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Abstract: Nowadays, renewable energy sources in a micro-grid (MG) system have increased challenges in terms of the
irregularly and fluctuation of the photovoltaic and wind turbine units. It is necessary to develop battery energy storage. The MG
central controller is helping to develop it in the MG system for improving the time of availability. Thus, reducing the total energy
expenses of MG and improving the renewable energy sources (battery energy storage) are considered together with the
operation management of the MG system. This study proposes fitness-based modified game particle swarm optimisation
(FMGPSO) algorithm to optimise the total costs of operation and pollutant emissions in the MG and multi-MG system. The
optimal size of battery energy storage is also considered. A non-dominated sorting genetic algorithm-III, a multi-objective
covariance matrix adaptation evolution strategy, and a speed-constrained multi-objective particle swarm optimisation are
compared with the proposed FMGPSO to show the performance. The results of the simulation show that the FMGPSO
outperforms both the comparison algorithms for the minimisation operation management problem of the MG and the multi-MG
system.

1 Introduction
Micro-grid (MG) is an integration of electrical loads and
distributed generation sources (DGs), including the energy storage
options operating system (a single system provides both heat and
power). DGs are renewable resources, for example, the wind and
solar energy system. The renewable energy sources (RESs) and
small-scale DGs combined with MG are able to raise energy crisis
and also centralise modern power grids [1]. Recently, RESs in the
MG system have increased challenges in terms of the irregularity
and fluctuation of the units, for example, photovoltaic (PV) and
wind turbine (WT) units. It is the reason why the battery energy
storage (BES) has been developed by the micro-grid central
controller (MGCC) in the MG system to increase the time of high
availability. Thus, the size and/or capacity of BES are considered
as an important role to optimise the operation costs problem in
MG. However, there are some emissions such as CO2, NOx, and
SO2, which are produced from the MG. Therefore, it is important to
manage the operations in MG for reducing the total cost and the
pollutant emissions from the system.

The operation costs minimisation problem of the MG system
has been studied in several researches. Some researches also
considered the size of BES with the problem. In [2], a mixed linear
integer problem (MLIP) was proposed to solve the optimisation
problem in the MG system. The problem is to optimise the size/
capacity of an energy storage system in the system. MLIP is a
solver in a modelling language for mathematical programming
(AMPL) that considers the cost–benefit analysis. In [3], the authors
proposed a new software, called the PSCAD/EMTDC software.
The software is used to optimise the size of a BES system. The
authors in [4] considered how to optimise the size/capacity of BES
as well as the minimising total operation cost of the MG system.
Thus, they proposed an improved bat algorithm to solve the
problems.

Otherwise, the impact of BES optimal sizing in the MG
operation is not considered on many researches. They studied only
the operation costs minimisation problem. In [5], a mathematical
model was proposed. The model is based on linear programming.
The authors also proposed a multi-agent system for MG operation.
The linear programming was used in [6] to minimise the operation
cost to the MG system, while optimising the charge states of BES.

Moreover, the particle swarm optimisation (PSO) algorithm was
proposed in [7] for optimising the operation of a typical MG
interconnected with the main grid. Hydropower, local load, storage
devices, and wind power are included in the system.

Therefore, we consider an MG management problem as an
optimisation problem including minimising the total cost of DG,
minimising the maintenance and operation cost of fuel cell (FC),
micro-turbine (MT), PV, and WT, and minimising the total BES
cost per day as well as the pollutant emissions. Then, we use a
fitness-based modified game particle swarm optimisation
(FMGPSO) algorithm to seek the optimal solution for the
optimisation problem. The reason that we consider to use both
game theory and PSO is that both of them can be used to seek an
optimal solution (Pareto set) for both single and multi-objective
optimisation problem.

The main contributions of this paper can be summarised as
follows:

• We investigate an optimisation operation management problem
in an MG system by considering the total cost of DG, the
maintenance and operation cost of FC, MT, PV, and WT, and the
total BES cost per day and the pollutant emissions.

• A cost function, an emission function, and constraints are
presented for the minimisation operation management problem.
The problem is considered as a multi-objective optimisation
problem. Then, we propose an FMGPSO algorithm to solve the
optimisation problems.

• The FMGPSO is proposed to solve the presented cost, emission
function, and constraints. We evaluate the FMGPSO by taking
extensive simulations. We consider two systems for the
simulation: single MG and multi-MG. A non-dominated sorting
genetic algorithm-III (NSGA-III), multi-objective covariance
matrix adaptation evolution strategy (MO-CMAES), and speed-
constrained multi-objective particle swarm optimisation
(SMPSO) are compared with the proposed FMGPSO algorithm
to show the performance.

In this paper, the summary of the related works is shown in
Section 2. Then, we describe an MG modelling in Section 3 and
present a cost, emission function, and constraints in Section 4. We
describe a game theory, PSO, and FMGPSO in Section 5. Then, the
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performance of the proposed FMGPSO, NSGA-III, MO-CMAES,
and SMPSO are evaluated by using a computer simulation in
Section 6. Finally, we describe the conclusion of this work in
Section 7.

