室蘭工業大学
学術資源アーカイブ
Muroran Institute of Technology Academic Resources Archive

Lefschetz invariants and Young characters for representations of the hyperoctahedral groups

メタデータ	言語：eng 出版者：Elsevier 公開日：2018－08－09 キーワード（Ja）： キーワード（En）：Burnside ring，Character ring，Hyper octahedral group，Lefschetz invariant，Parabolic subgroup，Sign character，Symmetric group，Young subgroup 作成者：小田，文仁，竹ケ原，裕元，吉田，知行 メールアドレス： 所属：
URL	http：／／hdl．handle．net／10258／00009673
	This work is licensed under a Creative Commons Attribution－NonCommercial－ShareAlike 4.0 International License．

Lefschetz invariants and Young characters for representations of the hyperoctahedral groups

Fumihito Oda
Department of Mathematics, Kindai University, Higashi-Osaka, 577-8502, Japan
E-mail: odaf@math.kindai.ac.jp
Yugen Takegahara*
Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
E-mail: yugen@mmm.muroran-it.ac.jp
Tomoyuki Yoshida
Graduate School of Economics, Hokusei Gakuen University, 2-3-1, Ohyachi-Nishi, Atsubetsu-ku, Sapporo 004-8631, Japan
E-mail: ytomoyuki@mub.biglobe.ne.jp

Abstract

The ring $R\left(B_{n}\right)$ of virtual \mathbb{C}-characters of the hyperoctahedral group B_{n} has two \mathbb{Z}-bases consisting of permutation characters, and the ring structure associated with each basis of them defines a partial Burnside ring of which $R\left(B_{n}\right)$ is a homomorphic image. In particular, the concept of Young characters of B_{n} arises from a certain set \mathcal{U}_{n} of subgroups of B_{n}, and the \mathbb{Z}-basis of $R\left(B_{n}\right)$ consisting of Young characters, which is presented by L. Geissinger and D. Kinch [7], forces $R\left(B_{n}\right)$ to be isomorphic to a partial Burnside ring $\Omega\left(B_{n}, \mathcal{U}_{n}\right)$. The linear \mathbb{C}-characters of B_{n} are analyzed with reduced Lefschetz invariants which characterize the unit group of $\Omega\left(B_{n}, \mathcal{U}_{n}\right)$. The parabolic Burnside ring $\mathcal{P B}\left(B_{n}\right)$ is a subring of $\Omega\left(B_{n}, \mathcal{U}_{n}\right)$, and the unit group of $\mathcal{P B}\left(B_{n}\right)$ is isomorphic to the four group. The unit group of the parabolic Burnside ring of the evensigned permutation group D_{n} is also isomorphic to the four group.

[^0]
1 Introduction

Let G be a finite group, and let G-set be the category of finite left G-sets and G-equivariant maps. The Burnside ring $\Omega(G)$, which is the Grothendieck ring of the category G-set, is the commutative unital ring consisting of all \mathbb{Z}-linear combinations of isomorphism classes $[X]$ of finite left G-sets X with disjoint union for addition and cartesian product for multiplication. We denote by $R(G)$ the ring of virtual \mathbb{C}-characters of G. Set $[n]=\{1,2, \ldots, n\}$, and let S_{n} be the symmetric group on $[n]$. We denote by \mathcal{Y}_{n} the set of Young subgroups of S_{n}, which is closed under intersection and conjugation. By $[15, \S 7], \Omega\left(S_{n}\right)$ possesses the partial Burnside ring $\Omega\left(S_{n}, \mathcal{Y}_{n}\right)$ relative to the Young subgroups as a subring, and $\Omega\left(S_{n}, \mathcal{Y}_{n}\right) \cong R\left(S_{n}\right)$. This fact means that the characters $1_{Y}^{S_{n}}$ induced from the trivial characters 1_{Y} of Y for $Y \in \mathcal{Y}_{n}$ form a \mathbb{Z}-basis of $R\left(S_{n}\right)$ (see, e.g., [2, Proposition 3]). Let C_{2} be a cyclic group of order 2, and let V_{n} be the direct product $C_{2}^{(n)}$ of n copies of C_{2}. We denote by B_{n} the hyperoctahedral group, that is, the wreath product $C_{2} 乙 S_{n}$ defined to be a semidirect product $V_{n} \rtimes S_{n}$ of V_{n} with S_{n}. Let \mathcal{Z}_{n} be the set of all products $K Y$ of $K \leq V_{n}$ and $Y \in \mathcal{Y}_{n}$ with $\left|V_{n}: K\right| \leq 2$ and $Y \leq N_{S_{n}}(K)$. We establish in $\S 3$ that $R\left(B_{n}\right)$ is a homomorphic image of the partial Burnside ring $\Omega\left(B_{n}, \widetilde{\mathcal{Z}}_{n}\right)$ relative to the set $\widetilde{\mathcal{Z}}_{n}$ of intersections of subgroups contained in \mathcal{Z}_{n}.

For a ring R, we denote by R^{\times}the unit group of R. By [13, Example 2], $R\left(S_{n}\right)^{\times}$ is isomorphic to the four group. There exists a unit of $\Omega\left(S_{n}, \mathcal{Y}_{n}\right)$ which enables us to describe the sign character $\operatorname{sgn}_{n}: S_{n} \rightarrow \mathbb{C}$ as a \mathbb{Z}-linear combination of the characters $1_{Y}^{S_{n}}$ for $Y \in \mathcal{Y}_{n}$ (see [2, Corollary 2] and [9, $\left.\S 4\right]$); such a description is called Solomon's formula. The ring $R\left(B_{n}\right)$ includes exactly four linear \mathbb{C}-characters, and $R\left(B_{n}\right)^{\times}$is generated by the nontrivial linear \mathbb{C}-characters and $-1_{B_{n}}$. In $\S 4$ we identify $R\left(B_{n}\right)^{\times}$with a subgroup of $\Omega\left(B_{n}, \widetilde{\mathcal{Z}}_{n}\right)^{\times}$, and then describe the linear \mathbb{C}-characters of B_{n} as \mathbb{Z}-linear combinations of the characters $1_{H}^{B_{n}}$ for $H \in \mathcal{Z}_{n}$.

There is a set \mathcal{U}_{n} of subgroups of B_{n} such that the characters $1_{H}^{B_{n}}$ for $H \in \mathcal{U}_{n}$ form a \mathbb{Z}-basis of $R\left(B_{n}\right)$ (cf. [7, Corollary II.4]). In $\S 5$ we define the partial Burnside ring $\Omega\left(B_{n}, \mathcal{U}_{n}\right)$ relative to the Young subgroups of B_{n}, which is a subring of $\Omega\left(B_{n}\right)$ isomorphic to $R\left(B_{n}\right)$. The parabolic Burnside ring $\mathcal{P B}\left(B_{n}\right)$ (cf. [1, §4]) is a subring of $\Omega\left(B_{n}, \mathcal{U}_{n}\right)$. By [4, (66.29) Corollary], the sign character $\varepsilon_{n}: B_{n} \rightarrow \mathbb{C}$ is described as a \mathbb{Z}-linear combination of the characters $1_{H}^{B_{n}}$ for parabolic subgroups H of B_{n}, whence $\mathcal{P B}\left(B_{n}\right)$ includes a unit α_{n} corresponding to $\varepsilon_{n}: B_{n} \rightarrow \mathbb{C}$. There also is a unit β_{n} of $\Omega\left(B_{n}, \mathcal{U}_{n}\right)$ corresponding to a natural extension of $\operatorname{sgn}_{n}: S_{n} \rightarrow \mathbb{C}$ to B_{n} such that $\alpha_{n} \beta_{n}$ corresponds to the restriction of $\operatorname{sgn}_{2 n}: S_{2 n} \rightarrow \mathbb{C}$ to B_{n}. By the description of β_{n} in terms of the characters $1_{H}^{B_{n}}$ for $H \in \mathcal{Z}_{n} \cap \mathcal{U}_{n}$, we have

$$
\beta_{n} \in \Omega\left(B_{n}, \widetilde{\mathcal{Z}}_{n}\right)^{\times} \cap\left(\Omega\left(B_{n}, \mathcal{U}_{n}\right)^{\times}-\mathcal{P B}\left(B_{n}\right)^{\times}\right),
$$

which proves $\mathcal{P B}\left(B_{n}\right)^{\times}$to be isomorphic to the four group.
Let $X \in G$-set. To explore the units of $\Omega(G)$, we are mainly concerned with the reduced Lefschetz invariant $\widetilde{\Lambda}_{P(X)}$ of the G-poset $P(X)$ consisting of nonempty
and proper subsets of X. The reduced Euler-Poincaré characteristic $\widetilde{\chi}\left(P(X)^{K}\right)$ of the set of K-invariants $P(X)^{K}$ in $P(X)$ with $K \leq G$ is $(-1)^{|K \backslash X|}$, so that $\widetilde{\Lambda}_{P(X)}$ is a unit of $\Omega(G)$ (cf. [11, $\S 5])$. As a sequel to this fact, the linear \mathbb{C}-characters of B_{n} are analyzed with reduced Lefschetz invariants which characterize $\Omega\left(B_{n}, \mathcal{U}_{n}\right)^{\times}$.

Let D_{n} be the group of even-signed permutations on $[n]$, which is also a Coxeter group of type D. In $\S 6$ we explore the units of the parabolic Burnside ring of D_{n}.

2 Lefschetz invariant

Following $[4, \S 80]$, we review the Burnside ring of G and related facts. Let $\mathbf{F}(G)$ be the free abelian group on the set of isomorphism classes of finite left G-sets. Given $X \in G$-set, we denote by \bar{X} the isomorphism class of left G-sets including X. Let $\mathbf{F}(G)_{0}$ be the subgroup of $\mathbf{F}(G)$ generated by the elements $\overline{X_{1} \dot{\cup} X_{2}}-\overline{X_{1}}-\overline{X_{2}}$ for $X_{1}, X_{2} \in G$-set. We define a multiplication on the generators of $\mathbf{F}(G)$ by

$$
\overline{X_{1}} \cdot \overline{X_{2}}=\overline{X_{1} \times X_{2}},
$$

where $X_{1} \times X_{2}$ is the cartesian product of X_{1} and X_{2}, and extend it to $\mathbf{F}(G)$ by \mathbb{Z}-linearly. Then $\mathbf{F}(G)$ is a commutative unital ring, and $\mathbf{F}(G)_{0}$ is an ideal of $\mathbf{F}(G)$. We define a commutative unital ring $\Omega(G)$ to be the quotient $\mathbf{F}(G) / \mathbf{F}(G)_{0}$, and call it the Burnside ring of G. For each $X \in G$-set, let $[X]$ be the coset $\bar{X}+\mathbf{F}(G)_{0}$ of $\mathbf{F}(G)_{0}$ in $\mathbf{F}(G)$ represented by \bar{X}. Then by [4, (80.4) Lemma], $\left[X_{1}\right]=\left[X_{2}\right]$ if and only if $\overline{X_{1}}=\overline{X_{2}}$. Hence we may regard $[X]$ as the isomorphism class of left G-sets including $X \in G$-set. Multiplication on the generators of $\Omega(G)$ is given by

$$
\left[X_{1}\right] \cdot\left[X_{2}\right]=\left[X_{1} \times X_{2}\right] .
$$

Let $\mathrm{C}(G)$ be a full set of non-conjugate subgroups of G. Given $H \leq G$, we denote by G / H the set of left cosets $g H, g \in G$, of H in G, and make G / H into a left G-set by defining $d(g H)=d g H$ for all $d, g \in G$. For $H, K \leq G, G / H \simeq G / K$ if and only if H is a conjugate of K (cf. [4, (80.5) Proposition]). The elements $[G / H]$ for $H \in \mathrm{C}(G)$ form a free \mathbb{Z}-basis of $\Omega(G)$. We have

$$
\begin{equation*}
[G / H] \cdot[G / U]=\sum_{H g U \in H \backslash G / U}\left[G /\left(H \cap{ }^{g} U\right)\right] \tag{1}
\end{equation*}
$$

for all $H, U \leq G$, where ${ }^{g} U=g U g^{-1}$ (cf. [4, $\S 80$ Exercise 2]). The identity of $\Omega(G)$ is $[G / G]$. For shortness' sake, we usually write $1=[G / G]$.

