might not find by themselves.

Collaborative filtering (CF) approach is popularly used in RSs owing to its satis-
factory performance. Generally speaking, user-based collaborative filtering (UBCF)
and item-based collaborative filtering (IBCF) are two significant approaches in CF,
they have been successfully applied to many commercial RSs. However, with vari-
ous kinds of data and complicated application environment, CF approaches are fac-
ing many challenges. For instance, UBCF cannot provide recommendations for an
active user with satisfactory accuracy and diversity simultaneously. Personalized
recommendations cannot be provided by UBCF for a new user which often has in-
sufficient information. In addition, items that make a more significant contribution
cannot have high weighting in IBCF. In view of the above key issues, this dissertation
launched a study of the following aspects:

(1) Aiming to provide personalized recommendations for an active user, we ap-
ply covering-based rough sets to improve UBCF, and propose a new covering-based
collaborative filtering (CBCF) approach. CBCF inserts a user reduction procedure
into UBCF, covering reduction in covering-based rough sets is utilized to remove re-
dundant users from all users. Then, k-nearest neighbors are selected from candidate
neighbors comprised by the reduct-users. Our experiment results suggest that, for
the sparse datasets that often occur in real RSs, CBCF outperforms than the UBCF,
and can provide satisfactory accuracy and coverage for an active user at the same
time.

(2) In order to provide personalized recommendations for a new user, through a
detailed analysis of the characteristic of new users, we reconstruct a decision class
to improve the previous CBCF. Unlike the previous CBCF, the decision class in im-
proved CBCF can be extracted easily from the user-item rating matrix. Furthermore,
the improved CBCF could provide personalized recommendations without needing
special additional information. Our experiment results suggest that the improved
CBCF significantly outperforms those of existing work and can provide personal-
ized recommendations for a new user with satisfactory accuracy and diversity si-
multaneously.

(3) The traditional IBCF approach treats all items as the same weighting; how-
ever, because some items may have more important impact when computing the
similarity and predictions, item-variance weighting should also be considered. In
this paper, we present the time-based correlation degree and covering degree, and
apply them to the traditional IBCF approach to rearrange the item weighting. Our
experimental results suggest that, our proposed approach can produce recommen-
dations superior to the traditional IBCF and other existing work.

Keywords: Recommender systems; Collaborative filtering; Covering-based rough
sets; Covering reduction; Personalized recommendations; Item-variance weighting.
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Chapter 1

Introduction

1.1 Background

Rapid internet, economic, and technological developments have led to the dramat-
ical growth of the data and information. Internet provides people with more and
more information and services and it broke the limit of space and time of traditional
life and learning. People can shop on the internet conveniently and study via in-
ternet whenever and wherever. However, people have to face enormous data and
useless information when they enjoy the convenience brought by internet. This is
the famous "information overload" problem (Hiltz and Turoff, 1985; Malone et al.,
1987; Edmunds and Morris, 2000). Therefore, more customers are facing the prob-
lem of discovering the demanded contents from overwhelmingly massive data. As
the result, this problem becomes a popular research topic and attracts attention from
lots of scientists.

Generally, there are many stages for users to maintain information from internet.
For instance, various portal sites are established, such as yahoo and so on. They help
users filter and organize a variety of popular resource and information to discover
and browse. However, the organized information is not always able to meet users’
need, as well as overwhelming data will make the website overstaffed with the ex-
plosive growth of data, which results in the incompletion of information retrieval
(Chang and Wang, 2011). In addition, search engines start to emerge so that users
are able to retrieve their desired contents, such as google. But the accuracy of search
results quite depends on the description towards questions, which is usually not
quite precise, thus the caused bias will make it difficult for users to identify exactly
their required results (Höchstötter and Lewandowski, 2009).

Recommender system (RS) analyzes the personal behavior of customers to learn
their preferences and then recommends products (e.g., books, CDs, movies, and
news) that may interest them (Adomavicius and Tuzhilin, 2005; Bobadilla et al.,
2013). Currently, RSs are widely used applications in daily life. When users are
lack of experience in the related field or can not deal with the huge amount of in-
formation, RSs could provide an intelligent information filtering for these users. For
example, Amazon uses RSs to provide users with on-line shopping, because users’
interests are usually different, so recommendation results need to be personalized,
that is to say different users will receive different recommendations. In most of RSs,
recommendation results are often presented in a sorted list, the sort number of item
is determined by the target user’s interest. In order to predict the target user’s pref-
erence, RSs match the user’s personal information (e.g., age, gender, education) and
item’s characteristics, or collect the user’s historical information to make predictions.
Generally, active users and new users are two types of users in RSs. An active user
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has rated a lot of items, so RSs can utilize these sufficient information to provide re-
liable recommendations; however, a new user often has very few ratings, it will in-
crease the recommendation difficulty. In recent years, their great commercial value
and research potential have rendered RSs increasingly significant in recent years
(Kotkov, Wang, and Veijalainen, 2016; Lu et al., 2015).

Currently, collaborative filtering (CF) is one of the most important approaches
in RSs, that uses a customer’s history as the basis of decision making (Symeonidis
et al., 2008; Hameed, Al Jadaan, and Ramachandram, 2012). CF approach was first
presented by Goldberg (Goldberg et al., 1992), which assumes that users who have
similar preferences in the past will tend to have similar tastes in the future, or an
item will be preferred by a user if this item is similar with the preference of this
user in the past (Herlocker, Konstan, and Riedl, 2002), and many well-known on-
line service providers are adopting this approach, including Amazon, YouTube, and
Google News. CF approach does not need to analyze items’ content information,
which allows users to rate items according to their own experience and preference,
then utilizes users’ rating records to provide personalized recommendations for the
target user (Herlocker et al., 1999). CF uses not only the target user’s information,
but also information of other users to filter out clutter and irrelevant information.
Therefore, CF could provide recommendations with high quality, and help users find
their potential interests. Nowadays, CF is proved to be one of the most successful
personalized recommendation approaches, and has been widely utilized in the field
of modern RSs.

To introduce CF approach, we first present some CF-related notations and ter-
minologies used in this thesis. Given an RS, let U and I be finite sets of users and
items, respectively, R ∪ {⋆} the set of possible item rating scores, and RM the user-
item rating matrix, AM the item attribute matrix. Absence of a rating is indicated by
an asterisk (⋆). The rating score of user u for item i is denoted by ru,i ∈ R ∪ {⋆}, and
the average of the valid ratings of user u is denoted by r̄uu, the average ratings of
the i-th item is denoted by r̄iu. θ is set as the threshold for rating scores, and items
with ru,i ≥ θ are defined as items that are relevant to user u. Iu = {i ∈ I|ru,i ̸= ⋆} is
the set of all items rated by user u, and Icu is the complementary set of Iu, indicating
items that have not yet been rated by user u.

1.2 Research objectives

CF has many forms, user-based collaborative filtering (UBCF) and item-based col-
laborative filtering (IBCF) are two significant forms in CF. In this section, we present
the detailed information about UBCF and IBCF.

1.2.1 User-based collaborative filtering

UBCF approach was first proposed by Herlocker (Herlocker et al., 1999), which as-
sumes that users who have similar preferences in the past will tend to have similar
tastes in the future. UBCF can provide satisfactory recommendations utilizing only
the user’s historical ratings, without requiring any other special information, and it
has demonstrated remarkable success in RSs. The traditional UBCF can be separated
into four steps:

Step 1: Similarity computation. A target user tu’s set of candidate neighbors
CN tu includes all users. Based on historical rating information, compute the similar-
ity between each user u ∈ CN tu and the target user tu. Here the Pearson correlation
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coefficient approach (1.1) is popularly used as a similarity measure:

sim(tu, u) =

∑
i∈Itu∩Iu (rtu,i − r̄utu) (ru,i − r̄uu)√∑

i∈Itu∩Iu (rtu,i − r̄utu)
2
√∑

i∈Itu∩Iu (ru,i − r̄uu)
2
, (1.1)

where sim(tu, u) indicates the similarity between the target user tu and a user u ∈
CN tu. Itu = {i ∈ I|rtu,i ̸= ⋆} is the set of all items rated by target user tu, and r̄utu is
the average rating of target user tu:

r̄utu =

∑
i∈Itu rtu,i

|Itu|
, (1.2)

where |Itu| is the cardinality of the set Itu.
Step 2: Neighborhood selection. Select the k most similar (nearest) users from

CNtu to comprise the neighborhood Ntu(k) for the target user tu.
Step 3: Rating prediction. Normalize ratings and according to the rating infor-

mation of neighborhoods, predict a rating score ptu,i for each item i in unrated item
set Ictu of the target user tu. The weighted sum approach (1.3) is often used in RSs to
predict ratings:

ptu,i = λ
∑

u∈Ntu(k)∩Ui

sim(tu, u) ∗ ru,i, (1.3)

where ptu,i is the prediction of item i for target user tu, Ui = {u ∈ U |ru,i ̸= ⋆} is the
set of users who have rated item i, and multiplier λ is a normalizing factor selected
as

λ =
1∑

u∈Ntu(k)∩Ui
sim(tu, u)

. (1.4)

Step 4: Item recommendation. According to the predicted rating scores, select
the top N items that have the highest ptu,i from the candidate items as the recom-
mendations to be provided for target user tu.

Note that, within specific systems, these steps may overlap or the order may be
slightly different. Algorithm 1.1 summarizes the traditional UBCF approach.

Algorithm 1.1 Traditional UBCF approach

Input: User-item rating matrix RM and a target user tu.
Output: Recommended items set of size N for the target user tu.

k : Number of users in the neighborhood Ntu(k) of the target user tu.
N : Number of items recommended to the target user tu.
Ictu : Items that have not yet been rated by the target user tu.
CN tu : Candidate neighbors of the target user tu.
ptu,i : Rating prediction of item i for the target user tu.

1: CN tu = U , then compute the similarity between target user tu and each user
u ∈ CN tu;

2: for each item i ∈ Ictu do
3: Find the k most similar users in CN tu to comprise neighborhood Ntu(k);
4: Predict rating score ptu,i for item i by neighborhood Ntu(k);
5: end for
6: Recommend to the target user tu the top N items having the highest ptu,i.
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1.2.2 Item-based collaborative filtering

IBCF approach was first proposed by Sarwar (Sarwar et al., 2001) and is now a sig-
nificant approach widely used in RSs, which assumes that items which are similar
with a user’s preferred item will also be preferred by this user. IBCF has good scala-
bility and can be applied to the huge numbers of items and users that are typical of
modern RSs. IBCF can easily handle large data sets and produce better predictions
than UBCF. Also in contrast to UBCF, IBCF is able to compute item-item similarity
off-line, both saving on-line time and making more effective recommendations. The
detailed procedures of IBCF are as follows:

Step 1: Item-item similarity computation. Based on the information of user-item
rating matrix RM , IBCF computes the similarity between every item. Several algo-
rithms can be used to make the similarity computation, but the Pearson correlation
coefficient is one of the most widely used measure in IBCF:

sim(x, y)

=

∑
u∈Ux∩Uy

(ru,x−r̄ix)∗(ru,y−r̄iy)√∑
u∈Ux∩Uy

(ru,x−r̄ix)
2
√∑

u∈Ux∩Uy
(ru,y−r̄iy)

2
. (1.5)

Here, Ux = {u ∈ U |ru,x ̸= ⋆} is the set of all users who have rated item x and r̄ix
is the average rating of the x-th item.

Step 2: Neighborhood selection. After computing the item-item similarity, select
the k most similar (nearest) items from similarity list to comprise the neighborhood
Ni(k) for the item i ∈ I .

Step 3: Rating prediction. Normalize ratings and according to the rating infor-
mation of Ni(k) from the target user tu, predict a rating score ptu,i for item i ∈ I . The
weighted sum is a very useful measure used in the IBCF:

ptu,i =

∑
j∈Si∩Itu sim(i, j) ∗ rtu,j∑

j∈Si∩Itu |sim(i, j)|
, (1.6)

here Itu = {x ∈ I|rtu,x ̸= ⋆} is the set of items that target user tu has rated, Si is the
set of items that are similar to item i, and ptu,i is the prediction made about item i for
target user tu.

Step 4: Item recommendations. According to the predicted rating scores, select
top N items which have the highest predicted rating score ptu,i from the candidate
items as the recommendations to be provided for target user tu.

Note that, within specific systems, these steps may overlap or the order may
be slightly different. Algorithm 1.2 presents concise steps of the traditional IBCF
approach.

1.3 Research problems

In this thesis, we make research about the following three main problems about CF:

1. For an active user who often has sufficient rating information, the traditional
UBCF cannot provide personalized recommendations with good accuracy and
diversity simultaneously;

2. For a new user who often has fewer ratings, the traditional UBCF cannot pro-
vide personalized recommendations with good diversity while maintaining
adequate accuracy;
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Algorithm 1.2 Traditional IBCF approach

Input: User-Item rating matrix RM and an target user tu.
Output: Recommended items set of size N for the target user tu.

Ni(k) : Neighborhood of the item i.
k : Number of items in the neighborhood Ni(k) of the item i.
N : Number of items recommended to the target user tu.
Ictu : Items which have not yet rated by the target user tu.
ptu,i : Rating prediction of item i for the target user tu.

1: Compute similarity between each item in I ;
2: for each item i ∈ Ictu do
3: Find the k most similar items of item i to comprise neighborhood Ni(k);
4: Predict rating score ptu,i for item i by the ratings of neighborhood Ni(k) from

the target user tu;
5: end for
6: Recommend to the target user tu the top N items having the highest predicted

rating scores ptu,i.

3. For items which has different contributions in computing similarity and pre-
dictions, the traditional IBCF approach cannot make item-variance weighting
with respect to their contributions.

For the first and second problems, that is because some studies have shown that
the traditional UBCF approach cannot provide satisfactory recommendations with
good accuracy and diversity values simultaneously. In addition, resent research has
concluded that gains diversity in RS can frequently be accompanied by losses in ac-
curacy, making it difficult to select a reasonable trade-off between accuracy and di-
versity. Moreover, a new user in RSs usually has fewer ratings, information obtained
from a new user is insufficient, it increases the difficulty of recommendations.

For the third problem, that is because in traditional IBCF approach, all items
carry the same weight when computing the similarity and predictions. However, it
is widely recognized that some items are more important than others and should be
given relatively higher weighting.

