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Chapter 1  

Introduction 

The X-ray Free Electron Laser (X-FEL) is exemplary of the next generation of 

synchrotron light sources, providing us with a high-intensity and coherent X-ray that can 

be applied to many advanced technological processes such as analyzing protein structures, 

enhancing biological Nano-machines, imaging high-speed phenomena, practicing 

cellular biology, creating extreme states, and so on [1]-[3]. However, the X-FEL is 

currently only available in a few big laboratories such as SPring-8 and LCLS because of 

the system’s very large size [4]-[5]. It is therefore essential to develop a compact size 

machine that can be more widely used in its place.  

In order to develop a smaller size X-FEL, the FEL undulator must be constructed using 

small size and high-intensity magnets, such as the High-Tc Superconductor (HTS) magnet. 

However, it is very difficult to adjust the positions of individual HTS magnets after they 

have reached a superconducting state inside a cryostat, and the fluctuation of the 

amplitude of the vertical sinusoidal magnetic field component needs to be suppressed 

within 1% for the FEL oscillation to occur [1]. Therefore, numerical simulations of the 

magnetization process of the HTS play a very important role in determining suitable 

magnet sizes and alignments in the machine design process.  

We have been developing a numerical simulation code for the magnetization process 

of the HTS undulator, which combines the current vector potential method (T-method) 

[6]-[10] with the Bean’s critical state model and the power-law macro-model [11]-[14] 
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for the shielding current in the HTS. We can confirm the existence of a sufficient 

agreement between the simulation results and the distribution of magnetic field 

measurements for three Pure-type HTS undulator magnets [15]-[16].  

As aforementioned, the X-FEL machine is a very large system that consists of more 

than two hundred magnets [5], and therefore a much larger scale simulation is required 

for the practical application of our developed code to the real X-FEL. We created a 

modified simulation scheme, which reduced the requisite calculation memory and the 

calculation time of the HTS magnetization process within the large scale simulation of 

the pure-type HTS undulator [17]-[18]. 
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Chapter 2  

Free-electron Laser (FEL) 

In this Chapter, we will briefly introduce the history of radiation as a light source (as 

shown in Table 2.1.1) and some of its applications. Then, we will give an overview of 

free-electron lasers (FEL). 

2.1 History of Synchrotron Radiation Light Sources 

Synchrotron radiation (SR), as shown in Fig. 2.1.1, is the name given to the 

electromagnetic radiation (EMR or EM radiation) emitted from electrons moving along 

circular or undulating orbits and traveling with a velocity almost equal to that of light. 

This radiation is emitted tangentially to the direction of motion and can occur either in 

continuum or in quasi-monochromatic spectral forms. After the synchrotron was 

discovered by Frank Elder, Anatole Gurewitsch, Robert Langmuir and Herb Pollock in 

May, 1947 [19], it began being widely used around the world and was recognized as being 

Synchrotron radiation

Electrons

Undulators or wigglers

Bending magnet

Storage Ring

Fig. 2.1.1 Overview of synchrotron radiation. 
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one of the most brilliant sources of radiation between the infrared and the soft and hard 

x-ray regions. Synchrotron radiation offers exceptional brightness while covering a very 

wide photon energy and wavelength region, with particular strengths in the soft and hard 

X-ray regions where there are few alternative bright continuum light sources. Synchrotron 

radiation has been used extensively to determine the physico-chemical characteristics of 

many materials from atomic and molecular viewpoints and it can be readily applied to 

studies ranging from electronic structure analyses and simple crystal structure studies to 

protein crystallography, trace element mapping, high resolution microscopy and many 

more. It is also ideal for the investigation of the microscopic characteristics of materials 

that have been newly synthesized or extracted. Therefore, synchrotron radiation has 

become an indispensable tool for structural studies within the materials sciences and the 

life sciences, and today there are more than 60 synchrotron radiation sources globally that 

are in use or under construction [20]. 

The type of light that is most familiar to all human life is visible light (wavelengths 

from 400 to 700 nm; photon energies from 2eV to 3eV). However, invisible light that 

exists across the entire electromagnetic spectrum has become exceedingly important to 

daily use, such as light in the ultraviolet region (wavelengths about 200 to 400 nm; photon 

energies from 3eV to 6eV), the vacuum ultraviolet (VUV) and soft X-ray regions 

(wavelengths from 0.4 to 200 nm; photon energies from 6eV to 3keV), and finally the 

hard X-ray region (wavelengths from 0.01nm to 0.4 nm; photon energies from 3 keV to 

100keV).  

When electrons were discovered in 1897 by J. J. Thomson [21], the consensus was that 

no object was smaller than an atom, and that every atom had a structure. In the following 

year, it was found that charged particles, such as electrons, could generate 
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electromagnetic waves when moving circularly or oscillating. Finally, in 1946, the 

existence of these electromagnetic waves was confirmed by the existence of radiative 

losses in the energy of an electron on the magnetic field of an accelerator, in an 

experiment conducted by J. P. Blewett using a 100MeV betatron (GE: General Electric 

Company, in USA) [22]. In 1947, synchrotron radiation was first observed in the USA 

using GE’s 70MeV synchrotron [23]. After its discovery, it was named synchrotron 

radiation (SR) or synchrotron light, with the most common Japanese nomenclature being 

synchrotron radiation. Around 1947, synchrotron radiation was regarded as an energy loss 

for accelerators in elementary particle experiments. 

The following decades saw a series of trailblazing developments in the use of X-rays. 

In the 1950s, the theory of characteristics of light proposed by Schwinger and colleagues 

was demonstrated using the electron synchrotron in high-energy physics studies. 

Radiations in the wavelength region, from extreme ultraviolet to X-ray, were found to be 

remarkably stronger than the light emitted by existing light sources, so scientists seriously 

considered spectroscopic experiments on atoms and molecules to evaluate their use. After 

that, researchers working on physical properties noticed the usability of a very powerful 

and stable X-ray diffraction (XRD) light source, and the NBS in the USA developed the 

first full-scale spectroscopic experiment with vacuum-ultraviolet light in 1963. Then, 

synchrotron radiation experiments were conducted for the first time by parasitizing the 

accelerator for high-energy physics studies around 1965. However, in these early 

experiments, synchrotron radiation was just a “parasitic experiment” in which light was 

temporarily used and thrown away from the accelerator, and the initial synchrotron 

radiation experiments were restricted to the vacuum-ultraviolet wavelength region. 

Synchrotron radiation in the shorter wavelength (X-ray region) could be obtained by 



 

6 

 

increasing the electron energy of the accelerator during the electron-positron collision 

experiment. In addition, more stable synchrotron radiation could be supplied using the 

electronic “storage rings”, which supplies elementary particles to high energy 

accelerators. The manifold experimental uses of synchrotron radiation that have been 

widely recognized by scientists. 

Since the late 1960s, many important results were discovered in experiments using 

synchrotron radiation from electronic storage rings (mostly electron-positron collision 

beam rings in elementary particle experiments). The first storage-ring device was a 240 

MeV storage ring in the University of Wisconsin System [24], after that, a GeV class 

storage ring called the Stanford Positron Electron Accelerating Ring (SPEAR) machine 

was built by Stanford Synchrotron Radiation Lightsource (SLAC). The latter’s 

wavelength of light reaches the hard X-ray region (several dozens of KeV), within which 

an increasing number of researchers across fields have increasingly worked.  

The first synchrotron radiation ring in the world, which is called SOR-RING, was built 

in Japan in 1975 [25]. From 1976 onward, the INS-ES [26] (Institute of Nuclear Study in 

the University of Tokyo) within INS-SOR (The Institute for Solid State Physics of the 

University of Tokyo) experimented with synchrotron radiation, and in 1980, KEK-PF 

began operating [27]. The second-generation radiation light source mainly uses radiation 

emitted from bending electromagnets for the exclusive use of such emitted light. 

In early synchrotron radiation facilities, the synchrotron radiation generated by bending 

electromagnets that make up the accelerator ring was used exclusively, then, on the 

straight part of the storage ring, a light source was inserted as a device that deflects the 

beam to meander, and the generated synchrotron radiation could be used. The third-

generation radiation light source is made up by a large number of insertion light sources 
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that can be arranged (such as undulators), and that could generate a very coherent 

emission. Since the 1980s, third-generation radiation light sources have been produced 

worldwide, and then the construction of “third generation” light sources incorporating 

“undulators” began from the 1990s because of the extremely high brightness that these 

could achieve. One of the reasons that such technology is made possible is the 

development of a powerful magnet (such as a neodymium magnet), which makes it 

possible to stably add a strong magnetic field to radiation light sources. In 1993, 

Advanced Light Source (ALS) in the United States focused on synchrotron radiation in 

the soft X-ray region [28], furthermore, large facilities that generated synchrotron 

radiation in the hard x-ray region were constructed in Europe, the United States and Japan. 

For example, European Synchrotron Radiation Facility (ESRF, in France) began 

operating in 1994 [29], the Advanced Photon Source (APS, in USA) began operating 

from 1996 [30], and the SPring-8 (in Japan) began operating in 1997 [31]. 

In recent years, to achieve much more powerful synchrotron radiation, the development 

of a new light source, the free-electron laser, used coherence in the insertion light source 

to oscillate the laser. Free-electron laser differ from ordinary lasers in that electrons are 

not attached to an atom or molecule and are free to respond to outside forces. FELs 

accelerate free electrons to relatively high energy levels by passing through the 

accelerator, and the electron beam generates monochromatic radiation by passing through 

an undulator. It is possible to change the wavelength by changing the characteristics of 

the electron beam energy, undulator, and brightness in order of magnitude stronger than 

synchrotron radiation. In free-electron lasers, the insertion light source is placed in the 

linear portion of the storage ring or behind the LINAC (Linear Accelerator), in addition, 

there are several methods of oscillation, such as inserting a laser from the outside or 
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amplifying the noise as a seed. Furthermore, the next generation of synchrotron radiation 

light sources is expected to be used from the wavelength region of far-infrared rays to 

soft X-rays with high peak power and high efficiency, and oscillation can be achieved in 

the wavelength range where impossible with the ordinary lasers. 

The first undulator was demonstrated by H. Motz’s research group at Stanford 

University in 1952 [32]-[33], and the ubitron (the original FEL), was invented based on 

early X-band experiments in 1957 [34]. The principle of FELs was proposed by Prof. J. 

M. J. Madey in 1970, and, in 1977, a FEL oscillator was been operated above threshold 

at a wavelength of 3.4 μm by his group [35]. In Japan, the first oscillation in the TERAS 

Electro technical Laboratory was seen in the visible light region in 1991. After that, the 

oscillations observed in both the UVSOR Institute for Molecular Science and NIJI-IV 

Electro technical Laboratory (ETL) were successfully performed from visible to 

ultraviolet regions in storage rings [36]. This oscillation has since been successfully 

performed from far-infrared to visible regions, even in ultraviolet regions by the linear 

accelerators at the University of Tokyo and Osaka University. After that, Studies of FEL 

became gradually popular, and research in this area increasingly focused on shorter 

wavelengths and high magnetic field intensities. 

Then, the X-ray FEL, which is called the fourth-generation synchrotron radiation light 

source, is next in line in the evolution of synchrotron radiation sources and advances in 

accelerator technology. One of its advantages include the spatial coherence of X-ray FEL, 

which is almost 100% as compared to conventional synchrotron radiation light sources. 

In addition, it is possible to open up new research areas to observe dynamic phenomena 

in femtoseconds. Furthermore, it also enables structural analysis of proteins by one 

molecule. One application of X-ray FELs, for instance, is the observation of structural 
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changes in crystalline states by exploiting the high spatial coherence of XFEL. 

In the conventional FEL, resonance-reflecting mirrors are placed at both ends of the 

undulator, and the light reciprocates many times in the resonator to strengthen the 

interaction between electrons to oscillate light. In this way, to make it oscillate in the X-

ray region, it is necessary to find a mirror that is capable of reflecting light in the X-ray 

region. 

However, there is no such a mirror with reflectance that is high enough to reflect the 

light in the X-ray region. Self-amplified spontaneous emission (SASE) FEL have been 

proposed as a solution to this. The SASE process starts with an electron bunch being 

injected into an undulator at a velocity close to the speed of light and a uniform density 

distribution within the bunch. In the undulator, electrons are wiggled and emit light that 

is characteristic of the undulator strength but is restricted by a certain energy bandwidth. 

Emitted photons travel slightly faster than electrons and interact within each undulator 

period. Depending on their phase in relation to each other, electrons gain or lose energy, 

and faster electrons catch up to slower ones. [37]  

Most of the X-ray FEL facilities currently under construction are based on this SASE 

FEL: SACLA in Japan (RIKEN), LCLS (LINAC Coherent Light Source) in the USA 

(SLAC National Accelerator Laboratory) and European XFEL in Europe. SACLA has 

been especially successful in oscillating an X-ray FEL at a wavelength of 0.12 nm in June 

2011, and the operation service started in March 2012 [4]. 

The brightness has increased exponentially since the advent of synchrotron radiation; 

especially after the advent of XFEL, which is expected to increase brightness even more 

(Fig. 2.1.2) [38]. The characteristic of X-ray FEL is extremely bright light (100 billion 

times than SPring-8), extremely short radiation time (10 trillionths of a second, 1/1000 of 
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SPring-8), and high coherence. For example, SACLA (RIKEN, Japan), which began 

operating in 2012, has a very wide wavelength range of 0.63Å to 3Å, a very high 

brightness that is 108 times that of SPring-8, a period of 60Hz, and is also coherent light, 

with a pulse of several hundred femtoseconds [4]. Since XFEL has these characteristics, 

it plays a very important role in the provision of measurements and analytical methods to 

obtain structural information on atomic and electronic levels. 

XFEL can lead to the development of new measurement and analysis techniques in 

order to see structures and phenomena that could not be seen with other methods until 

now, and then, aims to open up new possibilities in various scientific and technological 

fields. It can also help develop new measurement and analysis methods through the 

advent of synchrotron radiation, thus playing a very important role in nanotechnology and 

materials science. Therefore, it is expected to be applied to a lot of fields such as atomic 

molecules, material properties, life sciences, and other in the future. 

Table 2.1.1 History of Synchrotron light source 

History of Synchrotron light source 

1st generation light source Synchrotron Radiation (particle accelerators) 

2nd generation light source Synchrotron Radiation (dedicated machine) 

3rd generation light source Insertion Devices (wigglers or undulator, etc.) 

4th generation light source High coherent X-ray (SASE FEL) 

(1) Atoms and molecules 

When atoms or clusters are hit by very high-density X-ray pulses, several phenomena 

may occur, such as Multi-molecular ionization, generation of multiply charged ions, 

multiple inner shell vacancies and the Coulomb explosion. It is then possible to track the 

https://ja.wikipedia.org/wiki/%C3%85
https://ja.wikipedia.org/wiki/%C3%85
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molecular structure and dynamics throughout chemical reactions with a time-resolved 

femtosecond by performing a pump-probe experiment with a visible laser. Femtosecond 

XFEL provides unique opportunities for the exploration of ultra-fast dynamics in atoms 

and molecules and for imaging structures and dynamics in biological systems, complex 

materials, and matter under extreme conditions. The response of individual atoms and 

molecules to intense, ultrashort X-ray pulses is essential to most FEL applications in these 

fields.  

(2) Materials science 

Since 100% coherence does not require long-period regularity in its sample, it can be 

Fig. 2.1.2 History of development of synchrotron radiation brightness. 
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applied to the structural analysis of liquids, randomness systems, measurements of 

dynamic structural factors, and so on. For example, quantum materials present materials 

with promising functions, such as high-temperature superconductors and topological 

insulators, which have novel and unusual electronic properties and can revolutionize 

technology. XFEL permits the observation of ultrafast, photo-induced transitions of the 

atomic, charge, spin and orbital orders of quantum materials. Infrared FELs allow for 

non-linear excitations of these transitions with high spectral resolution. 

(3) Life science 

Even though the structural analysis of proteins has developed dramatically with the use 

of synchrotron radiation, two problems still arise. Firstly, it is impossible to create a single 

crystal even though it is small; secondly, the structure is not the same when the protein 

actually works in a single crystalline structure. Therefore, analysis of the structure of a 

single molecule has presented big challenges for many years.  

After the FEL is realized, it is possible to analyze the structure using high coherence 

and the application of single particle structure analyses that combine phase recovery 

algorithms and over-sampling methods. In fact, researchers have successfully used this 

method to obtain the substance distribution of Escherichia coli with micro level resolution 

at the SPring-8 facility. In the future, it should be possible to analyze the structure at the 

atomic level by using the XFEL.  
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2.2 Overview of FEL 

In order to explain the principle of the free-electron laser (FEL), we must explain how 

the structure of a FEL determines its functionality.  