Let $H \leq G$. For each $X \in G$-set, we denote by $\operatorname{inv}_{H}(X)$ or X^{H} the set of H-invariants in X. There exists a ring homomorphism $\phi_{H}: \Omega(G) \rightarrow \mathbb{Z}$ given by

$$
[G / U] \mapsto\left|\operatorname{inv}_{H}(G / U)\right|
$$

for all $U \in \mathrm{C}(G)$. For each $X \in G$-set, it is obvious that

$$
\phi_{H}([X])=\left|X^{H}\right| .
$$

We set $\widetilde{\Omega}(G)=\prod_{H \in \mathrm{C}(G)} \mathbb{Z}$, and define a map $\phi: \Omega(G) \rightarrow \widetilde{\Omega}(G)$ by

$$
x \mapsto\left(\phi_{H}(x)\right)_{H \in \mathrm{C}(G)}
$$

for all $x \in \Omega(G)$. By [4, (80.12) Proposition], this map is a ring monomorphism. We call $\widetilde{\Omega}(G)$ the ghost ring of $\Omega(G)$, and call $\phi: \Omega(G) \rightarrow \widetilde{\Omega}(G)$ the Burnside homomorphism or the mark homomorphism. Obviously, $\widetilde{\Omega}(G)^{\times}=\prod_{H \in \mathrm{C}(G)} \mathbb{Z}^{\times}$. Hence $\widetilde{\Omega}(G)^{\times}$is an elementary abelian 2-group, and so is $\Omega(G)^{\times}$.

We turn to the concept of (reduced) Lefschetz invariants for finite G-sets. A finite (left) G-set P equipped with order relation \leq is called a finite G-poset if \leq is invariant under the G-action. Let P be a finite G-poset. For each nonnegative integer n, we denote by $S d_{n}(P)$ the set of chains $p_{0}<p_{1}<\cdots<p_{n}$ of elements of P of cardinality $n+1$, and make $S d_{n}(P)$ into a G-set by defining

$$
g\left(p_{0}<p_{1}<\cdots<p_{n}\right)=g p_{0}<g p_{1}<\cdots<g p_{n}
$$

for all $g \in G$ and $p_{0}<p_{1}<\cdots<p_{n} \in S d_{n}(P)$. The Lefschetz invariant Λ_{P} of P and the reduced Lefschetz invariant $\widetilde{\Lambda}_{P}$ of P are two elements of $\Omega(G)$ given by

$$
\Lambda_{P}=\sum_{i=0}^{\infty}(-1)^{i}\left[S d_{i}(P)\right] \quad \text { and } \quad \widetilde{\Lambda}_{P}=\Lambda_{P}-1
$$

respectively, which are introduced by Thévenaz (cf. [3, 11]).
Given $X \in G$-set, we denote by $P(X)$ the G-poset consisting of nonempty and proper subsets of X, and explore $\widetilde{\Lambda}_{P(X)}$ from the point of view of combinatorics.

Definition 2.1 Let $X \in G$-set. Given $X_{0} \in G$-set, we define a finite left G-set $\operatorname{Map}\left(X, X_{0}\right)$ to be the set of maps from X to X_{0} with the action given by

$$
(g f)(x)=g f\left(g^{-1} x\right)
$$

for all $g \in G, f \in \operatorname{Map}\left(X, X_{0}\right)$, and $x \in X$ (cf. [5, §2]). Given a nonnegative integer i and $X_{0}, X_{1}, \ldots, X_{i} \in G$-set, we denote by $\operatorname{Map}\left(X, X_{0}, X_{1}, \ldots, X_{i}\right)$ the set of all $f \in \operatorname{Map}\left(X, X_{0} \dot{\cup} X_{1} \dot{\cup} \cdots \dot{\cup} X_{i}\right)$ such that $\operatorname{Im} f \cap X_{j} \neq \emptyset$ for any $j=1,2, \ldots, i$, and make it into a left G-set by defining

$$
(g f)(x)=g f\left(g^{-1} x\right)
$$

for all $g \in G, f \in \operatorname{Map}\left(X, X_{0}, X_{1}, \ldots, X_{i}\right)$, and $x \in X$.
Lemma 2.2 Let $X \in G$-set. Set $n=|X|$ and $X_{1}=\cdots=X_{n}=G / G$. Then

$$
\widetilde{\Lambda}_{P(X)}=\sum_{i=1}^{n}(-1)^{i}\left[\operatorname{Map}\left(X, \emptyset, X_{1}, \ldots, X_{i}\right)\right] .
$$

Proof. Obviously, $\left[\operatorname{Map}\left(X, \emptyset, X_{1}\right)\right]=[\operatorname{Map}(X, G / G)]=1$. We assume that $2 \leq i \leq$ n, and define a bijection $\Delta: \operatorname{Map}\left(X, \emptyset, X_{1}, \ldots, X_{i}\right) \rightarrow S d_{i-2}(P(X))$ by

$$
f \mapsto p_{0}<p_{1}<\cdots<p_{i-2}
$$

where

$$
p_{k}=\left\{x \in X \mid f(x) \in X_{j} \text { for some } j \in\{1,2, \ldots, k+1\}\right\}
$$

for each integer k with $0 \leq k \leq i-2$. Let $g \in G$, and let $f \in \operatorname{Map}\left(X, \emptyset, X_{1}, \ldots, X_{i}\right)$. We have $(g f)(g x)=f(x)$ for any $x \in X$. Hence, if $\Delta(f)=p_{0}<p_{1}<\cdots<p_{i-2}$, then $\Delta(g f)=g p_{0}<g p_{1}<\cdots<g p_{i-2}$. Consequently, we have

$$
\left[\operatorname{Map}\left(X, \emptyset, X_{1}\right)\right]=1 \quad \text { and } \quad\left[\operatorname{Map}\left(X, \emptyset, X_{1}, \ldots, X_{i}\right)\right]=\left[S d_{i-2}(P(X))\right]
$$

for all integer i with $2 \leq i \leq n$, which implies that

$$
\widetilde{\Lambda}_{P(X)}=-1+\sum_{i=0}^{\infty}(-1)^{i}\left[S d_{i}(P(X))\right]=\sum_{i=1}^{n}(-1)^{i}\left[\operatorname{Map}\left(X, \emptyset, X_{1}, \ldots, X_{i}\right)\right] .
$$

This completes the proof.
By Eq.(1), the set $\Omega(G)^{+}$consisting of all elements $\sum_{U \in \mathrm{C}(G)} \ell_{U}[G / U], \ell_{U} \geq 0$, of $\Omega(G)$ is an additive semigroup closed under multiplication. We fix $X \in G$-set, and define a multiplicative map $\operatorname{Map}(X,-): \Omega(G)^{+} \rightarrow \Omega(G)$ by

$$
[Y] \mapsto[\operatorname{Map}(X, Y)]
$$

for all $Y \in G$-set. There exists a unique polynomial map (multiplicative map) $(-)^{[X]}: \Omega(G) \rightarrow \Omega(G), y \mapsto y^{[X]}$ extending $\operatorname{Map}(X,-)$ (see [5, §2] and [14, §3]). If $X=X_{1} \dot{\cup} X_{2}$, then $y^{[X]}=y^{\left[X_{1}\right]} \cdot y^{\left[X_{2}\right]}$ for any $y \in \Omega(G)$.

By [14, Lemma 3.6], $\phi\left((-1)^{[X]}\right)=\left((-1)^{|K \backslash X|}\right)_{K \in \mathrm{C}(G)}$, where $K \backslash X$ is the set of K-orbits in X, and thus $(-1)^{[X]} \in \Omega(G)^{\times}$. The following proposition is equivalent to [9, Proposition 4.1] and [11, Proposition 5.1].

Proposition 2.3 For any $X \in G$-set, $\widetilde{\Lambda}_{P(X)}=(-1)^{[X]} \in \Omega(G)^{\times}$.
We derive Proposition 2.3 from the combinatorial identity

$$
\begin{equation*}
(-1)^{n}=\sum_{i=1}^{n}(-1)^{i} S(n, i) i! \tag{2}
\end{equation*}
$$

where $S(n, i)$ is the Stirling number of the second kind (cf. [10, (24d)]). While Eq.(2) is equivalent to [9, Lemma 4.2], the former is nicer than the later for our argument based on entry 3 of the Twelvefold Way (cf. [10, p. 33]).

Proof of Proposition 2.3. Set $n=|X|$ and $X_{1}=\cdots=X_{n}=G / G$. By Lemma 2.2,

$$
\widetilde{\Lambda}_{P(X)}=\sum_{i=1}^{n}(-1)^{i}\left[\operatorname{Map}\left(X, \emptyset, X_{1}, \ldots, X_{i}\right)\right] .
$$

Let $K \in \mathrm{C}(G)$, and set $m_{K}=|K \backslash X|$. Then for each integer i with $1 \leq i \leq n$,

$$
\left|\operatorname{Map}\left(X, \emptyset, X_{1}, \ldots, X_{i}\right)^{K}\right|=S\left(m_{K}, i\right) i!
$$

because $S\left(m_{K}, i\right)$ is the number of partitions of an m_{K}-set into i nonempty subsets. Combining the preceding facts with Eq.(2), we have

$$
\phi\left(\widetilde{\Lambda}_{P(X)}\right)=\left(\sum_{i=1}^{m_{K}}(-1)^{i} S\left(m_{K}, i\right) i!\right)_{K \in \mathrm{C}(G)}=\left((-1)^{m_{K}}\right)_{K \in \mathrm{C}(G)},
$$

completing the proof.
Remark 2.4 For each $X \in G$-set, the elements $y^{[X]}$ for $y \in \Omega(G)$, which may be called exponentials, were introduced by A. Dress (cf. [5, §2]), including $(-1)^{[X]}$ (cf. $[5, \S 3])$, and the fact that $\phi\left(\widetilde{\Lambda}_{P(X)}\right)=\left((-1)^{|K \backslash X|}\right)_{K \in \mathrm{C}(G)}$ was generalized in terms of the exponentials (see $[12, \S 6]$ and $[14, \S 3]$).