2 Related work
Recently, several researches studied about the suitable capacity or
sizing of BES for optimising an operation management of MG
(OMMG). The MGCC implemented the OMMG to the MG
system. One of the optimisation tools is an OMMG problem for the
MGCC or smart energy manager. The MGCC has the liability to
optimise the MG operation. The objective of this optimisation tools
is minimising the total operation costs problem. Several studies
which focus on the problem can be classified into two groups as
follows:

i. The BESs optimal sizing and its present performance on the
OMMG problem are considered: In [8], an appropriate
technique of selecting the BES sizing was proposed to satisfy a
reliability index. A modelling language for mathematical
programming is used in [2] to determine the BES sizing for the
MG system. A simulated annealing algorithm was proposed in
[9] to optimise the PV/WT sizing of hybrid energy conversion
system with BES. In [3], a new method was proposed to
determine the BES optimal sizing. The primary frequency
control of the MG system which consists of a diesel generator,
FC, PV, and MT system is considered in a new method. It can
be seen that the BES sizing and its role in MG system are a
topic of interest in many researches.

ii. The impact of BES optimal sizing on OMMG problem is not
considered: In [10], a new smart energy management system
was proposed based on the matrix real-coded genetic algorithm
(GA). The system is to optimise the OMMG.

There are many heuristic algorithms which are used to optimise
the problem in MG, for example, GA including matrix real-coded
GA, NSGA and fast evolutionary algorithm, PSO including
adaptively modified PSO, direct search and modified the direct
search, differential evolution, game theory, and neural networks.
However, PSO is the most regular heuristic algorithm to solve the
problems in the MG system. It is easy to understand its concept and
implement by using a few parameters. PSO is able to be practical
to overall optimisation problems including non-convex or non-
smooth objective functions. It is also able to solve problems which
have high-quality solutions in shorter times [11]. Moreover, PSO
was also proposed to solve various problems in cloud computing
[12, 13].

A novel meta-scheduler was proposed in [12], called an
adaptive power-aware virtual machine (VM) provisioner. The VM
placement problem was solved by using a self-adaptive particle
swarm optimisation (SAPSO). The authors showed a performance
comparison among SAPSO, standard PSO, and multi-ensemble
PSO in five experiments. The experiments consist of the number of
failures in a VM provisioning, detecting and tracking an optimal
target server, the impact of exploiting power-saving states along
with dynamic voltage frequency scaling in VM provisioning, the

power trade-offs, and the rate of failure in VM provisioning with
fixed and variable evaporation factors. In [13], a PSO-based
heuristic scheme was proposed for minimising the communication
and computation costs which are for scheduling of workflow in
cloud environments. The authors presented a performance
comparison between the proposed algorithm with a greedy best
resource selection algorithm. The authors in [14] considered the
real-time optimal control of a large number of DGs in smart
distribution grids. They also proposed a consensus-based
dimension-distributed computational intelligence technique to
optimise their problem. Moreover, there are some researches that
used PSO or game theory to solve other problems [15, 16].

A multi-objective PSO was proposed in [15] to solve the
problem of the cloud brokering systems in cloud computing.
Maximising the profit of the broker and minimising the response
time of the request and the energy consumption are considered as a
multi-objective optimisation problem. In [16], the authors
considered a resource allocation problem in device-to-device
communications as a non-cooperative game. They proposed a
distributed interference-aware energy-efficient resource allocation
algorithm to maximise each user equipment's energy efficiency in
an interference-limited environment. Moreover, a game theoretic
resource allocation scheme was proposed in [17] for media cloud.
The proposed scheme is to allocate the resource of mobile social
users through brokers. The interactions among mobile social users,
brokers, and media cloud are formulated by using a four-stage
Stackelberg game.

However, almost all studies used only the heuristic algorithm,
neural network, or game theory to solve the problems in the MG
system. There are a few studies that proposed the combined
algorithm such as a fuzzy with neural network and the fuzzy with
PSO. Nevertheless, there is no study that tries to combine PSO
with game theory to solve the problems. Therefore, we consider a
modified game with PSO to solve the total operation costs problem
in the MG system. Owing to both the modified game and PSO it
was able to find an optimal solution set, called Pareto-set, in the
single-objective and the multi-objective optimisation problem.

In this paper, a modified game and PSO are considered to apply
for the MG system. We consider the total operation costs and
pollutant emission problem while optimising the size of BES.
Sections 4 and 5 presented more details.

3 MG modelling
In this paper, the MG system consists of different DGs, for
example, the PV, WT, MT, FC, and BES. A typical low-voltage
MG system is shown in Fig. 1 [4]. The MGCC manages a power
exchange between the utility and DGs. Moreover, there are
MT/FC/BES backup power sources which are located in various
locations in the system to reduce the incompatibility between
renewable energy generators and energy consumption. The source
is also used to store the power from renewable energy generators
for using when there is low power or non-generation in time
periods. However, some carbon dioxide, nitrogen oxide, sulphur
dioxide, and particulate matter of 10 µm emissions are produced
from some DGs such as MT, FC, and BES. Thus, the minimisation
operation management problem is considered for the MG system.
The problem consists of two objectives: the total cost of the system
and the emissions from the system.

4 Problem statement
The problem statement of minimisation problem of the operation
costs in the MG system is described in this section. We first
describe the cost function, pollutant emission function, and the
constraints of the optimisation operation management problem in
Sections 4.1 and 4.2, respectively. Then, we describe the multi-
objective optimisation problem.