The overview of a free-electron laser is shown in Fig. 2.2.1. The free-electron laser is 

a kind of laser whose lasing medium consists of very-high-speed electrons moving freely 

through a magnetic structure (such as an undulator) [37]. As shown in Fig. 2.2.2, the free-

electron laser is composed by three parts: an electron gun that generates electrons at a 

very high density and short pulse, an accelerator for accelerating the electrons, and an 

undulator that produces lasers from the electron beam [4].  

(1) Electron gun 

An electron gun (sometimes called electron emitter) is an electrical component in some 

Fig. 2.2.1 Overview of free-electron laser. 
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vacuum tubes that produces a narrow, collimated electron beam with a precise kinetic 

energy. Depending on their application, electron guns have varied shapes. However, 

beams are usually made by a cathode for electron emission, and by anodes and grids for 

acceleration and convergence, and a focusing electrode. In recent years, the electrode 

shape of the electron gun could be determined using a numerical simulation of the beam’s 

trajectory as numerical simulation technology improves over time.  

Next, we will briefly introduce the principle of the electron gun using thermionic guns, 

which are the most widely used. Fig. 2.2.2 shows the basic structure of a thermionic gun 

[39]. The electrons emitted from the cathode are accelerated to a predetermined energy 

using the high voltage applied to the anode, and the current is controlled by the voltage 

applied to the Wehnelt electrode. In addition, the crossover is formed by the lens action 

of the three electrodes―cathode, Wehnelt electrode and anode.  

Fig. 2.2.2 Overview of a typical thermionic gun. 

Heating power
Bias power

Cathode

Wehnelt electrode

Anode

Accelerating power

+

+

－

－



 

15 

 

Aside from the thermionic gun, there are several other electron guns. For example, 

there exists a field emission gun in which a sharply pointed emitter is held at several kV 

negative potential relative to a nearby electrode, so that there is a sufficient potential 

gradient at the emitter surface to cause field electron emission. There is also a RF electron 

gun that generates and accelerates electrons simultaneously with a high electric field 

using microwave power. In the X-ray FEL of SACLA, the thermionic gun has been 

adopted because of stability and ease of maintenance. 

The researchers were able to obtain a laser with high stability, high-frequency motion, 

high-electric-field reliability, and higher quantum efficiency, however, many of the 

scientists are still dedicated to developing a higher-quality and higher-performance 

electron gun. 

(2) Accelerator 

An accelerator (a particle accelerator) is a machine that uses electromagnetic fields to 

propel charged particles (ions or particles) to near-light speed. The structure of the 

simplest accelerator is shown in Fig. 2.2.3. The principle of the accelerator is that donut-

shaped disks are arranged together, with additional voltage being applied between them 

by an external electrode. The negatively charged electrons are then attracted to the 

electrode and accelerated with kinetic energy. These accelerators are arranged into two 

basic classes: electrostatic accelerators and electromagnetic accelerators. Electrostatic 

accelerators use static electric fields to accelerate particles and an electromagnetic 
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accelerator use changing electromagnetic fields to accelerate particles [40].  

In addition, there are two kinds of accelerators that rely on charged particle 

advancement: linear accelerators and circular accelerators.  

A linear accelerator (LINAC) is a type of particle accelerator that greatly increases the 

kinetic energy of charged subatomic particles or ions by subjecting the charged particles 

to a series of oscillating electric potentials along a linear beamline. 

In a circular accelerator, particles move in a circle until they reach sufficient energy. 

The particle track is typically bent into a circle using electromagnets. The advantage that 

circular accelerators have over LINAC is that the ring topology allows for continuous 

acceleration because the particle can transit indefinitely. Another advantage is that a 

circular accelerator is smaller than a linear accelerator of comparable power, since 

LINAC would have to be extremely long to have the equivalent power of a circular 

accelerator. However, depending on the amount of energy, and the kind of particle being 

accelerated, circular accelerators suffer from a disadvantage in that the particles emit 

synchrotron radiation.  

(3) Undulator 

An undulator, which stems from high-energy physics, is an insertion device through 

Fig. 2.2.3 Overview of a simplest accelerator. 
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which an electron beam passes, and consists of a periodic structure of dipole magnets that 

meander while approaching light speed to generate synchrotron radiation (Fig. 2.2.4).  

The wavelength of the radiation emitted from the FEL λR and the undulator strength 

parameter K can be expressed using the following equations:  

λR[Å] =
λu

2γ2
(1 +

K2

2
) = 13.056

λu[cm]

(E[GeV])2
(1 +

K2

2
) (2.2.1) 

K =
e ∙ B0 ∙ λu

2π ∙ m0c
= 93.36B0[T] ∙ λu[m] (2.2.2) 

where γ is the Lorentz factor of the electron beam (electron energy), E is the energy of 

the electron beam, λu is the unit pitch of undulator magnet, e is the elementary charge 

(e = 1.602176×10-19), m0 is the electron mass, c is the speed of light (c = 299792458m/s), 

and B0 is the vertical component of the magnetic field on the electron trajectory. It is 

known that the FEL radiation field is incompatible with the frequency spread for K >> 1, 

however, it is coherent with the sharp spectrum for K≈1. It is usually called an undulator 

for K≈1, and a wiggler for K >> 1. Next generation FELs (XFELs) are classified into the 

latter case, for which K≈1. In addition, Fig. 2.2.5 shows the trajectory of electrons and 

the energy distribution of synchrotron radiation relative to K. [41] It is effective to 

increase the energy of the electron beam (E) or reduce the spatial period of the undulator 

magnets (λu) to obtaining a short-wavelength radiation field (λR ) from the equation 

(2.2.1). Accordingly, λu has to be smaller to obtain a higher frequency radiation field, as 

it is difficult to change the condition of electron energy. Since the value of K needs to be 

between 1 and 1.5 for a sharp spectrum and coherence, this implies that undulator magnets 

are required to be of smaller size (a smaller λu) and higher magnetic field intensity (a 

bigger B0) than those of conventional FELs from the equation (2.2.2).  
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We would like to briefly explain the mechanism of generation of electromagnetic 

waves before explaining the principle of FEL. For single oscillating electrons, the 

Fig. 2.2.5 Energy distribution of synchrotron radiation by changing  

the strength of the magnetic field. 
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direction of the vectors of the interactions between the electric field and the magnetic 

field is always outward, as determined by electron motion. Therefore, the vibration energy 

spreads in concentric circles as electromagnetic waves. The vibrational motion of 

electrons is affected by the bremsstrahlung, and then the vibrational energy is reduced. 

The stimulated emission was a theoretical discovery put forth by A. Einstein in which, if 

an electron is accelerated by the external force, the moving particles will lose kinetic 

energy, the excess of which is converted into photons, thus satisfying the law of 

conservation of energy. The idea of a free-electron laser can also be explained by the 

above concept.  

We will explain the stimulated emission using the interactions between the meandering 

electrons and the magnetic field. 

It is assumed that the traveling direction of the meandering electrons is same as that of 

the monochromatic electromagnetic plane waves (as shown in Fig. 2.2.6) [42]. The 

maximum electric field intensity can be achieved so that the field of the electromagnetic 

wave is affected by the electric field vector of the electron A, when the speed of simple 

harmonic motion (electron A) is at a maximum (at point P) and its direction is opposite 

to the electric field E of the electromagnetic wave. However, the particles will lose some 

energy due to its bremsstrahlung. Then, the traveling speed of the electron A is slightly 

delayed compared to the electromagnetic wave, because the electron makes a meandering 

movement. For this reason, the simple harmonic motion of electron A lags behind the 

phase in the electric field of the electromagnetic wave. Although electron A gives energy 

to the electromagnetic waves, the energy decreases gradually as it travels. Then, the speed 

of simple harmonic motions becomes zero as they pass through point Q. At this moment, 

there are no interactions between the electric field vector and electromagnetic waves. In 
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other words, the electron A moves to the phase in one delayed electromagnetic wave. 

Then, the electromagnetic wave provides energy for the electron that is affected by the 

interactions between the electric field vector (the direction is opposite) and electric field 

of the electromagnetic wave. After a while, the periodic phase in simple harmonic motion 

is shifted by a half wavelength, the electric field vector of electron A reaches its maximum, 

and the interactions between the electromagnetic wave and the electric field also achieve 

their maximum. In other words, the strongest interactions can be obtained at every half 

wavelength, and an electron can provide enough energy for an electromagnetic wave or 

receive enough energy from an electromagnetic wave. Similarly, there is a state at which 

the electromagnetic wave that has received the amplification energy by electron A at point 

Fig. 2.2.6 Stimulated radiation of meandering electrons. 
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P catches the previous electron B at point R and receives energy at R. The electromagnetic 

wave is amplified twice by electrons.  

This is the optical amplification based on the periodic motion of electrons and the 

Doppler effect of the electromagnetic wave in the interaction region. The condition for 

obtaining the strong interaction at every half period is that the half wavelength of light 

must be delayed at the half period of the meandering electron A. Therefore, it is 

determined by the external force (magnetic field intensity B0 and the unit pitch of 

undulator’s magnet) which causes the meandering movement of electron A, which is 

shown in equation (2.2.1) and equation (2.2.2). The undulator (equation (2.2.2)) is most 

frequently used as an external force, as the light amplified by the undulator is confined 

within the optical cavity to create hundreds of resonance interactions with the electron 

beam. Then, a high-power laser can achieve oscillation. This is the basic principle of FEL.  

In a conventional free-electron laser, as shown in Fig. 2.2.7, the light reciprocates many 

times in the resonator to strengthen the interaction between electrons. However, the 

optical resonator cannot be used for X-ray FEL, since there is no mirror with high-enough 

reflectivity that can reflect X-rays. To solve this problem, a self-amplified spontaneous 

emission (SASE) is used for the free-electron laser in the X-ray region (Fig. 2.2.8). 

Contrarily to conventional free-electron lasers, the self-amplified spontaneous emission 

free-electron laser (SASE FEL) can generate a coherent light when the electrons are 

arranged at wavelength intervals by the interaction between the radiation from the back 

electrons and the previous electrons through a very long undulator. Nowadays, almost all 

X-ray FELs that are under construction or in the planning stages across the world, are 

based on the process of SASE. 

 

 

https://www.linguee.fr/anglais-francais/traduction/under+construction+or+planning.html
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Fig. 2.2.7 Overview of a conventional free-electron laser. 
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Fig. 2.2.8 Overview of a SASE free-electron laser. 

Accelerator

Electron gun

XFEL

Undulator

Electron beam

u

R

Electron beam

Electron gun Linear accelerator Undulator

Micro-bunching

X-ray FEL



 

24 

 

Fig. 2.2.8 shows a diagram of a kind of X-FELs (SASE free-electron laser), from 

Chapter 2.1, that helps us understand that X-FEL can be used in many fields. However, it 

is currently only available in a few big laboratories such as SPring-8 in Japan, LCLS in 

USA, EuroFEL and SwissFEL in Europe, since it is a very large and expensive system. 

To downsize the X-FEL and achieve a shorter wavelength laser oscillation, it is necessary 

to reduce the period of the undulator λu or increase the electron beam energy E in equation 

(2.2.1). Since it is very difficult to flexibly change the energy E because it is determined 

by the specification of this upstream accelerator, it is essential to reduce the period of the 

undulator λu for a short wavelength FEL. On the other hand, it is also known that the 

parameter K should be equal to approximately 1 in equation (2.2.2) to achieve a coherent 

monochromatic light emission. Then, it's necessary to achieve a very high intensity 

magnetic field undulator (increase the B0) for a short wavelength laser light and small 

size FEL. For this propose, it is recommended to use bulk high-Tc superconductivity 

magnets (bulk HTS magnets) to create high intensity HTS undulators. 
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2.3 HTS Undulators 

The last part of Chapter 2.2 discussed the necessity of bulk HTS magnets for 

downsizing the X-FEL. In this chapter, we will introduce two examples of bulk HTS 

magnets: staggered array undulators (SAU) and pure-type HTS undulators. 

2.3.1 Staggered Array Undulator (SAU) 

(1) Structure 

Fig. 2.3.1 presents the overall structure of the high critical temperature superconducting 

staggered array undulator (Bulk HTSC SAU) [1]. A basic version of SAU (Fig. 2.3.1(a)) 

consists of a “D”-shaped bulk HTS, a copper material part, and a rectangular hole that is 

placed in the middle so that the electron beams can pass through it (Fig. 2.3.1(b)). In our 

study, the SAU consisted of 21 basic units, with 11 HTSs on the top and 10 HTSs on the 

underside that were alternatively assembled (Fig. 2.3.1(b)). Fig. 2.3.1 (c) shows a 

schematic side view of the SAU prototype. Inserting the double vacuum duct allows 

liquid nitrogen to be introduced in intermediate layers, and the operation to be 

implemented on the central axis of the solenoid, which covers the outer wall of the duct 

with a vacuum insulation plate. To measure the magnetic field, a Hall sensor used at a 

low temperature was fixed on a resin plate that was attached to the tip of a straight 

introducer, and then the operation was implemented on the center axis of the solenoid. 

The temperature of bulk HTSs can be measured using a platinum resistance thermometer 

(PT100) that is attached to them. 
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(a) Basic unit 
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HTS

14.0mm 4.0mm
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(b) Array unit 
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Refrigerant outlet

Vacuum insulation plate

Linear motion drive

Temperature sensor

(c) Schematic side view of the prototype 

Fig. 2.3.1 Overview of Bulk HTSC SAU. 
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(2) Principle of Operation 

In Bulk HTSC SAU, since the induced currents are induced in every HTS, an 

alternative vertical (y-direction) magnetic field can be created along the electron trajectory, 

which creates the undulator motion of the election beam. This means that after all the 

HTSs are cooled to below the critical temperature in the cryostat and changed to 

superconducting state, the magnetic fields are changed by the solenoid coils, and then, an 

induced current is generated to offset the change in the magnetic field. Since the induced 

currents are affected by the magnetic fields produced by the other HTSs (according to the 

superposition principle), the change in magnetic fields corresponds to the magnetic field 

change caused by solenoid coils and magnetic fields created by HTSs. The induced 

currents appear from the outer edge of every HTS. Then, an alternative vertical (y-

direction) magnetic field can be created along the electron trajectory on the central axis 

of the solenoid coils. 

Fig. 2.3.2 shows the magnetic lines of force produced by the SAU around the electron 

trajectory. Although the direction of the magnetization of HTSs is completely different 

from that of a conventional undulator (Fig. 2.3.1), the alternative vertical (y-direction) 

magnetic field along the electron trajectory can be produced on the middle horizontal 

plane in the rectangular aperture of the SAU, which leads to the undulator motion of the 

electron beam.  

Magnetization HTS

Electron beam

Fig. 2.3.2 Magnetic lines of force on z-axis in SAU. 
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Characteristic: 

(a) Advantages 

It is possible to generate a magnetic field by using the HTSs, which was previously 

impossible with the conventional HTS magnet arrangement. It is also possible to generate 

the periodic magnetic field, in which HTSs can be magnetized using a single solenoid and 

the magnetic field can be controlled without a drive mechanism. 

(b) Disadvantages 

There are two problems with SAU. Firstly, the strength of the magnetic field generated 

by the electron orbit is very small, and secondly, there is almost no experimental data that 

would contribute to verifying the validity of the simulation code. 

2.3.2 Pure-type HTS Unudlator 

Why do we use pure-type high-Tc (HTS) undulator: 

It is generally necessary to achieve a uniform sinusoidal distribution of the magnetic 

field in the vertical direction for the operation of free-electron lasers (FELs) lasers that 

use HTSs. We have determined the suitable size and alignment of the HTS magnets based 

on the simulation of the magnetization process. In particular, a numerical simulation code 

that considers the interactions of magnetic fields between HTS magnets has been 

developed to simulate the magnetization process of the bulk HTSC SAU, and a single 

electron trajectory has been estimated for use in the design stage of the HTSs undulator. 

However, since almost no experimental data, nor other direct measurement data, exists 

on SAU, the validity of the developed numerical code can only be confirmed using the 

levitation force in the magnetic levitation experiment done on bulk HTSs.  

A large number of experiments that are different from the SAU have been conducted 
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to directly experimentally measure the vertical magnetic field distributions of FEL 

undulators (which use HTS magnets). In particular, the use of pure-type HTS undulators, 

one of possible HTS magnet arrays for FEL undulators, was put forward by T. Tanaka in 

REKEN, and the vertical magnetic field distributions of these undulators in the 

magnetization process have also been experimentally measured. Therefore, it is necessary 

to use the pure-type HTS undulator in this study, to expand upon the available data. 