3 The character ring of B_{n}

Set $C_{2}=\mathbb{Z}^{\times}$, and let V_{n} be the direct product $C_{2}^{(n)}$ of n copies of C_{2}. The wreath product $B_{n}:=C_{2}$ 2 S_{n} of C_{2} with S_{n} is defined to be the semidirect product

$$
V_{n} \rtimes S_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \sigma \mid\left(x_{1}, \ldots, x_{n}\right) \in V_{n} \text { and } \sigma \in S_{n}\right\}
$$

in which each permutation on $[n]$ acts as an inner automorphism on V_{n} :

$$
\sigma\left(x_{1}, \ldots, x_{n}\right) \sigma^{-1}=\left(x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)}\right) .
$$

If $L \leq V_{n}$ or if $F \leq S_{n}$, then we regard L or F as a subgroup of B_{n}. Given $K \leq V_{n}$ and $F \leq N_{S_{n}}(K):=N_{B_{n}}(K) \cap S_{n}, K F$ is the semidirect product $K \rtimes F$.

Given $J \subset[n]$, we denote by S_{J} the symmetric group on J, and view it as a subgroup of S_{n}. For a cycle type $\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right)$ of a permutation on [n], let S_{λ} denote a Young subgroup of S_{n} isomorphic to $S_{1}^{\left(m_{1}\right)} \times \cdots \times S_{n}^{\left(m_{n}\right)}$, where each $S_{i}^{\left(m_{i}\right)}$ is the direct product of m_{i} copies of S_{i}.

Let $J \subset[n]$. There exists a linear \mathbb{C}-character ϑ_{J} of V_{n} given by

$$
\vartheta_{J}\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\vartheta\left(x_{1}\right) \cdots \vartheta\left(x_{n}\right) \quad \text { with } \quad \vartheta\left(x_{j}\right)=\left\{\begin{array}{cl}
x_{j} & \text { if } j \in J, \\
1 & \text { otherwise }
\end{array}\right.
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in V_{n}$. Set $\bar{J}=[n]-J$. The inertia group $I_{B_{n}}\left(\vartheta_{J}\right)$ of ϑ_{J}, which is defined to be $\left\{a \in B_{n} \mid \vartheta_{J}\left(a b a^{-1}\right)=\vartheta_{J}(b)\right.$ for all $\left.b \in V_{n}\right\}$, is

$$
V_{n}\left(S_{J} S_{\bar{J}}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \sigma \in B_{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in V_{n} \text { and } \sigma \in S_{J} S_{\bar{J}}\right\}
$$

(cf. [8, Lemma 25.5]). There exists an extension $\widehat{\vartheta_{J}}$ of ϑ_{J} to $I_{B_{n}}\left(\vartheta_{J}\right)$ given by

$$
\widehat{\vartheta_{J}}\left(\left(x_{1}, \ldots, x_{n}\right) \sigma\right)=\vartheta_{J}\left(\left(x_{1}, \ldots, x_{n}\right)\right)
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in V_{n}$ and $\sigma \in S_{J} S_{\bar{J}}$. Obviously, $I_{B_{n}}\left(\vartheta_{J}\right) / V_{n} \simeq S_{J} S_{\bar{J}}$. For a \mathbb{C}-character ψ of $S_{J} S_{\bar{J}}$, we denote by $\widehat{\psi}$ the \mathbb{C}-character of $I_{B_{n}}\left(\vartheta_{J}\right)$ given by

$$
\widehat{\psi}(g \sigma)=\psi(\sigma)
$$

for all $g \in V_{n}$ and $\sigma \in S_{J} S_{\bar{J}}$. Set $K_{J}=\operatorname{ker} \vartheta_{J}$. Then $S_{J} S_{\bar{J}} \leq I_{B_{n}}\left(\vartheta_{J}\right) \leq N_{B_{n}}\left(K_{J}\right)$.
For each integer i with $0 \leq i \leq n$, we indicate with $[i] \subset[n]$ that $[i]$ is the subset $\{1,2, \ldots, i\}$ of $[n]$, where $[0]$ is the empty set.

Let $[i] \subset[n]$. We write $\vartheta_{i}=\vartheta_{[i]}, K_{i}=\operatorname{ker} \vartheta_{i}, S_{i}=S_{[i]}$, and $S_{\bar{i}}=S_{[\overline{i]}}$ for shortness' sake. Let $\operatorname{Irr}\left(S_{i} S_{\bar{i}}\right)$ be the set of irreducible \mathbb{C}-characters of $S_{i} S_{\bar{i}}$.

The following proposition is well-known (cf. [7, §II]).
Proposition 3.1 The irreducible \mathbb{C}-characters of B_{n} consist of the \mathbb{C}-characters $\left(\widehat{\vartheta_{i}} \widehat{\psi}\right)^{B_{n}}$ induced from the product $\widehat{\vartheta_{i}} \widehat{\psi}$ of $\widehat{\vartheta}_{i}$ and $\widehat{\psi}$ for $[i] \subset[n]$ and $\psi \in \operatorname{Irr}\left(S_{i} S_{\bar{i}}\right)$.

Let $J \subset[n]$, and let $\mathcal{P}(J)$ be the set of cycle types of permutations on J. We write $\mathcal{P}(n)=\mathcal{P}([n])$. Recall that for each $\lambda \in \mathcal{P}(J)(=\mathcal{P}(|J|)), S_{\lambda}$ denotes a Young subgroup of $S_{|J|}$. We set $\mathcal{P}(J, \bar{J})=\mathcal{P}(J) \times \mathcal{P}(\bar{J})$. Given $\left(\lambda_{J}, \lambda_{\bar{J}}\right) \in \mathcal{P}(J, \bar{J})$, let $S_{\lambda_{J} \lambda_{\bar{J}}}$ denote the product $H K$ of a subgroup H of S_{J} and a subgroup K of $S_{\bar{J}}$ such that H is a conjugate of $S_{\lambda_{J}}$ in S_{n} and K is a conjugate of $S_{\lambda_{J}}$ in S_{n}.

For each $X \in G$-set, let π_{X} be the permutation character of G which assigns each $g \in G$ the number of fixed elements of X by g, that is, $\pi_{X}(g)=\left|X^{\langle g\rangle}\right|$. For each $H \leq G, \pi_{G / H}$ is the character 1_{H}^{G} induced from the trivial character 1_{H} of H.

Theorem 3.2 The characters $1_{K_{i} S_{\lambda_{i} \lambda_{i}}}^{B_{n}}$ induced from the trivial characters $1_{K_{i} S_{\lambda_{i} \lambda_{\bar{i}}}}$ of $K_{i} S_{\lambda_{i} \lambda_{\bar{i}}}$ for $[i] \subset[n]$ and $\left(\lambda_{i}, \lambda_{\bar{i}}\right) \in \mathcal{P}([i], \overline{[\bar{i}})$ form a \mathbb{Z}-basis of $R\left(B_{n}\right)$. In particular, the number of irreducible \mathbb{C}-characters of B_{n} is $\sum_{i=0}^{n}|\mathcal{P}([i], \overline{[i]})|$.
Proof. The second assertion is well-known, and is also an immediate consequence of the first one. Let $J \subset[n]$, and let $\left(\lambda_{J}, \lambda_{\bar{J}}\right) \in \mathcal{P}(J, \bar{J})$. If $g \in V_{n}$ and $\sigma \in S_{J} S_{\bar{J}}$, then

$$
\begin{aligned}
g \sigma\left(h \tau K_{J} S_{\lambda_{J} \lambda_{\bar{J}}}\right)=h \tau K_{J} S_{\lambda_{J} \lambda_{\bar{J}}} & \Longleftrightarrow \tau^{-1} h^{-1}(g \sigma) h \tau \in K_{J} S_{\lambda_{J} \lambda_{\bar{J}}} \\
& \Longleftrightarrow \tau^{-1}\left(h^{-1} g\right)^{\tau^{-1} \sigma} \sigma \tau^{-1} \sigma \tau \in K_{J} S_{\lambda_{J} \lambda_{\bar{J}}} \\
& \Longleftrightarrow g^{\sigma} h \in h^{\tau} K_{J} \text { and } \sigma \tau \in \tau S_{\lambda_{J} \lambda_{\bar{J}}} \\
& \Longleftrightarrow g h K_{J}=h K_{J} \text { and } \sigma \tau S_{\lambda_{J} \lambda_{\bar{J}}}=\tau S_{\lambda_{J} \lambda_{\bar{J}}}
\end{aligned}
$$

for all $h \in V_{n}$ and $\tau \in S_{J} S_{\bar{J}}$, because $\sigma \in N_{S_{n}}\left(K_{J}\right)$ and $\left|V_{n}: K_{J}\right| \leq 2$, and thus

$$
\begin{aligned}
1_{K_{J} S_{\lambda_{J} \lambda_{J}}}^{I_{B_{n}}\left(\vartheta_{J}\right)}(g \sigma) & =\pi_{I_{B_{n}}\left(\vartheta_{J}\right) /\left(K_{J} S_{\lambda_{J} \lambda_{\bar{J}}}\right)}(g \sigma) \\
& =\pi_{V_{n} / K_{J}}(g) \cdot \pi_{\left(S_{J} S_{\bar{J}}\right) / S_{\lambda_{J} \lambda_{\bar{J}}}}(\sigma) \\
& =1_{K_{J}}^{V_{n}}(g) \cdot 1_{S_{\lambda_{J} \lambda_{\bar{J}}}}^{S_{J} S_{\bar{J}}}(\sigma) .
\end{aligned}
$$

In particular, $1_{V_{n} S_{\lambda_{\bar{\emptyset}}}}^{I_{B_{n}}\left(\vartheta_{\emptyset}\right)}=1_{S_{\lambda_{\bar{\emptyset}}}}^{\widehat{S_{\bar{\emptyset}}}}$. Moreover, if $J \neq \emptyset$, then $\vartheta_{J}=1_{K_{J}}^{V_{n}}-1_{V_{n}}$ and

$$
\left.\left(1_{K_{J} S_{\lambda_{J} \lambda_{\bar{J}}}}^{I_{B_{n}}\left(\vartheta_{J}\right)}-\widehat{1_{S_{\lambda_{J} \lambda_{\bar{J}}}}^{S_{J} S_{\bar{J}}}}\right)(g \sigma)=\left(1_{K_{J}}^{V_{n}}-1_{V_{n}}\right)(g) \cdot 1_{S_{\lambda_{J} \lambda_{J}}}^{S_{J} S_{\bar{J}}}(\sigma)=\widehat{\left(\vartheta_{J} 1_{S_{\lambda_{J} \lambda_{\bar{J}}}}^{S_{J} S_{\bar{J}}}\right.}\right)(g \sigma)
$$

for all $g \in V_{n}$ and $\sigma \in S_{J} S_{\bar{J}}$, and consequently,

$$
1_{K_{J} S_{\lambda_{J} \lambda_{\bar{J}}}^{B_{n}}}={\widehat{1_{S_{\lambda_{J} \lambda_{\bar{J}}}}^{S_{\bar{J}}}}{ }^{B_{n}}+\left(\widehat{\vartheta_{J} 1_{S_{\lambda_{J} \lambda_{\bar{J}}}}^{S_{J} S_{\bar{G}}}}\right)^{B_{n}}=\widehat{1_{S_{\lambda_{J} \lambda_{\bar{J}}}}^{S_{n}}}+\left(\widehat{\vartheta_{J} 1_{S_{\lambda_{J} \lambda_{\bar{J}}}}}\right)^{S_{J} S_{\bar{J}}}}_{B_{n}}
$$