1.4 Research contributions

In this thesis, there are the following three contributions with respect to three prob-
lems listed in Section 1.3:

1. In order to provide personalized recommendations for an active user, we ap-
ply covering-based rough sets to the traditional UBCF, and propose a new
covering-based collaborative filtering (CBCF) approach. CBCF inserts a user
reduction procedure into the traditional UBCF. Covering reduction in covering-
based rough sets is used to remove redundant users from all users. Then,
k-nearest neighbors are selected from candidate neighbors comprised by the
reduct-users. CBCF can select more efficient neighborhood for an active user,
and provide recommendations with satisfactory accuracy and diversity simul-
taneously.

2. In order to provide personalized recommendations for a new user, through a
detailed analysis of the characteristic of new users, we reconstruct a decision
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class to improve the previous CBCF. In this way, improved CBCF can remove
redundant candidate neighbors for a new user as many as possible. Further-
more, unlike the previous CBCF, improved CBCF could provide personalized
recommendations without needing special additional information.

3. In order to make item-variance weighting for the traditional IBCF, we present
time-related correlation degree and covering degree, and apply them to the
traditional IBCF to rearrange the item weight. The proposed novel approach
can produces recommendations results superior to those of existing work.

1.5 Outline of the thesis

This thesis is organized as follows:
Chapter 1 presents the introduction, including the research background, research

objectives, research problems and research contributions.
Chapter 2 presents the basic knowledge of covering-based rough sets which we

used as our research method in this thesis, that covers the definitions of covering and
covering approximations space, and six types of covering-based rough sets with re-
spect to the different upper and lower approximation operations. In addition, as
a significant concept of covering-based rough sets, covering reduction is also dis-
cussed in this chapter.

Chapter 3 describes a CBCF approach we have proposed to provide personalized
recommendations for an active user. First, we analyze the deficiency of traditional
UBCF and give the problem setting. Then, we apply covering-based rough sets to
traditional UBCF, and propose a new CBCF approach. The motivation, detailed pro-
cedures and an example of CBCF approach are also presented. Finally, experiments
using popular datasets are made to prove that CBCF outperforms than the tradi-
tional UBCF, and can provide satisfactory accuracy and diversity simultaneously.

Chapter 4 introduces an improved CBCF approach which could provide person-
alized recommendations for a new user. First, we summarize the related work about
personalized recommendations for a new user. Then, through two popular datasets,
we analyze the characteristic of a new user in RSs and present the problem setting.
Next, we introduce our improve CBCF, including motivation, reconstruction of de-
cision class and detailed procedures. Moreover, comparisons between the previous
CBCF and improved CBCF are also made. Finally, experiments are made to demon-
strate that the improved CBCF significantly outperforms those of existing work, and
can provide personalized recommendations for a new user with satisfactory accu-
racy and diversity simultaneously.

Chapter 5 explains a TCIBCF approach we proposed to improve the traditional
IBCF by using time factor and covering degree. First, we analyze basic procedures
of traditional IBCF and present the problem setting. Then, we present time-related
correlation degree and covering degree, and apply them to the traditional IBCF to
propose a TCIBCF approach, the motivation and detailed procedures are also dis-
cussed. In the end, we design the experiments, and utilize some popular evaluation
metrics to indicate that TCIBCF approach produces recommendation results supe-
rior to those of existing work.

Finally, the conclusions and directions for future research are presented in Chap-
ter 6.
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Chapter 2

Covering-based rough sets

2.1 Introduction

Rough set theory was first presented by Pawlak in the early 1980s (Pawlak, 1982),
it is a very useful tool of data analysis for processing vague and uncertain data
(Pawlak and Skowron, 2007). Rough set has attracted many researcher’s interests
all over the world. The core concepts of the rough sets are lower and upper ap-
proximations based on equivalence relations, and the knowledge which hidden in
the information system can be expressed in the form of decision rules by means of
these two concepts. However, the classical rough set based on equivalence relations
is not suitable to be applied to complex information system. Hence people proposed
different extensions of rough set theory. Covering-based rough sets extend the par-
tition in rough sets to the covering (Yao and Yao, 2012), and use the covering of the
domain to construct the lower and upper approximations. In this way, rough sets
are enriched from both theory and application in terms of more complicated data.

This chapter presents an overview of the basic knowledge of covering-based
rough sets, which covers the definitions of covering and covering approximations
space. In addition, we focus on covering reduction which is a significant concept in
CBCF, and analyze main types of reduction algorithms.

2.2 Basic definitions and concepts

Pawlak’s rough sets are based on equivalence relations. Covering-based rough sets
extend a partition to a covering. In this section, we introduce some basic concepts
about covering-based rough sets. More information of covering-based rough sets
can be found in (Tsang, Degang, and Yeung, 2008; Yao and Yao, 2012; Zhu, 2009).
First we list some definitions about coverings used in this thesis.

Definition 2.1. Let T be the domain of discourse, and C a family of subsets of T . If
none of the subsets in C is empty and ∪C = T, then C is called a covering of T .

Definition 2.2. Let T be a non-empty set, and C a covering of T . We refer to the
ordered pair ⟨T,C⟩ as the covering approximation space.

Definition 2.3. Let ⟨T,C⟩ be a covering approximation space, x ∈ T .

Md(x) = {K ∈ C|x ∈ K ∧ (∀S ∈ C ∧ x ∈ S ∧ S ⊆ K ⇒ K = S)}

is called the minimal description of x.

Definition 2.4. Let C be a covering of T , N(x) = ∩{K ∈ C|x ∈ K} is called the
neighborhood of x.
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Different lower and upper approximation operations would generate different
types of covering-based rough sets. The covering-based rough sets was first pre-
sented by Zakowski (Zakowski, 1983), who extended Pawlak’s rough set theory
from a partition to a covering. Pomykala gave the notion of the second type of
covering-based rough sets (Pomykala, 1987), while Tsang presented the third type
(Tsang et al., 2004), Zhu defined the fourth and fifth types of covering-based rough
sets (Zhu and Wang, 2012; Zhu, 2007), and Wang studied the sixth type of covering-
based approximations (Wang, Dai, and Zhou, 2004).

Definition 2.5. Let C be a covering of T , P (T ) is the power set of T . The operations
CL : P (T )→ P (T ) and CL∗ : P (T )→ P (T ) are defined as follows: ∃X ∈ P (T )

CL(X) = ∪{K ∈ C|K ⊆ X} = ∪{K|∃x, s.t.(K ∈Md(x)) ∧ (K ⊆ X)}
CL∗(X) = {x|N(x) ∧X} = ∪{N(x)|N(x) ∧X}
Here CL(X) is the first, the second, the third, the fourth and the fifth covering

lower approximation operations and CL∗(X) is the sixth covering lower approxima-
tion operations with respect to the covering C. The operations FH,SH, TH,RH, IH,XH :
P (T )→ P (T ) are defined as follows: ∃X ∈ P (T )

FH(X) = CL(X) ∪ (∪{Md(x)|x ∈ X − CL(X)})
SH(X) = ∪{K|K ∈ C,K ∩X ̸= ∅}
TH(X) = ∪{Md(x)|x ∈ X}
RH(X) = CL(X) ∪ (∪{K|K ∩ (X − CL(X)) ̸= ∅})
IH(X) = CL(X) ∪ (∪{N(x)|x ∈ X − CL(X)}) = ∪{N(x)|x ∈ X}
XH(X) = {x|N(x) ∩X ̸= ∅}
FH,SH, TH,RH, IH,XH are called the first, the second, the third, the fourth,

the fifth and the sixth covering upper approximation operations with respect to C,
respectively.

2.3 Covering reduction algorithms

Covering reduction is a significant concept in covering-based rough set theory (Yang
and Li, 2010). The concept of covering reduction was originally presented by Zhu
et al. (Zhu and Wang, 2003). In this thesis, we refer to the algorithm proposed by
Zhu et al. (Zhu and Wang, 2007) as the first type of reduction algorithm, which
corresponds to the definition of reduct(C) in (Zhu and Wang, 2007). Definition 2.6
defines this algorithm.

Definition 2.6. Let C be a covering of domain T , and K ∈ C. If K is a union of some
sets in C −{K}, K is reducible in C; otherwise, K is irreducible. When all reducible
elements are removed from C, the new irreducible covering is called the first-type
reduct of C.

Zhu et al. presented two other covering reduction algorithms (Zhu and Wang,
2007; Zhu and Wang, 2012), which we refer to as the second and third types of re-
duction algorithms, respectively. Definition 2.7 defines the second-type algorithm,
which corresponds to the definition of exclusion(C) provided by Zhu et al. (Zhu and
Wang, 2007). Definition 2.8 defines the third-type algorithm, which corresponds to
the definition of exact− reduct(C) (Zhu and Wang, 2012).

Definition 2.7. Let C be a covering of domain T , and K ∈ C. If there exists another
element K ′ of C such that K ⊂ K ′, K is an immured element of covering C. When
we remove all immured elements from C, the set of all remaining elements is still a
covering of T , and this new covering has no immured element. We refer to this new
covering as the second-type reduct of C.
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Definition 2.8. Let C be a covering of domain T , and K ∈ C. If there exists K1,K2...Km ∈
C −K such that K = K1∪, ...,∪Km, and ∀x ∈ K and {x} is not a singleton element
of C, K ⊆ ∪{K ′ | x ∈ K ′ ∈ C − {K}}, K is called an exact-reducible element
of C. When all exact-reducible elements are removed from C, the new irreducible
covering is called the third-type reduct of C.

Comparing the three types of covering reduction algorithms, we find that, the
first type removes redundant elements more efficiently than the third type because
the third type has an additional restriction condition. For example, we assume that
K ∈ C is a reducible element in the first type, but if there exists x ∈ K that {x}
is a singleton element of C, K is not an exact-reducible element in the third type.
However, if K ∈ C is an exact-reducible element in the third type, it must be a
reducible element in the first type.

Here, we consider the first and second types. If we assume that K ∈ C is a re-
ducible element in the first-type algorithm, then there must be other elements whose
union is K. For example, for K = K1 ∪ K2, only K should be removed; however,
under the same conditions, in the second-type algorithm, K1 and K2 would both be
considered as immured elements, which should be removed.

Typically, an RS has a vast number of items and each user has different prefer-
ences. Therefore it is difficult to represent one user’s preferred item set as a union of
other users’ preferred item sets accurately. In this situation, for the first-type algo-
rithm, few reducible elements can be removed; however, for the second type, there
can be a large number of reducible elements, because RSs have a large number of
users, it is easy to find one user’s preferred item set that includes another user’s
set. Thus, the second type of covering reduction algorithm can be used to remove
more reducible elements in RSs. The second-type of covering reduction algorithm
(STCRA) is given in Algorithm 2.1.

Algorithm 2.1 STCRA: The second-type of covering reduction algorithm

Input: A covering of a domain: C.
Output: An irreducible covering of a domain: reduct(C).

Ki,Kj : Elements in the covering C.
1: set reduct(C)=C;
2: for i = 1 to card(C) do
3: for j = 1 to card(C) do
4: if Kj ⊂ Ki then
5: if Kj ∈ reduct(C) then
6: reduct(C) = reduct(C)− {Kj};
7: end if
8: end if
9: end for

10: end for
11: return reduct(C);

2.4 Summary

In this chapter, we present the basic definitions and notions of covering-based rough
sets. Including covering and covering approximation, and different types of covering-
based rough sets according to different upper and lower approximation operations.
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Besides that, covering reduction which could remove redundant elements is also
demonstrated. We discuss different types of reduction algorithm, and analyze their
efficiency of removing redundant users, and get the conclusion that, the second-type
of covering reduction algorithm we defined in this chapter can be used to remove
more reducible elements.
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Chapter 3

CBCF for active users’ personalized
recommendations

3.1 Introduction

Currently, although most studies focus on developing new approaches to improve
RS accuracy, it has been argued that using only an accuracy metric to evaluate RSs is
not sufficient and that the diversity of recommendations must also be considered as
an important evaluation measure (Kunaver and Požrl, 2017; Clarke et al., 2008; Hu
and Pu, 2011). Because in a real business environment, a company can use RSs to
obtain more benefits by providing recommendations with higher diversity (Vargas,
2011; Boim, Milo, and Novgorodov, 2011; Di Noia et al., 2014). For example, as there
are many movies in the statistical long tail that have only a few ratings, it would
be profitable for Netflix if RSs would encourage users to rent movies in the long
tail, because these are less costly to license and acquire from distributors than new
releases or highly popular movies. However, recent studies have shown that it is
very difficult to obtain a reasonable trade-off between the accuracy and diversity of
an RS (Liu, Shi, and Guo, 2012; Zhou et al., 2010), because increasing the diversity
of recommendations is usually accompanied by a loss in accuracy (Javari and Jalili,
2015).

CF is a significant component of the recommendation process (Hameed, Al Jadaan,
and Ramachandram, 2012). UBCF is one of the most useful approaches in CF. With-
out requiring any other special information, UBCF can only utilize user’s historical
ratings to provide satisfactory recommendations. However, the traditional UBCF
is difficult to achieve good values for accuracy and diversity simultaneously (Her-
locker et al., 1999; Herlocker, Konstan, and Riedl, 2002; Zhu et al., 2014). Aiming
at improving the traditional UBCF approach to obtain good values of accuracy and
coverage at the same time, in this chapter, covering-based rough set theory is ap-
plied to RSs. We propose CBCF, a new approach that uses covering reduction to
remove redundant users, then neighborhood is selected from candidate neighbors
comprised by the reduct-users. Experimental results reveal that our proposed CBCF
approach provides better recommendation results than the traditional UBCF ap-
proach.

The remainder of this chapter is organized as follows. In Section 3.2, some related
works are provided. We review basic concepts involved in the traditional UBCF
approach and other work. In Section 3.3, we analyze neighborhood selection prob-
lems. In Section 3.4, we give the detailed motivation and procedures of the CBCF
approach. In Section 3.5, we describe our experiments and compare CBCF results
with the results obtained using the traditional UBCF approach. The summary of
this chapter is presented in Section 3.6.
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3.2 Related works

UBCF approach was first proposed by Herlocker (Herlocker et al., 1999), which re-
lies on target user neighborhood information to make predictions and recommen-
dations. Neighborhood selection is one crucial procedure of UBCF approach, which
selects a set of users from candidate neighbors to comprise neighborhood for an
active user. Whether appropriate neighborhood can be selected will have a direct
bearing on the rating prediction and item recommendation. In general UBCF ap-
proach, k-nearest neighbors (k-NN) approach is proved to be the best method to
generate a neighborhood, which picks the k most similar (nearest) users from candi-
date neighbors to comprise the neighborhood for an active user (Herlocker, Konstan,
and Riedl, 2002). So we consider the k-NN UBCF approach as the traditional UBCF
approach in the rest of this chapter. More detailed information and procedures of
UBCF could be found in Subsection 1.2.1.