4.1 Objective functions

This paper considers the total cost and the pollutant emissions in
the MG system as two objectives in the optimisation operation
management problem.

Fig. 1  Typical MG test system
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4.1.1 Cost functions: The cost functions in the MG system
consist of three functions, which are the total cost of DG, the
maintenance and operation cost of FC, PV, MT, and WT, and the
total BES cost per day.

The total costs of DG ( f t): the cost of grid (CGrid, t) ($), the cost
of operating power and fuel of DGs (CDG, t), and BES (CBES, t) ($),
the start-up and shutdown cost for MT (SUMT, t), (SDMT, t), and FC
(SUFC, t), (SDFC, t) at time t ($) are considered to calculate the total
costs of DG. Thus, it can be formulated as follows:

f t = CGrid, t + CDG, t + CBES, t + SUFC, t + SUMT, t

+SDFC, t + SDMT, t
(1)

The cost of grid (CGrid, t) at time t is calculated as follows:

CGrid, t =
(1 − tax)BGrid, tPGrid, t if PGrid, t < 0
BGrid, tPGrid, t if PGrid, t > 0
0 if PGrid, t = 0

(2)

where BGrid, t is a bid of utility at time t ($/kWh) and PGrid, t is a
power of utility at time t (kWh). tax is a tax rate of the grid. Next,
the cost of operating power and fuel of DGs (CDG, t) and BES
(CBES, t) at time t ($) are calculated as follows:

CDG, t = BMT, tPMT, tuMT, t + BPV, tPPV, t

+BFC, tPFC, tuFC, t + BWT, tPWT, t
(3)

CBES, t = BBES, tPBES, tuBES, t (4)

where BMT, t, BFC, t, BPV, t, and BWT, t are a the bid cost of MT, FC,
PV, and WT at time t ($/kWh). PMT, t, PFC, t, PPV, t, and PWT, t are the
power of MT, FC, PV, and WT at time t (kWh), respectively. BBES, t
and PBES, t are a bid of BES ($/kWh) and a power of BES (kWh) at
time t. uMT, t, uFC, t, and uBES, t are a status (off or on) of MT, FC, and
BES at time t, respectively.

The start-up and shutdown cost for MT (SUMT, t), (SDMT, t) and
FC (SUFC, t), (SDFC, t) at time t ($) can be calculated as follows:

SUi, t = Sti × max (0, ui, t − ui, t − 1)
SDi, t = Shi × max (0, ui, t − ui, t − 1)

(5)

where Sti, t and Shi, t are the start-up and shutdown cost coefficient
for FC and MT. The status (off or on) of FC and MT at time t are
defined as ui, t.

The fixed maintenance and operation cost of DG (MODG): the
fixed maintenance and operation cost of MT (MOMT), FC (MOFC),
PV (MOPV), and WT (MOWT) are considered in the fixed
maintenance and operation cost of DG. Thus, it is calculated as
follows:

MODG = (MOFC + MOMT + MOWT + MOPV) × OTH (6)

Total cost per day of BES (TCPDBES): the interest rate of the
installed BES is defined as IR and the lifetime of the installed BES
is defined as LT. The TCPDBES can be calculated as follows [2, 4]:

TCPDBES = CBES, max
365

IR(1 + IR)LT

(1 + IR)LT − 1
FCBES + MCBES (7)

where CBES, max is a maximum size of BES (kWh). FCBES and
MCBES are a fixed cost for BES ($/kWh) and a maintenance cost
for BES ($/kWh), respectively.

4.1.2 Emission functions: There are four of the most important
emissions from the MG system: carbon dioxide (CO2), nitrogen
oxides (NOx), sulphur dioxide (SO2), and particulate matter 10 µm

(PM10). We consider those important emissions as the second
objective in the optimisation operation management problem.
Thus, the emission function consists of three functions, which are
the emission of utility, the emission of FC, PV, MT, and WT, and
the emission of BES.

The emission of utility: It can be formulated as follows:

EGrid, t
s = EGrid, tPGrid, t (8)

where EGrid, t = CO2, Grid, t + NOx, Grid, t + SO2, Grid, t + PM10, Grid, t, the
meaning of CO2, Grid, t, NOx, Grid, t, SO2, Grid, t, and PM10, Grid, t are the
amounts of carbon dioxide, nitrogen oxides, sulphur dioxide, and
particulate matter 10 µm from utility at time t, respectively.

The emission of DG: It can be formulated as follows:

EDG, t
s = ∑

i = 1

N
EDGi, tPDGi, tuDGi, t (9)

where EDGi, t = CO2, DGi, t + NOx, DGi, t + SO2, DGi, t + PM10, DGi, t, the
meaning of CO2, DGi, t, NOx, DGi, t, SO2, DGi, t, and PM10, DGi, t are the
amounts of carbon dioxide, nitrogen oxides, sulphur dioxide, and
particulate matter 10 µm from MT and FC at time t, respectively.

