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Abstract: This study proposes a method to systematically visualize the motion-characteristic distribution of Japanese
folk dances passed down in a certain area. This is accomplished by adopting an approach that involves analyzing
motion-capture data collected from the dances. The visualization process in the proposed method consists of three
stages. The first stage is the modeling of the relationship among motion-capture data, folk dances, and the settlements
in which folk dances have been passed down. This relationship is modeled as a hierarchical-structure model. The
second stage is the extraction of motion characteristics from motion-capture data streams. The motion characteristics
of each data stream are summarized as a fourteen-dimensional feature vector. The third stage is the visualization of
the motion-characteristic distribution of the dances investigated. Each of the dances is mapped on a two-dimensional
scatter plot in accordance with the feature quantities obtained in the second stage. Information on the hierarchical-
structure model constructed in the first stage is also displayed. The analysis results for the distribution of Bon Odori
dances showed that the proposed method could have almost completely visualized the motion-characteristic distribu-
tion of sample folk dances, while also demonstrating consistency with the knowledge of the dances acquired in the
previous studies.
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1. Introduction

Folk dances are one of the important constituents of Japanese
folk performing arts, along with dramatic, narrative, and mu-
sical presentations [1]. Most Japanese folk dances have been
performed in local events held in respective regional communi-
ties [1], [2]. Each of the folk dances has been strongly affected
by the natural and cultural conditions of each region [3]. By in-
vestigating the variation in regional dancing-style and analyzing
its relevance to the lifestyle of corresponding regions, traces of a
lost traditional culture in a respective community may be found,
or at least a slight clue may be provided.

According to Ref. [3], research activities on folk dances are
grouped into three categories: motion analysis, study of music,
and ethnological approach. In this study, we focus on motion
analysis. The motion characteristics of Japanese folk dances have
been investigated mainly from the qualitative viewpoint, as will
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be mentioned in “2. Related Work.” Today, however, human-
body motions can be accurately measured by using a motion-
capture (Mocap) system [4]. Analyzing Mocap data allows us
to evaluate the motion characteristics of folk dances in a more
objective and quantitative manner. In particular, visualizing the
quantitative motion-characteristic distribution of a large number
of dances may provide us with clues to intuitively understand the
relationship among the dances on a quantitative basis. However,
there are very few studies that present a systematic approach to
visualize the motion-characteristic distribution of folk dances.

Taking the above fact into consideration, we develop a new
method to systematically visualize the distribution of the motion
characteristics of Japanese folk dances passed down in a certain
area by using Mocap data. The visualization process in the pro-
posed method consists of three stages, which are described as
follows.

The first stage is the modeling of the relationship among Mo-
cap data, folk dances, and settlements in which respective re-
gional communities have been formed. Here, the settlements in
which a dance (or multiple dances) has been passed down are
treated as objects for investigation, and it is assumed that a time-
series Mocap data stream (or multiple data streams) was already
acquired for each dance. In many previous studies, settlements
in which folk dances have been passed down were grouped based
on the similarity of dancing styles or that of manners and cus-
toms (examples will be shown in “3.1 Modeling of relationship
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Fig. 1 Examples of tables representing the qualitative categorization of motions in folk dances (repro-
duced from Refs. [8] and [10]).

among motion-capture data, folk dances and settlements”). We
use the above grouping information in the modeling process. Fi-
nally, we construct a model representing the relationship among
Mocap data, folk dances, and settlements, thereby introducing the
concept of a hierarchical-structure model.

The second stage is the extraction of motion characteristics
from Mocap data streams of the dances investigated. In this
stage, we separately extract the time-domain feature quantities
and the spatial-domain ones to systematically grasp the motion
characteristics of each dance. To enable the comparison among
many dances that may provide a wide range of different danc-
ing styles, we adopt the analysis approaches proposed in Refs. [5]
and [6]. These approaches provide the feature quantities of mo-
tion characteristics in a unified format, regardless of the differ-
ence in dancing styles. As a result, we obtain the information
on the motion characteristics of each dance in the form of a fea-
ture vector with specified dimensionality (specifically, a fourteen-
dimensional feature vector is obtained and will be shown later in
“3.3 Extraction of spatial-domain motion characteristics”).