Currently, commercial RSs have a large number of users, neighborhood must
be composed of a subset of users rather than all users if RSs want to guarantee ac-
ceptable response time (Herlocker, Konstan, and Riedl, 2002). Accuracy measures
how closed RSs predictions reflect actual user preferences, and coverage interprets
the extent to which recommendations cover the set of available items. Both metrics
are important in RSs. In the neighborhood of traditional UBCF approach, neigh-
bors tend to have similar tastes, so high predicted scores from them concentrate in
few types of items, even just popular items. Due to the popular items often have
high ratings from users, so recommendations from the traditional UBCF approach
often have high accuracy. However, types of recommendations are very limited, it
leads to an unsatisfactory coverage value (Gan and Jiang, 2013). Therefore using the
traditional UBCF is difficult to achieve good values for both metrics simultaneously.

Niemann and Wolpers proposed a usage context-based collaborative filtering ap-
proach to achieve a reasonable balance between the accuracy and diversity (Nie-
mann and Wolpers, 2013). In the procedure of similarity computation, they de-
scribed an item by the items it is significantly often used with rather than by its
users or content attributes, items were similar if they often occurred in similar usage
contexts. This approach could compensate the weaknesses of traditional UBCF ap-
proach, and increased the diversity with only one case of accuracy loss. However,
this approach needed additional information (e.g. user profiles) which was often not
available or incomplete.

Gan and Jiang proposed a network-based collaborative filtering approach to im-
prove the diversity without lowing the accuracy of recommendations (Gan and Jiang,
2013). Before making the rating prediction, they constructed a user similarity net-
work from user’s historical data by using a nearest neighbor approach. Due to this
network could filter out weak relationships between users, this approach not only
enhanced the recommendation accuracy but also improved the diversity; however,
the performance of this approach depending on the selected parameter, and the op-
timal value of parameters was still unknown. Besides, it was difficult to select a
suitable mathematical model for the user similarity network.

Adomavicius and Kwon developed a sophisticated graph-theoretic approach to
maximize the diversity of recommendations based on maximum flow or maximum
bipartite matching computations (Adomavicius and Kwon, 2011). After selecting
the neighborhood, this approach predicted rating scores for un-rated items with tra-
ditional filtering approach to generate candidate items. Then, let users and items
be represented as nodes, and translated the top-N candidate items setting into a
graph-theoretic framework to re-rank candidate items. Good values of accuracy and
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diversity from this approach depends on the selection criteria for items included in
the graph. However, the more items are selected as candidate items for each user,
the more diverse and less accurate are the recommendations and vice versa.

Adomavicius and Kwon improved the recommendation diversity by re-ranking
the candidate items using a new re-rank technology (Adomavicius and Kwon, 2012).
This approach could only utilize traditional UBCF to compute the similarity and
provide candidate items rather than some specific algorithm. Then they utilized ad-
ditional features, such as item absolute likability, item relative likability, item rating
variance, and neighbors’ rating node to re-rank the candidate items. Finally selected
top N items for recommendations. This approach could provide recommendations
with good diversity, but it comes at the expense of accuracy.

3.3 Analysis and problem setting

Neighborhood selection is to determine which users’ rating information will be uti-
lized to compute the prediction for an active user, in other words, it decides who
will be selected as neighborhood of the active user. In theory, every user could be
selected as a neighbor. However, modern commercial RSs have vast customers, e.g.,
Amazon has billions of users, it is impractical to consider every user as a neighbor
when trying to maintain real-time performance. A subset of users must be selected
as neighborhood if RSs want to guarantee acceptable response time. Herlocker et al.
(Herlocker, Konstan, and Riedl, 2002) discussed the size of neighborhood in detail,
and drew a conclusion that the size of neighborhood affects the performance of RSs
in a reasonably consistent manner. It suggests that, in the real-world situations, a
neighborhood of 20 to 60 neighbors is reasonable to be used to make predictions.

Currently, k-NN method is often used in the traditional UBCF approach to make
neighborhood selection, neighborhood is comprised by the top k users with high-
est similarity in candidate neighbors. However, in RSs, some items, especially the
popular items, have high rating scores from most of users, and the active user usu-
ally also prefer these items. In this case, when using the traditional UBCF approach,
users who prefer the popular items are likely to have high similarity with the active
user, so they will easily appear in the neighborhood. Other users, who prefer niche
items, are difficult to be selected as the neighborhood, but these niche items may also
be preferred by the active user. For example, the relevant items of user 1 and user 2
are popular items, the relevant items of user 3 are niche items. Similarity between
active user and them are 0.9, 0.8, and 0.7, respectively, besides that, user 2’s relevant
item set is included in user 1’s relevant item set. In traditional UBCF approach, if we
select two most similar users as neighborhood, user 1 and user 2 will be selected, in
this case, only popular items will be recommended to the active user. However, user
3 also have high similarity with the active user, relevant items of user 3 may also be
preferred by the active user. In order to obtain neighborhood with diverse tastes, we
can remove user 2 and select user 1 and user 3 as the neighborhood. Because the
relevant item set of user 2 is included in user 1’s relevant item set, so we can only
utilize user 1 to make predictions for popular items rather than both of them. Here,
we consider users like user 2, whose relevant item set is included in other user’s rel-
evant item set, as the redundant users. In traditional UBCF approach, the k-nearest
neighbors have similar taste, so they tend to have similar relevant items, therefore
neighborhood usually contains many redundant users. When making prediction,
they tend to give high predicted scores for few types of items, even just the popular



14 Chapter 3. CBCF for active users’ personalized recommendations

items. It causes the traditional UBCF approach cannot provide recommendations
with good values of accuracy and diversity simultaneously.

3.4 CBCF for an active user’s personalized recommendations

3.4.1 Motivation of CBCF approach

The proposed CBCF approach aims to improve the traditional UBCF approach by re-
ducing redundant users, and constructs neighborhood by users who have high simi-
larity and diverse relevant items. As we discussed above, redundant user’s relevant
item set is included in other user’s relevant item set. According to discussions in
section 2.3, reducible element in the second type of covering reduction algorithm is
also included in other elements, so we can remove redundant users by using the sec-
ond type of covering reduction algorithm. Removing all reducible elements means
we remove all redundant users.

In general RSs, there are vast items, it means the item domain I is too large. How-
ever, different users have rated different items, it may cause not so many users could
be considered as redundant users. In order to remove redundant users as many as
possible, item domain should be reduced as much as possible. In CBCF approach,
we reduce the domain from item set I to active user’s decision class D. Items fit the
active user’s relevant attributes comprise the decision class D. However, in practical
application, users usually do not enter their relevant attributes into RSs. Here, in
order to obtain relevant attributes of an active user, we sum each attribute value in
the active user’s relevant item set. Due to the more high rating scores indicate that
the more the active user likes the attribute, l number attributes with the largest sums
are selected as the relevant attributes.

Relevant attributes of the active user in the following form:

[at1 = av1] ∧ [at2 = av2] ∧ ... ∧ [atm = avm],

where m means the number of all attributes, atm is an attribute and avm is the value
of atm.

3.4.2 Procedures of CBCF approach

In CBCF approach, we insert user reduction step into the traditional UBCF approach.
Algorithm 3.1 presents concise steps of the CBCF approach. The detailed procedure
is as follows:

Step 1: User reduction. First set I as the domain, relevant items of each user
comprise a set in domain I . We construct decision class D for the active user au.
The decision class D consists of all items that fit the active user’s relevant attributes,
defined by (3.1).

D = {i ∈ I|at1(i) = av1, at2(i) = av2, ..., atm(i) = avm}, (3.1)

where atm(i) = avm means that the value of the attribute atm on item i is avm.
Then to remove as many redundant users as possible, we reduce the domain

from item set I to decision class D, and for each user u ∈ U , the relevant items of
user u in domain D comprise the relevant set Cu, where

Cu = {i ∈ D|ru,i ≥ θ}. (3.2)
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Let C∗ = D − ∪Cu; then, C = {C1, C2...Cn, C
∗} is a covering for the active user in

domain D.
Next, based on the second type of covering reduction algorithm in the covering-

based rough sets, redundant elements are removed from covering C to obtain reduct(C),
we can obtain the active user’s reduct-users U r, where

U r = {u ∈ U |Cu ∈ reduct(C)}. (3.3)

Step 2: Similarity computation. Users in U r comprise candidate neighbors CN r
au

of the active user au. According to the rating information, compute the similarity
sim(au, u) between the active user au and each user u ∈ CN r

au by the similarity
measure.

Step 3: Neighborhood selection. The active user au’s neighborhood N r
au(k) is

composed by k most similar (nearest) users in CN r
au.

Step 4: Rating prediction. Based on rating information of neighborhood N r
au(k),

we predict rating score pau,i for each item i in unrated item set Icau of the active user
au.

Algorithm 3.1 CBCF approach

Input: User-item rating matrix RM , item attribute matrix AM , and an active user
au.

Output: Recommended items set of size N for the active user au.
k : Number of users in the neighborhood N r

au(k) of the active user au.
N : Number of items recommended to the active user au.
D : Decision class of the active user au.
U r : Users after making user reduction, reduct-users.
Icau : Items which have not yet rated by the active user au.
CN r

au : Candidate neighbors of the active user au after making user reduction.
pau,i : Rating prediction of item i for the active user au.

1: for each user u ∈ U do
2: Cu = {i ∈ D|ru,i ≥ θ}.
3: end for
4: Let C∗ = D − ∪Cu; then, C = {C1, C2...Cn, C

∗} is a covering for an active user
au in domain D.

5: reduct(C) = STCRA(C)
6: Reduct-user U r = {u ∈ U |Cu ∈ reduct(C)}.
7: CN r

au = U r, compute similarity between the active user au and each user u ∈
CN r

au

8: for each item i ∈ Icau do
9: Find the k most similar users in CN r

au to comprise neighborhood N r
au(k);

10: Predict rating score pau,i for item i by neighborhood N r
au(k);

11: end for
12: Recommend to the active user au the top N items having the highest pau,i.

3.4.3 Example of CBCF approach in RSs

Here, we present an example to explain the CBCF approach more clearly. Table 3.1
illustrates an User-Item rating matrix RM about rating scores by six users for eight
items, Uau represents the active user. The rating value is from 1 to 5, where a higher
value indicates that the user likes the given item more. Table 3.2 shows the item
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attribute matrix AM about eight items, and each item has the following attributes:
Horror, Comedy, Drama, Action, and Musical, where a value of 1 indicates that the
item is of that genre and a value of 0 indicates it is not. Note that items can be in
several attributes simultaneously. The detailed steps are as follow:

TABLE 3.1: Example of user-item rating matrix RM

User
Co-rated items Target items

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8
U1 2 4 1 3 3 4 5 5
U2 1 3 2 3 2 5 2 3
U3 1 2 3 5 3 4 2 1
U4 2 2 5 1 4 5 1 4
U5 2 4 5 2 1 3 5 3
Uau 1 4 2 5 2 3 ⋆ ⋆

TABLE 3.2: Example of item attribute matrix AM

Item
Attribute

Horror Comedy Drama Action Musical
Item 1 1 0 1 0 0
Item 2 0 1 0 1 1
Item 3 1 1 0 1 1
Item 4 1 1 1 1 0
Item 5 0 1 1 1 0
Item 6 0 1 0 1 0
Item 7 0 1 1 0 0
Item 8 1 0 0 1 1

TABLE 3.3: Example of similarity and rank depending on different
approaches

User-User
Traditional UBCF Proposed CBCF
Similarity Rank Similarity Rank

Uau − U1 0.501 3 0.501 2
Uau − U2 0.563 2 - -
Uau − U3 0.646 1 0.646 1
Uau − U4 -0.458 5 - -
Uau − U5 0.075 4 0.075 3

Step 1: User reduction. Here, we treat the rating threshold θ as 3; thus, from the
rating matrix RM we can obtain the active user’s relevant items set {Item 2, Item
4, Item 6}. We sum each attribute value in the relevant item set according the item
attribute matrix AM (Horror=1, Comedy=3, Drama=1, Action=3, Musical=1). Then,
two attributes with the largest sums (Comedy and Action) are selected as relevant
attributes of the active user. Then, all items that fit the relevant attributes comprise
the decision class D = {Item 2, Item 3, Item 4, Item 5, Item 6}.

Reduce the domain from all items set to decision class D. Relevant items of the
user u in domain D will be a set Cu :
C1 = {Item 2, Item 4, Item 5, Item 6}, C2 = {Item 2, Item 4, Item 6},
C3 = {Item 3, Item 4, Item 5, Item 6}, C4 = {Item 3, Item 5, Item 6},
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C5 = {Item 2, Item 3, Item 6}.
Then, C = {C1, C2, C3, C4, C5} is a covering for the active user in domain D. Based
on the definition of the second-type covering reduction algorithm, C2 ⊂ C1, C4 ⊂ C3;
thus, C2 and C4 can be regarded as redundant elements to be removed. Then, we
can obtain the reduct(C) = {C1, C3, C5}, so the reduct-users U r = {U1, U3, U5}.

Step 2: Similarity computation. Candidate neighbors CN r
au for the active user

are composed by users in U r, CN r
au = U r = {U1, U3, U5}. Then utilize the Pearson

correlation coefficient similarity measure to compute the similarity between the ac-
tive user and each user in CN r

au. Table 3.3 shows results of similarity and user rank
for the traditional UBCF and proposed CBCF approaches.

Step 3: Neighborhood selection. If we consider only three nearest users in candi-
date neighbors as neighborhood of the active user, U1, U2, and U3 will comprise the
neighborhood Nau(3) for the traditional UBCF; however, for our proposed CBCF
approach, U1, U3, and U5 will be considered as the neighborhood N r

au(3).
Step 4: Rating prediction. From the rating scores of N r

au(3), we use the adjusted
weighted sum approach to predict the rating scores for item 7 and item 8. Here
Pau,7 = 3.284, Pau,8 = 2.588
Because Pau,7 > Pau,8, if we select the top one movie as recommendation, item 7 will
be recommended to the active user.

3.4.4 Discussion

To provide recommendations with good values of accuracy and diversity for an ac-
tive user au, the biggest innovation of the proposed CBCF approach is that, we insert
the user reduction procedure into the traditional UBCF approach. For an active user
au, before computing the similarity, we remove redundant users from all users to
obtain reduct-users U r and which comprise candidate neighbors CN r

au with diverse
tastes, k most similar (nearest) users selected from CN r

au comprise neighborhood
N r

au(k). Although comparing with input conditions of the traditional UBCF, our
proposed CBCF needs an additional condition: item attribute matrix AM ; however,
in general RSs, item attribute matrix is very common and easy to obtain.