The emission of BES: It can be formulated as follows:

EBES, t
s = ∑

i = 1

N
EBES, tPBES, tuBES, t (10)

where EBES, t = CO2, BES, t + NOx, BES, t + SO2, BES, t + PM10, BES, t, the
meaning of CO2, BES, t, NOx, BES, t, SO2, BES, t, and PM10, BES, t is the
amounts of carbon dioxide, nitrogen oxides, sulphur dioxide, and
particulate matter 10 µm from BES at time t, respectively.

4.2 Constraints

The constraints are three requirements of the operation costs
problem in the MG system, which are dispatchable DGs and grid
constraint, BES constraints, and operating reserve (OR) constraint.

Generating and grid capacity constraints: The generating
capacity constraints can be formulated as follows:

Pj, min ≤ Pj, t ≤ Pj, max, t = 1, . . . , OTH (11)

where Pj, min and Pj, max are the minimum and maximum power of
MT, PV, FC, and WT (kW) as well as the utility.

BES constraints [2]:

• Discharging mode:

CBES, t + 1 = max {(CBES, min, CBES, t

−ΔtPBES, t /ηdischarge)}, t = 1, . . . , OTH (12)

where CBES, min is a minimum size of BES (kWh). Δt is a time
interval duration and ηdischarge is a discharge efficiency of BES.

• Charging mode:

CBES, t + 1 = min {(CBES, max, CBES, t

−ΔtPBES, tηcharge)}, t = 1, . . . , OTH (13)

where CBES, max is a maximum BES size (kWh). Δt is a time
interval duration and ηcharge is a charge efficiency of BES

PBES, t ≤ PBES, t ≤ PBES, t, t = 1, . . . , OTH (14)

where PBES, t is a maximum BES charge rates and PBES, t is a
maximum discharge rates of BES at time t (kW). They can be
formulated as follows:
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PBES, t = min {PBES, max, (CBES, t

−CBES, maxηdischarge/Δt)}, t = 1, . . . , OTH
(15)

PBES, t = max {PBES, max, (CBES, t

−CBES, max/ηchargeΔt)}, t = 1, . . . , OTH (16)

The BES released energy limits and BES power discharged are
mentioned in (12). Next, constraints in (13) and (14) are a
limitation of BES on the stored energy and power charged of BES.
Finally, constraints in (15) and (16) are the minimum and
maximum charging/discharging rates, respectively. Note that, the
battery strings will be sorted up or down in the priority list for
charge/discharge according to the current state of charge, if several
conditions of the battery are in the same range. The condition of
the battery is charged/discharged until a new range is reached. With
the same range, the battery will be charged/discharged with the
next lower/higher state of charge.

OR constraint: When MT, FC, BES, and utility are turned on in
each time step, the summation of reserved electrical power
generation capacity is an OR [4]. The OR can be formulated as
follows:

ORt + PDemand, t ≤ Pgrid, max + PMT, maxuMT, t

+PFC, maxuFC, t + PBES, tuBES, t, t = 1, . . . , OTH
(17)

where ORt is an OR requirement (kW) at time t. PFC, max, PMT, max,
and Pgrid, max are a maximum power of FC, MT, and the utility,
respectively. uFC, t, uMT, t, and uBES, t are the status of FC, MT, and
BES (off or on) at time t. PDemand, t is a load demand of electrical at
time t (kW).

4.3 Multi-objective optimisation problem for MG

This paper first considers a multi-objective optimisation problem
for an MG system by using the three cost functions and three
emission functions which are described in Section 4.1. Thus, the
cost function of the operation management problem is formulated
as follows:

C(X) = ∑
t = 1

OTH
f t + MODG + TCPDBES (18)

where f t is the total cost of DG ($). t and OTH are the ith time
stamp (h) and operation time (h), respectively. MODG is the fixed
maintenance and operation cost of DG ($/kWh). TCPDBES denotes
the total cost per day of BES ($).

Then, the emission function of the operation management
problem is formulated as follows:

E(X) = ∑
t = 1

OTH
EGrid

s (t) + EDG
s (t) + EBES

s (t) (19)

Hence, the optimisation operation management problem of the MG
system is to minimise the cost and emission function as follows:

Minimise C(X) = ∑
t = 1

OTH
f t + MODG + TCPDBES (20)

Minimise E(X) = ∑
t = 1

OTH
EGrid

s (t) + EDG
s (t) + EBES

s (t) (21)

subject to three constraints which are described in Section 4.2.

5 FMGPSO algorithm
In this section, we describe the process of FMGPSO. The presented
algorithm seeks the optimal solution set (Pareto-set) for the

operation management problem of the MG system. FMGPSO
operates its optimisation method to seek the best operation
management in the MG and multiple MG systems. When the
FMGPSO is finished, the optimal objective values and the optimal
solution set are found for the decision makers. In the beginning, we
introduce the traditional PSO. Then, a modified game is presented.
Finally, we propose the FMGPSO to solve the problem in the MG
system.

5.1 Particle swarm optimisation

Kennedy, Eberhart, and Shi designed PSO in 1995 [18]. PSO can
be called as a population-based optimisation tool, because the
process of PSO imitates the flock motion of birds. The various
optimisation problems can be solved by applying PSO. The swarm
or population of PSO represents the possible solutions set. In the
search space, a solution position is represented by each particle or
an individual in the swarm or population. Each particle moves
repeatedly to a new position in the d-dimensional space to find the
best fitness value.