Let $[i] \subset[n]$. By the above fact with $J=[i]$ and Proposition 3.1 , it suffices to verify that the characters $1_{S_{\lambda_{i} \lambda_{\bar{i}}}}^{S_{i} S_{\overline{\bar{i}}}}$ for $\left(\lambda_{i}, \lambda_{\bar{i}}\right) \in \mathcal{P}([i], \overline{[i]})$ form a \mathbb{Z}-basis of $R\left(S_{i} S_{\bar{i}}\right)$. We identify $S_{i} S_{\bar{i}}$ and the subgroups $S_{\lambda_{i} \lambda_{\bar{i}}}$ of $S_{i} S_{\bar{i}}$ for $\left(\lambda_{i}, \lambda_{\bar{i}}\right) \in \mathcal{P}([i], \overline{[i]})$ with $S_{i} \times S_{n-i}$ and the subgroups $S_{\mu} \times S_{\nu}$ of $S_{i} \times S_{n-i}$ for $\mu \in \mathcal{P}(i)$ and $\nu \in \mathcal{P}(n-i)$, respectively. By [2, Proposition 3] and [4, §9 Exercise 6], the characters $1_{S_{\mu} \times S_{n-i}}^{S_{i} \times S_{n-i}} 1_{S_{i} \times S_{\nu}}^{S_{i} \times S_{n-i}}$ for $\mu \in \mathcal{P}(i)$ and $\nu \in \mathcal{P}(n-i)$ form a \mathbb{Z}-basis of $R\left(S_{i} \times S_{n-i}\right)$. This, combined with [4, (10.19) Corollary], shows that the characters $1_{S_{\mu} \times S_{\nu}}^{S_{i} \times S_{n-i}}$ for $\mu \in \mathcal{P}(i)$ and $\nu \in \mathcal{P}(n-i)$ form a \mathbb{Z}-basis of $R\left(S_{i} \times S_{n-i}\right)$, as desired. This completes the proof.

We quote part of $[15, \S 3]$ and review the concept of generalized Burnside rings.
Definition 3.3 For a set \mathcal{D} of subgroups of G, we define a \mathbb{Z}-lattice $\Omega(G, \mathcal{D})$ to be an additive group consisting of all \mathbb{Z}-linear combinations of the elements $[G / H]$ of $\Omega(G)$ for $H \in \mathcal{D}$, and define $\overline{\mathcal{D}}:=\left\{{ }^{g} H \mid g \in G\right.$ and $\left.H \in \mathcal{D}\right\}$.

The following theorem is a concise version of [15, 3.11 Theorem].
Theorem 3.4 Let \mathcal{D} be a set of subgroups of G including G, and suppose that

$$
\bigcap_{\langle g\rangle U \leq H \in \overline{\mathcal{D}}} H \in \overline{\mathcal{D}}
$$

for all $U \in \overline{\mathcal{D}}$ and $g \in N_{G}(U)$. Then $\Omega(G, \overline{\mathcal{D}})$ has a unique ring structure such that the group homomorphism $\Omega(G, \overline{\mathcal{D}}) \rightarrow \prod_{H \in \mathrm{C}(G) \cap \overline{\mathcal{D}}} \mathbb{Z}$ given by

$$
x \mapsto\left(\phi_{H}(x)\right)_{H \in \mathrm{C}(G) \cap \overline{\mathcal{D}}}
$$

for all $x \in \Omega(G, \overline{\mathcal{D}})$ is a ring homomorphism, and the identity of $\Omega(G, \overline{\mathcal{D}})$ is 1 . If $\overline{\mathcal{D}}$ is closed under intersection, then $\Omega(G, \overline{\mathcal{D}})$ is a subring of $\Omega(G)$.

We set $\mathcal{X}_{n}=\left\{K_{J} S_{\lambda_{J} \lambda_{J}} \mid J \subset[n]\right.$ and $\left.\left(\lambda_{J}, \lambda_{\bar{J}}\right) \in \mathcal{P}(J, \bar{J})\right\}$. Let \mathcal{Y}_{n} be the set of Young subgroups of S_{n}, and let \mathcal{Z}_{n} be the set consisting of all products $K Y$ of $K \leq V_{n}$ and $Y \in \mathcal{Y}_{n}$ with $\left|V_{n}: K\right| \leq 2$ and $Y \leq N_{S_{n}}(K)$. We define

$$
\widetilde{\mathcal{Z}}_{n}:=\left\{\bigcap_{H \in \mathcal{S}} H \mid \mathcal{S} \in \operatorname{Sub}\left(\mathcal{Z}_{n}\right)\right\}
$$

where $\operatorname{Sub}\left(\mathcal{Z}_{n}\right)$ is the set of nonempty subsets of \mathcal{Z}_{n}.
Lemma 3.5 The following statements hold.
(a) The set $\overline{\mathcal{X}_{n}}$ coincides with \mathcal{Z}_{n}. In particular, \mathcal{Z}_{n} is closed under conjugation.
(b) The set $\widetilde{\mathcal{Z}}_{n}$ is closed under intersection and conjugation.

Proof. Suppose that $J \subset[n]$ and $\left(\lambda_{J}, \lambda_{\bar{J}}\right) \in \mathcal{P}(J, \bar{J})$. Let $\sigma \in S_{n}$, and let $g \in V_{n}$. Then we have ${ }^{\sigma}\left(K_{J} S_{\lambda_{J} \lambda_{\bar{J}}}\right)=K_{\sigma(J)}{ }^{\sigma} S_{\lambda_{J} \lambda_{\bar{J}}},{ }^{\sigma} S_{\lambda_{J} \lambda_{\bar{J}}} \in \mathcal{Y}_{n}$, and ${ }^{\sigma} S_{\lambda_{J} \lambda_{\bar{J}}} \leq N_{S_{n}}\left(K_{\sigma(J)}\right)$, where $\sigma(J)=\{\sigma(j) \mid j \in J\}$. Since $\vartheta_{J}\left(g^{\tau} g\right)=1$ for any $\tau \in S_{J} S_{\bar{J}}$, it follows that

$$
{ }^{g}\left(K_{J} S_{\lambda_{J} \lambda_{J}}\right)=\left\{g h^{\tau} g \tau \mid h \in K_{J} \text { and } \tau \in S_{\lambda_{J} \lambda_{\bar{J}}}\right\}=K_{J} S_{\lambda_{J} \lambda_{\bar{J}}} .
$$

In particular, $\overline{\mathcal{X}_{n}} \subset \mathcal{Z}_{n}$. Suppose that $K \leq V_{n}$ and $Y \in \mathcal{Y}_{n}$ with $\left|V_{n}: K\right| \leq 2$ and $Y \leq N_{S_{n}}(K)$. There exists a subset J of $[n]$ such that $K=K_{J}$. For each $\sigma \in Y$, we have $K_{J}={ }^{\sigma}\left(K_{J}\right)=K_{\sigma(J)}$, whence $\sigma(J)=J$ and $Y={ }^{\tau} S_{\lambda_{J} \lambda_{J}}$ for some $\tau \in S_{J} S_{\bar{J}}$ and $\left(\lambda_{J}, \lambda_{\bar{J}}\right) \in \mathcal{P}(J, \bar{J})$. This means that $K Y$ is a conjugate of $K_{J} S_{\lambda_{J} \lambda_{\bar{J}}}$. Consequently, $\overline{\mathcal{X}_{n}} \supset \mathcal{Z}_{n}$, and the statement (a) holds. Obviously, $\widetilde{\mathcal{Z}}_{n}$ is closed under intersection. Hence the statement (b) follows from (a). This completes the proof.

By Lemma 3.5, $\widetilde{\mathcal{Z}}_{n}$ satisfies the hypothesis of Theorem 3.4 with $\mathcal{D}=\overline{\mathcal{D}}=\widetilde{\mathcal{Z}}_{n}$, so that $\Omega\left(B_{n}, \widetilde{\mathcal{Z}}_{n}\right)$ is a subring of $\Omega\left(B_{n}\right)$ which is called a partial Burnside ring.

We now define a ring homomorphism $\operatorname{char}_{G}: \Omega(G) \rightarrow R(G)$ by

$$
[X] \mapsto \pi_{X}
$$

for all $X \in G$-set (cf. [14, $\S 6]$), and usually write char $=\operatorname{char}_{G}$ by omitting subscript G. Given $x \in \Omega(G)$ and $g \in G, \operatorname{char}(x)(g)=\phi_{\langle g\rangle}(x)$.

We are successful in finding a natural relationship between $\Omega\left(B_{n}, \widetilde{\mathcal{Z}}_{n}\right)$ and $R\left(B_{n}\right)$.
Theorem 3.6 The ring homomorphism char: $\Omega\left(B_{n}\right) \rightarrow R\left(B_{n}\right)$ induces an epimorphism from the partial Burnside ring $\Omega\left(B_{n}, \widetilde{\mathcal{Z}}_{n}\right)$ to $R\left(B_{n}\right)$.

Proof. The theorem is a consequence of Theorem 3.2.

4 Units of the character ring of B_{n}

The set $[n]$ is viewed as a left S_{n}-set. According to [9, Eq.(3)],

$$
\begin{equation*}
\widetilde{\Lambda}_{P([n])}=\sum_{\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right) \in \mathcal{P}(n)}(-1)^{m_{1}+\cdots+m_{n}} \frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!}\left[S_{n} / S_{\lambda}\right] \tag{3}
\end{equation*}
$$

so that the sign character $\operatorname{sgn}_{n}: S_{n} \rightarrow \mathbb{C}$ is described as

$$
\begin{equation*}
\operatorname{sgn}_{n}=\sum_{\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right) \in \mathcal{P}(n)}(-1)^{m_{1}+\cdots+m_{n}+n} \frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!} 1_{S_{\lambda}}^{S_{n}} \tag{4}
\end{equation*}
$$

(see [2, Corollary 2] and [9, Theorem 4.4]). Note that the numbers

$$
\frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!}
$$

for nonnegative integers m_{1}, \ldots, m_{n} are multinomial coefficients (cf. [10, 1.2]).
Let $\kappa_{n}: B_{n} \rightarrow \mathbb{C}$ be a linear \mathbb{C}-character of B_{n} given by

$$
\left(x_{1}, \ldots, x_{n}\right) \sigma \mapsto \prod_{i=1}^{n} x_{i}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in V_{n}$ and $\sigma \in S_{n}$. There also exists an extension $\rho_{n}: B_{n} \rightarrow \mathbb{C}$ of the sign character $\operatorname{sgn}_{n}: S_{n} \rightarrow \mathbb{C}$ to B_{n} given by

$$
\left(x_{1}, \ldots, x_{n}\right) \sigma \mapsto \operatorname{sgn}_{n}(\sigma)
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in V_{n}$ and $\sigma \in S_{n}$. Let $\varepsilon_{n}: B_{n} \rightarrow \mathbb{C}$ be the product $\kappa_{n} \rho_{n}$ of κ_{n} and ρ_{n}, which coincides with the sign character of B_{n}.

We view the set $\mathbb{Z}^{\times}=\{1,-1\}$ as a left B_{n}-set with the action given by

$$
\left(x_{1}, \ldots, x_{n}\right) \sigma \cdot x=x \cdot \prod_{i=1}^{n} x_{i}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in V_{n}, \sigma \in S_{n}$, and $x \in \mathbb{Z}^{\times}$. The set $[n]$ is naturally viewed as a left B_{n}-set on which V_{n} acts trivially. Let $[n]^{\triangleright}$ denote the B_{n}-set $\mathbb{Z}^{\times} \dot{\cup}[n]$.