User reduction is a core component of CBCF approach, which applies the notion
of covering reduction to reduct redundant users from all users. First, we set all items
I as the domain, and relevant items of each user comprise a set in domain I . How-
ever, in this case, there are only a few sets can be removed as redundant elements.
To remove as many redundant users as possible, when obtaining the decision class
D, we reduce the domain from I to D such that the domain can be sufficiently small.
Then, the relevant items of each user in decision class D will be a element of a cov-
ering C. Based on the definition of the second type of covering reduction algorithm,
for set C1, if there exists another set C2 for which C1 ⊂ C2, C1 is considered re-
ducible and therefore removable. In this approach, C1 denotes the relevant items of
user 1 in domain D and C1 ⊂ C2 indicates that user 1 and user 2 are likely to prefer
same type of items, so we can just utilize user 2 to make prediction for this type of
items, thus user 1 can be considered as redundant user to be removed. Removing
all reducible elements means that all redundant users are removed from all users,
so that this approach can only use the reduct-users U r to comprise CN r

au. Users
in CN r

au have diverse relevant of items, and high similarity users are selected from
CN r

au to comprise neighborhood N r
au(k). So in proposed CBCF approach, neighbors

in the N r
au(k) have both high similarity and diverse preference, they can make ac-

curate predictions for more types of items and present recommendations with high
accuracy and diversity at the same time.
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TABLE 3.4: Average size of decision class versus l with the MovieLens
dataset

l(number of relevant attributes) 1 2 3 4
Average size (decision class) 583.257 70.363 7.068 0.303

3.5 Experiments and evaluations

In this section, we introduce the evaluation dataset and metrics, examine the effects
of the approach components, and compare the CBCF approach’s performance with
the traditional UBCF approach with different datasets.

3.5.1 Experimental setup and evaluation metrics

In our experiments, we utilized the MovieLens (Herlocker et al., 1999) and Jester
(Goldberg et al., 2001) datasets because they are often used to evaluate RSs. The
MovieLens 100K dataset consists of 1,682 movies, 943 users, and 100,000 ratings on
a scale of 1 to 5. Each user has rated at least 20 movies, and in our study, movies rated
above 3 were treated as a user’s relevant movies. The Jester 3.9M dataset contains
ratings of 100 jokes from 24,983 users. Each user has rated 36 or more jokes. The
value range of rating scores is -10 to 10. A value of "99" represents an absent rating.
In our experiment, jokes rated above 5 were treated as a user’s relevant jokes.

We also used the conventional leave-one-out procedure to evaluate the perfor-
mance of the proposed approach. For each test user, we only considered items that
the user had rated as test items. First, we supposed that the test items had no rating
scores from the test user. Then, our approach predicted a rating score for each test
item using the information obtained from the remaining users. Finally, comparisons
were made between the original and predicted rating scores. For the MovieLens
dataset, we summed each attribute value in the test user’s set of relevant movies,
and l number attributes with the largest sums were selected as the relevant attributes
of the test user. As there were 18 attributes for each movie, we computed the average
size of decision class in terms of different number of l. Table 3.4 shows the result.
If the size of test user’s decision class is too big, there will be just fewer redundant
users could be removed; however, if the size of test user’s decision class is too small,
other users’ relevant item set will include this decision class easily, in this case, it
will lose the meaning of reduction. Overall consideration, we select two attributes
to construct the decision class.

For the Jester dataset, no information was presented about item attributes. There
were 100 jokes in this dataset, we considered the top 50 jokes sorted by the test
user’s rating scores as the decision class. If the number of rated jokes from the test
user was less than 50, we treated all rated jokes as the decision class. However if the
neighbor’s set of relevant jokes was too large, it would include the decision class, in
this case, covering reduction will lose effectiveness. To avoid this, we selected the
top 10% users who had rated the fewest jokes from all users, and utilized these 2,498
users for our experiment.

To measure the performance of the proposed approach, we used the mean ab-
solute error (MAE), root mean square error (RMSE) to represent the accuracy, and
coverage to evaluate the diversity of recommendations, all of which are popular
metrics for evaluating RSs.
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The MAE and RMSE metrics demonstrate the average error between predictions
and real values; therefore, the lower these values, the better the accuracy of RSs.

MAE =
1

card(U)

∑
u∈U

(
1

card(Ou)

∑
i∈Ou

|pu,i − ru,i|), (3.4)

RMSE =
1

card(U)

∑
u∈U

√
1

card(Ou)

∑
i∈Ou

(pu,i − ru,i)2, (3.5)

where Ou = {i ∈ I|pu,i ̸= ⋆ ∧ ru,i ̸= ⋆} indicates set of items rated by user u having
prediction values.

In different research fields, the coverage metric can be interpreted and defined
differently. We define coverage metric as calculating the percentage of situation in
which at least one k-nearest neighbors of the active user can rate an item which has
not been rated by that active user. Here, let Su,i as the set of user u’s neighbors which
have rated the item i, and define Zu = {i ∈ I|Su,i ̸= ∅}.

Coverage =
1

card(U)

∑
u∈U

(100× card(Icu ∩ Zu)

card(Icu)
). (3.6)

In addition, the reduction rate is defined as an evaluation metric, that measures
the effectiveness of removing redundant users from all users. Reduction rate is given
as follows:

ReductionRate =
1

card(U)

∑
u∈U

card(CNu − CN r
u)

card(CNu)
, (3.7)

where CNu means candidate neighbors of user u, CN r
u represents user u’s candidate

neighbors after user reduction.

3.5.2 Experimental results and comparisons

We conducted experiments to demonstrate the performance of the proposed CBCF
approach. In addition, using different datasets, comparisons of the CBCF and tradi-
tional UBCF approaches were performed to verify if the proposed CBCF approach
could provide better recommendations or not than traditional UBCF approach. In
both experiments, the Pearson correlation coefficient approach was used as the sim-
ilarity measure, k-NN approach was utilized to select the neighborhood, and the
adjusted weighted sum approach was used as the aggregation function. To obtain
MAE, RMSR, and coverage values, according to (Herlocker, Konstan, and Riedl,
2002), we selected different size k neighborhood from candidate neighbors, k ∈
{20, 25, 30, ..., 60}.

Currently, researches have gotten the conclusion that there is a trade-off relation-
ship between accuracy and coverage in traditional UBCF approach. As increasing
the size of neighborhood, coverage metric increases constantly; however, for accu-
racy metric, it first increases and then decreases (Herlocker et al., 1999; Herlocker,
Konstan, and Riedl, 2002). In our experiments, due to the size of neighborhood is
in a small range, experimental results may appear that both accuracy and cover-
age increase as the size of neighborhood increases. However, it does not negate the
trade-off relationship between accuracy and coverage in traditional UBCF approach.

Table 3.5 shows results about number of candidate neighbors for traditional UBCF
and CBCF approaches in MovieLens and Jester datasets respectively. As can be seen,
in MovieLens dataset, there are 943 users, so in traditional UBCF approach, all 943
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TABLE 3.5: Number of candidate neighbors for traditional UBCF and
CBCF approaches

UBCF CBCF Reduction Rate
MovieLens 943 193 0.795

Jester 2,498 580 0.768
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FIGURE 3.1: Accuracy results (MAE and RMSE) versus the size of
neighborhood with MovieLens dataset

users will be considered as candidate neighbors. After user reduction, on average,
approximately 79.5% of users are removed as redundant users, so in CBCF approach,
remaining 193 users will comprise the candidate neighbors. In Jester dataset, recall
that there are 2,498 users, so the number of candidate neighbors for traditional UBCF
approach is 2,498. The reduction rate is 76.8%, which means approximately 76.8% of
users are removed as redundant users on average, so in CBCF approach, the average
number of candidate neighbors is 580.

First, we introduce comparisons between the CBCF and traditional UBCF ap-
proaches with the MovieLens dataset. Figure 3.1 shows accuracy results (MAE and
RMSE) versus the size of neighborhood. As can be seen, for traditional UBCF ap-
proach, both MAE and RMSE values decrease as the size of neighborhood increases,
when the size of neighborhood is 60, they obtain the least values 0.626 and 0.801
respectively. On the other hand, for CBCF approach, the MAE and RMSE values
are stable, and values of two metrics are 0.623 and 0.788 when the size of neighbor-
hood is 60. Overall, for MAE and RMSE metrics, all values of CBCF approach are
lower than traditional UBCF approach, which means that the predicted scores by
CBCF approach are closer to the original scores. So the proposed CBCF approach
outperforms traditional UBCF in terms of MAE and RMSE. Figure 3.2 illustrates the
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FIGURE 3.2: Coverage results versus the size of neighborhood with
MovieLens dataset

coverage metric versus the size of neighborhood. As shown in figure, the cover-
age of both CBCF and traditional UBCF approaches increases obviously as the size
of neighborhood increases. However, the coverage of proposed CBCF approach is
higher than traditional UBCF in terms of different size of neighborhood, it means,
CBCF approach can recommend more types of movies that the active user has not
yet rated. Thus, the comparative results for CBCF and traditional UBCF obtained
with MovieLens dataset indicate that, our proposed CBCF approach can select more
appropriate neighborhood, and outperform the traditional UBCF approach in terms
of accuracy and coverage.

Next, we illustrate comparisons between the CBCF and traditional UBCF ap-
proaches with the Jester dataset. Figure 3.3 explains accuracy results (MAE and
RMSE) versus the size of neighborhood. As shown in the figure, for both CBCF and
traditional UBCF approach, values of MAE and RMSE increase slightly as the size of
neighborhood increases, it means the accuracy becomes lower when the neighbor-
hood increases. And for MAE and RMSE metrics, all values of the proposed CBCF
approach are higher than traditional UBCF, it indicates that CBCF approach does not
outperform in terms of MAE and RMSE. Figure 3.4 shows the coverage metric ver-
sus the size of neighborhood. As can be seen, for both CBCF and traditional UBCF
approaches, coverage increases slightly as the size of neighborhood increases; how-
ever, traditional UBCF is lightly higher than the CBCF approach, which means the
CBCF approach cannot recommend more types of jokes for the active user. In con-
clusion, the comparative results between CBCF and UBCF with Jester dataset reveal
that, the proposed CBCF approach is inferior to the traditional UBCF approach in
terms of accuracy and coverage.
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3.5.3 Analysis and discussion

The experimental results indicate that the proposed CBCF approach demonstrates
different performance with different datasets. In the MovieLens dataset experiment,
there were 1,682 movies and 943 users. For each user, the number of rated items was
quite smaller than the number of unrated items; therefore, this dataset is very sparse.
In the proposed CBCF approach, user reduction procedure can remove redundant
users which may have high similarity but can only make predictions for few types of
items, reduct-users with diverse tastes comprise the candidate neighborhood, neigh-
borhood selected from candidate neighbors can predict rating scores for more types
of items, so the coverage metric has improved greatly comparing with the traditional
UBCF approach. Furthermore, in RSs, although some users have higher similarity
with the active user, they cannot provide predictions with high accuracy. For exam-
ple, some users have rated few items, they often also have few co-rated items with
the active user, even only one; however their rating scores for co-rated items are
similar. In this case, they will have high similarity, but they may not have similar
preferences with the active user, so they cannot provide predictions with high accu-
racy. As these users have fewer rated items, in CBCF approach, they are easy to be
considered as redundant users to be removed, so accuracy metric of CBCF approach
has a great improvement than traditional UBCF approach.

In the Jester dataset experiment, we utilized 2,498 users; however, this dataset
has only 100 jokes. Thus, for each user, there are fewer unrated jokes than rated
jokes. Each joke may be rated many times by different users; thus, this dataset is not
sparse. Under these circumstances, all jokes can be considered as popular jokes, and
each user can predict rating scores for sufficient types of jokes relative to all 100 jokes.
Due to co-rated items are sufficient between each two users, so users having higher
similarity with the active user can also provide predictions with higher accuracy.
In CBCF approach, user reduction procedure removes some redundant users with
higher similarity; however, these users can make predictions with higher accuracy,
so the accuracy metric decreases comparing with UBCF approach. Besides, as there
are only 100 jokes, and each user has rated sufficient jokes, it means each user can
make predictions for almost same types of jokes. So after user reduction, reduct-
users, which comprise candidate neighbors, may not have improvements to make
predictions for more types of jokes. Therefore, comparing with traditional UBCF
approach, the coverage metric of CBCF approach does not have improvements.

Generally, in practical applications, RSs must handle big data that include huge
numbers of users and items. Thus, for each user, only small number of items have
been rated compared to the huge number of unrated items. Thus, most RSs have
sparse datasets, such as the MovieLens dataset. However, for a sparse dataset, the
proposed CBCF approach can select more appropriate neighborhood than the UBCF
approach and can make recommendations for the active user with satisfactory accu-
racy and coverage values simultaneously. Thus, the proposed CBCF approach has
important significance for RSs.

3.6 Summary

UBCF approach is the most commonly used and studied technology for making rec-
ommendations in RSs. Generally, we use accuracy and diversity to evaluate an RS;
however, although neighborhood selected by the traditional UBCF approach has
high similarity with the active user, neighborhood tends to have similar tastes, so
they are like to give high rating scores for few types of items, even only the popular
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items. Therefore it is difficult for the traditional UBCF approach to provide satisfac-
tory accuracy and coverage simultaneously.