The third stage is the visualization of the motion-characteristic
distribution of the dances investigated. In this stage, each dance
is mapped on a two-dimensional scatter plot in accordance with
the feature quantities obtained in the second stage. Because the
dimensionality of the feature vector obtained is larger than two,
we develop a new dimensionality-reduction technique suitable for
visualizing the motion-characteristic distribution of folk dances.
Meanwhile, we define several graphic symbols to indicate the re-
lationship among the dances and the settlements modeled in the
first stage. The symbols are displayed on the scatter plot with the
mapped dance points. To evaluate the proposed method, we con-
duct an analysis in which the Mocap data of actual Japanese folk
dances are used. Specifically, a case study of the Bon Odori *1

dances of the Akita Prefecture is shown.

2. Related Work

As previously mentioned in “1. Introduction,” research activi-
ties on Japanese folk dances are categorized into motion analysis,
study of music, and ethnological approach. As for the motion

*1 Bon Odori is a type of Japanese folk dance performed during the annual
Buddhist festival called O-Bon (or simply Bon) [1].

analysis that is the main subject of this study, many researchers
have conducted studies to clarify the motion characteristics of
Japanese folk dances passed down in their respective regional
communities. The following studies represent typical examples
of conventional approaches in which Mocap data were not used.
Averbuch [7] examined three case studies of Japanese shamanic
dances and discussed the preservation of shamanic choreogra-
phy. Mimuro [3], [8], [9] investigated the folk dances passed
down in the Kibi District (currently, Okayama Prefecture), and
finally clarified the state of the geographical distribution of the
dances to a certain extent. Yamada [10] tried to find the ges-
tures in Japanese Bon Odori dances seen commonly throughout
the country. As a result, several step patterns and hand gestures
were extracted. In the above examples, the motion characteristics
of dances were qualitatively examined. In the latter two exam-
ples, motions in each dance were qualitatively categorized and
summarized in the form of a table (or a set of tables). Examples
are shown in Fig. 1. As shown in the figure, presenting infor-
mation on motion characteristics in the form of a table is useful
for qualitatively comparing the characteristics of multiple dances
in detail. However, it is difficult to intuitively and quantitatively
grasp an overall view of their distribution. Schematically visual-
izing the motion-characteristic distribution has an advantage over
table presentation in quantitatively examining an overall trend.

There have been several examples where Mocap techniques
have been applied in the motion analysis of folk dances. Usui et
al. [11] attempted to use the Mocap data of Japanese folk dances
(specifically, Minbu *2 and Kagura *3) for dance practice. They
found that students could have gained an objective perspective
by deliberately reducing the information in computer animations
of the Mocap data. Kitsikidis et al. [12] proposed a method for
the partitioning of dance sequences into motion patterns. In their
method, the Hidden Markov Models (HMMs) [13] technique was
used to identify each motion pattern. They applied their method
to the practice of the Greek Tsamiko dance and confirmed its ef-
fectiveness. Aristidou et al. [14] proposed a framework for teach-
ing Cypriot folk dances. In their study, the Mocap data collected

*2 Minbu is a type of Japanese folk dance created in accordance with the
folk music passed down in each region [11].

*3 Kagura is a type of Japanese folk dance performed as a ritual to pray for
good harvest, good fish and good health [11].
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Fig. 2 Examples of distribution maps of Japanese folk dances. (a): created by tracing the map on page
17 of Ref. [16], (b): created on the basis of the data of Tables 9, 1-1, 2-1, 3-1, 4-1, 5-1 in Ref. [17],

: settlement where a folk dance (or a set of folk dances) has been passed down.

from students were compared with those of their teachers based
on the Laban Movement Analysis (LMA) [15].