A position vector xl = (xl1, xl2, . . . , xlk) represents each particle
in the swarm, where l is the particle's index and k is the number of
dimensions. vl = (vl1, vl2, . . . , vlk) represents the velocity vector.
The best position of the particle (pBest) is represented by
pl = (pl1, pl2, . . . , plk). gl = (gl1, gl2, . . . , glk) represents the best
position of the swarm (gBest).

In the beginning, an initial swarm is generated by random
particles. Then, the updated velocity vector is computed in PSO at
each iteration t. It can be calculated as follows:

vlk(n + 1) = wvlk(n) + c1r1[plk − xlk(n)]
+c2r2[glk − xlk(n)] (22)

where w is an inertia weight. c1 and c2 are the learning factors, they
can be called the coefficient of the self-recognition component and
the coefficient of the social component, respectively. r1 and r2 are
randomly uniform distributed number in the interval 0 to 1.

Then, the updated velocity vector is calculated. Finally, the
position of each particle is updated. The new position can be
calculated as follows:

xlk(n + 1) = xlk(n) + vlk(n + 1) (23)

where k represents each particle's dimension and l is each particle's
index. After the objective value error is satisfied or the maximum
limit of the number of iterations is found, the optimisation
processes of PSO are terminated.

5.2 Modified game

The mathematical model which is defined to study the situations of
cooperation and conflicts is game theory. However, it does not
cover cases that the decision makers do not have any effect on the
results [19]. Game theory studies the phenomenon of negotiation
between a very general setting and rational agents in conflict
situations. Thus, game theory is a rational behavior general theory.
The theory is for situations that rational players (decision makers)
have made available with their limit number of action. It is a well-
defined outcome or end with wins and losses for each player
(decision maker), it shows that in terms of the number of payoffs
participated with each combination of action [20].

The cooperative game theory or the modified game is proposed
in [21] to solve an optimisation problem. The modified game of
solving the operation management problem in the MG system can
be stated as follows. First, two objectives are assumed as two
players. The two objectives consist of the total cost and pollutant
emission of the MG system. In the modified game, players try to
improve their own situations. It means they will try to decrease
their objective value.

In this paper, the optimisation total operation costs and pollutant
emission of the MG system have to be minimised. Thus, an
objective function for modified game is created as follows:
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Minimise:Obj(X) = P(X) − S(X) (24)

where P(X) is a Pareto optimal objective which is calculated as
P(X) = ∑i = 1

n ci f ni(X); n represented the number of objectives; and
∑i = 1

n ci = 1. S(X) is a supercriterion which is calculated as
∏i = 1

n 1 − f ni(X) . f ni(X) is a normalisation of the ith objective
function which can be calculated as
f ni(X) = [ f i(X) − f i(Xi

∗)]/[Fiu − f i(Xi
∗)], where Fiu denotes the

worst value, f i(X) and f i(Xi
∗) are the ith objective value and the ith

optimum objective value, respectively.

5.3 Fitness-based modified game particle swarm
optimisation

This paper considers the modified game theory to calculate the
fitness value for PSO to solve the operation costs problem in the
MG and multi-MG system. Modification of the traditional PSO is
needed. Thus, the fitness-based modified game particle swarm
optimiation (FMGPSO) is proposed. The FMGPSO tries to seek a
set of optimal solutions (Pareto-set).

The procedures of FMGPSO can be implemented as follows:

Step 1 (Initialise): Set the parameters of the particle swarm.
Step 2: Generated randomly the particles (position and velocity
vector) and calculated the fitness value by (24).
Step 3: Set each particle's pBest to the particle position.
Step 4: Collect the set of gBest by choosing the particle position
using non-dominated sorting based on fitness value.
Step 5: Initialise an external archive by adding the set of gBest.
Step 6: Improve the position of particle by calculating the particle's
updated velocity, the particle's position, and the fitness value by
(22)–(24), respectively.
Step 7: Apply the turbulence (which is a mutation operator that
operates on the velocity value) operators.
Step 8: Check the fitness value by comparing between the new
position with pBest. If the new position is better than pBest, then set
a new position as pBest.
Step 9: Collect the gBest by choosing the particle position with
using non-dominated sorting based on fitness value.
Step 10: Update an external archive by adding the set of gBest.
Step 11: Check the fitness value error or the maximum limit of the
number of iterations. If the fitness value error is not satisfied or the
maximum limit of the number of iterations is not found go to Step
6, else next step.
Step 12: Report the external archive as the results.

5.4 Computational complexity of FMGPSO

Let the swarm (or population) size and the external archive size be
N and H, respectively, and the number of objectives is M. The
complexity of FMGPSO is mainly influenced by a variety
computational operation (e.g. calculating the particle's updated
velocity, the particle's position, and the fitness value) and the non-
dominated sorting process. M(N + H) comparisons are needed for
checking a particle for its non-dominance based on fitness value
within N + H particles and M objectives. Thus, the worst case
complexity of this process will be O(M(N + H)2). However, for the
external archive only, the sorting based on fitness value requires
O(MHlog(H)) computations. Therefore, in the worst-case scenario
with N + H elements in the archive, the overall worst-case
complexity of FMGPSO is O(M(N + H)2). Moreover, the
computational complexities corresponding to NSGA-III, MO-
CMAES, and SMPSO are O(MN2), O(N2), and O(M(N + H)2),
respectively.