In this chapter, we have presented the CBCF approach based on covering-based
rough sets to improve the traditional UBCF approach. In the proposed CBCF ap-
proach, we add the user reduction procedure into the traditional UBCF, covering
reduction in covering-based rough set is utilized to remove redundant users from
all users, users having diverse preferences comprise reduct-users. Neighborhood is
composed by k most similar users in candidate neighbors which consist of reduct-
users, so that neighbors in the neighborhood not only have high similarity but also
have diverse tastes. Our experimental results indicate that, for sparse datasets (which
often appears in practical RSs), unlike traditional UBCF, the proposed CBCF ap-
proach can provide recommendations with good values of accuracy and diversity
simultaneously. Thus, the proposed CBCF approach can recommend satisfactory
recommendations and obtain high confidence from the active user.
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Chapter 4

Improved CBCF for new users’
personalized recommendations

4.1 Introduction

CF approaches are popularly used in RSs owing to their satisfactory performance.
On the assumption that users who have similar preferences in the past will tend to
have similar tastes in the future, UBCF has been proposed and applied in practice
(Herlocker et al., 1999). UBCF can provide satisfactory recommendations utilizing
only the user’s historical ratings, without requiring any other special information,
and it has demonstrated remarkable success in RSs (Park et al., 2015; Kaleli, 2014;
Koohi and Kiani, 2016); however, for traditional UBCF, in candidate neighbors of a
target user, because there exists some redundant users who have higher similarity
but can make predictions only for a few types of items, the traditional UBCF usu-
ally cannot provide recommendations with satisfactory accuracy and diversity at
the same time (Herlocker, Konstan, and Riedl, 2002). Many studies have been con-
ducted to increase the diversity of recommendations based on UBCF. Among these
studies, some approaches can improve diversity significantly, but accompanied by
losses in accuracy (Adomavicius and Kwon, 2011; Adomavicius and Kwon, 2012).
Although some methods can improve accuracy and diversity simultaneously, they
require additional information that is often not available or incomplete (Gan and
Jiang, 2013; Niemann and Wolpers, 2013). CBCF is a useful approach, falling in the
latter research line mentioned above, that we proposed in our previous chapter to
improve UBCF by removing redundant candidate neighbors. However, all of these
studies focus on providing satisfactory recommendations for an active user which
often has sufficient rating information; but a new user in RSs differs in some respects
(e.g., number of ratings or rating score proportion), recommendation difficulty is in-
creased (Lika, Kolomvatsos, and Hadjiefthymiades, 2014; Son, 2016; Bobadilla et
al., 2012; Liu et al., 2014a). Therefore, researchers face the difficult problem of how
to utilize only easily obtained information to provide recommendations for a new
user with satisfactory accuracy and diversity simultaneously (Ahn, 2008; Tyagi and
Bharadwaj, 2012; Chen et al., 2013).

In this chapter, we aim to improve the previous CBCF to provide satisfactory
accuracy and diversity of recommendations simultaneously for a new user in RSs.
Because a new user often has few ratings, the previous CBCF cannot utilize the in-
sufficient information to remove redundant candidate neighbors for a new user ef-
fectively. In our improved CBCF, in order to remove as many redundant candidate
neighbors as possible for a new user, by analyzing the proportion and characteris-
tic of new users’ rating scores, we reconstruct the decision class by the niche items
which have fewer ratings from users. In this way, different from the previous CBCF,
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our improved CBCF could remove redundant candidate neighbors efficiently with-
out requiring any special additional information. Experimental results indicate that
our improved CBCF can not only improve the accuracy metric, but also increase the
diversity of recommendations for a new user for the sort of sparse datasets that often
occur in connection with real RSs.

The remainder of this chapter is organized as follows. In Section 4.2, we intro-
duce the traditional UBCF approach and review some studies that attempt to im-
prove UBCF to obtain better performance. In Section 4.3, we present our problem
setting through an analysis of real-world datasets. In Section 4.4, we explain the
motivation and detailed procedures of our improved CBCF, then make comparisons
between the previous CBCF and improved CBCF. In Section 4.5, we describe our ex-
periments and compare the results of our improved CBCF with other existing work.
Finally, in Section 4.6, we draw the summary of this chapter.

4.2 Related works

UBCF is an important approach popularly used in RSs that utilizes only a user’s his-
torical ratings, without any special additional information; however, the traditional
UBCF cannot provide recommendations with satisfactory accuracy and diversity si-
multaneously (Herlocker, Konstan, and Riedl, 2002). In addition, recent research
has concluded that gains in RS diversity can frequently be accompanied by losses
in accuracy, making it difficult to select a reasonable trade-off between accuracy and
diversity (Liu, Shi, and Guo, 2012; Zhou et al., 2010). More detailed information and
procedures of UBCF could be found in Subsection 1.2.1.

To increase the diversity of recommendations while maintaining comparable lev-
els of recommendation accuracy, we developed in our previous work a CBCF ap-
proach to improve the traditional UBCF. In previous CBCF, combining with the char-
acteristics of redundant users in UBCF and redundant elements in covering-based
rough sets, we inserted a neighbor selection procedure into the traditional UBCF that
could remove redundant candidate neighbors by covering reduction algorithm. To
remove as many redundant users as possible, according to the sufficient information
from an active user, we first extracted relevant attributes of the active user, then con-
structed decision class by all items that fit the active user’s relevant attributes, and
reduced the domain from all items to decision class. Because the CBCF approach
could select more appropriate users to comprise the neighborhood of an active user,
CBCF was able to provide recommendations with satisfactory accuracy and diver-
sity simultaneously for an active user. More detailed information could be found in
Chapter 3.

Said, Jain, and Albayrak (Said, Jain, and Albayrak, 2012) investigated the effects
of weighting factors on different types of users. To improve the diversity of rec-
ommendations for a new user, when computing the similarity, they decreased the
impact of items rated by many users, in other words, popular items. In addition,
they increased the impact of items rated by few users. This approach can improve
the diversity of recommendations for a new user with acceptable accuracy; however,
it is unstable and performs differently for different selected datasets.

4.3 Analysis and problem setting

In this section, first, we analyze two popular datasets that are often used to evaluate
RS approaches. Then, in accordance with the analysis result, we discuss the problem
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TABLE 4.1: Proportion of items and ratings in the MovieLens dataset

Item number Item rate Rating number Rating rate
Ratings ≥ 10K 174 1.63% 2,757,120 27.57%

5K ≤ Ratings < 10K 296 2.77% 2,112,854 21.12%
1K ≤ Ratings < 5K 1,564 14.64% 3,562,589 35.62%

Ratings ≤ 1K 8,647 80.96% 1,569,491 15.69%

TABLE 4.2: Proportion of items and ratings in the Netflix dataset

Item number Item rate Rating number Rating rate
Ratings ≥ 50K 501 2.82% 45,020,066 45.63%

10K ≤ Ratings < 50K 1,541 8.67% 34,889,199 35.36%
1K ≤ Ratings < 10K 5,084 28.61% 17,193,080 17.42%

Ratings ≤ 1K 10,644 59.90% 1,569,491 1.59%

setting of this chapter.

4.3.1 Data analysis

Here, we analyze two popular datasets that were collected from the real world
and are often used to evaluate RSs. One is the MovieLens 10M dataset (Herlocker
et al., 1999), obtained from the website of the GroupLens lab. This dataset con-
tains 71,567 users, 10,681 movies, and a total of 10,002,054 ratings on a scale of
{0.5, 1, 1.5, ..., 5}. Each user has rated at least 20 movies, resulting in a sparsity of
95.81%. The other is the Netflix dataset, obtained from the Netflix Prize website
(http://www.netflixprize.com). This dataset contains a total of 100 million ratings
from 480,189 users over 17,770 movies (98.81% sparsity). The ratings are on a {1, 2,
3, 4, 5} scale, and each user has rated a different number of movies. In this chapter,
considering the size of datasets and the number of experiments we conducted, we
used the full datasets for analysis and smaller subsets for some of the experiments
in Section 4.5.

First, we perform statistical analyses for these two datasets. Tables 4.1 and 4.2
show the number of items and the corresponding ratings, as well as their propor-
tions according to the different number of ratings. As shown in the tables, for the
MovieLens dataset, items that have more than 5K ratings account for only 4.40%
of all items, but their corresponding ratings comprise 48.69% of all the ratings. In
the Netflix dataset, this performance is more obvious, even though items that have
more than 50K ratings comprise only a 2.82% proportion of all items, with ratings
corresponding entirely to them accounting for 45.63% of all ratings. From the data
analysis above, we can conclude that in real-world database, after sorting all items
by descending order according to the number of ratings, the top fewer items usually
correspond to a large proportion of the ratings. Therefore, in this chapter, we call
them popular items.

Next, we consider the proportion of rating scores on popular items. Figures 4.1
and 4.2 show the results. As found in the figures, in the MovieLens dataset, the
rating range is from 0.5 to 5 with half-star increments, but most of the rating scores
are concentrated on {3, 4, 5}. In the Netflix dataset, although the rating range is
just from 1 to 5, most of the rating scores are also included in {3, 4, 5}. These re-
sults indicate that users’ rating scores on popular items are relatively concentrated,
with the difference between these rating scores not being very large. Because the
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FIGURE 4.1: Proportion of rating scores on popular items in the
MovieLens dataset

similarity computation is based on the rating scores of co-rated items, the closer the
rating scores, the more similar the two users. Therefore, if most of the co-rated items
between two users are popular items, then the rating scores between them will be
similar, and they will achieve higher similarity. From the above, we can conclude
that if co-rated items between two users concentrate on popular items, the similarity
between them will be higher.

Finally, we discuss the percentage of ratings on popular items by users with rat-
ings no more than {20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200} in the two datasets.
Figures 4.3 and 4.4 show the results. As shown in the figures, the two datasets have
the same performance in that the percentage of ratings on popular items decreases as
the number of ratings by users increases. Users with having no more than 20 ratings
have the highest percentage, almost 74.72% in the MovieLens dataset and 72.74% in
the Netflix dataset. In general, new users often have fewer ratings (i.e., no more than
20 ratings). Therefore, we can conclude that most ratings of new users concentrate
on popular items.
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4.3.2 Problem setting

According to our conclusions obtained above, if co-rated items between two users
concentrate on popular items, then they will have higher similarity. Because most
ratings of a new user are on popular items, if there are other users whose ratings also
concentrate on popular items, the similarity between them will be very high, and
these users can easily be selected into the neighborhood of the new user. Therefore,
in traditional UBCF, a new user’s neighborhood is usually comprised of users whose
ratings concentrate on popular items.

However, neighborhoods comprised of users whose ratings concentrate on pop-
ular items can make predictions only for fewer types of items, perhaps even only
popular items. Hence, in traditional UBCF, candidate items with high predicted
scores are the most popular items, resulting in a low diversity of recommendations
for a new user. In addition, these users can predict accurate rating scores only for
popular items rather than for all types of items. Thus, the accuracy of recommenda-
tions for a new user will also be unsatisfactory. Here, we define users whose ratings
concentrate on popular items as redundant users of a new user. In the traditional
UBCF approach, as the neighborhood of a new user often contains many redundant
users, recommendations they produce might concentrate on popular items. A new
user’s acceptance of these recommendations will substantially increase the percent-
age of ratings on popular items and further improve the similarity between the new
user and redundant users. Under these circumstances, redundant users are easier
to select into a neighborhood. Finally, as a consequence, a vicious circle is estab-
lished, and a new user might be able to obtain only recommendations determined
by popular items.

4.4 Improved CBCF for a new user’s personalized recommen-
dations

Here, we first discuss the motivation of our improved CBCF. Then, we introduce
the information about reconstruction of the decision class for a new user. Next, we
describe detailed process of improved CBCF, and make comparisons between it with
the previous CBCF.

4.4.1 Motivation of improved CBCF approach

In order to provide recommendations with satisfactory accuracy and diversity si-
multaneously for a new user, our improved CBCF aims to remove as many redun-
dant users as possible, and utilizes the remaining more appropriate users to com-
prise the neighborhood of a new user.

The target of previous CBCF is to provide satisfactory recommendations for an
active user. Because an active user has rated many items, there is sufficient infor-
mation that could be utilized. Therefore, in the previous CBCF, the decision class
consists of items that fit the active user’s relevant attributes, and relevant attributes
can be obtained from sufficient rating information. However, for a new user, ratings
are usually very few, and it is unreliable to extract relevant attributes according to a
new user’s rating information. Moreover, in the previous CBCF, the item attribute
matrix had to be inputted as the indispensable condition, even though some datasets
do not have this information. Therefore, for a new user’s personalized recommenda-
tions, in our improved CBCF approach, we must make full use of the characteristic
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of a new user (e.g., fewer ratings or ratings concentrating on popular items), and re-
construct the decision class while ensuring as far as possible that the new approach
requires no special additional information.

4.4.2 Reconstruction of decision class for a new user

In accordance with the discussion in Section 4.4.1, we reconstruct the decision class
for the new user as the set of niche items in the dataset used for recommendation.
As we discussed in Section 4.3.1, in real-world database, after sorting all items by
descending order according to the number of ratings, the top fewer items correspond
to a large population of the ratings, we called them popular items. We then define
niche items as items that are not popular in the dataset.

There are the following two reasons why we reconstruct the decision class for
the new user as the set of niche items:

1. Redundant candidate neighbors for a new user are able to be removed as many
as possible;

2. The decision class as the set of niche items is easily constructed from the user-
item matrix.

The first reason is that we can remove redundant candidate neighbors for a new
user as many as possible. It is because that in candidate neighbors of a new user,
items rated by a redundant user U1 are the most popular items, with the result that
the set of niche items rated by U1 is very small, perhaps even empty. Under these
circumstances, it is very easy to find another user U2 whose rated niche items’ set
includes U1’s. In other words, in the entire set of niche items, U2 can not only make
predictions for items as U1 does, but also predict ratings for other types of niche
items. Therefore, U2 might be more appropriate for being selected into the neigh-
borhood than U1, even though the similarity of U1 might be a little higher. When
reducing the domain from item set I to the decision class comprised by the set of
niche items, some redundant users who have not rated niche items will be removed
first. Then because of a redundant element in a covering is also included in other
elements, which has the same characteristics as the set of items rated by redundant
users, we can utilize covering reduction to remove redundant users. Even using
the covering reduction algorithm cannot remove all the redundant users, but it can
remove most of them, and our experiments in Section 4.5 confirm this.

The second reason is that, by utilizing the set of niche items, decision class can
be constructed easily without requiring any other special additional information. It
is because that the niche items could be extracted easily from the user-item rating
matrix which can be obtained from almost all types of RSs.

Algorithm 4.1 constructs a decision class Dnu for new user from the user-item
rating matrix RM and the ratio threshold rt (0 < rt < 1). In this algorithm, the set
of popular items is regarded as the top (1− rt)× 100% items which have the largest
number of ratings in I and the decision class Dnu for new user is constructed by
removing popular items from the set of all items I .