Lemma 4.1 There are exactly three nontrivial linear \mathbb{C}-characters $\kappa_{n}: B_{n} \rightarrow \mathbb{C}$, $\rho_{n}: B_{n} \rightarrow \mathbb{C}$, and $\varepsilon_{n}: B_{n} \rightarrow \mathbb{C}$ defined as above in $R\left(B_{n}\right)$, and $\kappa_{n}(y)=(-1)^{\left|\langle y\rangle \backslash \mathbb{Z}^{\times}\right|}$, $\rho_{n}(y)=(-1)^{|\langle y\rangle \backslash[n]|+n}$, and $\varepsilon_{n}(y)=(-1)^{\left|\langle y\rangle \backslash[n]^{\circ}\right|+n}$ for each $y \in B_{n}$.

Proof. By Proposition 3.1, there are exactly three nontrivial linear \mathbb{C}-characters of B_{n}. Let $\left(x_{1}, \ldots, x_{n}\right) \in V_{n}$, and let $\sigma \in S_{n}$. Set $y=\left(x_{1}, \ldots, x_{n}\right) \sigma \in B_{n}$, and
assume that σ is a product of pairwise disjoint n_{j}-cycles σ_{j} for $j=1,2, \ldots, r$ with $\sum_{j} n_{j}=n$. Obviously, $\kappa_{n}(y)=(-1)^{\left|\langle y\rangle \backslash \mathbb{Z}^{\times}\right|}$. We have $|\langle y\rangle \backslash[n]|=r$ and

$$
\left|\langle y\rangle \backslash[n]^{\diamond}\right|= \begin{cases}r+1 & \text { if } \prod_{i=1}^{n} x_{i}=-1 \\ r+2 & \text { if } \prod_{i=1}^{n} x_{i}=1\end{cases}
$$

Moreover, if $\ell=\sharp\left\{j \mid n_{j}\right.$ is odd $\}$, then $\rho_{n}(y)=\operatorname{sgn}(\sigma)=(-1)^{r-\ell}=(-1)^{r+n}$ and $\varepsilon_{n}(y)=(-1)^{r+n} \prod_{i=1}^{n} x_{i}$, because $\ell \equiv n(\bmod 2)$. This completes the proof.

Lemma 4.2 $R\left(B_{n}\right)^{\times}=\left\langle\kappa_{n}, \eta_{n},-1_{B_{n}}\right\rangle$.
Proof. The lemma is a consequence of [6, Theorem 5.5.6] (see also Theorem 3.2), [13, Corollary 1.2 and Lemma 2.1], and Lemma 4.1.

We are now in position to establish the following proposition.
Proposition 4.3 The nontrivial linear \mathbb{C}-characters of B_{n} are characterized by the reduced Lefschetz invariants. Indeed, $\kappa_{n}=\operatorname{char}\left(\widetilde{\Lambda}_{P\left(\mathbb{Z}^{\times}\right)}\right), \rho_{n}=(-1)^{n} \operatorname{char}\left(\widetilde{\Lambda}_{P([n])}\right)$, and $\varepsilon_{n}=(-1)^{n} \operatorname{char}\left(\widetilde{\Lambda}_{P\left([n]^{\circ}\right)}\right)$. The reduced Lefschetz invariants $\widetilde{\Lambda}_{P\left(\mathbb{Z}^{\times}\right)}$and $\widetilde{\Lambda}_{P([n])}$, together with -1 , generate an elementary abelian subgroup of $\Omega\left(B_{n}, \widetilde{\mathcal{Z}}_{n}\right)^{\times}$isomorphic to $R\left(B_{n}\right)^{\times}$, and $\widetilde{\Lambda}_{P\left([n]^{\circ}\right)}=\widetilde{\Lambda}_{P([n])} \cdot \widetilde{\Lambda}_{P\left(\mathbb{Z}^{\times}\right)}$. Moreover,

$$
\begin{aligned}
\widetilde{\Lambda}_{P(\mathbb{Z} \times)}= & {\left[B_{n} /\left(K_{n} S_{n}\right)\right]-\left[B_{n} / B_{n}\right], } \\
\widetilde{\Lambda}_{P([n])}= & \sum_{\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right) \in \mathcal{P}(n)}(-1)^{m_{1}+\cdots+m_{n}} \frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!}\left[B_{n} /\left(V_{n} S_{\lambda}\right)\right], \\
\widetilde{\Lambda}_{P\left([n]^{\circ}\right)}= & \sum_{\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right) \in \mathcal{P}(n)}(-1)^{m_{1}+\cdots+m_{n}} \frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!}\left[B_{n} /\left(K_{n} S_{\lambda}\right)\right] \\
& -\sum_{\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right) \in \mathcal{P}(n)}(-1)^{m_{1}+\cdots+m_{n}} \frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!}\left[B_{n} /\left(V_{n} S_{\lambda}\right)\right] .
\end{aligned}
$$

Proof. The first assertion follows from Proposition 2.3 and Lemma 4.1. We prove the last two assertions. By Lemma 2.2 with $X=\mathbb{Z}^{\times}$and $X_{1}=X_{2}=B_{n} / B_{n}$,

$$
\widetilde{\Lambda}_{P\left(\mathbb{Z}^{\times}\right)}=-\left[\operatorname{Map}\left(\mathbb{Z}^{\times}, \emptyset, X_{1}\right)\right]+\left[\operatorname{Map}\left(\mathbb{Z}^{\times}, \emptyset, X_{1}, X_{2}\right)\right]=-\left[B_{n} / B_{n}\right]+\left[B_{n} /\left(K_{n} S_{n}\right)\right] .
$$

We obtain the description of $\widetilde{\Lambda}_{P([n])}$ in a similar fashion to the proof of [9, Eq.(3)]. By Proposition 2.3, $\widetilde{\Lambda}_{P\left([n]^{\circ}\right)}=\widetilde{\Lambda}_{P([n])} \cdot \widetilde{\Lambda}_{P\left(\mathbb{Z}^{\times}\right)}$, which yields the description of $\widetilde{\Lambda}_{P\left([n]^{\circ}\right)}$, and the reduced Lefschetz invariants $\widetilde{\Lambda}_{P\left(\mathbb{Z}^{\times}\right)}, \widetilde{\Lambda}_{P([n])}$, and $\widetilde{\Lambda}_{P\left([n]^{\circ}\right)}$ are contained

> F. Oda, Y. Takegahara, and T. Yoshida
in $\Omega\left(B_{n}, \widetilde{\mathcal{Z}}_{n}\right)^{\times}$. Hence it follows from Lemma 4.2 that $\widetilde{\Lambda}_{P(\mathbb{Z} \times)}, \widetilde{\Lambda}_{P([n])}$, and -1 generate an elementary abelian subgroup of $\Omega\left(B_{n}, \widetilde{\mathcal{Z}}_{n}\right)^{\times}$isomorphic to $R\left(B_{n}\right)^{\times}$. This completes the proof.

The following descriptions of nontrivial linear \mathbb{C}-characters of B_{n} are obtained; see Eq.(5) in $\S 5$ for Solomon's formula of the sign character $\varepsilon_{n}: B_{n} \rightarrow \mathbb{C}$.

Corollary 4.4

$$
\begin{aligned}
\kappa_{n}= & 1_{K_{n} S_{n}}^{B_{n}}-1_{B_{n}}, \\
\rho_{n} & =\sum_{\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right) \in \mathcal{P}(n)}(-1)^{m_{1}+\cdots+m_{n}+n} \frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!} 1_{V_{n} S_{\lambda}}^{B_{n}}, \\
\varepsilon_{n} & =\sum_{\lambda=\left(1^{\left.m_{1}, \ldots, n^{m_{n}}\right) \in \mathcal{P}(n)}\right.}(-1)^{m_{1}+\cdots+m_{n}+n} \frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!} 1_{K_{n} S_{\lambda}}^{B_{n}} \\
& \quad-\sum_{\lambda=\left(1^{\left.m_{1}, \ldots, n^{m_{n}}\right) \in \mathcal{P}(n)}\right.}(-1)^{m_{1}+\cdots+m_{n}+n} \frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!} 1_{V_{n} S_{\lambda}}^{B_{n}} .
\end{aligned}
$$

Proof. The corollary is an immediate consequence of Proposition 4.3. (The formulae of κ_{n} and ρ_{n} can also be obtained by a calculation and Eq.(4), respectively.)

5 The Young subgroups of the hyperoctahedral groups

Given $J \subset[n]$, we define a subgroup L_{J} of V_{n} by

$$
L_{J}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V_{n} \mid x_{k}=1 \text { for all } k \in \bar{J}\right\} .
$$

Let \mathcal{U}_{n} denote the set of products $L_{J} S_{\lambda_{J} \lambda_{\bar{J}}}$ of L_{J} and $S_{\lambda_{J} \lambda_{\bar{J}}}$ for $J \subset[n]$ and $\left(\lambda_{J}, \lambda_{\bar{J}}\right) \in \mathcal{P}(J, \bar{J})$, and let \mathcal{E}_{n} denote the set of products $L_{J}\left(S_{\lambda_{J} \lambda_{\bar{J}}} S_{J}\right)$ of L_{J} and $S_{\lambda_{J} \lambda_{\bar{J}}} S_{J}$ for $J \subset[n]$ and $\left(\lambda_{J}, \lambda_{\bar{J}}\right) \in \mathcal{P}(J, \bar{J})$. Obviously, $\mathcal{E}_{n} \subset \mathcal{U}_{n}$.

We call the subgroups $L_{J} S_{\lambda_{J} \lambda_{\bar{J}}}$ of B_{n} and the characters $1_{L_{J} S_{\lambda_{J} \lambda_{\bar{J}}}}^{B_{n}}$ for $J \subset[n]$ and $\left(\lambda_{J}, \lambda_{\bar{J}}\right) \in \mathcal{P}(J, \bar{J})$ the Young subgroups and the Young characters, respectively.

The sets \mathcal{U}_{n} and \mathcal{E}_{n} are closed under intersection; they are not closed under conjugation, however. Recall that $\overline{\mathcal{D}}=\left\{{ }^{y} H \mid y \in B_{n}\right.$ and $\left.H \in \mathcal{D}\right\}$ where \mathcal{D} is \mathcal{U}_{n} or \mathcal{E}_{n}. Given $[i] \subset[n]$ and $\lambda \in \mathcal{P}(i)$, we write $L_{\bar{i}}=L_{[\bar{i}]}$ and $S_{\lambda} B_{n-i}=L_{\bar{i}}\left(S_{\lambda} S_{\bar{i}}\right)$. The set $\overline{\mathcal{E}}_{n}$ consists of the conjugates of the parabolic subgroups $S_{\lambda} B_{n-i}$ for $[i] \subset[n]$ and $\lambda \in \mathcal{P}(i)$, and is closed under intersection (cf. [6, Exercise 2.2]). To explore $\overline{\mathcal{U}}_{n}$, we make $\mathbb{Z}^{\times} \times[n]$ into a left B_{n}-set by defining

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma \cdot(x, i)=\left(x_{\sigma(i)} x, \sigma(i)\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in V_{n}, \sigma \in S_{n}$, and $(x, i) \in \mathbb{Z}^{\times} \times[n]$.