6 Performance evaluation
First, the set-up of our simulation is presented in this section. Then,
the performance of the FMGPSO for the MG and multi-MG
system is analysed that minimises the objective functions and
constraints which are described in Section 4. The FMGPSO are
compared with NSGA-III, MO-CMAES, and SMPSO to show the
performance.

6.1 Simulation set-up

A typical MG test system is described in Sections 3 and 4 and more
information could be found in [2, 22, 23]. Moreover, the
installation and operation of BES, and the fixed and maintenance
cost are 495.09 and 15.97 ($/kWh), respectively. Financing the
installed BES, and the IR and LT are assumed to be 3 and 0.06,
respectively. In each time step, the OR requirement is assumed to
be 5% of the load demand. The tax is set to 10%. The full size of
BES is set to 500 kWh. Ten per cent of the full size is assumed as
the minimum size of BES. The rate of charge and discharge of BES
are the same. They are set to be 90%. The MG test and the multi-
MG test system are executed for 1 day. There are two systems
which are considered in this paper as follows.

6.1.1 MG system: The MG test system consists of different DGs,
for example, the PV, WT, MT, FC, and BES. Table 1 shows all
limitation of productions and coefficients that are used in the MG
test system. Moreover, Table 2 shows the pollutant emissions of
MG system in kilogram per megawatt hour.

There are two cases: the MG system with BES and without the
BES.

6.1.2 Multi-MG system: In this paper, the operation management
minimisation problem is also considered for the multi-MG system.
The system consists of four MGs. Each MG consists of different
DGs, for example, the PV, WT, MT, FC, and BES. A multi-MG test
system is shown in Fig. 2. Moreover, Table 3 shows all limitation
of productions and coefficients that are used in the multi-MG test
system. The pollutant emissions in each MG used the same as in
Table 2.

The FMGPSO is compared with a well-known existing GA (an
NSGA-III [24], MO-CMAES [25], and SMPSO [26]). Each
algorithm is repeatedly run for 30 independent trial runs to

Table 1 Characteristics of units in the MG system
Type Min power, kW Max power, kW Bid cost, $/kWh MO cost, $/kWh Start-up/shutdown cost, $
micro-turbine (MT) 6 30 0.49 0.0475 1.02
fuel cell (FC) 3 30 0.31 0.0918 1.76
photovoltaic (PV) 0 25 2.75 0.22 0
wind turbine (WT) 0 15 1.14 0.56 0
battery −30 30 0.4 — 0
utility −30 30 — — —
 

Table 2 Emissions of the DG sources
Pollutants CO2 NOx SO2 PM − 10
micro-turbine (MT) 724.6 0.2 0.004 0.041
fuel cell (FC) 489.4 0.014 0.003 0.001
photovoltaic (PV) 0 0 0 0
wind turbine (WT) 0 0 0 0
battery 10 0.001 0.0002 0
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demonstrate the proposed algorithm performance. The NSGA-III
used the simulated binary crossover (SBX) [27] as a crossover
operator. The necessary parameters of the NSGA-III algorithm
include the population size, the maximum generation, a mutation,
and a crossover rate of 100, 300, 1/n, and 0.9, respectively. The
necessary parameters of the MO-CMAES algorithm include the

population size, the maximum generation, neighbourhood size, and
recombination weights of 100, 300, 10, and 0.5, respectively. The
necessary parameters of the FMGPSO and SMPSO algorithm
include the swarm size, the archive size, the maximum iteration,
and a mutation rate of 100, 100, 300, and 1/n, respectively.

6.2 Simulation results

The simulation results are divided into two parts: the results of the
multi-objective value of the operation costs and emission
minimisation problem in the MG system that are solved using the
FMGPSO, NSGA-III, MO-CMAES, and SMPSO, and the results
of the multi-objective values of the operation costs and emission
minimisation problem in the multi-MG system that are solved
using the FMGPSO, NSGA-III, MO-CMAES, and SMPSO. The
comparison of the best solutions of 30 independent runs is shown
in each iteration of the four algorithms.

6.2.1 Optimal solution of the MG system: We described the
multi-objectives in the MG system and FMGPSO algorithm to
solve the minimisation problem of the optimisation operation
management in Sections 4.3 and 5.3, respectively. In this section of
simulation results, a comparison of the best solutions of 30
independent runs is presented by using four algorithms: FMGPSO,
NSGA-III, MO-CMAES, and SMPSO. We described the
simulation set-ups of each algorithm in Section 6.1.