4.4.3 Procedures of improved CBCF approach

In this subsection, we describe the detailed steps of the improved CBCF approach
and provide algorithm information in Algorithm 4.2.
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Algorithm 4.1 Decision class construction algorithm for new user

Input: User-item rating matrix RM , ratio threshold rt
Output: Decision class Dnu for new user
1: for all i ∈ I do
2: ni ← Count the number of users u ∈ U such that ru,i ̸= ⋆
3: end for
4: Dnu = I
5: while |Dnu|

|I| ≥ rt do
6: i← Select an item with highest value ni in Dnu

7: Dnu ← Dnu \ {i}
8: end while
9: return Dnu

Step 1: User reduction. First set I as the domain, with rated items of each user
comprising a set in domain I . We construct a decision class Dnu for a new user nu,
consisting of all niche items. Then to remove as many redundant users as possible,
we reduce the domain from item set I to decision class Dnu, and for each user u ∈ U ,
user u’s rated items Iu in domain Dnu comprise the set Cu, where

Cu = Iu ∩Dnu. (4.1)

Let C∗ = Dnu − ∪Cu. Then, C = {C1, C2...C|U |, C
∗} − {∅} is a covering for the

new user in domain Dnu. Next, based on the covering reduction algorithm for
covering-based rough sets, redundant elements are removed from covering C to
obtain reduct(C). We can obtain a new user’s reduct-users U r, where

U r = {u ∈ U |Cu ∈ reduct(C)}. (4.2)

Step 2: Similarity computation. Users in U r comprise candidate neighbors CN r
nu

of the new user nu. According to the historical rating information, compute the
similarity sim(nu, u) between the new user nu and each user u ∈ CN r

nu according
to the similarity measure.

Step 3: Neighborhood selection. The new user nu’s neighborhood N r
nu(k) con-

sists of the k most similar (nearest) users in CN r
nu.

Step 4: Rating prediction. Based on the rating information of neighborhood
N r

nu(k), we predict the rating score pnu,i for each item i in unrated item set Icnu of
the new user nu.

Step 5: Item recommendation. According to the predicted rating scores, select
the top N items that have the highest pnu,i from the candidate items as the recom-
mendations for the new user nu.

4.4.4 Comparisons between the previous CBCF and improved CBCF

As the same to the previous CBCF, our improved CBCF also has inserted a neigh-
bor selection procedure into the traditional UBCF. However, because the target user
is different, neighbor selection methods for two approaches are also different. For
the previous CBCF, it aims to provide satisfactory recommendations for an active
user which often has many ratings. In order to improve the quality of recommen-
dations, in previous CBCF, we construct the decision class through the sufficient
rating information obtained from the active user, and the input information needs
both user-item rating matrix and item attribute matrix. Different from the previous
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Algorithm 4.2 Improved CBCF approach

Input: User-item rating matrix RM and a new user nu.
Output: Recommended items set of size N for the new user nu.

k : Number of users in the neighborhood N r
nu(k) of the new user nu.

N : Number of items recommended to the new user nu.
Dnu : Decision class of the new user nu.
U r : Users after user reduction, reduct-users.
Icnu : Items that have not yet been rated by the new user nu.
CN r

nu : Candidate neighbors of the new user nu after user reduction.
pnu,i : Rating prediction of item i for the new user nu.

1: for each user u ∈ U do
2: Cu = Iu ∩Dnu.
3: end for
4: Let C∗ = Dnu − ∪Cu. Then, C = {C1, C2...C|U |, C

∗} − {∅} is a covering for the
new user nu in domain Dnu.

5: reduct(C) = STCRA(C)
6: Reduct-user U r = {u ∈ U |Cu ∈ reduct(C)}.
7: CN r

nu = U r, compute the similarity between the new user nu and each user
u ∈ CN r

nu

8: for each item i ∈ Icnu do
9: Find the k most similar users in CN r

nu to comprise neighborhood N r
nu(k);

10: Predict rating score pnu,i for item i by neighborhood N r
nu(k);

11: end for
12: Recommend to the new user nu the top N items having the highest pnu,i.

CBCF, for our improved CBCF, the target user is a new user, we construct the deci-
sion class by niche items which could be extracted easily from the user-item rating
matrix. Moreover, our improved CBCF only needs to input the user-item rating ma-
trix rather than any other special information from a new user. Through the above
comparisons, we can find that, to provide personalized recommendations, our im-
proved CBCF needs less information (e.g., input information and the target user’s
ratings information) than previous CBCF. Because a new user usually has insuffi-
cient information which could be utilized, so our improved CBCF is more suitable
for the new user’s personalized recommendations.

4.5 Experiments and evaluations

In this section, we introduce the evaluation dataset and metrics, and compare the
performance of the improved CBCF approach with other work using different datasets.

4.5.1 Experimental setup and evaluation metrics

In our experiments, we used the MovieLens and Netflix datasets to evaluate our
improved CBCF approach. We also used the Jester dataset (Goldberg et al., 2001),
because it has characteristics different from the former two datasets. This dataset
contains ratings of 100 jokes from 24,983 users (27.53% sparsity). From the informa-
tion of these three datasets, we find that MovieLens and Netflix are the same type
of dataset, each containing a huge number of items; however, each user has rated
fewer items, with the number of rated items being substantially smaller than the
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number of unrated items. Therefore, the two datasets are very sparse, and popular
items can be found easily. In contrast, the Jester dataset contains only 100 items, each
user has rated a sufficient number of items relative to all items, and unrated items
are fewer than rated ones; hence, this dataset is not sparse. In addition, in the Jester
dataset, every item has been rated by many users, with the result that it is difficult
to distinguish whether an item is popular. In fact, we can even say that each item is
popular.

To obtain a dataset of manageable size in our experiment, for the MovieLens
and Netflix datasets, we select 1,000 users and 1,000 items from each of the original
datasets. First, we select 1,000 items based on the item and rating structure of the
original dataset by stratified sampling (detailed information is given in Tables 4.3
and 4.4), and we set the ratio threshold rt = 0.95, it means the top 5% of items
that have the most ratings as popular items, with the remaining 95% items being
considered as niche items in our experiments. Next, because we only select 1,000
experimental users from the whole users (71,567 users in the MovieLens dataset,
480,189 users in the Netflix dataset), the sample size is very small relative to the
original data. In order to ensure experimental users as similar with the original
datasets as possible, we extract users that satisfy the following two conditions as
candidate users:

1. The user has at least one rated item in the selected 1,000 items;

2. Percentage of popular items in the user’s rated items is no less than the mini-
mum value showed in Figures 4.3 and 4.4.

For example, in the case of the MovieLens dataset, a user is extracted as a candidate
user if the user has at least one item in the selected 1,000 items and the percentage
of popular items in this user’s rated items is no less than 64.26%. Similarly, for the
Netflix dataset, the percentage of popular items in a candidate user’s rated items is
no less than 71.02%. In this way, users who have quite different rating proportion
with original datasets will not be extracted, so that every experimental user selected
from candidate users could have a rating proportion as closely with the original
datasets as possible. Then, we select 200 test users and 800 training users from the
candidate users. First, we randomly select 200 users who have ratings numbering
no less than five and no more than 25 as the test users, and randomly mask 20% of
the ratings in each test user. We regard every test user as a new user, and each new
user has at most 20 ratings as training ratings by the masking of ratings and at most
5 ratings as test ratings in our experiments. Finally, 800 users are randomly selected
from candidate users as the training users.

In contrast, for the Jester dataset, because there are only 100 items, we treat the
top 50 items that have the most ratings as popular items and the remaining items as
niche items in the experiments. Since each user has rated 36 or more jokes in Jester
dataset, here we randomly select 200 test users and remove some of their ratings
to make them as new users, and 800 users are selected randomly as training users.
To avoid the impact of accidental phenomena, we repeat the experiments 20 times
for each dataset and compute the average values as our results. After selecting our
experimental items and users from original datasets, the average sparsities of se-
lected datasets from MovieLens, Netflix, and Jester are 98.90%, 88.83%, and 36.42%,
respectively. Although the sparsities are a little different with original datasets, we
can also call selected datasets from the MovieLens and Netflix are sparse, and se-
lected dataset from the Jester is not sparse.
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TABLE 4.3: Experimental items versus original data in the MovieLens
dataset

Experimental items Original items Item rate
Ratings ≥ 10K 16 174 1.63%

5K ≤ Ratings < 10K 28 296 2.77%
1K ≤ Ratings < 5K 146 1,564 14.64%

Ratings ≤ 1K 810 8,647 80.96%
1,000 10,681 100%

TABLE 4.4: Experimental items versus original data in the Netflix
dataset

Experimental items Original items Item rate
Ratings ≥ 50K 28 501 2.82%

10K ≤ Ratings < 50K 87 1,541 8.67%
1K ≤ Ratings < 10K 286 5,084 28.61%

Ratings ≤ 1K 599 10,644 59.90%
1,000 17,770 100%

To measure the performance of the improved CBCF approach, we used the mean
absolute error (MAE) and root mean square error (RMSE) to represent the accu-
racy of recommendations. In addition, we used coverage, mean personality (MP),
and mean novelty (MN) to evaluate the diversity of recommendations. In accor-
dance with Herlocker’s research (Herlocker, Konstan, and Riedl, 2002), to maintain
real-time performance, we selected different sized k neighborhoods from candidate
neighbors, k ∈ {20, 25, 30, ..., 60}. The detailed information of MAE, RMSE and cov-
erage metrics can be found in Subsection 3.5.1.

MP indicates the average degree of overlap between every two users’ recom-
mendations. For example, for two users ui and uj , we count the number of recom-
mendations of the corresponding top N items, Reci(N) and Recj(N), and further
normalize this number by the threshold value N to obtain the degree of overlap
between two sets of recommendations. It is clear that an approach of higher recom-
mendation diversity will have a larger MP. As discussed by Gan and Jiang (Gan and
Jiang, 2013), we use N = 20 in our calculation of this metric.

MP (N) = 1− 1

N

2

|U |(|U | − 1)

∑
1≤i<j≤|U |

|Reci(N) ∩Recj(N)|. (4.3)

MN indicates the novelty of recommendations provided to users. First, it cal-
culates the fraction of users who have ever rated each recommendation, and then
computes the sum over all recommendations in Recm(N) to obtain the novelty for
user um. Finally, we calculate the average novelty over all users.

MN(N) = − 1

|U |
∑

1≤m≤|U |

∑
n∈Recm(N)

log2fn, (4.4)

where fn indicates the fraction of users who rated the nth item. We also set N = 20 in
the calculation of this metric, and an approach will have a larger MN if it can make
newer recommendations.
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TABLE 4.5: Number of candidate neighbors for the traditional UBCF
and CBCF approaches

UBCF CBCF Reduction rate
MovieLens 800 331 0.586

Netflix 800 369 0.539
Jester 800 588 0.265

In addition, the reduction rate is also used to measure the effectiveness of remov-
ing redundant users from among all users. The definition of reduction rate can be
found in Equation 3.7.

4.5.2 Experimental results and comparisons

To show the performance of the improved CBCF, we compared it with traditional
UBCF. Comparisons were also made with the linear collaborative filtering (LINCF)
and inverse user frequency collaborative filtering (IUFCF) presented by Said et al.
(Said, Jain, and Albayrak, 2012). For convenience, we refer to the improved CBCF
approach as CBCF in the rest of this section. In all of the experiments, we used
the Pearson correlation coefficient as the similarity measure, and the weighted sum
approach to predict the rating scores. Finally, we selected the top N candidate objects
with the highest predicted rating scores as the recommendations for a new user.

Table 4.5 shows the results for the number of candidate neighbors for the tradi-
tional UBCF and CBCF approaches on the MovieLens, Netflix, and Jester datasets.
As can be seen, in the MovieLens and Netflix datasets, after user reduction, on av-
erage, more than half of the users are removed as redundant users, with the result
that in the CBCF approach, fewer than half of the users will remain to comprise the
candidate neighbors. In the Jester dataset, the reduction rate is slightly lower, which
means that approximately 26.5% of the users are removed as redundant users on av-
erage, with the result that in the CBCF approach, the average number of candidate
neighbors is 588.

Figures 4.5, 4.6, 4.7, and 4.8 show the results for MAE and RMSE on the Movie-
Lens and Netflix datasets. As shown in the figures, with increasing neighborhood
size, both the MAE and RMSE values decrease in the two datasets. In the MovieLens
dataset, both the MAE and RMSE values of the UBCF approach are higher than in
the other three approaches, because the lower these values, the better the accuracy,
indicating that the other three approaches have improved the accuracy of the tradi-
tional UBCF approach. Furthermore, although the MAE and RMSE values of CBCF
are higher than those of IUFCF and LINCF in the beginning, CBCF decreases faster
than the other approaches as the neighborhood size increases. This indicates that the
CBCF approach can provide recommendations with higher accuracy than the other
approaches as the neighborhoods grow. In the Netflix dataset, the MAE and RMSE
values of UBCF are lower than those of LINCF and IUFCF, indicating that the accu-
racy of UBCF outperforms that of LINCF and IUFCF; however, the values of UBCF
are also higher than those of CBCF, demonstrating that CBCF has improved the ac-
curacy of traditional UBCF, and can provide recommendations with better accuracy
than the other approaches.

In contrast, these approaches have different performances on the Jester dataset.
As can be seen in Figures 4.9 and 4.10. MAE and RMSE of UBCF have the lowest
values, indicating that the accuracy of UBCF is highest among these approaches.
This indicates that the CBCF approach and other related work cannot improve the
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FIGURE 4.5: Result of MAE measure on the MovieLens dataset
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FIGURE 4.6: Result of MAE measure on the Netflix dataset
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FIGURE 4.7: Result of RMSE measure on the MovieLens dataset
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FIGURE 4.9: Result of MAE measure on the Jester dataset

accuracy of the UBCF approach. The MovieLens and Netflix datasets are sparse, but
the Jester dataset is not sparse, indicating that in sparse datasets, the accuracy of the
CBCF approach outperforms that of the other approaches. In non-sparse datasets,
the CBCF cannot improve the accuracy of the traditional UBCF approach.

Figures 4.11, 4.12, and 4.13 show the results for coverage on the MovieLens, Net-
flix, and Jester datasets, respectively. As shown in the figures, the values of the cover-
age metrics for all approaches increase as the neighborhood size increases. Further-
more, the coverage of CBCF is significantly higher than that of the other approaches,
especially for the MovieLens and Netflix datasets. This shows that CBCF can rec-
ommend more types of items that a new user has not rated yet. Therefore, we can
conclude that CBCF improves the coverage of traditional UBCF and outperforms the
other approaches for both sparse and non-sparse datasets.