Lemma 5.1 The set $\overline{\mathcal{U}}_{n}$ is closed under intersection.
Proof. Suppose that $J_{1}, J_{2} \subset[n],\left(\lambda_{J_{1}}, \lambda_{\overline{J_{1}}}\right) \in \mathcal{P}\left(J_{1}, \overline{J_{1}}\right),\left(\lambda_{J_{2}}, \lambda_{\overline{J_{2}}}\right) \in \mathcal{P}\left(J_{2}, \overline{J_{2}}\right)$, $g \in V_{n}$, and $\sigma \in S_{n}$. Then ${ }^{g}\left(L_{\sigma\left(J_{1}\right)}{ }^{\sigma} S_{\lambda_{J_{1}} \lambda_{\overline{J_{1}}}}\right) \cap L_{J_{2}} S_{\lambda_{J_{2}} \lambda_{\overline{J_{2}}}}$ is considered to be the intersection of the stabilizers of disjoint subsets

$$
N_{1}^{+}, \ldots, N_{k}^{+}, N_{1}^{-}, \ldots, N_{k}^{-}, N_{k+1}, \ldots, N_{r}
$$

obtained by a certain partition of $\mathbb{Z}^{\times} \times[n]$ into nonempty subsets such that

$$
N_{i}^{+}=\left\{g_{i} .(1, q) \mid q \in Q_{i}\right\} \quad \text { and } \quad N_{i}^{-}=\left\{g_{i} .(-1, q) \mid q \in Q_{i}\right\}
$$

with $Q_{i} \subset[n]$ and $g_{i} \in L_{Q_{i}}$ for $i=1,2, \ldots, k$ and

$$
N_{i}=\left\{(1, q),(-1, q) \mid q \in Q_{i}\right\}
$$

with $Q_{i} \subset[n]$ for $i=k+1, \ldots, r$. Set $g^{\prime}=g_{1} \cdots g_{k}$ and $J=Q_{k+1} \dot{\cup} \cdots \dot{\cup} Q_{r}$. Then

$$
\begin{aligned}
g \sigma & \left.L_{J_{1}} S_{\lambda_{J_{1}} \lambda_{\overline{J_{1}}}}\right) \cap L_{J_{2}} S_{\lambda_{J_{2}} \lambda_{\overline{J_{2}}}}
\end{aligned}{={ }^{g}\left(L_{\sigma\left(J_{1}\right)}{ }^{\sigma} S_{\lambda_{J_{1}} \lambda_{\overline{J_{1}}}}\right) \cap L_{J_{2}} S_{\lambda_{J_{2}} \lambda_{\overline{J_{2}}}}}=g^{\prime}\left(L_{J}{ }^{\tau} S_{\lambda_{J} \lambda_{\bar{J}}}\right), ~=g^{\prime} \tau\left(L_{J} S_{\lambda_{J} \lambda_{\bar{J}}}\right)
$$

for some $\tau \in S_{J} S_{\bar{J}}$ and $\left(\lambda_{J}, \lambda_{\bar{J}}\right) \in \mathcal{P}(J, \bar{J})$. Consequently, $\overline{\mathcal{U}}_{n}$ is closed under intersection. This completes the proof.

By Lemma 5.1 and [6, Exercise 2.2], $\Omega\left(B_{n}, \mathcal{U}_{n}\right)$ and $\Omega\left(B_{n}, \mathcal{E}_{n}\right)$ are subrings of $\Omega\left(B_{n}\right)$ (cf. Theorem 3.4) called partial Burnside rings. The partial Burnside ring $\Omega\left(B_{n}, \mathcal{E}_{n}\right)$ is known as the parabolic Burnside ring. As for the partial Burnside ring $\Omega\left(B_{n}, \mathcal{U}_{n}\right)$ relative to the Young subgroups of B_{n}, we quote [7, Corollary II.4]:

Theorem 5.2 The characters $1_{L_{\bar{i}} S_{\lambda_{i} \lambda_{i}}}^{B_{n}}$ induced from the trivial characters $1_{L_{\bar{i}} S_{\lambda_{i} \lambda_{\bar{i}}}}$ of $L_{\bar{i}} S_{\lambda_{i} \lambda_{i}}$ for $[i] \subset[n]$ and $\left(\lambda_{i}, \lambda_{\bar{i}}\right) \in \mathcal{P}([i], \overline{[i]})$ form a \mathbb{Z}-basis of $R\left(B_{n}\right)$.

Corollary 5.3 The ring homomorphism char : $\Omega\left(B_{n}\right) \rightarrow R\left(B_{n}\right)$ induces a ring isomorphism char : $\Omega\left(B_{n}, \mathcal{U}_{n}\right) \rightarrow R\left(B_{n}\right)$. In particular, $\Omega\left(B_{n}, \mathcal{U}_{n}\right)^{\times} \simeq R\left(B_{n}\right)^{\times}$.

Proof. The corollary is a consequence of Theorem 5.2, because \mathcal{U}_{n} is a set of conjugates of the subgroups $L_{\bar{i}} S_{\lambda_{i} \lambda_{\bar{i}}}$ for $[i] \subset[n]$ and $\left(\lambda_{i}, \lambda_{\bar{i}}\right) \in \mathcal{P}([i],[\overline{[i})$.

The rest of this section is devoted to quite a new view of the units of $\Omega\left(B_{n}, \mathcal{U}_{n}\right)$.
Proposition 5.4 $\left|\Omega\left(B_{n}, \mathcal{E}_{n}\right)^{\times}\right|=4$.

Proof. By [4, (66.29) Corollary] and Corollary 5.3, there is a unique unit α_{n} of $\Omega\left(B_{n}, \mathcal{E}_{n}\right)$ such that $\operatorname{char}\left(\alpha_{n}\right)=\varepsilon_{n}$. Obviously, $-1 \in \Omega\left(B_{n}, \mathcal{E}_{n}\right)^{\times}$. Hence we have $\left|\Omega\left(B_{n}, \mathcal{E}_{n}\right)^{\times}\right| \geq 4$. By Proposition 4.3 and Theorem 5.2, $\widetilde{\Lambda}_{P([n])} \in \Omega\left(B_{n}, \mathcal{U}_{n}\right)^{\times}$and $\widetilde{\Lambda}_{P([n])} \notin \Omega\left(B_{n}, \mathcal{E}_{n}\right)^{\times}$. Thus $\left|\Omega\left(B_{n}, \mathcal{U}_{n}\right)^{\times}: \Omega\left(B_{n}, \mathcal{E}_{n}\right)^{\times}\right| \geq 2$. By Lemma 4.1 and Corollary 5.3, we have $\left|\Omega\left(B_{n}, \mathcal{U}_{n}\right)^{\times}\right|=\left|R\left(B_{n}\right)^{\times}\right|=8$, whence $\left|\Omega\left(B_{n}, \mathcal{E}_{n}\right)^{\times}\right|=4$. This completes the proof.

We present a technical lemma by which [4, (66.29) Corollary] deduces Eq.(4) and a description of $\varepsilon_{n}: B_{n} \rightarrow \mathbb{C}$ (see also [6 , Propositions 2.3.8 and 2.3.10]):

$$
\begin{equation*}
\varepsilon_{n}=\sum_{i=0}^{n} \sum_{\lambda=\left(1^{m_{1}}, \ldots, i^{m_{i}}\right) \in \mathcal{P}(i)}(-1)^{m_{1}+\cdots+m_{i}+n} \frac{\left(m_{1}+\cdots+m_{i}\right)!}{m_{1}!\cdots m_{i}!} 1_{S_{\lambda} B_{n-i}}^{B_{n}} . \tag{5}
\end{equation*}
$$

Lemma 5.5 Let $\left(S_{n}, X\right)$ be the Coxeter system of type A_{n-1}. Given $\lambda \in \mathcal{P}(n)$, let $\mathcal{W}(\lambda)$ be the set of parabolic subgroups W_{I} of S_{n} for $I \subset X$ which are conjugates of S_{λ}. Suppose that $I \subset X$ and $W_{I} \in W(\lambda)$ with $\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right) \in \mathcal{P}(n)$. Then $|I| \equiv m_{1}+\cdots+m_{n}+n(\bmod 2)$, so that $(-1)^{|I|}=(-1)^{m_{1}+\cdots+m_{n}+n}$.

Proof. We use induction with respect to the partially order \leq on $\mathcal{P}(n)$ given by

$$
\mu \leq \nu \quad: \Longleftrightarrow S_{\mu} \text { is a conjugate of a subgroup of } S_{\nu}
$$

If $\lambda=\left(1^{n}\right)$, then $I=\emptyset$, and hence $|I| \equiv 2 n(\bmod 2)$. Assume that $\left(1^{n}\right)<\lambda$. Then $m_{k} \neq 0$ and $m_{k+1}=\cdots=m_{n}=0$ for some $k \in[n]$. We set

$$
\mu= \begin{cases}\left(1^{m_{1}+2}, 2^{m_{2}-1}\right) & \text { if } k=2 \\ \left(1^{m_{1}+1}, 2^{m_{2}}, \ldots,(k-1)^{m_{k-1}+1}, k^{m_{k}-1}, 0, \ldots, 0\right) & \text { if } k>2\end{cases}
$$

Suppose that $I^{\prime} \subset X$ and $W_{I^{\prime}} \in W(\mu)$. Then $\mu<\lambda$ and $\left|I^{\prime}\right|=|I|-1$. By the inductive assumption, $\left|I^{\prime}\right| \equiv m_{1}+\cdots+m_{n}+1+n(\bmod 2)$. Since $|I|=\left|I^{\prime}\right|+1$, it follows that $|I| \equiv m_{1}+\cdots+m_{n}+n(\bmod 2)$. This completes the proof.

What about a unique unit γ_{n} of $\Omega\left(B_{n}, \mathcal{U}_{n}\right)$ satisfying $\operatorname{char}\left(\gamma_{n}\right)=\kappa_{n}$? We are interested in the reduced Lefschetz invariant $\widetilde{\Lambda}_{P\left(\mathbb{Z}^{\times} \times[n]\right)}$.