Part of the above examples [12], [14] provided methods to
compare the motion characteristics of multiple Mocap data
streams. In the methods, an entire dance sequence is first parti-
tioned into short-duration motion patterns, and feature quantities
are then extracted at every motion pattern. Finally, the extracted
motion characteristics are compared at every pair of motion pat-
terns extracted from each of the data streams compared. Although
this approach enables the detailed comparison of the individual
constituents comprising each data stream, the overall tendency of
an entire sequence of each data stream is not taken into account.

To visualize the distribution of many dances by mapping them
on a scatter plot, using a feature quantity (or feature quantities)
that represents the overall motion-characteristic tendency of each
dance is preferable than using the information on too finely par-
titioned motion patterns. Therefore, we do not use the above ap-
proach, but adopt the approaches proposed in Refs. [5] and [6] as
mentioned in “1. Introduction.” These approaches evaluate the
overall tendency of an entire dance sequence, regardless of the
difference in motion styles, such as the number of motion pat-
terns, and the length of a dance sequence.

3. Visualization of Motion-characteristic Dis-
tribution

3.1 Modeling of Relationship among Motion-capture Data,
Folk Dances, and Settlements

In this section, we present the visualization process of the
motion-characteristic distribution of folk dances. We first con-
struct a model that represents the relationship among Mocap data,
folk dances, and the settlements in which folk dances have been
passed down. This is the first stage of the visualization process.
As mentioned in “1. Introduction,” we use the information on the
grouping of settlements, which are representative places where
folk dances have been passed down, based on the similarity of
dancing styles or that of manners and customs. Figure 2 shows
examples of this type of grouping. Example (a) shows the group-
ing of Bon Odori dances in the Akita Prefecture [16], whereas (b)

Fig. 3 Hierarchical-structure model of folk-dance distribution.

shows that of Kagura dances in the Hiroshima Prefecture [17].
In both cases, particular areas (e.g., area belonging to the Akita-

Ondo *4 System in Example (a), etc.) were grouped based on the
similarity of the characteristics of the dances passed down. In
each of the grouped areas, there is a settlement (or multiple set-
tlements) where a folk dance (or multiple folk dances) has been
passed down (e.g., Iwasaki in Example (a), etc.). As previously
mentioned in “1. Introduction,” it is assumed that a Mocap data
stream (or multiple data streams) was already acquired for each
dance.

The above relationship can be modeled in a hierarchical struc-
ture, as shown in Fig. 3. The groups comprising the highest
“Group” level correspond to the areas grouped in Fig. 2. Each
of the groups includes a set of settlements, and each of the settle-
ments provides a set of dances passed down in it. They comprise
the second and third levels in the hierarchical structure (i.e., the
“Settlement” and “Dance” levels). Furthermore, there are sets of
Mocap data streams, each corresponding to any of the dances, in
the lowest “Mocap” level. In this study, we aim at visualizing

*4 Akita Ondo is a folk song passed down in part of Akita Prefecture, and
used as the musical accompaniment of the dances belonging to the Akita-
Ondo System [16].
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Fig. 4 Human-body model and the axes and planes of movement.

the motion-characteristic distribution of the dances by consider-
ing the above hierarchical structure.

3.2 Extraction of Time-domain Motion Characteristics
The next stage for visualizing the motion-characteristic distri-

bution of folk dances is the extraction of feature quantities from
Mocap data streams. The constituents of the “Mocap” level are
characterized in this stage. As previously mentioned in “1. Intro-
duction,” we separately extract the quantities of time-domain mo-
tion characteristics and those of spatial-domain characteristics. In
this section, we describe a method to extract the time-domain fea-
ture quantities. Here, we regard the time-domain characteristics
as those that characterize the temporal variation of whole-body
motion, without making a fine distinction among individual body
segments. According to Ref. [3], the variation of motion speed is
the most clearly perceptible factor in dance motion. Taking this
opinion into consideration, we try to extract the feature quantities
from the temporal variation of whole-body motion speed. We
adopt the method proposed in Ref. [5] as shown below.