(1) Structure 

Fig. 2.3.3 gives a structural overview of the experimental pure-type HTS undulator, 

which is made up of three HTS magnets, each magnet having an individual size of 10mm 

× 15mm × 4mm (Fig. 2.3.4) [2]-[3]. In Fig. 2.3.4, the HTS magnets (composed by 

GdBaCuO Superconductor), are inserted in the electromagnets’ gap. The temperature can 

be controlled using a cartridge-type heater that is installed on the copper plate. A Hall 

probe, which is inserted on the opposite of the HTS magnets, can measure the magnetic 

Fig. 2.3.3 Schematic illustration of the experimental device of  

pure-type HTS undulator. 
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field in the longitudinal direction as it is connected to a linear stage. The distance from 

the surface of the HTS magnets to the Hall probe is 1mm, so the gap value is 2mm. The 

temperature of HTS magnets can be measured by using a platinum resistance 

thermometer that is attached to them.  

(2) Principle of Operation 

Fig. 2.3.5 gives an overview of a pure-type HTS undulator composed of three HTS 

magnets that are separate from each other. After all the HTS magnets are cooled to below 

the critical temperature in the cryostat and changed to the superconducting state, the 

external magnetic fields are changed from Bmax = 2.0 T to Bmin = -0.6 T by temporal 

change, and then, an induced current is generated to offset the change in magnetic field 

at around B0 = -0.5 T. Since the induced currents will be affected by the magnetic fields 

produced by other HTSs (according to the superposition principle), the change in 

magnetic fields corresponds to the change caused by solenoid coil and the HTS-created 

magnetic fields. Shielding currents appear in every HTS magnet, therefore, alternative 

vertical magnetic fields are created along the electron trajectory using these shielding 

currents and can be utilized in the FEL undulator (Fig. 2.3.6). Since these magnetic fields 

are very close to the magnets, they can be expected to be much stronger than the magnetic 

Fig. 2.3.4 Size of one HTS magnet. 
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fields in the SAU. 

In this chapter, we have introduced two kinds of bulk HTS magnets: SAUs and pure-

type HTS undulators, respectively. In the HTS undulator’s design stage, it is known that 

very uniform vertical sinusoidal magnetic fields have to be created at the undulator for 

normal operation of the FEL. It is also impossible to re-arrange the alignment of the bulk 

HTS magnets after they change to a superconducting state inside a cryostat, however, the 

distribution of the vertical magnetic field component will not be uniform if pure-type 

HTS undulators or SAUs are constructed using same-sized HTS magnets. Accordingly, it 

is important to predict the magnetization process of pure-type HTS undulator or SAU 

using a numerical simulation, and then to determine the suitable size and alignment of the 

bulk HTS magnets to create a uniform sinusoidal distribution in the vertical component 

of the magnetic field at the X-FEL’s design stage. 

  

Fig. 2.3.6 Shielding currents and magnetic fields. 
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Fig. 2.3.5 Overview of Pure-type HTS undulator. 
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Chapter 3  

Fundamental Theories 

In Chapter 2, it is made known that the simulation of the magnetization process is very 

important in the X-FEL design stage. In this Chapter, we will briefly introduce some 

fundamental theories for numerical simulations, such as Maxwell’s equations, eddy 

current fields, superconductivity, and electron motion equations. 

3.1 Maxwell’s Equations 

Maxwell’s equations are a set of 4 partial differential equations that describe the world 

of electromagnetics. These equations describe how electric fields and magnetic fields are 

generated by charges and electric currents, and how they will propagate, interact with 

each other, and be influenced by other objects. The following 4 equations are the classical 

forms of Maxwell's Equations. 

Gauss’s law of electric fields can be expressed as:  

∇ ∙ 𝐃 = 𝜌 (3.1.1) 

Gauss’s law of magnetism can be expressed as:  

∇ ∙ 𝐁 = 0 (3.1.2) 

Ampère's circuital law can be expressed as:  

∇ × 𝐇 = 𝐉 +
𝜕𝐃

𝜕𝑡
 (3.1.3) 

Faraday's law of induction can be expressed as:  

∇ × 𝐄 = −
𝜕𝐁

𝜕𝑡
 (3.1.4) 
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Two supplementary expressions of Maxwell's equation, the electric flux 

and the magnetic flux, which are concerned with the areal density of the 

dielectric constant or and permeability, can be expressed as the following: 

and, the current density and the electric field are connected to the conductivity 

σ of the conductor by Ohm's law, which is expressed as the following 

equation: 

As the foundation of classical electromagnetism, classical optics, and 

electric circuits, most of the electromagnetic properties that are required for 

microwave engineering can be deduced from Maxwell's equations.  

𝐃 = 휀𝐄 (3.1.5) 

𝐁 = 𝜇𝐇 (3.1.6) 

𝐉 = 𝜎𝐄 (3.1.7) 
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3.2 Eddy Current Field  

When the electric current flows through a coil inside a conductor, the magnetic field 

also changes temporally. In this way, when a varying magnetic field is applied to the 

conductor, a current flows into the conductor according to Faraday's law of induction. A 

magnetic field is applied in a direction that is perpendicular to the surface of the conductor, 

and if the magnetic field changes temporally, circular electric currents flow onto the 

surface. These electric currents create a new magnetic field apart from the afore-

mentioned magnetic field according to Ampère's circuital law. Since a magnetic field is 

newly generated, the electric currents flow according to Faraday's law of induction again. 

The electric currents also create a new magnetic field. By this repetition, a circular 

current gathers in the conductor in the direction of the magnetic field and then, the electric 

currents flow like a vortex. These electric currents are called eddy currents.  

Assuming that the external magnetic field applied to conductor is B0, and the magnetic 

field produced by the eddy current is Be, the electric field generated by the magnetic field 

according to Faraday's law of induction is E. The relationship between the electric field 

and the magnetic field can therefore be expressed in the following equation: 

∇ × 𝐄 = −
𝜕

𝜕𝑡
(𝑩0 + 𝐁𝑒) (3.2.1) 

Next, we will describe the magnetic field H that is generated by the electric current. It 

is known that the displacement electric current can be negligible relative to the conduction 

electric current when the frequency of the electric field E is small or the conductivity σ 

of the conductor is large. Therefore, using Ampère's circuital law (3.1.3) and Ohm's law 

(3.1.6), the relationship between the electric current and the magnetic field can be 

expressed by the following equation: 
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∇ × 𝐇 = 𝐉0 + 𝐉𝑐 = 𝐉0 + 𝜎𝐄 (3.2.2) 

where 𝐉0 is the current density generated by the change in the B0 and 𝐉𝑐 (𝜎𝐄) values is 

the current density generated by the change in Be. 

The electric field is generated by the flow of the charges, then, the charges’ bias is 

eliminated by the rapid scattering effect caused by repulsive forces between charges. 

Since the redistribution of charges cancels the inside of the electric field, the electric field 

in the conductor will disappear immediately after it is generated, and free electrons will 

also disappear. It means that there are no new electric fields and new electric currents can 

be generated. Therefore,  

∇ ∙ 𝐄 = 0 (3.2.3) 

∇ ∙ 𝐉c = 0 (3.2.4) 

can be obtained. 

Although the charge conservation law for the eddy current 𝐉𝑐 is defined by equation 

(3.2.4), using the compatibility of equation (3.2.2) 

 𝛻 ∙ 𝐉0 = 0 (3.2.5) 

needs to be satisfied for the external electric current 𝐉0. 

In addition, as was the case with equation (3.1.2), Gauss’s law can be expressed using 

the following equation: 

∇ ∙ (𝐁0 + 𝐁𝑒) = 0 (3.2.6) 

In summary, Maxwell’s equations in the eddy current field can be expressed by the 

following equations:  

∇ × 𝐄 = −
𝜕

𝜕𝑡
(𝐁0 + 𝐁𝑒) (3.2.1) 

∇ × 𝐇 = 𝐉0 + 𝜎𝐄 (3.2.2) 

∇ ∙ 𝐄 = 0 (3.2.3) 
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∇ ∙ (𝐁0 + 𝐁𝑒) = 0 (3.2.6) 

Since eddy currents are generated to counteract changes in the external magnetic field, 

the eddy current will interrupt the incoming magnetic field. Therefore, it also acts as a 

“shielding current” for the magnetic field.  

Next, we will introduce one of the methods for analyzing the eddy current. Firstly, just 

as was the case with the static magnetic field, the magnetic vector potential that satisfies  

the equation (3.1.2) can be expressed with the following equation: 

𝐁 = ∇ × 𝐀 (3.2.7) 

From equation (3.2.7), it is easy to see that B will not change, even as a scalar function is 

added to 𝐀 such as 𝐀 + grad∅. Thus, A has an arbitrary value within the gradient of a 

scalar function. Eliminating the arbitrariness of A is called gauge fixing. There exist 

Lorenz and Coulomb gauge-fixing conditions with ∇ ∙ 𝐀 = 0 for gauge fixing. 

By substituting equation (3.2.5) into Faraday's law of induction (3.1.4) 

∇ × (𝐄 −
𝜕𝐀

𝜕𝑡
) = 0 (3.2.8) 

can be obtained. Then, the electric field E can be written as following equation: 

𝐄 = −∇∅ −
𝜕𝐀

𝜕𝑡
 (3.2.9) 

where ∅ is scalar potential.  

Then, substituting equations (3.1.7), (3.2.7) and (3.2.8) into equation (3.2.2), 

∇ × (
1

𝜇
∇ × 𝐀) = −𝜎∇∅ − 𝜎

𝜕𝐀

𝜕𝑡
+ 𝐉0 (3.2.10) 

can be obtained. Then, the left side of the equation can be expressed as the following 

equation: 

∇ × (
1

𝜇
∇ × 𝐀) =

1

𝜇
(∇(∇ ∙ 𝐀) − ∇2𝐀) (3.2.11) 

And equation (3.2.11) can be organized as the following equation: 
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𝜎𝜇
𝜕𝐀

𝜕𝑡
+ 𝜎𝜇∇∅ − ∇2𝐀 = 𝐉0 (3.2.12) 

Since equation (3.2.12) contains A and ∅ as its unknown functions, the equation cannot 

be solved. Therefore, using the divergent equation of equation (3.2.5) produces the 

following equation:  

∇ ∙ 𝜎 (
𝜕𝐀

𝜕𝑡
+ ∇∅) = 0 (3.2.13) 

In summary, the method is usually called A–∅ method, which involves solving for the 

unknown functions A and ∅ in the simultaneous equations (3.2.12) and (3.2.13). 
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3.3 Superconductivity 

Superconductivity is the phenomenon in which a certain material will exhibit zero 

electrical resistance and expel magnetic fields under a critical temperature Tc (Fig. 3.3.1).  

3.3.1 History of Superconductivity 

The history of superconductivity began in 1911, when Dutch physicist H. K. Onnes 

discovered that the electric resistance of mercury disappeared below 4.2 K (-268.8 °C). 

In 1933, the phenomenon of the expulsion of a magnetic field from a superconductor 

during its transition to the superconducting state was found by the German physicists W. 

Meissner and R. Ochsenfeld [43] and was called the Meissner effect. F. London and H. 

London showed that the Meissner effect was a consequence of the minimization of the 

electromagnetic free energy carried by superconducting currents in 1935 [44]. In the 

1950s, two central theories were developed: the Ginzburg-Landau theory, named after V. 

L. Ginzburg and L. Landau in 1950, and the microscopic BCS theory, named by J. 

Bardeen, L. Cooper and J Robert Schrieffer in 1957 [45]-[46]. The BCS theory describes 

Fig. 3.3.1 Critical temperature of superconductor compared to normal metal. 
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superconductivity as being a transition into a boson-like state observed at the microscopic 

level, which is caused by a condensation of Cooper pairs, and at a superconducting 

transition temperature that is limited to 40 K (-233 °C). In 1962, a macroscopic quantum 

phenomenon called the Josephson Effect, in which currents can flow between two pieces 

of superconductor separated by a thin layer of insulator, was predicted by Josephson [47] 

and it is widely used in various applications such as in the SQUIDs superconducting 

devices.  

Until 1986, the material with the highest-temperature Tc under the highest 

ambient-pressure is Nb3Ge of 23 K. In a surprising 1986 report, J. G. Bednorz and K. 

A. Mueller [48] claimed to have discovered superconductivity in a lanthanum-based 

cuprate-perovskite material, which had a transition temperature of 35 K. Three months 

later, it was found that replac the lanthanum with yttrium to make YBCO could raise the 

critical temperature to 92 K [49]. This is very important since liquid nitrogen can be 

widely used as a refrigerant very at very little cost. This discovery led to an increasing 

global trend in favor of research on copper oxide superconductors. 

In 1993, a superconductor (a ceramic material) consisting of HgBa2Ca2Cu3O8+δ was 

found with Tc = 133-138 K [50]-[51]. In 2015, the highest-temperature superconductor 

H2S was found to undergo superconducting transition near 203 K (-70 °C) under 

extremely high pressure (around 150 MPa) [52]. 

3.3.2 Perfect Conductivity of Superconductors 

Perfect conductivity of superconductors is a phenomenon in which the resistance of 

superconductors will become 0 when the temperature falls below a threshold temperature 

Tc. In this context, the voltage will not drop and the energy dissipation by Joule heat will 
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not occur. In this important phenomenon in superconductivity, as shown in Fig. 3.3.1, the 

resistance of a certain material will rapidly disappear at temperature Tc — the 

superconducting transition temperature or superconducting critical temperature — that is 

different than the critical temperature for non-superconductive metals. 

3.3.3 Meissner Effect 

The Meissner effect is a phenomenon in which the magnetic field is expelled from 

materials during their transition to the superconducting state [43]. Fig. 3.3.2 illustrates the 

expulsion of the magnetic field and the situation in which the magnetic flux of density B 

inside the superconductor becomes zero when the temperature drops below Tc in a weak 

magnetic field. The magnetization is defined by M, using the definition of magnetic file 

density B = μ0 (H+M), the magnetization M = -H is induced to offset the external magnetic 

field. The reason for which the magnetic field is inside the superconductor is that the 

diamagnetic current flows on the surface of the superconductor to offset the external 

magnetic field.  

(a) Normal conducting state (T<Tc)       (b) Superconducting state (T>Tc) 

Fig. 3.3.2 Meissner effect. 
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However, the diamagnetic current is not sufficient to offset the whole external magnetic 

field, even in the Meissner state. One of the most important characteristics for 

superconductivity, the thickness of the surface layer where the magnetic field enters and 

the diamagnetic current flows, is called London penetration depth λ. Therefore, a 

magnetic field only penetrates into a superconducting film that is thinner than λ. 

  In addition, if the external magnetic field H is strengthened, the superconducting state 

will be broken and return to its normal conducting state. There are two ways to break the 

superconducting state:  

Fig. 3.3.3 (a) shows a type-I superconductor, in which superconductivity is suddenly 

destroyed via a first order phase transition when the strength of the applied field rises 

above a critical value Hc, as is the case with pure metals such as Pb, Sn, Al.  

Fig. 3.3.3 (b) shows a type-II superconductor, in which a magnetic field will penetrate 

the superconductor above a critical field strength Hc1, and then, after it is larger than Hc2 

(larger than Hc), superconductivity will be destroyed. Most alloys and compounds are 

type-II superconductors.  

The type of superconductor is also determined by the equation 𝜅 ≡ 𝜆 𝜉⁄ , where 𝜆 is the 

London penetration depth, 𝜉  is the coherence length and 𝜅 is the Ginzburg-Landau 
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parameter. Type-I superconductors exist when 𝜅 < 1 √2⁄ , and type-II superconductors do 

when 𝜅 ≡> 1 √2⁄ . 

3.3.4 London theory 

The London theory explains the Meissner effect of type-I superconductors using the 

behavior of superconducting electrons [44]. 

Firstly, the electric current density J is defined by the following equation: 

where, e is a charge of electric current, ns is density and vs is speed. 

Then, since electrons are affected by external influences due to scattering and collision, 

the equation of motion can be expressed as: 

where, m is mass and ν is proportional factor. 

In ordinarily good conductors, the current carriers are normal conduction electrons.  

Considering an elapsed time that is longer than the diffusion time of electrons, the 

inertia term can be ignored, and the equation of motion can be written as follows: 

then, by combining equation (3.3.3) with equation (3.3.1) 

Next, we can assume that the current carriers are superconducting electrons. Since 

electrons are not affected by external influences due to scattering and collision, the 

equation of motion can be expressed as the following: 

𝐉 = 𝑛𝑠𝑒∗𝒗𝒔 (3.3.1) 

𝑒∗𝐄 = 𝑚∗
𝜕𝐯𝑠

𝜕𝑡
+ 𝜈𝐯𝑠 (3.3.2) 

𝑒∗𝐄 = 𝜈𝐯𝑠 (3.3.3) 

𝐉 =
𝑚∗

𝑛𝑠𝑒∗2
 (3.3.4) 

𝑒∗𝐄 = 𝑚∗
𝜕𝐯𝑠

𝜕𝑡
 (3.3.5) 
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assuming that  

the following equation can be obtained:  

The equation (3.3.7) is a constitutive law derived from perfect conductivity, which is the 

most fundamental property of superconductivity. 