Lemma $5.6 \kappa_{n}=\operatorname{char}\left(\widetilde{\Lambda}_{P(\mathbb{Z} \times \times n])}\right)$.
Proof. By Proposition 2.3, $\operatorname{char}\left(\widetilde{\Lambda}_{P(\mathbb{Z} \times \times[n])}\right)(y)=(-1)^{\left|\langle y\rangle \backslash\left(\mathbb{Z}^{\times} \times[n]\right)\right|}$ for all $y \in B_{n}$. Let $\sigma \in S_{n}$, and assume that σ is the product of pairwise disjoint n_{j}-cycles σ_{j} for $j=1,2, \ldots, r$ with $\sum_{j} n_{j}=n$. Let $\left(x_{1}, \ldots, x_{n}\right) \in V_{n}$, and set $y=\left(x_{1}, \ldots, x_{n}\right) \sigma$. For each $j \in\{1,2, \ldots, r\}$, let I_{j} be the minimal subset of $[n]$ with $\sigma_{j} \in S_{I_{j}}$, and set

$$
y_{j}=\left(x_{1}^{(j)}, x_{2}^{(j)}, \ldots, x_{n}^{(j)}\right) \sigma_{j} \quad \text { with } \quad x_{i}^{(j)}=\left\{\begin{array}{cl}
x_{i} & \text { if } i \in I_{j}, \\
1 & \text { otherwise }
\end{array}\right.
$$

Obviously, $y=\prod_{j=1}^{r} y_{j}$. We now set $s=\sharp\left\{j \in\{1,2, \ldots, r\} \mid \prod_{i=1}^{n} x_{i}^{(j)}=1\right\}$, so that $\left|\langle y\rangle \backslash\left(\mathbb{Z}^{\times} \times[n]\right)\right|=r+s$. Hence it turns out that

$$
\kappa_{n}(y)=\prod_{i=1}^{n} x_{i}=\prod_{j=1}^{r} \prod_{i=1}^{n} x_{i}^{(j)}=(-1)^{r-s}=(-1)^{\left|\langle y\rangle \backslash\left(\mathbb{Z}^{\times} \times[n]\right)\right|} .
$$

Consequently, we obtain $\kappa_{n}=\operatorname{char}\left(\widetilde{\Lambda}_{P(\mathbb{Z} \times \times n])}\right)$, completing the proof.
The following lemma, which is a basic fact for the left B_{n}-set $\mathbb{Z}^{\times} \times[n]$, is crucial.
Lemma 5.7 Let $\left\{M_{1}, \ldots, M_{i}\right\}$, i a positive integer, be a partition of $\mathbb{Z}^{\times} \times[n]$ into nonempty subsets, and view them as elements of the B_{n}-poset $P\left(\mathbb{Z}^{\times} \times[n]\right)$. If each M_{j} for $j=1,2, \ldots, i$ does not include both $(1, q)$ and $(-1, q)$ for any $q \in[n]$, then there exists an element λ of $\mathcal{P}(n)$ such that the intersection of stabilizers of M_{j} in B_{n} for $j=1,2, \ldots, i$ is a conjugate of S_{λ}.

Proof. There is a partition $\left\{N_{1}, \ldots, N_{k}\right\}, k$ a positive integer, of $[n]$ into nonempty subsets such that each M_{j} for $j=1,2, \ldots, i$ consists of either $(1, q)$ or $(-1, q)$, but not both, for each $q \in N_{\ell_{1}} \dot{\cup} \cdots \dot{\cup} N_{\ell_{r}}$ with $\left\{N_{\ell_{1}}, \ldots, N_{\ell_{r}}\right\} \subset\left\{N_{1}, \ldots, N_{k}\right\}$. Let $\widehat{\mathcal{P}}(n)$ be the set of all cycle types to which such partitions $\left\{N_{1}, \ldots, N_{k}\right\}$ of $[n]$ into nonempty subsets correspond, and take the maximal element μ of $\widehat{\mathcal{P}}(n)$ with respect to the partially order \leq on $\mathcal{P}(n)$ given in the proof of Lemma 5.5. Let $\left\{N_{1}, \ldots, N_{k}\right\}$ be a partition of $[n]$ into nonempty subsets corresponding to μ which satisfy the above condition. We set $J=N_{\ell}$, where ℓ is an arbitrary integer with $1 \leq \ell \leq k$. There exists a unique subset Q of J such that

$$
J^{+}:=\{(1, q) \mid q \in Q\} \dot{\cup}\{(-1, q) \mid q \in J-Q\} \subset M_{j_{1}}
$$

and

$$
J^{-}:=\{(1, q) \mid q \in J-Q\} \dot{\cup}\{(-1, q) \mid q \in Q\} \subset M_{j_{2}}
$$

for some integers j_{1} and j_{2} with $1 \leq j_{1} \neq j_{2} \leq i$. Let $g=\left(x_{1}, \ldots, x_{n}\right) \in L_{Q}$, and suppose that $x_{q}=-1$ for all $q \in Q$. Then the stabilizer of J^{+}in B_{n} is ${ }^{g}\left(L_{\bar{J}} S_{J} S_{\bar{J}}\right)$, and so is that of J^{-}in B_{n}. Observe now that the intersection of stabilizers of M_{j} for $j=1,2, \ldots, i$ in B_{n} coincides with the intersection of such subgroups of B_{n}. Hence the assertion is a consequence of Lemma 5.1. This completes the proof.

Identifying $(-1, q)$ with $n+q \in[2 n]$ for all $q \in[n]$, we may consider $S_{2 n}$ to be the symmetric group on $\mathbb{Z}^{\times} \times[n]$. In particular, B_{n} is viewed as a subgroup of $S_{2 n}$.

Lemma 5.8 Let $\lambda \in \mathcal{P}(2 n)$. Then $B_{n} \cap{ }^{\sigma} S_{\lambda} \in \overline{\mathcal{U}}_{n}$ for all $\sigma \in S_{2 n}$, and

$$
\left[\operatorname{res}_{B_{n}}^{S_{2 n}}\left(S_{2 n} / S_{\lambda}\right)\right]=\sum_{\sigma \in \overline{B_{n} \backslash S_{2 n} / S_{\lambda}}}\left[B_{n} /\left(B_{n} \cap{ }^{\sigma} S_{\lambda}\right)\right] \in \Omega\left(B_{n}, \mathcal{U}_{n}\right),
$$

where $\operatorname{res}_{B_{n}}^{S_{2 n}}$ indicates restriction of operators from $S_{2 n}$ to B_{n} and $\overline{B_{n} \backslash S_{2 n} / S_{\lambda}}$ is a complete set of representatives of double cosets $B_{n} \sigma S_{\lambda}, \sigma \in S_{2 n}$, in $S_{2 n}$.

Proof. Let $\sigma \in S_{2 n}$. By Lemma 5.7, $B_{n} \cap{ }^{\sigma} S_{\lambda}={ }^{g \tau}\left(L_{J} S_{\mu_{J} \mu_{\bar{J}}}\right)$ for some $J \subset[n]$, $g \in L_{\bar{J}}, \tau \in S_{J} S_{\bar{J}}$, and $\left(\mu_{J}, \mu_{\bar{J}}\right) \in \mathcal{P}(J, \bar{J})$. Hence $B_{n} \cap{ }^{\sigma} S_{\lambda} \in \overline{\mathcal{U}}_{n}$. The second assertion follows from [4, (80.27) Subgroup Theorem]. This completes the proof.

There is a formula of the reduced Lefschetz invariant $\widetilde{\Lambda}_{P\left(\mathbb{Z}^{\times} \times[n]\right)}$ (cf. Eq.(6)) which is implicit in the proof of a conclusion from the proceeding facts:

Theorem 5.9 Define three elements α_{n}, β_{n}, and γ_{n} of $\Omega\left(B_{n}, \mathcal{U}_{n}\right)$ by

$$
\begin{aligned}
& \alpha_{n}=\sum_{i=0}^{n} \sum_{\lambda=\left(1^{m_{1}}, \ldots, i^{m_{i}}\right) \in \mathcal{P}(i)}(-1)^{m_{1}+\cdots+m_{i}+n} \frac{\left(m_{1}+\cdots+m_{i}\right)!}{m_{1}!\cdots m_{i}!}\left[B_{n} /\left(S_{\lambda} B_{n-i}\right)\right], \\
& \beta_{n}=(-1)^{n} \widetilde{\Lambda}_{P([n])}, \quad \text { and } \quad \gamma_{n}=\widetilde{\Lambda}_{P(\mathbb{Z} \times \times[n])} .
\end{aligned}
$$

Then $\varepsilon_{n}=\operatorname{char}\left(\alpha_{n}\right), \rho_{n}=\operatorname{char}\left(\beta_{n}\right), \kappa_{n}=\operatorname{char}\left(\gamma_{n}\right)$, and $\alpha_{n}=(-1)^{n} \widetilde{\Lambda}_{P([n] \dot{\cup}(\mathbb{Z} \times \times[n]))}$. Moreover, $\Omega\left(B_{n}, \mathcal{E}_{n}\right)^{\times}=\left\langle\alpha_{n},-1\right\rangle, \Omega\left(B_{n}, \mathcal{U}_{n}\right)^{\times}=\left\langle\beta_{n}, \gamma_{n},-1\right\rangle$, and $\alpha_{n}=\beta_{n} \gamma_{n}$.

Proof. By Eq.(5), $\varepsilon_{n}=\operatorname{char}\left(\alpha_{n}\right)$. Obviously, $\alpha_{n} \in \Omega\left(B_{n}, \mathcal{E}_{n}\right)$. Since $\alpha_{n} \neq 1,-1$, it follows from Proposition 5.4 that $\Omega\left(B_{n}, \mathcal{E}_{n}\right)^{\times}$is generated by α_{n} and -1 . By Proposition 4.3 and Lemma 5.6, we have $\rho_{n} \equiv \operatorname{char}\left(\beta_{n}\right), \beta_{n} \in \Omega\left(B_{n}, \mathcal{U}_{n}\right)$, and $\kappa_{n}=\operatorname{char}\left(\gamma_{n}\right)$. The reduced Lefschetz invariant $\widetilde{\Lambda}_{P([2 n])}$ of the left $S_{2 n}$-set $[2 n]$ is an element of $\Omega\left(S_{2 n}, \mathcal{Y}_{2 n}\right)$ (cf. [9, §4]); for its description, see Eq.(3). We may identify $\widetilde{\Lambda}_{P(\mathbb{Z} \times \times[n])}$ with res $B_{B_{n}}^{S_{n} n}\left(\widetilde{\Lambda}_{P([2 n])}\right)$ which is the element of $\Omega\left(B_{n}\right)$ obtained by restriction of operators on $S_{2 n}$-sets appearing in the components of $\widetilde{\Lambda}_{P([2 n])}$ from $S_{2 n}$ to B_{n}. By Lemma $5.8, \operatorname{res}_{B_{n}}^{S_{2 n}}\left(\widetilde{\Lambda}_{P([2 n])}\right) \in \Omega\left(B_{n}, \mathcal{U}_{n}\right)$, and thus $\widetilde{\Lambda}_{P(\mathbb{Z} \times \times[n])} \in \Omega\left(B_{n}, \mathcal{U}_{n}\right)$. Moreover, it follows from Lemma 4.2 and Corollary 5.3 that $\Omega\left(B_{n}, \mathcal{U}_{n}\right)^{\times}$is generated by β_{n}, γ_{n}, and -1 . Also, $\alpha_{n}=\beta_{n} \gamma_{n}$, because $\varepsilon_{n}=\rho_{n} \kappa_{n}$. By Proposition 2.3, it turns out that $\alpha_{n}=(-1)^{n} \widetilde{\Lambda}_{P([n] \cup(\mathbb{Z} \times \times[n]))}$. This completes the proof.

Since $\widetilde{\Lambda}_{P\left(\mathbb{Z}^{\times} \times[n]\right)}=\operatorname{res}_{B_{n}}^{S_{2 n}}\left(\widetilde{\Lambda}_{P([2 n])}\right)$, it follows from Eq.(3) and Lemma 5.8 that

$$
\begin{align*}
\widetilde{\Lambda}_{P(\mathbb{Z} \times \times[n])}= & \sum_{\lambda=\left(1^{m_{1}}, \ldots,(2 n)^{m_{2 n}}\right) \in \mathcal{P}(2 n)} \tag{6}\\
& \sum_{\sigma \in \overline{B_{n} \backslash S_{2 n} / S_{\lambda}}}(-1)^{m_{1}+\cdots+m_{2 n}} \\
& \times \frac{\left(m_{1}+\cdots+m_{2 n}\right)!}{m_{1}!\cdots m_{2 n}!}\left[B_{n} /\left(B_{n} \cap{ }^{\sigma} S_{\lambda}\right)\right] .
\end{align*}
$$

We close this section with a character theoretical explanation of the formula of κ_{n} obtained by Eq.(6). For each \mathbb{C}-character χ of G, let $\left.\chi\right|_{H}$ with $H \leq G$ denote the \mathbb{C}-character obtained by restriction of χ from G to H.