First, we show the results in the case of the MG system with
BES. Tables 4 and 5 and Figs. 3 and 4 show the comparison of
optimal operation costs and pollutant emission in the MG system
of 30 independent runs and the total operation cost and pollutant
emission in the MG system with BES at the end of each iteration,
respectively. The results in Table 4 show that the proposed
algorithm FMGPSO is able to seek the minimum and maximum
value of the minimal operation cost at $396.10 and $472.06,
respectively. The maximum value of the minimal operation cost of
FMGPSO is less than the minimum value of the minimal operation
cost of NSGA-III and SMPSO. Moreover, the average of the

Fig. 2  Multi-MG test system (four MGs)
 

Table 3 Characteristics of units in the multi-MG system
MG Type Minimum power, kW Maximum power, kW Bid cost, $/kWh MO cost, $/kWh Start-up/shutdown cost, $
1 MT 6 30 0.49 0.0475 1.02

PV 0 25 2.75 0.22 0
WT 0 15 1.14 0.56 0

battery −30 30 0.4 — 0
utility −30 30 — — —

2 MT 6 30 0.49 0.0475 1.02
FC 3 30 0.31 0.0918 1.76
WT 0 15 1.14 0.56 0

battery −30 30 0.4 — 0
utility −30 30 — — —

3 FC 3 30 0.31 0.0918 1.76
PV 0 25 2.75 0.22 0
WT 0 15 1.14 0.56 0

battery −30 30 0.4 — 0
utility −30 30 — — —

4 MT 6 30 0.49 0.0475 1.02
FC 3 30 0.31 0.0918 1.76
PV 0 25 2.75 0.22 0

battery −30 30 0.4 — 0
utility −30 30 — — —

 

Table 4 Comparison of operation cost ($) and simulation time of 30 runs in the case of the MG system with BES
Algorithm Min Avg Max Mean time, ms
FMGPSO 396.10 447.70 472.06 455.8
NSGA-III 502.72 563.33 605.34 336.2
MO-CMAES 451.79 518.48 522.13 259.4
SMPSO 520.80 591.19 621.32 359.6
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Table 5 Comparison of emissions (kg/MWh) in the case of the MG system with BES
Algorithm Min Avg Max
FMGPSO 1396.15 1578.03 1661.86
NSGA-III 1463.49 1639.91 2015.28
MO-CMAES 1407.64 1569.85 1952.19
SMPSO 1429.38 1708.78 2537.27

 

Fig. 3  Total operation cost of the MG system with BES at the end of each
iteration

 

Fig. 4  Total emission of the MG system with BES at the end of each
iteration

 
Table 6 Status and optimal output power of the units in the MG system with BES by FMGPSO (total cost = 396.10 and
emission = 1396.15 kg/MWh)
Time, h Status (0 or 1) Optimal output power, kW

MT FC PV WT BES Utility MT FC PV WT BES Utility
1 1 1 0 1 1 1 6.0000 3.0000 0 0.0038 −30.0000 27.5091
2 1 1 0 1 1 1 6.0000 3.0049 0 0.0027 −26.7206 29.7407
3 1 1 0 0 1 1 6.0000 3.0055 0 0 −26.6405 22.6219
4 1 1 0 0 1 1 6.0000 3.0000 0 0 1.3605 22.3713
5 1 1 0 0 1 1 6.0000 3.0000 0 0 5.2510 28.8121
6 1 1 0 0 1 1 30.0000 3.0000 0 0 2.4112 21.8917
7 1 1 0 0 1 1 6.0000 3.0000 0 0 2.8716 23.5719
8 1 1 0 1 1 1 6.0000 3.0000 0 14.3648 0.0016 24.6808
9 1 1 0 0 1 1 6.0029 3.0006 0 0 2.5306 −12.4109
10 1 1 1 0 1 1 6.0000 3.0000 1.3305 0 11.2719 −11.1708
11 1 1 0 0 1 1 6.0000 30.0000 0 0 15.2714 −11.0020
12 1 1 0 0 1 1 6.0000 3.0000 0 0 11.2206 −17.9213
13 1 1 1 1 1 1 6.0000 3.0000 1.4705 15.0000 14.1909 −17.9781
14 1 1 0 0 1 1 6.0000 3.0000 0 0 16.7719 −18.6715
15 1 1 0 0 1 1 29.9999 3.0000 0 0 17.5309 −15.3322
16 1 1 0 0 1 1 6.0000 3.0000 0 0 14.1909 −11.7907
17 1 1 0 1 1 1 6.0622 3.0000 0 0.1552 18.1107 13.9107
18 1 1 0 0 1 1 6.0000 3.0000 0 0 22.8909 24.7015
19 1 1 0 0 1 1 6.0000 3.0000 0 0 17.8218 22.3613
20 1 1 0 1 1 1 6.0000 3.0000 0 0.0109 22.1511 11.1515
21 1 1 0 0 1 1 6.0000 3.00784 0 0 15.5838 −11.1518
22 1 1 0 0 1 1 6.0000 3.0000 0 0 13.2906 −2.5308
23 1 1 0 1 1 1 6.0000 30.0000 0 0.0043 9.1515 25.7207
24 1 1 0 1 1 1 6.0000 3.0000 0 0.0121 11.0717 21.0117

 