First, the whole-body motion-speed data stream is obtained
from the temporal variation of the positions of the principal joints
shown in Fig. 4 (i.e., shoulders, elbows, wrists, fingers, hips,
knees, ankles, toes, waist, neck and head, including end effec-
tors) as follows:

v(n) =

√∑J
j=1
∑
γ=x,y,z{p j,γ(n + 1) − p j,γ(n)}2

Δt
(1)

where p j,γ(n) (γ: x, y or z) is the γ-coordinate of the jth joint at
the nth frame (coordinate system: fixed to the pelvis), J is the
number of the principal joints taken into account (J = 19) and Δt

is the sampling time. The values of p j,γ(n) are filtered to elimi-
nate jitter (by using a Gaussian filter, cut-off frequency: 9.0 Hz),
and normalized by the body height to reduce the influence of dif-
ferences in physical constitution.

Next, two time-domain feature quantities characterizing the
rhythmical aspect of dance motion are obtained from v(n). The
first quantity is the beat intensity and the second one is the rhythm
complexity. The original formulation of the beat intensity (BI)
shown in Ref. [5] is given as follows:

qBI =

√∑N
n=1{v(n) − v0(n)}2/N

τΔt
(2)

where τ is the frame number giving the first positive peak of
the autocorrelation of v(n), v0(n) is the moving average of v(n)
(moving average time: τ) and N is the total number of frames,
respectively. Because the value, τΔt, gives the period of the pe-
riodic variation of v(n), the denominator of Eq. (2) is regarded as
the pace of tempo in dance motion. However, the numerator of
Eq. (2) is the root mean square of motion-speed variation based
on the moving average value, and gives the strength of motion-
speed surges, inducing beats. As a result, the faster the tempo or
the greater the motion-speed variation, the larger the value of qBI.

However, it was pointed out in Ref. [5] that square-root values
of qBI gave more appropriate analysis results. This means that qBI

should be transformed into a new value by using a monotonously
increasing function whose derivative monotonously decreases,
such as a square root function. To resolve the above issue, we
use a logarithm transform [18] as follows:

qBI =
1
2

log

∑N
n=1{v(n) − v0(n)}2

N
− A log(τΔt) (3)

where A is the weighting coefficient to the element correspond-
ing to the pace of the tempo, τΔt. A is newly introduced to enable
adjusting the weighting ratio between the motion-speed-surge el-
ement (i.e., the first term of Eq. (3)) and the pace-of-tempo ele-
ment (i.e., the second term of Eq. (3)). We set A = 0.2 according
to Ref. [18].

As for the rhythm complexity, we use the value of approximate
entropy (ApEn) [19]. ApEn is known as an index that represents
the complexity of a time-series data stream. The value of ApEn
is calculated as follows:

µ(n) = [v(n) v(n + τ′) · · · v(n + (m − 1)τ′)]T

d(µ(n),µ( j)) = max
k=1,2,···,m

(|v(n + (k − 1)τ′) − v( j + (k − 1)τ′)|)

Cm
n =

∑N−(m−1)τ′
j=1 θ(r − d(µ(n),µ( j)))

N − (m − 1)τ′

Φm =

∑N−(m−1)τ′
n=1 log Cm

n

N − (m − 1)τ′

qApEn = Φ
m −Φm+1 (4)

where τ′ = round(0.2τ), m = 4, r = 0.5 × (standard
deviation of v(n)) and θ(x) is the Heaviside function. Equation (4)
includes the time-delay parameter [20], τ′, that is not included in
the original ApEn [19]. We introduce τ′ because the time scale of
human motion is generally much longer than the sampling time
of Mocap data Δt. The value of qApEn becomes large when v(n)
shows a complex and irregular waveform. In actual calculations,
we use a fast algorithm [21] to reduce the calculation time. In
summary, the time-domain motion characteristics are represented
as the following two-dimensional feature vector, FT:

FT = [ qBI qApEn ]T (5)