Next, we will consider another basic property of superconductivity: super 

diamagnetism. Firstly, by substituting equation (3.1.4) into equation (3.3.7), 

since, 

where C is a time independent function. We only use Maxwell's equations and assume 

perfect conductivity of superconductors, so that in order to describe the Meissner effect, 

a theoretical leap is required. Therefore, the magnetic fields and the currents do not exist 

inside the superconductor in a completely diamagnetic state, B = 0 and J = 0 in the 

equation (3.3.9), and C(x, y, z) = 0. One hypothesis is introduced in the following 

equation: 

and now, equation (3.3.10)—otherwise known as the London equation—will be used to 

explain the Meissner effect. 

Firstly, from the Maxwell equation, 

We will include an additional rotation, 

Λ =
𝑚∗𝜕𝐯𝑠

𝜕𝑡
 (3.3.6) 

𝐄 = Λ
𝜕𝐉

𝜕𝑡
 (3.3.7) 

𝜕

𝜕𝑡
(∇ × Λ𝐉 + 𝐁) = 0 (3.3.8) 

∇ × Λ𝐉 + 𝐁 = 𝐶(𝑥, 𝑦, 𝑧) (3.3.9) 

∇ × Λ𝐉 + 𝐁 = 0 (3.3.10) 

∇ × 𝐁 = 𝜇0𝐉 (3.3.11) 
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substitute equation (3.3.10) 

from the vector equation: 

where, λL is London penetration depth.  

Then, considering a uniform magnetic field that is applied to a superconductor, and 

solving this equation under the condition B = B0 at the boundary x = x0 results in 

The magnetic field penetrates only to a depth of about λL. Then, the conventional materials 

are of sizes 10 to 100 nm, thus explaining why the magnetic field inside the 

superconductor is zero. 

3.3.5 Ginzburg-Landau Theory 

Ginzburg-Landau theory is a phenomenological theory of thermal equilibrium 

enunciated in 1950 that combines thermodynamics and electromagnetics. The theory is 

based on Landau's previously-established theory of second-order phase transitions, and 

uses an order parameter representing the order of superconductivity with ψ and expresses 

the Ginzburg-Landau equation with vector potential A. 

(1) Free energy 

  For the basic assumption (the superconductivity is also taken into account), the free 

energy f per unit volume of conductor can be expressed as: 

∇ × ∇ × 𝐁 = 𝜇0𝐉 (3.3.12) 

∇ × ∇ × 𝐁 = ∇(∇ ∙ 𝐁) − ∇2𝐁 (3.3.13) 

∇2𝐁 =
1

𝜆2
𝐿

𝐁 However 𝜆𝐿 = (
Λ

𝜇0
)

1
2

= (
𝑚∗

𝜇0𝑛𝑠𝑒∗2
)

1
2
 (3.3.14) 

B(x) = 𝐵0𝑒
−

𝑥−𝑥0
𝜆𝐿  (3.3.15) 
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where fn is the free energy density in the normal conducting state, α and β are temperature 

functions when developed by using |ψ|2 in the superconducting state, and m* and e* are 

the mass and charge of the superconducting electron. 

(2) Ginzburg-Landau equations 

Variations of free energy can be expressed using the following equation: 

The quantum mechanical current density can be expressed as: 

These two equations are generally called Ginzburg-Landau differential equations. 

(3) Ginzburg-Landau parameter 

The coherence length ξ, which is the distance at which superconducting electrons are 

correlated,  

And the London penetration depth λ, which is the penetration depth of the magnetic flux 

introduced,  

And the ratio of the two 

is called the parameter of Ginzburg-Landau, and it determines the behavior 

𝑓 = 𝑓𝑛 + 𝛼|𝜓|2 +
𝛽

２
|𝜓|4 +

1

2𝑚∗
|(

ℏ

𝑖
− 𝑒∗𝐀) 𝜓|

2

+
|𝐁|2

2𝜇0
 (3.3.16) 

𝛼|𝜓|2 + 𝛽|𝜓|𝜓4 +
1

2𝑚∗
(

ℏ

𝑖
∇ − 𝑒∗𝐀)

2

𝜓 +
|𝐁|2

2𝜇0
= 0 (3.3.17) 

𝑱 =
ℏ𝑒∗

2𝑚∗𝑖
(𝜓∗∇𝜓 − 𝜓∇𝜓∗) −

𝑒∗2𝑨

𝑚∗
|𝜓|2 (3.3.18) 

𝝃 = √
ℏ

2𝑚∗𝛼
 (3.3.19) 

𝜆 = √
𝑚

4𝜇0𝑒∗2𝜓
 (3.3.20) 

𝜅 =
𝜆

𝜉
 (3.3.21) 
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of the superconductor when a magnetic field is applied.  

3.3.6 Quantization of Magnetic Flux 

The phenomenon of flux quantization was discovered by B. S. Deaver and W. M. 

Fairbank [53]. Fig. 3.3.4 shows the persistent current Is flowing through the 

superconducting ring, and the magnetic field generated by the circulating current in the 

ring. The area fraction of the magnetic field and the magnetic flux Φ penetrating the 

hollow portion surrounded by the superconductor have been calculated. The self-

inductance of the ring is L and Φ = LIs. These show that this magnetic flux must only take 

discrete values represented by an integral multiple Φ = nΦ0 of a certain small universal 

quantity Φ0. This is called the quantization of magnetic flux.  

  Experiments conclude that the value of Φ0 is 2.07 fWb, corresponding to h/2e if the 

Planck constant is h and the elementary charge is e, and is called the flux quantum. Factor 

2 in the denominator of flux quantum Φ0 = h/2e suggests the important phenomenon of 

electron pairing in the superconducting state. In general, since magnetic fluxes repel one 

another, energy is lower when magnets are as far from each other as possible, rather than 

being clumped. However, the quantization of magnetic flux means that the magnetic flux 

penetrating the space surrounded by the superconductor cannot be divided into smaller 

Is

Magnetic field

Fig. 3.3.4 Magnetic field and persistent current in a superconducting ring. 
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quantities than Φ0.  

For this reason, even the magnetic flux penetrates in the mixed state of the type-II 

superconductor, and the unit of magnetic flux needs to be set at Φ0. When a magnetic 

field is applied to the mixed state of the type-II superconductor, the magnetic flux 

penetrates into the normal conducting region surrounded by the superconducting region. 

The penetrating magnetic flux is quantized to the level of h/2e as described above, which 

is an integral multiple nΦ0 of the flux quantum, which is energetically stable. 

3.3.7 Flux Pinning 

In superconductivity, micro quantum phenomena have characteristics that can be 

observed as macroscopic phenomena, such as flux quantum. 

Flux pinning, as a very important concept in superconductivity, is a phenomenon in 

type-II superconductors that the lines of magnetic flux will not move in spite of the 

Lorentz force acting on them inside a current-carrying. This phenomenon only happened 

in type-II superconductors, as type-I superconductors cannot be penetrated by magnetic 

fields.  

When a current is applied from the outside of type-II superconductors, the Lorentz 

force acts in the direction of J×B in the flux quantum and the flux quantum starts to move. 

At this moment, the conduction electrons in the normal conduction nucleus will move, 

and the kinetic energy of the conduction electrons change to thermal energy by collision 

or scattering. And then, the superconducting state is destroyed by the temperature rise, 

but this will not occur in an actual superconductor. Since the impurities and lattice defects 

exist in actually used superconductors, and the magnetic flux quantum is captured then 

the potential decreases (infinite potential well). That means, even a force is applied in the 



 

48 

 

direction of J×B, the flux quantum is trapped in the infinite potential well and the 

movement is hindered. This is called flux pinning, the pinning center is the place where 

pinning is done, and the force against the Lorentz force is usually called the pinning force. 

This phenomenon is a relation to critical current density in type-II superconductors. It 

is known that the magnetic flux passing through the superconductor receives a force from 

the magnetic field generated by the current, and the magnetic flux will start to move out 

of the pinning constraint when the current exceeds the critical value.  

An overview of flux pinning is shown in Fig. 3.3.5. 

3.3.8 High-Tc Superconductor (HTS) 

(1) History of High-temperature Superconductors 

  High-temperature superconductors (usually short for high-Tc superconductor or HTS), 

are materials that behave as superconductors at high temperatures. Generally, the 

definition of high temperatures is a Tc that is above 25 K. The first high-Tc superconductor 

was discovered by IBM researchers J. G. Bednorz and K. A. Müller in 1986 [48], resulting 

Fig. 3.3.5 Overview of flux pinning. 

Critical current

H

Flux quanta
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in a surge in the research and development of high-Tc superconductors globally. High-Tc 

superconductor currently use a transition temperature higher than the temperature of 

liquid nitrogen, which is 77 K (-195.8 °C). It was found that the critical temperature can 

reach 92 K by replacing the lanthanum in the process with yttrium (YBCO) [49]. The 

highest-temperature superconductor in current use is H2S, which undergoes 

superconducting transition near 203 K (-70 °C) under extremely high pressure (around 

150 MPa) [52].  

  The critical temperature of the superconducting state has greatly improved after the 

discovery of high-Tc superconductivity. In addition, many scientists are researching 

room-temperature superconductivity, which may be achieved in the near future.  

(2) Characteristics of high-temperature superconductivity 

High-Tc superconductivity has greatly impacted research across all fields on 

superconductivity in recent years. The critical temperature Tc was initially 20-40K (La 

type), and then 90 K (Y type), 105 K (Bi type), and 120 K (Tl type) were discovered 

within a short period. Since the critical temperature of Y type (YBCO) superconductivity 

exceeds the liquid nitrogen temperature of 77K, it represents a big leap forward in 

superconducting applications. 

 As opposed to regular superconductivity, high-Tc superconductivity typically includes 

the following characteristics: 

High critical temperature. 

It is possible operate at a higher temperature, such as the liquid nitrogen temperature 

(77 K) instead of the liquid helium temperature (4 K). 

Large superconducting energy gaps and short coherence lengths 

The superconducting energy gap in high-Tc superconductivity is always several times 
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larger than in superconductivity, and the coherent length is significantly shorter than the 

superconductivity (from serval Å to serval nm). 

(3) Construction 

The definition of a high-Tc superconductor is that it has a critical temperature Tc above 

25 K. Part of fullerene superconductor and MgB2 that is found in Japan belongs to the 

copper oxide superconductors. Table 3.3.1 shows some kinds of the copper oxide 

superconductors, and the structural characteristics of their ionizing treatment [54]. 

Fig. 3.3.6 shows the structure of a typical oxide. In observing the atomic arrangement 

in the c-axis direction of these copper oxide superconductors, the structure can be 

considered to consist of only five kinds of layers (Fig. 3.3.7) [54]. The a layer consists of 

some atoms such as Bi, Hg, Tl, Pb or Ba, Sr, La, the b layer has oxygen deficiency (δ = 

0~0.5: oxygen deficiency), the c layer is a metal ion such as Y, Ca, Sr, Nd, the d layer is 

a layer containing only oxygen ions, and the e layer is a superconducting layer composed 

of CuO2. Fig. 3.3.10 shows the stacking on the c-axis using symbols like ceabaec, but 

various superconducting layers are formed according to the combination of the layers as 

shown in Table 3.3.1. The a and a’ layers supply apical oxygen to the e layer, however the 

c layer is a metal layer and does not give oxygen to the e layer.  

The crystalline structure of a copper oxide superconductor is composed of a surface of 

CuO2 and a charge storage layer (block layer) on either side of the CuO2 surface. In 

addition, the intermediate between the superconducting layer and the charge storage layer 

may be differentiated as a buffer layer or an intermediate layer in some cases. Although 

the CuO2 surface originally acts as an antiferromagnetic insulator, the surface of CuO2 

can become metallic and develop superconductivity by doping electrons or holes as 

carriers to the surface of CuO2 from the charge storage layer. 
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Table 3.3.1 Classification of copper oxide superconductors and 

laminated structure of representative compounds 

Chemical Alias Examples Laminated structure Tc[K] 

Infinite layer (Sr, Nd)CuO2 /ec/ 44 

214 series (T-structure) (La, Sr)2CuO4 /aeaa’e’a’/ 37 

214 series (T’-structure) (Nd, Ce)2CuO4 /cecdc’e’c’d/ 22 

La-212 (La, Sr)2CaCuO6 /aecea/ 60 

Y-123 YBa2CuO3O6+ε /aeceab/ 93 

Y-124 YBa2Cu4O8 /aeceabb/ 90 

Bi-2201 Bi2Sr2CuO6 /a’ea’aa/ 26 

Bi-2212 Bi2Sr2CaCu2O8 /a’ecea’aa/ 85 

Bi-2223 Bi2Sr2Ca2Cu3O10 /a’ececea’aa/ 110 

Hg-1201 HgBa2CuO4 /a’ea’a/ 94 

Hg-1223 HgBa2Ca2CuO8.3 /a’ececea’a/ 135 

Tl-1212 (Tl, Pb)Sr2(Ca, Y)Cu2O7 /a’ecea’a/ 105 

Tl-2223 Tl2Ba2Ca2CuO10 /a’ececea’aa/ 117 

Pb-1223 PbBa2Ca2CuO3O9 /a’ececea’a/ 115 
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(a) a layer (AO)         (b) b layer (CuO2y)         (c) c layer (B) 

(d) d layer (O2)          (e) e layer (CuO2) 

Fig. 3.3.7 Five-type of layers in the copper oxide superconductor crystal. 
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3.4 Equation of Motion of Electron 

An electric charge that is placed in the field not only receives the force from the field, 

but also affects the field and changes it. However, if the charge e is not large, the effect 

of the charge on that field and the change of field that it can cause can largely be ignored. 

In this case, if a charge moves in a given field, we assume that the field does not depend 

on coordinates or the speed of the charge. 

The equation of motion of a charge in a given electromagnetic field can be expressed 

using the following equation (Euler-Lagrange equation):  

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝐯
=

𝜕𝐿

𝜕𝐫
 (3.4.1) 

L is a real-valued function with continuous first partial derivatives (Lagrangian): 

𝐿 = 𝑚𝑐2√1 − (
𝑣

𝑐
)

2

+
𝑒

𝑐
𝐀 ∙ 𝐯 − 𝑒∅ (3.4.2) 

where, v is the speed of an electron, c is the speed of light, m is the electron rest mass, A 

is a three-dimensional vector called vector potential, and ∅ is electrostatic potential. 

The differential coefficient ∂L/∂v of equation (3.4.2) expresses the generalized 

momentum of the particle, and it can be represented by P in the following equation: 

𝐏 =
𝑚

√1 − (
𝑣
𝑐)

2
𝑐2 +

𝑒

𝑐
𝐀 = 𝑝 +

𝑒

𝑐
𝐀 

(3.4.3) 

additionally, 

𝜕𝐿

𝜕𝒓
≡ ∇𝐿 =

𝑒

𝑐
∇𝐀 ∙ 𝐯 − 𝑒∇∅ (3.4.4) 

and using the vector analysis formula 

∇(𝐀 ∙ 𝐯) = (𝐀 ∙ ∇)𝐯 + (𝐯 ∙ ∇)𝐀 + 𝐯 × (∇ × 𝐀) + 𝐀 × (∇ × 𝐯) (3.4.5) 

the integral for r is calculated by using the constant v 
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𝜕𝐿

𝜕𝐫
=

𝑒

𝑐
(𝐯 ∙ ∇)𝐀 +

𝑒

𝑐
𝐯 × (∇ × 𝐀) − 𝑒∇∅ (3.4.6) 

therefore, the Lagrange equation can be expressed as the following equation:  

𝑑

𝑑𝑡
(𝐏 +

𝑒

𝑐
𝐀) =

𝑒

𝑐
(𝐯 ∙ ∇)𝐀 +

𝑒

𝑐
𝐯 × (∇ × 𝐀) − 𝑒∇∅ (3.4.7) 

Here, the differential (𝜕𝐀 𝜕𝑡⁄ )𝜕𝑡  consists of two parts: one is the temporal change 

(𝜕𝐀 𝜕𝑡⁄ )𝜕𝑡 of the vector potential at a fixed point in space and the change caused by a 

displacement ∂r from that point, another is known in vector analysis as (𝑑𝑟 ∙ ∇)𝐀. Then, 

the differential coefficient 𝜕𝐀 𝜕𝑡⁄  can be expressed using the following equation:  

𝑑𝐀

𝑑𝑡
=

𝜕𝐀

𝜕𝑡
+ (𝐯 ∙ ∇)𝐀 (3.4.8) 

and then, by substituting equation (3.4.8) into equation (3.4.7) 

𝑑𝑝

𝑑𝑡
= −

𝑒

𝑐

𝜕𝐀

𝜕𝑡
− 𝑒∇∅ +

𝑒

𝑐
𝐯 × (∇ × 𝐀) (3.4.9) 

can be obtained. This is the equation of motion of particles in the electromagnetic field. 