Table 7 Comparison of operation cost ($) and simulation time of 30 runs in the case of the MG system without BES
Algorithm Min Avg Max Mean time, ms
FMGPSO 320.50 396.10 533.16 455.8
NSGA-III 455.59 555.59 616.19 436.2
MO-CMAES 397.32 488.35 490.67 259.4
SMPSO 481.35 591.19 623.18 359.6
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minimal operation cost of FMGPSO is less than the average of the
other algorithms. On the other hand, the results in Table 5 show
that the proposed algorithm FMGPSO is able to seek the minimum
and maximum values of the minimal pollution emissions at
1396.15 and 1661.86 kg/MWh, respectively. It can be seen that the
minimum value of the minimal pollution emissions of FMGPSO is
less than the other algorithms as well as the maximum value of the
minimal pollution emissions. Therefore, it can be concluded that
FMGPSO contributes to minimal of the total operation cost better
than the NSGA-III, MO-CMAES, and SMPSO do as well as the
pollutant emission. However, the simulation time of the FMGPSO
is not the best, since we used the fitness function based on the
modified game theory for PSO. It means the proposed algorithm
FMGPSO consists of two algorithms: modified game theory and
PSO. Thus, it is possible that the simulation time of FMGPSO is
higher than the other algorithms. Moreover, Table 6 shows the
results of the optimal output power from the units in the MG
system.

Next, we show the results in the case of the MG system without
BES. Tables 7 and 8 and Figs. 5 and 6 show the comparison of
optimal operation costs and pollutant emissions in the MG system
of 30 independent runs and the total operation cost and pollutant
emission in the MG system at the end of each iteration,
respectively. The results in Table 7 show that the proposed
algorithm FMGPSO is able to seek the minimum and maximum
value of the minimal operation cost at $320.50 and $533.16,
respectively. The average of the operation cost of FMGPSO is less
than the average of the other algorithms as well as the minimum
value of the minimal operation cost. On the other hand, the results
in Table 8 show that the proposed algorithm FMGPSO is able to
seek the minimum and maximum value of the minimal pollutant
emissions at 1396.15 and 1569.85 kg/MWh, respectively. The
minimum value of the minimal pollutant emissions of FMGPSO is
less than the other algorithms as well as the maximum value of the
minimal pollutant emissions. Therefore, it can be concluded that
FMGPSO contributes to minimal of the total operation cost better
than the NSGA-III, MO-CMAES, and SMPSO do as well as the
pollutant emission. However, the simulation time of the proposed
algorithm is still not the best.

6.2.2 Optimal solution of the multi-MG system: We described
the multi-MG system in Section 6.1.2. The objectives of each MG
are considered the same with single MG system which is described
in Section 4.3, but each term depends on the units in each MG. In
this section of simulation results, a comparison of the best solutions
of 30 independent runs is presented by using four algorithms:
FMGPSO, NSGA-III, MO-CMAES, and SMPSO. We described
the simulation set-ups of each algorithm in Section 6.1.

Tables 9 and 10 and Figs. 7 and 8 show the comparison of
optimal operation costs and pollutant emission in the multi-MG
system of 30 independent runs and the total operation cost and
pollutant emission in the multi-MG system at the end of each
iteration, respectively. The results in Tables 9 and 10 show that the
minimum value, maximum value, and average of the minimal
operation cost and pollutant emissions of each MG of the proposed
algorithm FMGPSO are less than the other algorithms. Thus, it can
be concluded that FMGPSO contributes to minimal of the total
operation cost and the pollutant emission better than NSGA-III,
MO-CMAES, and SMPSO do. 

7 Conclusion
The FMGPSO algorithm is proposed in this paper. The proposed
algorithm is to minimise the total costs of operation and the

Table 8 Comparison of emissions (kg/MWh) in the case of the MG system without BES
Algorithm Min Avg Max
FMGPSO 1396.15 1405.09 1569.85
NSGA-III 1536.12 1543.41 1581.88
MO-CMAES 1409.64 1550.40 1649.35
SMPSO 1532.37 1620.93 1702.84

 

Fig. 5  Total operation cost of the MG system without BES at the end of
each iteration

 

Fig. 6  Total emission of the MG system without BES at the end of each
iteration

 
Table 9 Comparison of operation cost ($) of 30 simulation
runs
Algorithm MG Min Avg Max
FMGPSO 1 378.26 378.26 378.26

2 396.10 396.10 396.10
3 365.32 365.32 365.32
4 376.84 376.84 376.84

NSGA-III 1 506.31 603.87 676.39
2 502.72 575.59 623.98
3 509.73 598.74 645.10
4 504.10 601.76 668.98

MO-CMAES 1 453.71 562.78 653.24
2 451.79 569.52 631.97
3 491.28 543.75 626.13
4 478.98 521.32 632.78

SMPSO 1 580.27 612.58 657.14
2 571.64 599.52 631.97
3 593.05 623.75 656.10
4 577.30 609.32 643.80
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pollutant emission in the MG and the multi-MG system. It has been
processed by the computer simulation. The results of simulation
show that the FMGPSO is able to seek suitable solution sets for the
MG systems. The performance of the proposed FMGPSO is shown
by comparing with an NSGA-III, MO-CMAES, and SMPSO. The

results show that the FMGPSO successfully minimises the total
operation costs and pollutant emission of the MG system better
than the NSGA-III, MO-CMAES, and SMPSO. However, the
average simulation time of the proposed algorithm longer than the
other algorithms. In future work, we will consider a purchased and
sold powers cost model among MG in the multi-MG system.
Moreover, the complexity of the FMGPSO includes finding the
operators will be considered to reduce the complexity.
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