Lemma 5.10 Let $\mathbf{M}: G \rightarrow G L_{n}(\mathbb{C})$ be a \mathbb{C}-representation of G affording a real valued character χ of G. Then for any $g \in G$,

$$
\operatorname{det} \mathbf{M}(g)=(-1)^{n-\left\langle\left.\chi\right|_{\langle g\rangle}, 1_{\langle g\rangle}\right\rangle},
$$

where $\left\langle\left.\chi\right|_{\langle g\rangle}, 1_{\langle g\rangle}\right\rangle$ is the inner product of $\left.\chi\right|_{\langle g\rangle}$ and $1_{\langle g\rangle}$.

Proof. See the later part of the proof of [14, Theorem A].
There is a representation $\mathbf{M}_{n}: S_{n} \rightarrow G L_{n}(\mathbb{C})$ given by

$$
\sigma \mapsto\left(\delta_{\sigma^{-1}(i) j}\right)_{1 \leq i, j \leq n}, \quad \delta \text { the Kronecker delta, }
$$

which affords the permutation character $\pi_{[n]}: S_{n} \rightarrow \mathbb{C}$. Obviously, the sign character $\operatorname{sgn}_{n}: S_{n} \rightarrow \mathbb{C}$ coincides with the linear \mathbb{C}-character $\operatorname{det} \mathbf{M}_{n}: S_{n} \rightarrow \mathbb{C}$ given by

$$
\sigma \mapsto \operatorname{det} \mathbf{M}_{n}(\sigma)
$$

for all $\sigma \in S_{n}$. Recall that B_{n} is viewed as a subgroup of $S_{2 n}$. By Lemma 5.10,

$$
\operatorname{det} \mathbf{M}_{2 n}(\sigma)=(-1)^{\left\langle\pi_{[2 n]}\langle\sigma\rangle, 1_{\langle\sigma\rangle}\right\rangle}=(-1)^{|\langle\sigma\rangle \backslash[2 n]|}
$$

for all $\sigma \in S_{2 n}$ (see also [9, Lemma 3.3]). This, combined with Proposition 2.3 and Lemma 5.6, shows that the linear \mathbb{C}-character $\left.\operatorname{det} \mathbf{M}_{2 n}\right|_{B_{n}}: B_{n} \rightarrow \mathbb{C}$ coincides with $\kappa_{n}: B_{n} \rightarrow \mathbb{C}$. Consequently, we have $\kappa_{n}=\left.\operatorname{sgn}_{2 n}\right|_{B_{n}}$. Hence it follows from Eq.(4) and Lemma 5.8 (see also [4, (10.13) Subgroup Theorem]) that

$$
\kappa_{n}=\sum_{\lambda=\left(1^{m_{1}}, \ldots,(2 n)^{m_{2 n}}\right) \in \mathcal{P}(2 n)} \sum_{\sigma \in \frac{B_{n} \backslash S_{2 n} / S_{\lambda}}{}}(-1)^{m_{1}+\cdots+m_{2 n}} \frac{\left(m_{1}+\cdots+m_{2 n}\right)!}{m_{1}!\cdots m_{2 n}!} 1_{B_{n} \cap \sigma^{\sigma} S_{\lambda}}^{B_{n}}
$$

and $B_{n} \cap{ }^{\sigma} S_{\lambda} \in \overline{\mathcal{U}}_{n}$ for all $\lambda \in \mathcal{P}(2 n)$ and $\sigma \in S_{2 n}$.

6 The parabolic Burnside rings of even-signed permutation groups

We set $D_{n}=\operatorname{ker} \kappa_{n}$ and call it the even-signed permutation group on $[n]$. Obviously, $D_{n}=K_{n} S_{n}$, where $K_{n}=\operatorname{ker} \vartheta_{n}$. Suppose that $[i] \subset[n]$ and $\lambda \in \mathcal{P}(i)$. We set $S_{\lambda} D_{n-i}=\left(K_{n} \cap L_{\bar{i}}\right) S_{\lambda} S_{\bar{i}}$ and set $t=(0,0, \ldots, 1) \in V_{n}$. Observe that

$$
\left[\operatorname{res}_{D_{n}}^{B_{n}}\left(B_{n} /\left(S_{\lambda} B_{n-i}\right)\right)\right]= \begin{cases}{\left[D_{n} /\left(S_{\lambda} D_{n-i}\right)\right]} & \text { if } 0 \leq i \leq n-1, \\ {\left[D_{n} / S_{\lambda}\right]+\left[D_{n} /{ }^{t} S_{\lambda}\right]} & \text { if } i=n\end{cases}
$$

by [4, (80.27) Subgroup Theorem], which are contained in the parabolic Burnside ring $\mathcal{P B}\left(D_{n}\right)$ (cf. [6, 2.3.11]). We define a map $\operatorname{res}_{D_{n}}^{B_{n}}: \mathcal{P B}\left(B_{n}\right) \rightarrow \mathcal{P B}\left(D_{n}\right)$ by

$$
\left[B_{n} /\left(S_{\lambda} B_{n-i}\right)\right] \mapsto\left[\operatorname{res}_{D_{n}}^{B_{n}}\left(B_{n} /\left(S_{\lambda} B_{n-i}\right)\right)\right]
$$

for all $[i] \subset[n]$ and $\lambda \in \mathcal{P}(i)$. Set $\alpha_{n}^{\prime}=\operatorname{res}_{D_{n}}^{B_{n}}\left(\alpha_{n}\right)$ (see Theorem 5.9). Then

$$
\begin{aligned}
\alpha_{n}^{\prime} & =\sum_{i=0}^{n-1} \sum_{\lambda=\left(1^{m_{1}}, \ldots, i^{m_{i}}\right) \in \mathcal{P}(i)}(-1)^{m_{1}+\cdots+m_{i}+n} \frac{\left(m_{1}+\cdots+m_{i}\right)!}{m_{1}!\cdots m_{i}!}\left[D_{n} /\left(S_{\lambda} D_{n-i}\right)\right] \\
& +\sum_{\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right) \in \mathcal{P}(n)}(-1)^{m_{1}+\cdots+m_{n}+n} \frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!}\left(\left[D_{n} / S_{\lambda}\right]+\left[D_{n} /{ }^{t} S_{\lambda}\right]\right) .
\end{aligned}
$$

Proposition 6.1 $\mathcal{P} \mathcal{B}\left(D_{n}\right)^{\times}=\left\langle\alpha_{n}^{\prime},-1\right\rangle$.
Proof. By the proof of [1, Theorem 4.5], there is an injection from $\mathcal{P} \mathcal{B}\left(D_{n}\right)^{\times}$to $R\left(D_{n}\right)^{\times}$inherited from the ring homomorphism char : $\Omega\left(D_{n}\right) \rightarrow R\left(D_{n}\right)$. The sign character $\left.\varepsilon_{n}\right|_{D_{n}}: D_{n} \rightarrow \mathbb{C}$ is the only nontrivial \mathbb{C}-character of D_{n} and \mathbb{Q} is a splitting field for D_{n} (cf. [6, §5.6]). This, combined with [13, Corollary 1.2 and Lemma 2.1], shows that $R\left(D_{n}\right)^{\times}$is isomorphic to the four group. Moreover, by [4, (10.13) Subgroup Theorem] and Eq.(5), we have $\left.\varepsilon_{n}\right|_{D_{n}}=\operatorname{char}\left(\alpha_{n}^{\prime}\right)$. Consequently, $\mathcal{P B}\left(D_{n}\right)^{\times}$is generated by α_{n}^{\prime} and -1 . This completes the proof.

Remark 6.2 Let (W, S) be a Coxeter system of type E_{6}, E_{7}, or E_{8}. Then every character of W is rational-valued (cf. [6, 5.3.6]). Moreover, there are exactly two linear \mathbb{C}-characters of W (cf. [6, pp. 413-416]). Hence $R(W)^{\times}$is isomorphic to the four group and $\mathcal{P B}(W)^{\times}$is isomorphic to a subgroup of $R(W)^{\times}$(see the proof of Proposition 6.1). Thus it follows from [4, (66.29) Corollary] that $\mathcal{P B}(W)^{\times}$is of order 4 and is generated by $\sum_{J \subset S}(-1)^{|J|}\left[W / W_{J}\right]$ and -1 , where $W_{J}=\langle s \mid s \in J\rangle$.

REFERENCES

[1] F. Bergeron, N. Bergeron, R. B. Howlett, and D. E. Taylor, A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combin. 1 (1992), 23-44.
[2] R. Boltje and B. Külshammer, Canonical Brauer induction and symmetric groups, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 8 (2005), 453-460.
[3] S. Bouc, Burnside rings, Handbook of algebra, Vol. 2, 739-804, North-Holland, Amsterdam, 2000.
[4] C. W. Curtis and I. Reiner, Methods of Representation Theory, Vol. I, II, Wiley-Interscience, New York, 1981, 1987.
[5] A. Dress, Operations in representation rings, in "Representation theory of finite groups and related topics," (Madison, Wis., 1970), 39-45, Proc. Sympos. Pure Math., Vol. XXI, Amer. Math. Soc., Providence, R.I., 1971.
[6] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and IwahoriHecke algebras, London Mathematical Society Monographs, New Series, 21, The Clarendon Press, Oxford University Press, New York, 2000.
[7] L. Geissinger and D. Kinch, Representations of the hyperoctahedral groups, J. Algebra, 53 (1978), 1-20.
[8] B. Huppert, Character Theory of Finite Groups, de Gruyter Expositions in Mathematics, 25, Walter de Gruyter, Berlin, 1998.
[9] F. Oda, Y. Takegahara, and T. Yoshida, The units of a partial Burnside ring relative to the Young subgroups of a symmetric group, J. Algebra, 460 (2016), 370-379.
[10] R. P. Stanley, Enumerative Combinatorics, Vol. I, Cambridge University Press, Cambridge, 1997.
[11] J. Thévenaz, Permutation representations arising from simplicial complexes, J. Combin. Theory Ser. A 46 (1987), 121-155.
[12] E. Yalçın, An induction theorem for the unit groups of Burnside rings of 2groups, J. Algebra 289 (2005), 105-127.
[13] K. Yamauchi, The construction of units of infinite order in the character ring of a finite group, Yokohama Math. J. 51 (2005), 89-97.
[14] T. Yoshida, On the unit groups of Burnside rings, J. Math. Soc. Japan 42 (1990), 31-64.
[15] T. Yoshida, The generalized Burnside ring of a finite group, Hokkaido Math. J. 19 (1990), 509-574.

[^0]: *This work was supported by JSPS KAKENHI Grant Number JP16K05052.
 2010 Mathematics Subject Classification. Primary 19A22; Secondary 20B30, 20B35, 20C15, 20C30. Keywords. Burnside ring, Character ring, Hyper octahedral group, Lefschetz invariant, Parabolic subgroup, Sign character, Symmetric group, Young subgroup.