The left side is the temporal derivative of the momentum of the particle. Therefore, the 

right side of equation (3.4.9) represents the force acting on the electric charge in the 

electromagnetic field. This power consists of two parts. The first part (the first and second 

terms on the right side of equation (3.4.9)) does not depend on particle velocity; the 

second part (the third term on the right side of equation (3.4.9)) is proportional to and 

orthogonal to speed.  

The force per unit of charge of the first type is called the strength of the electric field 

and is represented by E in the following equation:  

𝐄 = −
1

𝑐

𝑑𝐀

𝑑𝑡
− 𝑒∇∅ (3.4.10) 

The factor of v/c of the second type of force is related to the unit charge, which is called 

the strength of the magnetic field and represented by H, and it can be expressed by the 
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following equation: 

𝐇 = ∇ × 𝐀 (3.4.11) 

where E is a polar vector and H is an axial vector. 

In summary, the equation for the motion of an electric charge in the electromagnetic 

field can be expressed as the following equation: 

𝑑𝐩

𝑑𝑡
= 𝑒𝐄 +

𝑒

𝑐
𝐯 × 𝐇 (3.4.12) 

The right side of this equation is called the Lorentz force. The first term (the force of the 

electric field exerts on the charge) is not related to the speed of the charge and it faces the 

direction of E. The second term (the force that the magnetic field exerts on the charge) is 

proportional to the charge-transfer rate, and its direction is perpendicular to both speed 

and the magnetic field H. 

When the speed is smaller than the speed of light, the momentum p is approximately 

equal to the expression mv of classical mechanics, and the equation of motion (3.4.12) 

can be expressed in the following equation: 

𝑚
𝑑𝐯

𝑑𝑡
= 𝑒𝐄 +

𝑒

𝑐
𝐯 × 𝐇 (3.4.13) 
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Chapter 4  

Formulations of Numerical Analysis 

In this Chapter, we will briefly introduce the formulae used in the numerical analyses 

of the simulation of the magnetization process of the bulk HTS magnets. These include 

finite-difference methods, the current vector potential method for simulating the shielding 

currents and magnetic fields of bulk HTS magnets, and the Runge-Kutta method for 

simulating the electron trajectory. 

4.1 Finite-difference Methods 

4.1.1 Introduction 

Finite-difference methods (FDM) are numerical methods of solving differential 

equations by approximating the difference equations. These methods can also be used to 

solve the boundary value problem and initial value problem in differential equations. 

Finite-difference methods are the most widely used discretization methods and have been 

in use for a very long time, so basic research on the stability of the calculation method 

and error evaluation of numerical solutions has been thoroughly conducted. Today, finite-

difference methods are the dominant methods used in numerical solutions of partial 

differential equations, especially in fluid mechanics. 

The basic outline of finite-difference methods is expressed in the following equation: 

𝑑𝑢

𝑑𝑥
= 𝑙𝑖𝑚

ℎ→0

𝑢(𝑥 + ℎ) − 𝑢(𝑥)

ℎ
≈

𝑢(𝑥 + ℎ) − 𝑢(𝑥)

ℎ
 (4.1.1) 

where the derivatives are included in the differential equation. Assuming that h is very 
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small and is approximated with an average rate of change, then we derive the equations 

of the function values u(x), u(x+h), and u(x-h) at points x and x±h near point x (these are 

usually called difference equations) and determine the approximate values by solving 

them.  

As the finite-difference method can be differentiated using differential equations, it is 

simple and very easy to use. On the other hand, when differentiating these differential 

equations, it is difficult to solve the problems within the boundaries of arbitrary 

geometries in general, since the value of an unknown function is used only at lattice points. 

Recently, various calculation methods, such as the finite element method (FEM) and 

boundary element method (BEM), have been developed to eliminate this disadvantage, 

and the applications of finite-difference methods are being expanded further. Table 4.1.1 

shows the comparisons of FDM, FEM and BEM. 

 

 

Table 4.1.1 Comparison of numerical calculation methods 

 FDM FEM BEM 

Formulation 
Differential 

approximate 
Weak form Integral equation 

Discretization Lattice points  Finite element  Boundary elements  

Solution Area type Area type Boundary type 

Coefficient matrix Sparse matrix Sparse matrix Not sparse matrix 

Characteristic 

·Discretization Easy 

·Calculation Fast 

·Scheme Stable and 

 accuracy clear 

·Arbitrary current 

·Boundary conditions 

·Automatic calculation 

·Reduced dimensions 

 to one dimension 

·External and Internal 

 problem are same 

·Unknown is boundary 

 differentiation 
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Approximation of partial differential quotient 

When approximating the partial differentiation quotients 
𝜕𝑢

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥2 ,
𝜕2𝑢

𝜕𝑥𝜕𝑦
,

𝜕2𝑢

𝜕𝑦2  of 

functions of two variables u(x,y) using forward differences, the equations can be 

expressed as the following equations: 

𝜕𝑢

𝜕𝑥
≅

∆𝑥𝑢

∆𝑥
=

𝑢(𝑥 + ∆𝑥, 𝑦) − 𝑢(𝑥, 𝑦)

∆𝑥
 (4.1.2) 

𝜕𝑢

𝜕𝑥
≅

∆𝑦𝑢

∆𝑦
=

𝑢(𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦)

∆𝑦
 (4.1.3) 

𝜕2𝑢

𝜕𝑥2
≅

∆2
𝑥𝑢

∆𝑥2
=

𝑢(𝑥 + 2∆𝑥, 𝑦) − 2𝑢(𝑥 + ∆𝑥, 𝑦) + 𝑢(𝑥, 𝑦)

∆𝑥2
 

(4.1.4) 

𝜕2𝑢

𝜕𝑥𝜕𝑦
≅

∆𝑥

∆𝑥

∆2
𝑥𝑢

∆𝑥2

=
(

𝑢(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥 + ∆𝑥, 𝑦)
∆𝑦 −

𝑢(𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦)
∆𝑦 )

∆ｘ
⁄

=
𝑢(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥 + ∆𝑥, 𝑦) − 𝑢(𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦)

∆𝑥∆𝑦
 

 

 

(4.1.5) 

𝜕2𝑢

𝜕𝑦2
≅

∆𝑦2𝑢

∆𝑦2
=

𝑢(𝑥, 𝑦 + 2∆𝑦) − 2𝑢(𝑥, 𝑦 + ∆𝑦) + 𝑢(𝑥, 𝑦)

∆𝑦2
 (4.1.6) 

and by using the central difference, the equations can be expressed as: 

𝜕𝑢

𝜕𝑥
≅

𝛿𝑥𝑢

𝛿𝑥
=

𝑢(𝑥 + ∆𝑥, 𝑦) − 𝑢(𝑥 − ∆𝑥, 𝑦)

2∆𝑥
 (4.1.7) 

𝜕𝑢

𝜕𝑥
≅

𝛿𝑦𝑢

𝛿𝑦
=

𝑢(𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦 − ∆𝑦)

2∆𝑦
 (4.1.8) 

𝜕2𝑢

𝜕𝑥2
≅

𝛿2
𝑥𝑢

𝛿𝑥2
=

𝑢(𝑥 + ∆𝑥, 𝑦) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥 − ∆𝑥, 𝑦)

∆𝑥2
 

(4.1.9) 

𝜕2𝑢

𝜕𝑥𝜕𝑦
≅

𝛿𝑥

𝛿𝑥

𝛿2
𝑥𝑢

𝛿𝑥2

= {𝑢(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥 + ∆𝑥, 𝑦 − ∆𝑦)

− 𝑢(𝑥 − ∆𝑥, 𝑦 + ∆𝑦) + 𝑢(𝑥 − ∆𝑥, 𝑦 − ∆𝑦)}/∆𝑥∆𝑦 

 

(4.1.10) 

𝜕2𝑢

𝜕𝑦2
≅

𝛿𝑦2𝑢

𝛿𝑦2
=

𝑢(𝑥, 𝑦 + ∆𝑦) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥, 𝑦 − ∆𝑦)

∆𝑦2
 (4.1.11) 
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and then by using the backward differences, the equations can be expressed as: 

𝜕𝑢

𝜕𝑥
≅

𝑢(𝑥, 𝑦) − 𝑢(𝑥 − ∆𝑥, 𝑦)

∆𝑥
 (4.1.12) 

𝜕𝑢

𝜕𝑥
≅

𝑢(𝑥, 𝑦) − 𝑢(𝑥, 𝑦 − ∆𝑦)

∆𝑦
 (4.1.13) 

Construction of difference equation 

If we replace all of the partial differential quotients with the deviation quotient in the 

partial differential equation, an approximate difference equation can be constructed. 

An approximate difference equation for partial differential equations can be expressed 

as: 

𝜕𝑢

𝜕𝑡
=

𝜕𝑢

𝜕𝑥
 (4.1.14) 

The equation obtained by replacing each term with the front differential quotient can be 

expressed as:  

𝑢(𝑡 + ∆𝑡, 𝑥) − 𝑢(𝑡, 𝑥)

∆𝑡
=

𝑢(𝑡, 𝑥 + ∆𝑥) − 𝑢(𝑡, 𝑥)

∆𝑥
 (4.1.15) 

Then, if each term in the equation is replaced by the central differential quotient, the 

equation can be expressed as: 

𝑢(𝑡 + ∆𝑡, 𝑥) − 𝑢(𝑡 − ∆𝑡, 𝑥)

2∆𝑡
=

𝑢(𝑡, 𝑥 + ∆𝑥) − 𝑢(𝑡, 𝑥 − ∆𝑥)

2∆𝑥
 (4.1.16) 

Although various approximate difference equations can be created this way, the 

differential equations do not always result in valid approximations. For example, if 
𝜕𝑢

𝜕𝑡
 

and 
𝜕𝑢

𝜕𝑥
 are approximated by a forward difference quotient and a backward difference 

quotient, 

𝑢(𝑡 + ∆𝑡, 𝑥) − 𝑢(𝑡, 𝑥)

∆𝑡
=

𝑢(𝑡, 𝑥) − 𝑢(𝑡, 𝑥 − ∆𝑥)

∆𝑥
 (4.1.17) 

and, if 
𝜕𝑢

𝜕𝑡
 and 

𝜕𝑢

𝜕𝑥
 are approximated by a forward difference quotient and a central 
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difference quotient, 

𝑢(𝑡 + ∆𝑡, 𝑥) − 𝑢(𝑡, 𝑥)

∆𝑡
=

𝑢(𝑡, 𝑥 + ∆𝑥) − 𝑢(𝑡, 𝑥 − ∆𝑥)

∆𝑥
 (4.1.18) 

then, it is known that the equation (4.1.17) contradicts the nature of the original 

differential equation, and the equation (4.1.18) has a defect with regards to stability. 

This is a functional equation drawn between the function value at one point and the 

value of a point near that point. This means that, to obtain a solution that can be 

established for all points on the area, it is necessary to set a distance to lattice points of 

Δx in x-direction and Δy in y-direction, so that the differential equations can be solved at 

the lattice using the simultaneous equations. 

4.1.2 Finite Difference Expression of Laplace’s Equation 

We can explain the finite-difference methods using the Laplace’s equation.The partial 

differential equation, also called the Laplace’s equation, can be expressed as: 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝛿𝑦2
= 0 (4.1.19) 

and it has many important applications, such as in the calculation of electric fields, 

magnetic fields and temperature distribution. The original equation is three-dimensional, 

but for simplicity’s sake, we will explain it as two-dimensional equation. The ancillary 

conditions can be any of the following: the first type of boundary condition “specify the 

value of u on the boundary”, the second type of boundary condition “specify the value of 

the normal direction coefficient 
𝜕𝑢

𝜕𝑛
 of u on the boundary”, or a mixed type of boundary 

condition “type 1 at a part of the boundary, type 2 at the remaining part”. 

The equation of each term approximated by the central differential quotient can be 

expressed as: 
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𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

∆𝑥2
+

𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

∆𝑦2
= 0 (4.1.20) 

and if Δx = Δy, the following equation, 

𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1𝑢𝑖,𝑗−1 − 4𝑢𝑖,𝑗 = 0 (4.1.21) 

can be obtained. 

To approximate the second type of boundary condition 
𝜕𝑢

𝜕𝑛
= 𝛼 , temporary points 

outside of this area can be assumed (in Fig. 4.1.1), then, using the function value 𝑢𝑖+1,𝑗,  

𝑢𝑛+1,𝑗 + 𝑢𝑛−1,𝑗

∆𝑥
＝𝛼 (4.1.22) 

can be obtained. 

and the equation corresponding to equation (4.1.20) can be expressed as:  

𝑢𝑛+1,𝑗 + 𝑢𝑛−1,𝑗 + 𝑢𝑛,𝑗+1 + 𝑢𝑛,𝑗−1 − 4𝑢𝑛,𝑗 = 0 (4.1.23) 

In combining equation (4.1.22) and (4.1.23) by deleting 𝑢𝑖+1,𝑗 , the equation at the 

boundary point can be simplified as: 

|Δx|y

x

un,i

un-1,i

yj

yj+1

yj-1

xn-1 xn…

Fig 4.1.1 Boundary conditions. 
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2𝛼∆𝑥 + 2𝑢𝑛+1,𝑗 + 𝑢𝑛−1,𝑗 + 𝑢𝑛,𝑗+1 − 4𝑢𝑛,𝑗 = 0 (4.1.24) 

When we solve these equations simultaneously, as there is a large number of variables, 

it is necessary to devise a method to improve computational efficiency using the special 

properties of the equation. Then, an iterative method (sequential substitution method) is 

often used to solve this problem. For example, in transforming the equation (4.1.21) into 

the following equation: 

𝑢𝑖,𝑗 =
(𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1)

4
 (4.1.25) 

and applying the sequential substitution method, 

𝑢𝑖,𝑗
(𝑘+1) =/

(𝑢𝑖+1,𝑗
(𝑘) + 𝑢𝑖−1,𝑗

(𝑘) + 𝑢𝑖,𝑗+1
(𝑘) + 𝑢𝑖,𝑗−1

(𝑘))

4
 (4.1.26) 

can be obtained, where k means “k-th approximation”. We can then repeat this for all i 

and j until the accuracy is satisfactory. 

While iterative methods according to equation (4.1.25) have been proven to converge, 

the convergence speed is generally very slow, and increasingly so if the division is smaller. 

Therefore, to improve the convergence speed, one method of “modifying a little extra” is 

widely used. It is, 

𝑢𝑖,𝑗
(𝑘+1) = 𝑢𝑖,𝑗

(𝑘)

+ 𝜔 {
(𝑢𝑖+1,𝑗

(𝑘) + 𝑢𝑖−1,𝑗
(𝑘) + 𝑢𝑖,𝑗+1

(𝑘) + 𝑢𝑖,𝑗−1
(𝑘))

4

− 𝑢𝑖,𝑗
(𝑘)} 

(4.1.27) 

where, ω is an acceleration factor (or a magnification of the correction amount). It can be 

modified by multiplying the correction amount calculated using equation (4.1.25) by ω. 

Then, the approximate difference equation using Poisson’s equation is created similarly 

to Laplace’s equation. Once we add the value f(xi, yj) of f(x, y) at the lattice point as a non-

homogeneous term on the right side of the equation (4.1.20), the following equation 
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𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

∆𝑥2
+

𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

∆𝑦2
= 𝑓(𝑥𝑖, 𝑦𝑖) (4.1.28) 

can be obtained. Especially, when Δx = Δy, 

𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 − 4𝑢𝑖,𝑗 = ∆𝑥2𝑓(𝑥𝑖, 𝑦𝑖) (4.1.29) 

can be obtained. 

In addition, when the thermal conductivity or electrical conductivity varies depending 

on the places, 

𝜕

𝜕𝑥
(𝑎(𝑥, 𝑦)

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑎(𝑥, 𝑦)

𝜕𝑢

𝜕𝑦
) = 𝑓(𝑥, 𝑦) (4.1.30) 

can be obtained. In order to differentiate this, a lattice point can be provided at the 

discontinuous point of a(x, y), as follows: 

{𝑎 (𝑥𝑖 +
∆𝑥
2 , 𝑦𝑗)

𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

∆𝑥 − 𝑎 (𝑥𝑖 −
∆𝑥
2 , 𝑦𝑗)

𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗

∆𝑥 }

∆𝑥

+
{𝑎 (𝑥𝑖 , 𝑦𝑗 +

∆𝑦
2 )

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑥 − 𝑎 (𝑥𝑖, 𝑦𝑗 −
∆𝑦
2 )

𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

∆𝑥 }

∆𝑥
＝𝛼 

(4.1.31) 
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4.2 Analysis of HTS Magnetizations Process by Current 

Vector Potential Method (T-method) 

4.2.1 Current Vector Potential Method 

The current vector potential method, which is also called T-method, is a method of 

calculating an eddy current field. The eddy current can be expressed using the following 

equation:  

𝐉 = ∇ × 𝐓 (4.2.1) 

for ensuring it satisfies the continuous equation by 

∇ ∙ 𝐉 = 0 (4.2.2) 

where, the T is called vector potential of 𝐉. 