Figures 4.14, 4.15, and 4.16 show the results for MP on the MovieLens, Netflix,
and Jester datasets, respectively. As shown in the figures, in both the MovieLens
and Netflix datasets, the MP values increase as the neighborhood size increases.
The IUFCF and LINCF approaches have improved the MP of the traditional UBCF
slightly; on the other hand, CBCF greatly increases the MP. In contrast, for the Jester



44 Chapter 4. Improved CBCF for new users’ personalized recommendations

●

●

●
●

● ● ● ● ●

15 20 25 30 35 40 45 50 55 60 65

4.
40

4.
45

4.
50

4.
55

4.
60

4.
65

4.
70

4.
75

4.
80

RMSE Measure

Size of neighborhood

V
al

ue
s 

of
 R

M
S

E

● UBCF
CBCF
IUFCF
LINCF

FIGURE 4.10: Result of RMSE measure on the Jester dataset
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FIGURE 4.11: Result of coverage measure on the MovieLens dataset
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FIGURE 4.12: Result of coverage measure on the Netflix dataset
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FIGURE 4.13: Result of coverage measure on the Jester dataset
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FIGURE 4.14: Result of MP measure on the MovieLens dataset

dataset, the MP decreases as the neighborhood size increases, and the MP of tradi-
tional UBCF has the highest values. This indicates that CBCF cannot provide more
diverse recommendations than UBCF. From the above results, we can conclude that
CBCF outperforms the other approaches on sparse datasets; nevertheless, it cannot
improve the diversity of the traditional UBCF approach on non-sparse datasets.

Figures 4.17, 4.18, and 4.19 show the results for MN on the MovieLens, Netflix,
and Jester datasets respectively. As shown in the figures, for both the MovieLens
and Netflix datasets, the MN values for UBCF, IUFCF, and LINCF are nearly the
same; however, CBCF obviously has higher MN values than the other approaches,
showing that CBCF can improve MN significantly. On the other hand, for the Jester
dataset, although the MN of CBCF is higher than that of UBCF at first, it decreases
faster as the neighborhood size increases, indicating that CBCF cannot provide rec-
ommendations with higher diversity than traditional UBCF. Therefore, we can con-
clude that in sparse datasets, CBCF can improve diversity more efficiently than the
other approaches; however, it has poor performance for diversity as the neighbor-
hood size increases in non-sparse datasets.
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FIGURE 4.15: Result of MP measure on the Netflix dataset
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FIGURE 4.16: Result of MP measure on the Jester dataset
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FIGURE 4.17: Result of MN measure on the MovieLens dataset
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FIGURE 4.18: Result of MN measure on the Netflix dataset
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4.5.3 Analysis and discussion

Our experimental results indicate that the improved CBCF approach shows different
performances with different datasets. For the MovieLens and Netflix datasets, there
are huge numbers of items; however, for each user, the number of rated items is
substantially smaller than the number of unrated items. Therefore, the two datasets
are very sparse. Under these circumstances, because of users’ different behaviors,
there might exist some users whose ratings concentrate only on popular items (users
whom we have defined as redundant users). As we have confirmed that a new
user’s ratings also concentrate on popular items, the similarity between redundant
users and the new user might be very high, and the neighborhood of the new user
might consist almost entirely of redundant users, causing recommendations from
these redundant users to concentrate on fewer types of items, perhaps even only
popular items. The improved CBCF approach used the covering reduction algo-
rithm to remove as many as these redundant users as possible. After user reduction,
the neighborhood of a new user in the improved CBCF approach consist of users
who have rated diverse items, with the result that the diversity of improved CBCF
greatly outperforms that of the other existing approaches. In addition, because rat-
ings of redundant users concentrate on popular items, they have no ability to make
accurate predictions for niche items, resulting in lower recommendation accuracy in
the traditional UBCF approach. In the improved CBCF approach, redundant users
in a neighborhood are mostly removed, with the result that a neighborhood in the
improved CBCF approach can make predictions for many types of items rather than
only popular items, thereby also improving accuracy.

In contrast, for the Jester dataset, the total number of items is 100, and each user
has rated at least 36 items. Hence, each user has rated sufficiently many items rela-
tive to all 100 items, and each item can be considered as a popular item. Therefore,
this dataset is not sparse. In this case, in the improved CBCF approach, each user
can be considered as a redundant user, with the result that reduction loses its signif-
icance. Recommendations from improved CBCF might also concentrate on popular
items, with the result that the diversity of the improved CBCF approach are inferior
to those of traditional UBCF. However, because user reduction can select users who
have rated more types of items, the coverage of improved CBCF is still higher than
that of the other approaches. In addition, co-rated items between two users are suffi-
cient, so neighbors with higher similarity can ensure the prediction of more accurate
ratings; however, some neighbors with higher similarity might be considered as re-
dundant users to be removed, with the result that the accuracy does not improve but
decreases.

Generally, in practical applications, RSs must handle large data that include huge
numbers of users and items. Thus, for each user, only a small number of items have
been rated compared with the huge number of unrated items. Therefore, most RSs
have sparse datasets, such as the MovieLens and Netflix datasets. However, for a
sparse dataset, the improved CBCF approach can remove redundant users to create
more appropriate neighborhoods than the UBCF approach and provide recommen-
dations for a new user with more satisfactory accuracy and diversity values than in
existing work. Thus, the improved CBCF approach is significant for RSs.
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4.6 Summary

In this chapter, we have improved CBCF to achieve personalized recommendations
for a new user. The improved CBCF approach reconstructs the decision class to ac-
count for the set of niche items and uses covering reduction in covering-based rough
sets to remove redundant users from candidate neighbors. By removing redundant
users who have high similarity with the new user but can make predictions for only
a few types of items, improved CBCF makes great improvements in both the accu-
racy and diversity metrics while utilizing only the user-item rating matrix with no
other special information. Our experiments also show superiority of our approach
by comparing it with traditional UBCF and other existing work. Although the im-
proved CBCF is inferior to the traditional UBCF in non-sparse datasets (e.g., the
Jester dataset), it greatly outperforms other relevant work in sparse datasets (e.g., the
MovieLens and Netflix datasets), which occur more often in the real world. There-
fore, our approach could be applied to provide satisfactory recommendations for a
new user in real world RSs.
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Chapter 5

Item-variance weighting for IBCF
by using time-related correlation
degree and covering degree

5.1 Introduction

RSs estimate ratings of items that are not yet to be consumed by users, and provide
items with the best predicted ratings for customers, so the accuracy is a key issue,
good or bad of accuracy directly affects service quality of RSs and user experience
(Bobadilla et al., 2013). CF approaches are popularly used in RSs due to the satis-
factory performances (Symeonidis et al., 2008). With the assumption that an item
will be preferred by a user if this item is similar with the preference of this user in
the past, IBCF has been proposed and has achieved success both in research and
practice in recent years, such as Amazon (Sarwar et al., 2001; Linden, Smith, and
York, 2003; Li et al., 2016; Li et al., 2014). In the traditional IBCF approach, all items
carry the same weight when computing the similarity and prediction; however, it is
widely recognized that some items are more important than others and should be
given relatively higher weighting (Karypis, 2001). So the traditional IBCF often can
not provide recommendations with satisfactory accuracy.

In this chapter, we reconsider the item weight in IBCF approach. We apply the
time weight to the item-item similarity computation to improve the predictive ac-
curacy, ratings which rated by the same user in closer time will have higher weight
when computing the similarity. On the other hand, we insert the covering degree
to the rating prediction to increase the classification accuracy, items which are closer
with user’s preference will have higher covering degree, and will have high weight
when make prediction. Experiments prove that our proposed approach supply bet-
ter performance than traditional IBCF and other existing work, and provide recom-
mendations with satisfactory accuracy.

The remainder of this chapter is organized as follows. In Section 5.2, we intro-
duce the traditional IBCF approach and related work. In Section 5.3, we analysis the
traditional IBCF and give the problem setting. In Section 5.4, we describe the time-
related correlation degree and covering degree, and apply them to the traditional
IBCF approach. In Section 5.5, we present our experiments and compare our results
with the traditional IBCF approach and other work. Finally, in Section 5.6, we show
the summary of this work.
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5.2 Related works

IBCF was first presented by Sarwar (Sarwar et al., 2001), which computes similar-
ity between two items by comparing users’ ratings on them. IBCF can dramatically
improve the scalability of CF and can be applied to the huge numbers of items and
users that are typical of modern RSs. IBCF can easily handle large data sets and
produce better predictions than UBCF. Also in contrast to UBCF, IBCF is able to
compute item-item similarity off-line, both saving on-line time and making more ef-
fective recommendations (Papagelis and Plexousakis, 2005). Up until now, IBCF has
been widely used in many applications in the real world, such as at Amazon.com.
The detailed information and procedures could be found in Subsection 1.2.2.

Currently, many researchers have applied item-variance weighting to the tradi-
tional IBCF (Kefalas and Manolopoulos, 2017; Frémal and Lecron, 2017; Esparza,
OMahony, and Smyth, 2011; Hu and Ester, 2013; Koren, 2010; Lee, Park, and Park,
2008; Liu et al., 2014b). Ding and Li (Ding and Li, 2005) used clustering to discrimi-
nate between different kinds of items, and presented a novel algorithm to compute
the time weights for different items in a manner that will assign a decreasing weight
to old data. To each item cluster, they trace each user’s purchase interest change and
introduce a personalized decay factor according to the user own purchase behav-
ior. Their new algorithm can substantially improve the precision of IBCF without
introducing higher order computational complexity. However, this approach only
considered the time weight to predict ratings, moreover, it did not consider other
item weight that may make important effects on the performance of RS.

5.3 Analysis and problem setting

IBCF has achieved success both in research and practice. Similarity computation and
rating prediction are two main procedures in IBCF. However, in traditional IBCF ap-
proaches, all items carry the same weight in both item-item similarity computation
and rating prediction. Generally, in our real life, it is widely recognized that some
items are more important than others and should be given relatively higher weight-
ing. For example, as shown in Table 5.1, item 1, item 2, and item 3 are rated respec-
tively by users: U1, U2, U3 for the same scores. If computing the similarity by the
traditional IBCF, similarity between item 1 and item 2 will be equal to the similarity
between item 1 and item 3. However, the rated time is different, because some peo-
ple’s interests change with time quickly, an item that was rated recently by a same
user should have a bigger impact than the item that was rated during a long time
interval. Therefore, item 1 should be more similar with item 2 than item 3. Through
the analysis of the above, we can find that, we should consider the item-variance
weighting in the traditional IBCF.

TABLE 5.1: Example of user-item rating matrix RM

Item 1 Item 2 Item 3
Score Rated time Score Rated time Score Rated time

U1 3 2016-7 3 2016-7 3 2015-7
U2 4 2016-7 4 2016-7 4 2015-7
U3 5 2016-7 5 2016-7 5 2015-7
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5.4 Time-related correlation degree and covering degree for
the traditional IBCF

5.4.1 Motivation of proposed approach

Our novel approach increases the weights of items that make a more significant con-
tribution to the process of similarity computation and rating prediction, to extract
more precise and satisfactory recommendations from the RS.

In the IBCF approach, computation of the item-item similarity and rating pre-
diction are separate procedures (Goldberg et al., 1992). In current versions of IBCF,
however, the two procedures give the same weights to all items. In reality, a person’s
preferences may change over time, and a different rating score may be given by the
same user to the same item. When computing item-item similarity, therefore, a time
factor should be included. In addition, items with lower similarity to the target item
may nevertheless make a significant contribution to the prediction, so weightings
should be given to the items used to make rating prediction.

5.4.2 Time-related correlation degree and covering degree

People are most likely to be interested in an item that they have evaluated recently.
So, for the same user, the score given to an item that was rated at approximately
the same time as the target item will make greater contribution to the similarity
computation. A person’s memory can be represented as a linear curve, first changing
fast, then more slowly. To express the degree of correlation between two items over
time, Ding and Li (Ding and Li, 2005) proposed a time function as follows:

f(t) = e−λ∗t, (5.1)

where, λ = 1
T0

is the decay rate, if T0 = 30 days, the time weight reduces by month.
Here, based on the time function above, we proposed the following time-related
correlation degree:

f(Iu(x, y)) = e−λ∗|tu,x−tu,y |. (5.2)

Here, f(Iu(x, y)) is a gradually decreasing function tracking the degree of corre-
lation between item x and item y for a target user u, and tu,x is the time at which item
x was rated by user u. From the function f(Iu(x, y)), as the times at which two items
were rated by the target user become closer and the value of |tu,x − tu,y| becomes
smaller, the degree of correlation between the two items increases. The time-related
correlation degree function can therefore effectively estimate the relevance of an item
and increase the weight of items that were rated closer in time to the target item.

It is well known that a person’s current interests are strongly correlated with
previous preferences. If an item has characteristics that are close to the target user’s
known previous interests, this item should be given a greater weight when making
predictions. Here, we propose the covering degree function as follows:

Let ⟨T,C⟩ be a covering approximation space. For a set X ⊆ T and K ∈ C, we
define the covering degree as

CD(K,X) =

{
card(K∩X)
card(K) if K ̸= ∅,

0, if otherwise.
(5.3)

It is clear that CD(K,X) ∈ [0, 1], and the value CD(K,X) can be interpreted
as the degree to which the element K of covering C is included in the set X . In
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RSs, an item’s neighborhoods are most relevant to the item itself and could express
the common characteristics of the item. If the target user’s preference set is treated
as X , then the item’s neighborhood set can be considered to be K. If an item has a
higher covering degree, CD(K,X) has a greater value, and the item should be given
a greater weight when predicting the rating score for the target item.

5.4.3 Procedures of proposed approach

In our proposed approach, time-related correlation degree and covering degree are
applied to compute item-item similarity and rating prediction respectively. Further-
more, θ is set as the threshold for rating score, and items with ru,x ≥ θ are defined
as items relevant to user u. An target user tu does not need to input any special
information, then the new approach could output recommended items Rec.

Step 1: Item-item similarity computation with time weight. According to the
user-item rating matrix RM , we insert the time-related correlation degree into Pear-
son correlation coefficient to compute the item-item similarity. Here, we have

sim(x, y) =

∑
u∈Ux∩Uy

(ru,x−r̄ix)∗(ru,y−r̄iy)∗f(Iu(x,y))√∑
u∈Ux∩Uy

(ru,x−r̄ix)
2
√∑

u∈Ux∩Uy
(ru,y−r̄iy)

2
. (5.4)

Step 2: Neighborhood selection. From the similarity list of item i ∈ Ictu, we select
top k items as item i’s neighborhood Ni(k). In items domain I , for each similar item
j ∈ Ni(k) of the item i, we further select top q items from the similarity list of item j,
which comprise the item set Cj . Let C∗ = I − ∪Cj . C = {C1, C2, ..., Ck, C∗} is then
a covering in domain I .