Compared to other eddy current analysis methods, the advantage of using the potential 

T is that the analysis region of the T-method is limited to the inside of the conductor, 

which can be extremely small. 

We will now introduce the integro-differential equation of T-method. 

Firstly, Ohm's law can be expressed as: 

𝐉 = 𝜎𝐄 (3.1.7) 

then, taking the rotation of equation (3.1.32), the following equation can be expressed 

using the current vector potential that is defined by equation (3.1.30) (Faraday's law of 

induction) and (4.2.1): 

∇ ×
1

σ
∇ × 𝐓 = −

𝜕𝐁

𝜕𝑡
 (4.2.3) 

The magnetic flux density B can be expressed as 

𝑩 = 𝑩0 + 𝑩𝑒 (4.2.4) 
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where, B0 is the external magnetic field applied to the conductor, and Be is the magnetic 

field produced by the eddy current.  

Be can be expressed as the following equation by using the Bio-Savart law and the 

current vector potential equation:  

𝐁𝑒 =
𝜇0

4𝜋
∫ ∇ × 𝐓 × ∇′

1

𝑅
𝑑𝑉′

𝑉′

 (4.2.5) 

then, by using the Helmholtz decomposition, the equation can be expressed as 

𝑇 =
1

4𝜋
{∫ ∇ × 𝐓 × 𝛁

1

𝑅
𝑑∇

𝑉

+ ∫ (∇ ∙ 𝐓)∇
1

𝑅
𝑑𝑉

𝑉

− ∫ (𝐧 × 𝐓) × ∇
1

𝑅
𝑑𝑆

𝑆

− ∫ (𝐧 ∙ 𝐓)∇
1

𝑅
𝑑𝑆

𝑆

} 

(4.2.6) 

And the Coulomb gauge and the boundary conditions of currents that do not flow out of 

the surface of the conductor can be expressed as the following equation: 

∇ ∙ 𝐓 = 0  in 𝑉 (4.2.7) 

𝐧 × 𝐓 = 0   on 𝑆 (4.2.8) 

By using the equation (4.2.7) and (4.2.8), the second and third terms of (4.2.6) can be 

eliminated, and then, Be can be expressed as the following equation: 

𝐁𝑒 =
𝜇0

4𝜋
∫ ∇ × 𝐓 × ∇

1

𝑅
𝑑𝑉

𝑉

= 𝜇0𝑇 +
𝜇0

4𝜋
∫ 𝑇∇

1

𝑅
𝑑𝑆

𝑆

 (4.2.9) 

Combined with equations (4.2.4) and (4.2.9), equation (4.2.3) can be expressed in the 

following manner: 

∇ ×
1

𝜎
∇ × 𝐓 + 𝜇0

𝜕𝐓

𝜕𝑡
+

𝜇0

4𝜋
∫

𝜕𝑇𝑛

𝜕𝑡
∇′

1

𝑅
𝑑𝑆′

𝑆

+
𝜕𝐁0

𝜕𝑡
= 0 (4.2.10) 

where, Tn is a vertical component vector on the surface of the conductor. Then, using the 

next equation: 

∇ × ∇ × 𝐀 = ∇(∇ ∙ 𝐀) − ∇2𝐀 (4.2.11) 

The governing equation of the T-method can be expressed as the following: 
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1

𝜎
∇𝟐𝐓 − 𝜇0

𝜕𝐓

𝜕𝑡
−

𝜇0

4𝜋
∫

𝜕𝑇𝑛

𝜕𝑡
∇′

1

𝑅
𝑑𝑆′

𝑆

=
𝜕𝐁0

𝜕𝑡
 (4.2.12) 

In equation (4.2.12), the third term on the left side is the surface integral of the analysis 

region. When we solve equation (4.2.12) numerically, the matrix becomes asymmetrical 

and partially dense due to the surface integral. However, the calculation cost of the T-

method is quite large, even the analytical region is very small and the unknowns are fewer 

than in other analysis methods (Fig. 4.2.1). 

4.2.2 Two-dimensional Thin Plate Approximation 

An induced current can be generated if a variable magnetic field is applied to the 

conductor. However, neither the eddy currents concentrated on the surface of the 

Small dense matrix

Unknown region (T-method)

Unknown region (A- method)

Large sparse matrix

Fig. 4.2.1 Comparison of the analysis region. 
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conductor nor the magnetic field can penetrate into the inside of the conductor. This well-

known phenomenon is called the skin effect. The skin depth δ in the AC problem is:  

𝛿 = √
2

𝜎𝜇𝜔
 (4.2.13) 

where, σ is conductivity, μ is permeability and ω is angular frequency. This skin depth 

represents the extent of the magnetic field’s penetration, and conversely, it shows the 

degree of penetration of the eddy current. The magnetic field and eddy current at distance 

z from the surface of the conductor can be expressed using the following equation:  

𝐵＝𝐵0𝑒𝑥𝑝(−𝑧 𝛿⁄ ) 

𝐽＝𝐽0𝑒𝑥𝑝(−𝑧 𝛿⁄ ) 

(4.2.14) 

Since the ω corresponds to the speed of the magnetic field’s change, we can approximate 

that currents are uniformly distributed in the thickness direction of the conductor, when 

the change of the magnetic field is very slow or the conductor is thin enough. Then, the 

direction of the current is confined within a plane perpendicular to the thickness direction. 

Fig. 4.2.2 shows a thin plate of conductive material. The above-mentioned conditions 

can be expressed through the following equations:  

𝜕𝐽𝑥

𝜕𝑧
= 0, (4.2.15) 

𝜕𝐽𝑦

𝜕𝑧
= 0 

(4.2.16) 

𝐽𝑧 = 0 (4.2.17) 

Under these conditions, the current vector potential T only exists in z-direction, which is 

perpendicular to the plate, so Tx = Ty = 0. In addition, it is assumed that the vertical 

component Tz is constant, so we can denote this vertical component as T. Then, the 

relationship between the eddy current density and T can be expressed as the following 
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equation: 

𝐉 = ∇ × (𝐧𝑇) = ∇T × 𝐧 (4.2.18) 

and the x, y, z-component can be expressed as: 

𝐽𝑥 =
𝜕𝑇

𝜕𝑦
 (4.2.19) 

𝐽𝑦 =
𝜕𝑇

𝜕𝑥
 (4.2.20) 

𝐽𝑧 = 0 (4.2.21) 

The scalar function T is a flow function of a two-dimensional flow field (Jx, Jy).  

We will now discuss the gauge condition and boundary condition of the current vector 

potential (0, 0, T). Firstly, the gauge condition can be naturally satisfied by the following 

equation:  

∇ ∙ 𝐓 = ∇ ∙ (𝐧T) =
𝜕𝑇

𝜕𝑧
= 0 (4.2.22) 

Fig. 4.2.2 shows a thin plate of conductive material, for which the vector potential 

component is 0 on surfaces 1 and 2, which are parallel to the z-axis. As such, the boundary 

condition can be expressed as the following equation: 

𝑇 = 0 (4.2.23) 

Therefore, the boundary only has a z-component and no x and y-component. The 

Fig. 4.2.2 Overview of current vector potential method. 

surface1

surface2

Current vector potential T = (0, 0, T)
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governing equation can be expressed as: 

∇ ×
1

σ
∇ × 𝐓 − 𝜇0

𝜕𝐓

𝜕𝑡
−

𝜇0

4𝜋
∫

𝜕𝑇𝑛

𝜕𝑡
∇′

1

𝑟
𝑑𝑆′

𝑆

=
𝜕𝐵𝑧0

𝜕𝑡
 (4.2.24) 

Using the scalar function T, the number of variables can be reduced significantly, which 

simplifies numerical simulations. 

In addition, even if the thickness of the conductor plate is larger than the skin depth, a 

thin plate approximation can be applied if the z-component of currents can be ignored.  

At this moment, the currents only flow in the x-y direction, and the z-component of the 

currents do not exist. With these considerations, we believe that the conductor plate is 

composed of thin plates, as shown in Fig. 4.2.3. 

4.2.3 Bean’s Critical State Model 

Bean's critical state model, introduced by C. P. Bean [55]-[56], provides a macroscopic 

explanation of the irreversible magnetization behavior of type-II superconductors. 

When the Lorentz force, which is applied to the magnetic flux captured at the center of 

flux pinning, becomes stronger than the flux pinning force, the magnetic flux jumps out 

from the center of flux pinning and is caught by the others, and a new magnetic flux 

distribution is formed. When the Lorentz force received from magnetic flux and the flux 

pinning force are in balance, the critical state is achieved. Then, the macro model that can 

Fig. 4.2.3 Thin plate multi-layers modeling. 

T = (0, 0, T)

0)
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be established under this quasi-static equilibrium is called Bean’s critical state model. 

This means that macroscopic currents can flow until the Lorentz force and the flux 

pinning force are in balance. Therefore, where currents are flowing, the Lorentz force and 

the flux pinning force are always in balance.  

We will now discuss a mathematical model that is based on the Bean’s critical state 

model. The state in which the Lorentz force and the flux pinning force are in balance can 

be expressed as:  

𝐉 × 𝐁 − 𝐅𝑝

𝐯

|𝐯|
= 0 (4.2.25) 

where, v is the speed of the magnetic flux quantum, and v is not the speed of the individual 

magnetic flux quantum, but rather the macroscopic estimate of average speed. The flux 

pinning force always acts in the direction hindering the movement of the magnetic flux 

quantum. 

Let us assume that the current 𝐉 and the magnetic field B are orthogonal to each other. 

It is easy to deduce that v is orthogonal to 𝐉 and B from the equation (4.2.25). Therefore, 

the electric field induced in the superconductor by the motion of the magnetic flux 

quantum can be expressed as: 

𝐄 = 𝐁 × 𝐯 (4.2.26) 

and it has the same direction as 𝐉. From equations (4.2.25) and (4.2.26),  

𝐁 × (𝐉 × 𝐁) − 𝐅𝑝

𝐄

|𝐯|
= 0 (4.2.27) 

can be obtained, and the first term of equation (4.2.27) can be transformed using this 

vector equation: 

𝐁 × (𝐉 × 𝐁)＝𝐉(𝐁 ∙ 𝐁) − 𝐁(𝐁 ∙ 𝐉) (4.2.28) 

and because 𝑱 ⊥ 𝑩, then 𝑩 ∙ 𝑱 = 0, and the following equation: 
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𝑱＝𝐹𝑝

𝑬

|𝑩|2|𝒗|
 (4.2.29) 

can be obtained. Furthermore, since v, B, E are orthogonal to each other, |E| = |B||v| can 

be established. By using these, equation (4.2.29) can be expressed using the following 

equation: 

However, 

𝐽𝑐＝
𝐹𝑝

|𝐁|
 (4.2.31) 

is the critical current density. Equation (4.2.31) is a definition of a very rational critical 

current density in which the Lorentz force Fp and the flux pinning force 𝐽𝑐|𝐁| are in 

balance. 

Let us consider the constitutive equation with |E| = 0. This can be established when B 

= 0 or v = 0. Under the condition that B = 0, since there are no shielding currents, the 

macroscopic currents also do not exist. On the other hand, under the condition v = 0, the 

magnetic flux quantum can be constant, and although the shielding currents are not 0, 

they do not change over time. Therefore, the following equation: 

   
𝜕𝐉𝑠𝑐

𝜕𝑡
= 0            if  |𝐄| = 0 (4.2.32) 

can be obtained. The equations (4.2.30) and (4.2.32) constitute the mathematical model 

corresponding to the Bean’s critical state model. When the constitutive law can be defined 

by 𝜎＝|𝐉|/|𝐄|  according to Ohm's law, 𝜎  also can be expressed as the following 

equation: 

𝐉𝑠𝑐 = 𝐽𝑐(|𝐁|)
𝐄

|𝐄|
      if  |𝐄| ≠ 0 (4.2.30) 

𝜎 =
𝐽𝑐(|𝐁|)

|𝐄|
      if  |𝐄| ≠ 0 (4.2.33) 
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   𝜎 = ∞               if  |𝐄| = 0 (4.2.34) 

It is known that the critical current density 𝐽𝑐  depends on the magnetic field, and 

various proposal have been made to express the magnetic field dependence of 𝐽𝑐. In this 

study, we use Bean’s critical model, where 𝐽𝑐 is constant, as the flux pinning force is 

proportional to the magnetic field and 𝐽𝑐 is not dependent on the magnetic field. Then, 

the equation can be expressed as follows: 

𝐽𝑐＝const. (4.2.35) 

Since this model is simple, it is often used for superconductivity based on Bean’s 

critical state model. 

Artificial conductivity method  

As equation (4.2.24) is obtained using Ohm's law (3.1.7), the constitutive equation 

cannot be established by using equation (4.2.30) and (4.2.32). We will therefore introduce 

a method for calculating the shielding current that satisfies equations (4.2.30) and (4.2.32), 

and Maxwell's equations.  

Firstly, we will assume that the superconductor is a very good conductor and set the 

value of conductivity σ to a very large value (in our research, σ = 1013[1/Ωm]). Then, we 

will find the T by solving the governing equation (4.2.24). The equations can be solved 

using T and 𝐉 = ∇T × 𝐧. The equations can be expressed as follows: 

𝜎new = 𝜎old

𝐽𝑐

|𝐉|
 ( |𝐉| > 𝐽𝑐  ) (4.2.36) 

𝜎new = 𝜎old        ( |𝐉| ≤ 𝐽𝑐  ) (4.2.37) 

where, σnew and σold are conductivity, |𝐉|  is shielding current density and 𝐽𝑐  is the 

critical current density. This means if the value of shielding current density is larger than 

the critical current density, we must replace the old conductivity σold with a small value 
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(σnew). If the value of shielding current density is equal to or smaller than the critical 

current density, then the value of conductivity σold does not change until the value of 

shielding current density is equal to or smaller than the critical current density in the entire 

region. By using this method, the governing equation can be solved again, and the value 

of shielding current density can be found. The above instructions must be followed until 

the shielding current density converges (Fig. 4.2.5). 

Although there is only one condition in which the shielding current density is smaller 

than critical current density, it is approximate to the Bean’s critical state model in which 

the initial conductivity is very large. In Bean’s critical state model, the region is divided 

between where shielding currents (equal to 𝐽𝑐) are flowing and shielding currents are not 

flowing. Then, in numerical calculations, the conductivity will not change in the region 

where the shielding current density is smaller than 𝐽𝑐, so it is necessary to set a very large 

value for conductivity. In a situation including a perfect conductor with σ→∞, the electric 

field cannot enter the perfect conductor. In other words, in a region with a very large 

conductivity, the electric field is very small, and the shielding current density that is 

generated according to Ohm's law also is also very small. In Bean’s critical state model, 

this corresponds to the region where shielding currents are not flowing at all. In addition, 

conductivity will gradually decrease in the region where the shielding current density is 

larger than 𝐽𝑐, and is asymptotic to 𝐽𝑐. Although the shielding currents flow at the regions’ 

boundaries, they still satisfy Bean’s critical state model because space is discretized in 

numerical calculations. 
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Fig. 4.2.4 Shielding current distribution restricted in finite value Jc. 
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4.2.4 Power-law Macro-model 

The power-law, which is found in natural and social phenomena, is a functional 

relationship between two quantities, wherein a relative change in one quantity causes in 

a proportional relative change in the other quantity, irrespective of the initial size of those 

quantities, so that one quantity varies as the power of another. For example, if there are 

two quantities x and y, the power-law can be expressed as the following equation: 

𝑦 = 𝑏𝑥𝑎 (4.2.38) 

Since the 𝐽𝑐 in the HTS magnets has a very strong anisotropy, we believe that the HTS 

magnets were composed of M-sheets of thin layers (Chapter 4.2.2). In the n-th layer, the 

relationship between the electric field En and the shielding current density 𝐉𝑛 can be 

expressed through 𝐽 -E constitutive relationships, which are expressed through the 

following equations: 

𝐄𝑛 = 𝐸 (|𝐉𝑛|) (
𝐉𝑛

|𝐉𝑛|
) (4.2.39) 

𝐸(𝐽) = 𝐸𝐶 (
𝐽

𝐽𝑐
)

𝑁

 (4.2.40) 

where, EC is the critical electric field, and N is a nonlinear strength (constant). The 

combination of equations (4.2.39) and (4.2.40), or the power-law macro-model, can be 

expressed as [11]-[14]: 

𝐄 = 𝐸𝐶  (
𝐽

𝐽𝑐
)

𝑁 𝐉𝑐

|𝐉𝑐|
 (4.2.41) 

Since these equations reflect the relationship between the electric field and the 

shielding current density, and this method is widely used in high-Tc superconductivity 

calculations, the behavior of the shielding current density in HTS magnets can be 

described more properly by using the power-law macro-model than by using the simple 

model (Bean’s critical state model).  
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4.3 Runge-Kutta Method 

The Runge–Kutta method is a set of implicit and explicit iterative methods used for 

temporal discretization in numerical simulations. These are calculated using the 

approximate solutions of ordinary differential equations developed the German 

mathematicians C. Runge and M. W. Kutta. The method is usually called “RK4” or “the 

Runge-Kutta method” 

For example, an initial problem is expressed as follows: 

𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0 (4.3.1) 

Then, RK4’s differential equations (the Runge-Kutta method) can be expressed as 

follows:  

𝑦𝑛+1 = 𝑦𝑛 +
ℎ𝑛

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)        (𝑛 = 0,1,2 ⋯ ) (4.3.2) 

where, 

𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛) (4.3.3) 

𝑘2 = 𝑓 (𝑥𝑛 +
ℎ𝑛

2
, 𝑦𝑛 +

1

2
𝑘1ℎ𝑛) (4.3.4) 

𝑘3 =  𝑓 (𝑥𝑛 +
ℎ𝑛

2
, 𝑦𝑛 +

1

2
𝑘2ℎ𝑛) (4.3.5) 

𝑘4 = 𝑓(𝑥𝑛 + ℎ𝑛, 𝑦𝑛 + 𝑘3ℎ𝑛) (4.3.6) 

where, the geometric meaning of each ki(i = 1, 2, 3, 4), is the slope of the tangent line of 

the solution curve li(i = 1, 2, 3, 4) of the differential equation 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), which passes 

through each point of Pi(i = 1, 2, 3, 4) in Fig. 4.3.1. 

  In our numerical simulation code, we used the Runge-Kutta method to estimate the 

electron trajectory using the magnetic field distribution of HTS magnets. 
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Fig. 4.3.1 Runge-Kutta method. 
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Chapter 5  

Simulation of the Magnetization Process of HTS 

Undulators 

In this Chapter, we will introduce the simulation of HTS undulators’ magnetization 

process based upon Chapter 3’s Fundamental theories and Chapter 4’s Formulations.  

5.1 Numerical Scheme of Magnetization Process 

In Chapter 4.2, we discussed the analysis of HTSs by using the T-method. In general, 

since the shielding currents flow exclusively in the horizontal plane of the bulk HTSs, 

assuming the presence of the HTSs two-dimensional thin plate approximation, the 

equation (4.2.13) is solved as a two-dimensional problem. In this case, assume that the 

currents only exist in x-y direction, and only one unknown (T) in z-direction needs to be 

calculated. In addition, HTS magnets’ magnetization process can be determined by the 

Bean’s critical state model (Chapter 4.2.3) [6]-[9]. The power-law macro-model is 

another appropriate research tool (Chapter 4.2.4) [11]-[14]. Ultimately, this indicates that 

the shielding currents invade the interior from the surface by temporal change. The only 

unknown in T-method is JSC, which serves as part of the simulation until a steady state is 

established in the time domain. Fig. 5.1.1 shows a flow chart regarding the analysis of 

pure-type HTS undulator magnetization processes. In particular, the innermost iteration 

is T-method calculation of shielding current for single HTS and adjustment of the 

conductivity distribution based on the macro-model (Bean’s critical state model: equation 
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(4.2.36) and (4.2.37) power-law macro-model: equation (4.2.41)) in actual calculation, 

which is carried out for all superconductors at each time step. Then, interactions between 

the superconductors—influences of magnetic fields produced by other 

superconductors—are also taken into account as external magnetic fields. When 

converged distribution of conductivity distribution is obtained in this iteration, the 

program proceeds to the next time step. After all time step calculations are finished, the 

electron motion under the obtained undulator magnetic field is also simulated by using 

the Runge-Kutta method (in Chapter 4.3).  

The following is a brief introduction of the pure-type HTS undulator’s magnetization 

process: 

The initial value of applied magnetic field reduced from Bmax = 2.0 T to Bmin = -0.6 T 

Fig. 5.1.1 Calculation flowchart of magnetization process based on T-method. 
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during 13.0 s, which means that the external magnetic fields impose ∂Bz/∂t = -0.2 [T/sec] 

in the inhomogeneous term of equation (4.2.12). Fig. 5.1.2 shows a simple example of 

the pure-type HTS undulator’s magnetization process when the external magnetic field is 

gradually reduced by the temporal change (shown in Fig. 2.3.5). This means that the 

shielding currents are generated by reducing the external magnetic field. 

At the final stage of the magnetization process, the distributions of potential T’s z-

component are shown in Fig. 5.1.3. Similarly, the shielding current distributions are 

shown in 5.1.4, and a vertical distribution of the magnetic field beyond the HTS 

magnets—which is calculated by the induced shielding currents—is shown in Fig. 5.1.5. 

(a) t = 0, B0 = 2.0T                     (b) 0<t<10s, 0<B0<2.0T 

HTS

B0

HTS

B0

HTS

B0

HTS

B0

HTS

B0

HTS

B0

HTS HTS HTS

B0B0B0

HTS HTS HTS

(c) t = 10s, B0 = 0                      (d) t=13s, B0 = -0.6T 

Fig. 5.1.2 Magnetization process of the pure-type HTS undulator. 

y[m]

x[m]0.020.010.00 0.03
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Fig. 5.1.3 Distribution of current potential of pure-type HTS undulator. 
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From Fig. 5.1.4, we can observe that the shielding currents penetrate deep into each HTS. 

Fig. 5.1.6 shows the sinusoidal distribution of the magnetic field’s vertical component at 

1mm above the HTSs. Here, we can observe that an alternative vertical magnetic field is 

generated along the longitudinal direction.   

 

Fig. 5.1.4 Shielding current distributions on HTS. 
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Fig. 5.1.5 Magnetic field distributions in vertical direction beyond the HTS. 
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Fig. 5.1.6 Distribution of vertical component magnetic field beyond the HTS. 
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5.2 Comparison between Simulation Result and Experimental 

Measurement  

Figs. 5.2.1 (a), (b), and (c) show the plots of the vertical magnetic field components 

along the x-direction at 1mm above the HTS magnets at the moments of B0 = 1.8, 1.6, 1.4, 

1.0, 0.6, 0.2, -0.4, -0.6 T by using the Bean’s critical state model. The value of the critical 

current in the experiment is Jc = 1.0×109 [A/m2] (Fig. 5.2.1 (a)) [2]. From Fig. 5.2.1, we 

can confirm that the developed numerical code (by using the Bean’s critical state model) 

is able to sufficiently simulate the pure-type HTS undulator’s magnetization process 

under the condition of using a typical value of Jc = 7.0×108 [A/m2] (Fig. 5.2.1 (c)) [15]. 

This developed numerical code cannot simulate the magnetization process of the pure-

type HTS undulator sufficiently by using the same critical current Jc = 1.0×109 [A/m2] as 

shown in Fig. 5.2.1 [b]. This means that the numerical code cannot simulate the 

magnetization process sufficiently by using the simple model, such as Bean’s critical state 

model. 

HTS HTS HTS
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(a) Experimental measurement (Jc = 1.0×109 [A/m2]) 



 

84 

 

To simulate the magnetization process of the pure-type HTS undulator, using the same 

critical current value as the experiment, the power-law macro-model is proposed in 

Chapter 4.2.4, since the electric field is closely related to the shielding current density. 

However, since the equation (4.2.41) is nonlinear, it cannot be used directly for 

calculating the equation (4.2.12). It is necessary to set an appropriate initial value of T, 

HTS HTS HTS
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(b) Bean’s critical state model (Jc = 1.0×109 [A/m2]) 
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(c) Bean’s critical state model (Jc = 7.0×108 [A/m2]) 

Fig. 5.2.1 Magnetic field distribution beyond the HTSs in magnetization process. 
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and use the Newton’s method to find the T that satisfies both (4.2.41) and (4.2.12) for 

each time step (E in Fig. 5.2.5). 

Fig. 5.2.2 shows the plots of the vertical magnetic field component along the x-direction 

at 1 mm above the HTS magnets. The plots appear at the moments of B0 = 1.8, 1.6, 1.4, 

1.0, 0.6, 0.2, -0.4, -0.6 T by using the power-law macro-model under the condition of N 

= 20 and EC = 1.0e-1 [V/m]. By comparing this to the experimental measurement (Fig. 

5.2.1 [a]), we can confirm that the developed numerical code (by using the power-law 

macro-model) can simulate the magnetization process of the pure-type HTS undulator 

sufficiently by using the same critical current value as the experiment of Jc = 1.0×109 

[A/m2] [16].  

However, the simulation time by using the power-law macro-model is about ten times 

shorter than using the Bean’s critical state model (Table 5.2.1). Furthermore, since there 

are more than 200 HTS magnets in one FEL undulator machine [5], the calculation time 

by using the power-law macro-model is approximately two years, in the case of 280 HTS 
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Fig. 5.2.2 Magnetic field distribution beyond the HTSs in magnetization process 

by using the power law conductivity model (Jc = 1.0×109 [A/m2]). 
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magnets. Therefore, it is essential to shorten the calculation time. 

  

Table. 5.2.1 Comparison of calculation time (Core i7 PC) 

HTS number 

Macro model 
3 magnets 20 magnets 280 magnets 

Bean’s critical state model 20min 8h 70 days 

Power-law Macro-model 3h20min 70h About 2 years 
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5.3 Acceleration for Large-scale Simulation 

For reducing the calculation time, we use the following four methods (by using the 

Core i7 PC): 

(1) Reduce the Calculation of Interactions between the HTS Magnets [17] 

The developed numerical code, which considered the interactions of other HTS 

magnets, as introduced in Chapter 5.1, is shown in Fig. 5.3.1. It was found that 

approximately 50% of the calculation time is occupied by the calculation of the externally 

applied magnetic field. These external magnetic fields are generated by the shielding 

currents in the other HTS magnets (Bz(r): B in Fig. 5.1.1 and the right term in equation 

(4.2.12)). Therefore, it is necessary to reduce the calculation time of interactions between 

the HTS magnets. 

Figs. 5.3.2 (a), (b), and (c), show the distributions of the magnetic field Bz’s vertical 

component, observed in the middle HTS magnet produced by the other 1, 3, 100 HTS 

Fig. 5.3.1 Interactions from the Nm HTS magnets to be considered. 

HTSHTSHTSHTSHTSHTS HTSHTS HTSHTSHTS HTSHTS
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(a) Nm = 1               (b) Nm = 3               (c) Nm = 100 

Fig. 5.3.2 Magnetic field distribution in HTS. 
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magnets. Additionally, Fig. 5.3.3 shows the value of Bz at the center point (point P) of the 

HTS magnet in Fig. 5.3.2. Therefore, taking the interactions from only the nearest 5 HTS 

magnets into account is sufficient.  

Fig. 5.3.4 shows the magnetic field distribution beyond 1mm from 10 HTS magnets 

along the x-direction in Fig. 5.2.3 at the final stage of the magnetization process when Nm 

= 0, 1, 2, 3, 4, 5, and 10 (all HTSs). From Fig. 5.3.3, the distributions are almost 

overlapped when Nm = 1, 2, 3, 4 and 5. Then, the relative error ɛm, which means the 

relative error compared with the full consideration of the other HTS magnets, is shown 

in Table 5.3.1. In general, it is necessary to achieve a uniform sinusoidal distribution of 

the vertical magnetic field component (suppressed within 1%) along a longitudinal 

direction (y-direction) of the FEL undulator for maintaining an operational laser.  

Accordingly, Nm = 3 is sufficient when considering the interactions between HTSs in 

[T]zB

0

1.20E-01

1.00E-01

0.80E-02

0.60E-02

0.40E-02

0.20E-02

0.00E-00

1 2 3 4 5 6 7 8 9 10

All magnetic field

Nm

T
h
e 

m
ag

n
et

ic
 f

ie
ld

 a
t 

th
e 

ce
n

te
r 

o
f 

H
T

S

Fig. 5.3.3 Dependence of Bz on the number (Nm) of considered HTS magnets. 

Fig. 5.3.4 Distribution of vertical magnetic component beyond 10 HTSs. 
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the final magnetic field distribution after the final distribution. However, the calculation 

time for the magnetization process is still approximately 50 hours (Bean’s critical state 

model) for 100 HTSs (Fig. 5.3.5), even when the calculation of the interactions between 

HTS magnets is reduced to Nm = 3.  

It is necessary to find other methods that further reduce the calculation time of the 

developed numerical code. 

(2) Reduce the Calculation Time by Using Multipole Expansion [17] 

Multipole expansion is a term that generally refers to a mathematical series—one 

representing a function that depends upon angles (usually the two angles of a sphere). 

Since terms are often truncated in equations, only a few are necessary, at first, to be 

retained for a good approximation to the original function. In general, the expanded 

functions are very complex. Multipole expansions, for example, are generally used in the 

calculation of electromagnetic and gravitational fields. 

Accordingly, we will introduce the calculation of high-Tc superconductivity by using 

Table. 5.3.1 Relative error  

Nm ɛm (%) 

1 1.48 

2 0.33 

3 0.12 

4 0.07 

5 0.05 

 

Fig. 5.3.5 Distribution of vertical magnetic field component (100 HTS magnets). 
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multipole expansion. 

The vector potential of the Biot-Savart law can be expressed by the following equation: 

𝐀(𝐫) =  
𝜇

4𝜋
∫

𝐉(𝐫′)

|𝐫 − 𝐫′|
𝑑𝑣′

𝑉

 (5.3.1) 

Multipole expansion equation of basic solution can be expressed as presented below: 

1

|𝐫 − 𝐫′|
 =  ∑ ∑

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!

𝑟′𝑙

𝑟𝑙+1
𝑃𝑙

𝑚(cos𝜃′)𝑃𝑙
𝑚(cos𝜃)𝑒𝑖𝑚(∅−∅′)

𝑙

𝑚=−𝑙

∞

𝑙=0

 (5.3.2) 

With respect to the substitution of equation (5.3.2) for (5.3.1), the multipole expansion of 

the vector potential can be expressed as the following: 

𝐀(𝐫)  

=  
𝜇

4𝜋
∑ ∑

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!

𝑙

𝑚=0

∞

𝑙=0

× (∫ 𝐉(𝑟′, 𝜃′, ∅′ )
𝑟′𝑙

𝑟𝑙+1
𝑃𝑙

𝑚(cos𝜃′)𝑃𝑙
𝑚(cos𝜃)𝑒𝑖𝑚∅𝑒𝑖𝑚∅′

𝑑𝑣′
𝑉

)

=  
𝜇

4𝜋
∑ ∑

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!

𝑙

𝑚=0

∞

𝑙=0

𝐌𝑙,𝑚

1

𝑟𝑙+1
𝑃𝑙

𝑚(cos𝜃)𝑒𝑖𝑚∅ 

(5.3.3) 

and,  

𝐌𝑙,𝑚 ≡  
𝜇

4𝜋
∫ 𝐉(𝑟′, 𝜃′, ∅′ )𝑟′𝑙𝑃𝑙

𝑚(cos𝜃′)𝑒𝑖𝑚∅′
𝑑𝑣′

𝑉

 (5.3.4) 

where, 𝑃𝑙
𝑚(cos𝜃) is associated with the Legendre polynomial, 𝐫 = (𝑟′, 𝜃′, ∅′) is the 

spherical coordinates for the field source of the shielding current, and 𝐉(𝐫′) , 𝐫 =

(𝑟, 𝜃, ∅) is the observation point (Fig. 5.3.6).  

Fig. 5.3.6 Source and observation points in multipole expansion. 
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 Then, the vertical component of the magnetic field Bz can be expressed as follows: 

𝐁𝑧(𝐫) =  (𝛁 × 𝐀(𝐫))
𝑧

=  (sin𝜃cos∅
𝜕

𝜕𝑟
+

cos𝜃cos∅

𝑟

𝜕

𝜕𝜃
−

sin∅

𝑟sin𝜃

𝜕

𝜕∅
) 𝐴𝑦

−  (sin𝜃sin∅
𝜕

𝜕𝑟
+

cos𝜃sin∅

𝑟

𝜕

𝜕𝜃
−

cos∅

𝑟sin𝜃

𝜕

𝜕∅
) 𝐴𝑥

= 2Re ∑ ∑
(𝑙 − 𝑚)!

(𝑙 + 𝑚)!