Step 3: Rating prediction. In the domain I , relevant items of each target user tu
will comprise the relevant set Rtu, where

Rtu = {p ∈ I|rtu,p ≥ θ}. (5.5)

Then based on the covering degree, in the neighborhood Ni(k) of the item i, for each
item j ∈ Ni(k), we compute the covering degree between each item set Cj and Rtu,
and apply it to weighted sum approach to predict the rating score of the item i ∈ Ictu
from the target user tu, here

ptu,i =

∑
j∈Ni(k)∩Itu sim(i, j) ∗ rtu,j ∗ CD(Cj , Rtu)∑

j∈Ni(k)∩Itu |sim(i, j) ∗ CD(Cj , Rtu)|
. (5.6)

Step 4: Item recommendations. When all predictions are completed, the top N
items in the prediction list are selected as the recommended items.

5.5 Experiments and evaluations

In this section, we describe the evaluation dataset and metrics, examine the perfor-
mance of the new approach, and compare it with the traditional IBCF approach.

5.5.1 Experimental setup and evaluation metrics

In our experiments we used the MovieLens 100K dataset (Herlocker et al., 1999),
which is often used to evaluate RSs. In our study, movies rated above 3 were treated
as relevant to that user. For every user, 20% of the rated items were treated as test
items and the remaining 80% as training items. Our experiment predicted a rating
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Algorithm 5.1 Proposed approach

Input: User-Item rating matrix RM with rating time and an target user tu.
Output: Recommended items set of size N for the target user tu.

SLt
i : Similarity list of item i with time weight.

Ni(k) : Neighborhood of the item i.
Rtu : Relevant items of the target user tu.
k : Number of items in the neighborhood Ni(k) of the item i.
N : Number of items recommended to the target user tu.
Ictu : Items which have not yet rated by the target user tu.
pcdtu,i : Rating prediction of item i for the target user tu with covering degree.

1: Apply the time weight to similarity measure, and compute similarity between
each item in I ;

2: for each item i ∈ Ictu do
3: Find the k most similar items in SLt

i of item i to comprise neighborhood Ni(k);
4: for each item j ∈ Ni(k) do
5: The neighborhood of item j comprise the item set Cj . Use the covering

degree function to compute CD(Cj , Rtu).
6: end for
7: Apply the covering degree to the prediction function. Predict rating score pcdtu,i

for item i ∈ Ictu by the ratings of Ni(k) from the target user tu;
8: end for
9: Recommend to the target user tu the top N items having the highest predicted

rating scores.

score for each test item based on the training items. As the MovieLens dataset was
collected over a seven-month period, we were able to use the month of rating to test
our time-based correlation degree function.

The mean absolute error (MAE), root mean square error (RMSE), precision, recall,
and F1 were used as evaluation metrics, all of which are widely used for evaluating
RSs. MAE and RMSE, which compare the numerical prediction values against the
original user ratings, are the measures most commonly used for evaluating the accu-
racy of a recommender method. We have given the information of MAE and RMSE
in Subsection 3.5.1, here we present the definition of precision, recall and F1. Let
Rectu as the set of N recommendations to the target user tu. Precision is the propor-
tion of recommended items that the target user actually liked in recommendations.
This measure is as high as possible for good performance.

Precision =
1

|U |
∑
tu∈U

#{i ∈ Rectu|rtu,i ≥ θ}
N

. (5.7)

Recall indicates the proportion of relevant recommended items from the number of
relevant items. This measure should be as high as possible for good performance.
Hence, the recall is computed as follows:

Recall =
1

|U |
∑
tu∈U

#{i ∈ Rectu|rtu,i ≥ θ}
Rtu

. (5.8)

F1 is a combination of precision and recall.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
. (5.9)
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Precision, recall, and F1 indicate how well the RS discovers items that are desir-
able to the target user. In calculating the precision, recall, and F1 values, the number
of recommendations was set to 2, 4, 6, 8, 10, and 12.

5.5.2 Experimental results and comparisons

We named the IBCF approach incorporating time-related correlation degree and cov-
ering degree TCIBCF. To test the performance of our new approach, we compared
its results with those from the standard IBCF. Additional, we also made compari-
son with popular approach TWIBCF presented by Ding (Ding and Li, 2005). In the
experimental testing of the IBCF approach, the Pearson correlation coefficient was
used as the similarity measure, and the weighted sum was used to predict the rating
score. To evaluate the TCIBCF approach, we then added the time-based correlation
degree and covering degree to the similarity computation and rating prediction.

Table 5.2 shows the results of the different metrics applied to TCIBCF, TWIBCF,
and IBCF. To set the neighborhood size, we selected different numbers from the sim-
ilarity list as items similar to the target item. In the TCIBCF approach, the size of the
similar items k was equal to the size of each similar item’s neighborhood q. It can
be observed from Table 5.2 that, using the TCIBCF approach, the MAE and RMSE
values became smaller as the neighborhood size increased. As lower values of MAE
and RMSE indicate better accuracy, the accuracy of TCIBCF improved as the neigh-
borhood size increased. In contrast, using the IBCF approach the values of MAE and
RMSE did not decrease linearly as the neighborhood size increased. The best MAE
and RMSE values of 1.192 and 1.390 were recorded when the size of neighborhood
was 20, and the worst values of 1.217 and 1.424, when the size of neighborhood was
10 and 40 respectively. For TWIBCF approach, although the values of MAE and
RMSE were smaller than IBCF approach, they were also bigger than TCIBCF ap-
proach. Beside that, same as IBCF approach, values of MAE and RMSE for TWIBCF
approach also decreased nonlinearly as the neighborhood size increased. The best
MAE and RMSE values of 1.181 and 1.339 were recorded when the size of neighbor-
hood was 20, and the worst values of 1.206 and 1.396, when the size of neighborhood
was 10 and 50 respectively. Overall, the proposed TCIBCF approach outperformed
the traditional IBCF and TWIBCF approaches in terms of MAE and RMSE metrics.

Figures 5.1, 5.2, and 5.3 show the precision, recall, and F1 measures for TCIBCFk=50,
TWIBCFk=50, and IBCFk=50. As can be seen, in the precision measure, the TCIBCF
approach was stable, and the TWIBCF and IBCF had a small fluctuation as the
number of recommendations increased; however the proposed TCIBCF approach
had higher precision values than TWIBCF and IBCF approaches. For recall and F1
measures, all the TCIBCF, TWIBCF, and IBCF approaches increased significantly as
the number of recommendations increased. Furthermore, at first, recall and F1 of
TCIBCF were lower than TWIBCF and IBCF when the number of recommendations
was 2, however as the number of recommendations increased, TCIBCF had faster
improvements, and had much better values than TWIBCF and IBCF approaches.
Overall, the proposed TCIBCF approach could make better recommendations than
the traditional IBCF and TWIBCF approaches in terms of precision, recall, and F1
metrics.

5.5.3 Analysis and discussion

The most significant innovation in our approach is the ability to weight items that
make a greater contribution to the similarity computation and rating prediction. As
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FIGURE 5.1: Precision of the TCIBCF, TWIBCF, and IBCF against the
number of recommendations

the key items then play a more significant role in the RSs, the recommendations
generated are closer to the real tastes of the target user.

Experimental and comparative results suggest that our new TCIBCF approach
can achieve better accuracy than the IBCF and TWIBCF approaches, as the pre-
dicted scores which the TCIBCF generated more closely matched the original scores.
The TCIBCF also achieved better precision, recall, and F1 values than the IBCF and
TWIBCF approaches. This suggests that a target user will agree with more recom-
mendations made by the proposed TCIBCF than with those produced by IBCF and
TWIBCF approaches.

In our approach, items are given different weights in the item-item similarity
computation. For example, take two items x and y that have the same rating scores
from the target user tu, so that ttu,x = ttu,y. The time at which target user tu rated
item i is ttu,i. This is closer than the rating time of item y, so that |ttu,i − ttu,x| <
|ttu,i− ttu,y|. In a traditional IBCF, items x and y will be given the same weight when
computing item-item similarity, because they received the same rating score from
the target user. However, the preferences of target user tu may have changed, so
that the rating of item x will have a greater influence than that of item y. In our
approach, f(Itu(i, x)) > f(Itu(i, y)), so item x will carry a higher weight than item y
when computing item-item similarity. After the similarity has been computed, items
similar to the target item were selected to predict the rating score. Here, we used the
covering degree function to compute the weight of each similar item. Item set Cj
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FIGURE 5.2: Recall for the TCIBCF, TWIBCF, and IBCF against the
number of recommendations

captures the characteristics of similar item j. If Cj has a greater degree of inclusion
in the target user’s previous preferences Rtu, so that the value of CD(Cj , Rtu) is high,
this suggests that the characteristics of item j are nearer to the target user’s previous
preferences, and that this item is more likely to be preferred by the target user. Item
j will therefore be given a greater weight when making the rating prediction.

5.6 Summary

IBCF is an important technology which is widely used in RSs. This approach builds
an item-item similarity matrix as the basis for rating predictions. The IBCF approach
has good scalability and can be used with large-scale data information system. How-
ever, in IBCF all items are treated as having the same weight. In reality, a customer’s
preferences may change over time, so that a time factor should be used when com-
puting item-item similarity. In addition, items that appear similar to the target item
make different contributions to the rating predictions, so the relative weights of sim-
ilar items also need to be taken into account.

In this chapter, we introduced a time-related correlation degree function, allow-
ing a time factor to be applied to item-item similarity. For each target user, items
that were rated nearer the time of the target item rating will have greater weight
when computing item-item similarity. We further added the covering degree func-
tion to the rating prediction procedure. Items with a higher covering degree with
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FIGURE 5.3: F1 for the TCIBCF, TWIBCF, and IBCF versus the number
of recommendations

the target user’s relevant set will have greater power to predict the rating score of
the target item. The results of our experiments demonstrated that our novel TCIBCF
could achieve better accuracy and higher precision than existing work, making it an
effective approach to RS.
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TABLE 5.2: Results of MAE and RMSE metrics

Approaches MAE RMSE
TCIBCFk=10 1.032 1.200
TWIBCFk=10 1.206 1.358
IBCFk=10 1.217 1.397
TCIBCFk=20 1.072 1.259
TWIBCFk=20 1.181 1.339
IBCFk=20 1.192 1.390
TCIBCFk=30 1.132 1.345
TWIBCFk=30 1.186 1.387
IBCFk=30 1.205 1.403
TCIBCFk=40 1.144 1.361
TWIBCFk=40 1.198 1.377
IBCFk=40 1.216 1.424
TCIBCFk=50 1.164 1.382
TWIBCFk=50 1.189 1.396
IBCFk=50 1.206 1.414
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Conclusions and future work

6.1 Thesis summary

With the rapid development of technology, the data and information has been in-
creasing at a dramatical speed. Therefore, more customers are facing the problem
of discovering the demanded contents from overwhelmingly massive data. As the
result, this problem becomes a popular research topic and attracts attention from
lots of scientists. RSs can properly deal with the information overload problem,
which are widely welcome by users and thus adopted by great amount of websites
and corporations. Many approaches are proposed for RSs by far, CF is the most
significant and successful approach among them. Nevertheless, some problems in
existing CF approach could prevent the further development of CF in RSs. For ex-
ample, UBCF cannot provide recommendations for an active user with satisfactory
accuracy and diversity simultaneously. Personalized recommendations cannot be
provided by UBCF for a new user which often has insufficient information. In addi-
tion, items that make a more significant contribution cannot have high weighting in
IBCF.

In this dissertation, to address and solve problems mentioned above, we uti-
lize covering-based rough sets as our research method, and improve the traditional
UBCF and IBCF respectively. The main work of this dissertation is summarized as
follows:

First, a CBCF approach is proposed to improve the traditional UBCF for active
users’ personalized recommendations. For traditional UBCF, in candidate neigh-
bors of an active user, because there exists some redundant users who have higher
similarity but can make predictions only for a few types of items, the traditional
UBCF usually can not provide recommendations with satisfactory accuracy and di-
versity at the same time for an active user. Combining with the characteristics of
redundant users in UBCF and redundant elements in covering-based rough sets,
CBCF inserts a neighbor selection procedure into the traditional UBCF that could re-
move redundant candidate neighbors by covering reduction algorithm. To remove
as many redundant users as possible, according to the sufficient information from an
active user, we first extracted relevant attributes of the active user, then constructed
decision class by all items that fit the active user’s relevant attributes, and reduced
the domain from all items to decision class. Experimental results suggest that CBCF
outperforms than the traditional UBCF and can provide recommendations with sat-
isfactory accuracy and diversity simultaneously for an active user.

Second, CBCF approach is improved for new users’ personalized recommenda-
tions. For the previous CBCF, new users’ ratings are usually very few, and it is un-
reliable to extract relevant attributes according to a new user’s rating information.
Moreover, in the previous CBCF, the item attribute matrix had to be inputted as the
indispensable condition, even though some datasets do not have this information.
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Therefore, we improve previous CBCF approach, and reconstruct the decision class
for the new user as the set of niche items in the dataset used for recommendation.
In this way, redundant candidate neighbors for a new user are able to be removed
as many as possible, and the decision class is easily constructed from the user-item
matrix without needing special additional information. Experimental results sug-
gest that the improved CBCF significantly outperforms those of existing work and
can provide personalized recommendations with satisfactory accuracy and diversity
simultaneously for a new user.

Third, a TCIBCF approach is proposed to improve the traditional IBCF for item-
variance weighting. For the traditional IBCF, all items are accorded the same weight
when computing the similarity and making predictions. However, different items
have different contributions to the process of similarity computation and rating pre-
diction, some items that make a more significant contributions should have higher
weighting. Therefore, we present time-related correlation degree and covering de-
gree, and apply them to the traditional IBCF to propose TCIBCF. TCIBCF is able to
increase the weighting of items that make a greater contribution to the similarity
computation and rating prediction. Experimental results suggest that TCIBCF can
produce recommendation results superior to those of existing work.

6.2 Future research directions

While the current dissertation can address some problems of CF in RSs, some aspects
remain to be investigated in future studies.

First, because the proposed CBCF belongs to CF approaches, so although the
CBCF approach is proposed to focus on improving the traditional UBCF, the princi-
ples of CBCF approach can also be incorporated into IBCF; however, how to define
the redundant items requires further consideration. On the other hand, the CBCF
approach aims to improve personalized recommendations for both new and active
users, with the result that we can summarize it to propose a CBCF framework for
RSs.

Second, the proposed TCIBCF approach can be further extended to address the
new item cold-start issue, which is a very difficult problem faced in RSs, because a
new item only has been rated by few users, so we cannot obtain sufficient informa-
tion from the new item.
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