𝑙

𝑚=0

∞

𝑙=0

𝑒𝑖𝑚∅

𝑟𝑙+2
{(𝑙

+ 1)sin𝜃𝑃𝑙
𝑚(cos𝜃)(sin∅𝑀𝑥𝑙,𝑚 − cos∅𝑀𝑦𝑙,𝑚)

+ cos𝜃 (𝑃𝑙
𝑚+1(cos𝜃) − 𝑚

cos𝜃

sin𝜃
𝑃𝑙

𝑚(cos𝜃)) (sin∅𝑀𝑥𝑙,𝑚

− cos∅𝑀𝑦𝑙,𝑚) − 𝑖𝑚
𝑃𝑙

𝑚(cos𝜃)

sin𝜃
(cos∅𝑀𝑥𝑙,𝑚 + sin∅𝑀𝑦𝑙,𝑚)} 

(5.3.5) 

The magnetic field produced by the shielding current closest to the HTS magnet needs to 

be calculated by Biot-Savart law (equation [5.3.1]) since the accuracy of multipole 

expansion is not enough under the condition of r ≈ r’. In addition, it is necessary to 

calculate the field source’s integral volume (equation (5.3.4)), but only one time. Then, 

𝐌𝑙,𝑚 can be re-used for all observation point 𝐵𝑧(𝐫) under the condition of r >> r’. 

If we discretize the HTS magnet in I×J×K grids, equation (5.3.1) can be calculated by 

the following: 

𝐀B(𝐫) =  ∑ ∑ ∑
𝐉𝑖,𝑗,𝑘

|𝐫 − 𝐫𝑖,𝑗,𝑘|

𝐾

𝑘=1

𝐽

𝑗=1

𝐼

𝑖=1

∆𝑥∆𝑦∆𝑧 (5.3.6) 

Then, if the multipole expansion can be truncated at l = L, the equation (5.3.3) nearly 

equals the equation below: 

𝐀M(𝐫) =  ∑ ∑
(𝑙 − 𝑚)!

(𝑙 + 𝑚)!

𝑙

𝑚=−𝑙

∞

𝑙=1

𝐌𝑙,𝑚

1

𝑟𝑙+1
𝑃𝑙

𝑚(cos𝜃)𝑒𝑖𝑚∅ (5.3.7) 
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For typical values of I = 25, J = 35, K = 10, and L = 5, (5.3.6) includes 8,750 

summations, and (5.3.7) includes only twenty-five summations. Since the summations are 

sufficiently reduced, it is evident that the calculation time will be reduced by using the 

multipole expansion. 

For example, Table 5.3.2 shows a comparison of calculation time, based upon Bean’s 

critical state model. The magnetization simulation for a 100 HTS magnets model, by 

using the multipole expansion, is sufficiently reduced to 10 hours when Nm =3 (50 h by 

using Biot-Savart law). Accordingly, the multipole expansion can effectively reduce the 

calculation time, as expected.  

For application of this method, we have calculated a large-size model (280 HTS 

magnets) based on Bean’s critical state model. The calculation is approximately 51 hours. 

(3) Reduce the Iteration Numbers [18] 

As we have mention, the calculation time by using power-law macro-model is about 

10 times more than Bean’s critical state model. Therefore, it is necessary to reduce the 

calculation time of the power-law conductivity model.   

Fig. 5.3.7 shows the number of iteration at each time step of Bean’s critical state model 

(Total = 137) and the power-law conductivity model (Total = 928).  

As a means to speed up the calculation, it is necessary to reduce the power-law 

conductivity model’s number of iteration. We have assumed two kinds of methods to 

reduce the calculation time.  

Table. 5.3.2 Comparison of calculation time for 20 HTS magnets model 

Number of considered HTS magnets, Nm 2 4 6 

Biot-Savart law 6h 8h 9h40min 

Multipole expansion 2h56min 3h3min 3h7min 
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Acceleration Factor 

We have introduced an acceleration factor α in Newton’s method of accelerating the 

calculation. This means adjusting the convergence speed with Tnew = Told-α σT instead of 

Tnew = Told-σT (E in Fig. 5.2.5). However, all of the iterations are diverging when α>1, 

and the convergence speed, is slower when α<1. Fig. 5.3.8 shows an example of the 

number of repetitions for each time step when α = 0.9 (Total = 982). 

Change Time Step for Reducing the Calculation Time 

The current time step is 13 for comparing the simulation result to the experimental 

measurement. It is expected to reduce the number of iteration by changing the number of 

time step L. Figs. 5.3.9 (a), (b), and (c) show the number of iteration on Newton’s method 

when the time step L = 10, 26, and 65. When L increases, although the number of iteration 

decreases in each time step as the changing of the external magnetic field in one time step 
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Fig. 5.3.8 Number of iteration at each time step of power-law conductivity model. 
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(a) Bean’s critical state model           (b) Power-law conductivity model 

Fig. 5.3.7 Number of iteration in macro-model calculation at each time step. 
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decreases, the total number of iterations increases since the total number of time steps 

increases. When L decreases, it was found that the calculation time will reduce by about 

10% when L = 10 as its shortest calculation time.  

(4) Change Parameters of Power-law Macro-model in Same Accuracy Range 

As a result of our discoveries regarding the agreement between magnetization 

simulations based upon the power law conductivity model, we have set the parameters as 

N = 20 and EC = 1.0e-1 [V/m]. Figs. 5.3.10 (a), (b), (c), and (d) show the relative error of 

the maximum value of 1.0 T, the minimum value of 1.0 T, the maximum value of -0.6 T, 

and minimum value of -0.6 T by changing the parameter N and EC. Then, under the same 

accuracy range as the original value, the shortest calculation time is under the condition 

of N = 11 and EC = 1.0e-2 [V/m], and the calculation is 1h30min. Essentially, the 

calculation time has been reduced by approximately 50%.  

In summary, we have reduced the calculation time of the power-law macro-model by 

50%, an incredibly difficult accomplishment. Furthermore, it is necessary to reduce the 

(a) L = 10                             (b) L = 26 
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Fig. 5.3.9 Number of iteration at each time step of power-law conductivity model. 
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calculation time significantly more, since the calculation time of the power-law macro-

model is still five times longer than that of Bean’s critical state model. 

  

(a) Maximum value of 1.0 T          (b) Minimum value of 1.0 T 
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Fig. 5.3.10 Relative error by changing parameter N and EC. 
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Chapter 6  

Applications of the Developed Numerical Code 

This Chapter will introduce the applications of the developed numerical code. These 

applications include the following: the optimization of HTS magnets for uniform 

magnetic fields, the estimation of electron trajectories, and the calculation of large-scale 

simulations and SAU. 

6.1 Optimization of HTS Magnets for Uniform Magnetic Fields 

In general, to maintain an operational laser, it is necessary to achieve a uniform 

sinusoidal distribution of the vertical magnetic field component (suppressed within 1%) 

along a longitudinal direction (x-direction) of the FEL undulator. However, the sinusoidal 

distribution of the vertical magnetic field component varies by approximately 16% (Fig. 

5.3.4), especially at either end. To eliminate these variations, we have changed the 

thickness of the 10 HTS magnets in consideration of the developed numerical code (Fig. 

6.1.1), as the vertical strength will become weak if the thickness becomes thinner (as the 

shielding currents reduced). A uniform sinusoidal distribution of the vertical magnetic 

field component (suppressed within 1%) along a longitudinal direction (x-direction) is 

shown in Fig. 6.1.2. 

Fig. 6.1.1 Thickness adjustment for eliminating variations. 

3.44×10-1 3.88×10-1 3.96×10-1 4.0×10-1 4.0×10-1 4.0×10-1 4.0×10-1 3.96×10-1 3.88×10-1 3.44×10-1 x[m]
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Fig. 6.1.2 Uniform sinusoidal distribution of the vertical magnetic field 

component by changing thickness of HTS magnets. 
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6.2 Calculation of an Estimated Electron Trajectory 

As we have established, our numerical simulation code not only simulates magnetic 

fields, but also estimates electron trajectories. Fig. 6.2.1 shows the estimated single 

electron orbit with 2 GeV energy for laser radiation. This is calculated by the Runge-

Kutta method, based on the magnetic field distribution of Fig. 6.1.2. Although the 

magnetic field is uniform, the electron maintains a curving movement. 

The Figures of 6.2.2 indicate the simulation of the magnetic field distribution (Fig. 

6.2.2 [a]) and the electron trajectory (Fig. 6.2.2 [b] and [c]) in which an offset vertical 

magnetic field of -0.41T is additionally applied to that of Fig. 6.1.2. Conclusively, the 

further modification of the magnetic field of Fig. 6.2.2 (a) gives the reasonable electron 

trajectory.  

 

 

Fig. 6.2.1 Estimated single electron trajectory with 2GeVenergy.  
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(a) Modified magnetic field component distribution for single electron trajectory 
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(b) Estimated stable electron trajectory with 2 GeV energy (Top view) 
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(c) Estimated stable electron trajectory with 2 GeV energy (3D view) 

Fig. 6.2.2 Numerical results of HTS magnetization process for  

stable electron trajectory. 
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6.3 Calculation of Large-scale Simulation  

Additionally, we have applied this method to the creation of large-scale simulations, 

capturing the effects of 20 HTS magnets, 100 HTS magnets, and 280 HTS magnets, as 

shown in Fig. 6.3.1 (a), (b) and (c). 

  By observing Fig. 6.3.1, it is apparent that the 20 HTS magnets model is a stable means 

for calculating the pure-type HTS undulator’s magnetization process.  
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6.4 Calculation of SAU 

Firstly, Fig. 6.4.1 demonstrates a single unit HTS’s numerical model in the x-y cross 

section (2.5 mm thickness). 

Fig. 6.4.2 shows the distributions of potential T’s z-component when the initial value 

of the applied magnetic field is 1 [T], and the magnetic field is reduced at 0.1 [T/sec]. 

Fig. 6.4.3 (a) shows the shielding current distributions of the entire SAU, and Fig. 6.4.3 

(b) displays an enlarged view of the current distribution flowing in one HTS. In Fig. 6.4.3, 

there is almost no fluctuation in the z-direction. Furthermore, in the shielding current 

distributions, currents flow almost two-dimensionally to shield the magnetic fields along 

the edge of the HTSs. Additionally, although the currents seem to flow in the center of 

the HTSs, they are easily ignored, as they are two digits smaller than the currents along 

2mm 12.5mm

Fig. 6.4.1 Numerical model of a single HTS magnet. 

Fig. 6.4.2 Distribution of current potential of SAU. 
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the edges of the HTSs. 

Fig. 6.4.4 shows the magnetic field distribution of the vertical component on the central 

axis of SAU by considering the interactions between the HTS magnets.  

Fig. 6.4.5 shows the comparison of the magnetic field distribution of the central axis’s 

vertical component, considering both the interactions and lack of interactions between the 

HTS magnets. It was found that the interactions between the HTS magnets cannot be 

ignored, as they influence the vertical magnetic field of both side edge parts.  

(a) Entire region 
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Fig. 6.4.3 Distribution of shielding current of SAU. 
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Fig. 6.4.4 Magnetic field distribution in vertical cross-section. 
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0Fig. 6.4.6 (a) shows the distribution of the vertical component of magnetic field along 

the electron trajectory for the size of the semi-half circle HTS magnets are all same. It 

will disturb sinusoidal distribution of the vertical magnetic field component on the 

electron trajectory. As an application example of the numerical code, we have modified 

the size and alignment of the HTS magnets by adjusting the vertical aperture size, as 

Fig. 6.4.5 Magnetic field distribution in vertical cross-section. 
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Fig. 6.4.6 Magnetic field distribution in the vertical direction 

along the electron trajectory 
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shown in Fig. 6.4.6 (b) [10]. It is evident that the variation of the sinusoidal distribution 

improves greatly in Fig. 6.4.6 (b), in exception to both side edge parts.  

Figs. (a), (b), and (c) of 6.4.8 show x, y, and z-component distributions of the magnetic 

field on the x-z middle plane (Fig. 6.4.7), on which the electron beam travels. 
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Fig. 6.4.7 Central horizontal x-z plane of SAU. 

(a) x-component 

-0.060

-0.014

0.014

-0.007
0.000

0.007

0.040

0.000

-0.040

0.020

-0.020

0.060
0.020

0.040

0.060

0.080

0.100

0.120

z

x



 

105 

 

  

-0.060

-0.014

0.014

-0.007
0.000

0.007

0.040

0.000

-0.040

0.020

-0.020

0.060
0.020

0.040

0.060

0.080

0.100

0.120

x

z

(b) y-component 

-0.060

-0.014

0.014

-0.007
0.000

0.007

0.040

0.000

-0.040

0.020

-0.020

0.060
0.020

0.040

0.060

0.080

0.100

0.120

x

z

(c) z-component 

Fig. 6.4.8 Distributions of the magnetic field on x-z middle plane. 
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The middle vertical cross-section of Fig. 6.4.8 (b) corresponds, exactly, with Fig. 6.4.6 

(b). Finally, Fig. 6.4.9 shows a predicted electron trajectory (with 100 MeV energy) in the 

magnetic field (Fig. 6.4.8) of the SAU. 

We also compared the strength of the magnetic fields of SAU and pure-type HTS 

undulators. 

Fig. 6.4.10 shows the distribution of the vertical magnetic field component for both 

SAU (a) and pure-type HTS undulators (b). The strength of the magnetic field of the pure-

type HTS undulator (based on Bean’s critical state model) is approximately forty times 

more powerful than that of the SAU, as we expected. 

Fig. 6.4.9 Estimated single electron trajectory in SAU. 
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(b) pure-type HTS undulator (10 HTS magnets) 

Fig. 6.4.10 Comparison of distribution of vertical magnetic field component. 
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Chapter 7  

Conclusions 

We have discussed the high-Tc superconductor undulator for free-electron lasers, 

presenting the numerical analysis of its magnetization process, based upon the T-method. 

In summary, we have accomplished the following things: 

(1) We developed a numerical simulation code for the magnetization process of HTS 

magnets, based upon the T-method and power-law conductivity method. We confirmed 

that this method can effectively simulate the magnetization process by using the same 

shielding current value as the experimental measurement. 

(2) We have developed an improved simulation scheme of the magnetization process in 

the pure-type HTS undulator for very large numerical models for the size of the real 

machine. To carefully evaluate the calculation of the interactions between HTSs, it was 

observed that the number of HTSs considered for the interactions could be truncated at a 

few HTSs within acceptable relative error. Additionally, we efficiently sped-up the 

simulation time by using the method of the multipole expansion of the Biot-Savart law. 

In essence, our developed numerical simulation code can sufficiently reduce the 

calculation time. 

(3) We have also discussed how to reduce the calculation time when simulating the 

magnetization process of HTS magnets based on the power law conductivity method. The 

calculation time can be reduced 10% by decreasing the time step, and 50% by changing 

the parameters N and EC. We confirmed that it is very difficult to reduce the calculation 
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time when simulating the magnetization process of HTS magnets based on power law 

conductivity method. 

(4) Applications of this developed numerical simulation code,  

We have designed the HTS magnets alignment for the Pure-type HTS undulator by 

using the T-method. Furthermore, we have confirmed the possibility of achieving a 

uniform sinusoidal distribution of the vertical magnetic field component (suppressed 

within 1%) along a longitudinal direction (x-direction) of the FEL undulator for 

maintaining laser operation by using this developed numerical simulation code. 

We have estimated a stable single electron orbit with 2 GeV energy by changing the 

offset vertical magnetic field for laser radiation. This is calculated by the Runge-Kutta 

method based on the magnetic field distribution. We confirmed that even if the magnetic 

field is uniform, the electron may move in a curved direction. 

  Lastly, we have applied this numerical simulation code for assisting the design of the 

HTS magnets alignment in the SAU as a means to employ the HTS magnetization process 

based on the T-method with the Bean’s critical state model. The developed numerical 

code provided the shielding current distribution and the corresponding magnetic field 

distribution. In addition, the single estimated electron motion was predicted by using the 

SAU’s magnetic field. We also compared the strength of the magnetic fields between the 

pure-type HTS undulator and SAU. We confirmed that the magnetic field of the pure-

type HTS undulator is about 10 times stronger than that of the SAU 

Ultimately, it is evident that the sinusoidal vertical magnetic field component 

distribution can be improved by adjusting the size of HTS magnets at the design stage. 
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Chapter 8  

Future Work 

As the future work of this research, it is mainly divided into two parts: 

(1) For further reducing the relative error (such as Fig. 5.2.20), it is necessary to try 

some other methods (A-method or A-φ method) and some other macro-model 

(Kim’s model or exponential critical-state model) to sufficiently simulate the 

magnetization process with the experimental measurement. 

(2) Even if the calculation-time of the magnetization process, based upon the power 

law method, has been reduced by about 50%, it is still five times longer than using 

the Bean’s critical state model. In the future, it is necessary to shorten the calculation 

time by improving the solution of nonlinear equations, such as the Chebyshev 

method and so on. 
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