3.3 Extraction of Spatial-domain Motion Characteristics
In this section, we describe a method to extract the spatial-

domain feature quantities. As mentioned in “1. Introduction,” we
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adopt the method proposed in Ref. [6] as follows. First, we ex-
tract quantities representing the spatial arrangement of the body
segments at each instant of time. Specifically, we use the vari-
ances and covariances of the coordinates of the joints shown in
Fig. 4 as follows:

p̄γ(n) =
1
J

J∑
j=1

p j,γ(n) (γ : x, y or z)

σγη(n) =
1
J

J∑
j=1

{p j,γ(n) − p̄γ(n)}{p j,η(n) − p̄η(n)} (6)

σxx(n), σyy(n) and σzz(n) give the spread of the body segments
along the three axes of movement (i.e., the frontal, vertical and
sagittal axes [22]), whereas σxy(n), σyz(n) and σzx(n) provide the
spread of the body segments on the three planes of movement
(i.e., the frontal, sagittal and horizontal planes [22]). We regard
these values as the components of the feature vector, f (n), that
characterize a posture in the nth frame as follows:

f (n) = [ f1(n) f2(n) f3(n) f4(n) f5(n) f6(n) ]T

= [ σxx(n) σyy(n) σzz(n) σxy(n) σyz(n) σzx(n) ]T

(7)

Each component corresponds to the spread in each of the axes or
planes of movement as shown in Fig. 4.

Next, the trend throughout an entire Mocap data stream is sta-
tistically summarized as the twelve-dimensional feature vector,
FS, as follows:

f̄i =
1
N

N∑
n=1

fi(n) (= σγηmean)

s̄i =

√√√
1
N

N∑
n=1

{ fi(n) − f̄i}2 (= σγη SD)

FS = [ f̄1 f̄2 · · · f̄6 s̄1 s̄2 · · · s̄6]T

= [ σxx mean · · · σzx mean σxx SD · · · σzx SD]T (8)

where the f̄i’s represent the average amounts of spread throughout
an entire data stream (former three: spread along the three axes
of movement, latter three: spread on the three planes of move-
ment), whereas the s̄i’s represent the fluctuations of spread during
an entire data stream (also corresponding to the axes and planes
of movement). We use these twelve values as the spatial-domain
feature quantities.

As a result, the motion characteristics of each Mocap data
stream, including both the time- and spatial-domain character-
istics, are represented as the following fourteen-dimensional fea-
ture vector Q:

Q = [ F T
T F T

S ]T

= [ qBI qApEn f̄1 f̄2 · · · f̄6 s̄1 s̄2 · · · s̄6]T

= [ qBI qApEn

σxx mean · · · σzx mean σxx SD · · · σzx SD]T (9)

3.4 Dimensionality Reduction
As shown in Eq. (9), the motion characteristics of a given Mo-

cap data stream are represented as a fourteen-dimensional fea-
ture vector. To visualize the motion-characteristic distribution

on a two-dimensional scatter plot, we must reduce the dimen-
sionality in an appropriate manner. In this section, we present
a dimensionality-reduction technique suitable for visualizing the
motion-characteristic distribution of folk dances. This is the third
stage of visualization.

In the visualization process, we take the following two items
(hereinafter, Items ( 1 ) and ( 2 )) into account:
( 1 ) Assigning the same weight to both the set of the time-domain

feature quantities, FT, and that of the spatial-domain feature
quantities, FS. We introduce this item to avoid underestimat-
ing the influence of the time-domain quantities consisting of
only two of the fourteen quantities.

( 2 ) Assigning the same weight to each set of the Mocap data
streams corresponding to the same dance, i.e., assigning the
same weight to each of the dances investigated. We intro-
duce this item to eliminate the influence of the difference in
the Mocap-data-stream numbers of respective dances.

To satisfy the requirements of the above items, we adopt the ap-
proach proposed in Ref. [23] as shown below.

First, each of the fourteen quantities is standardized (with zero
mean and unity standard deviation) throughout all the Mocap data
streams used in the analysis. After the standardization, the nor-
malized distance (with unity mean) of each of all the Mocap-data-
stream pairs in the FT space (two dimensional), and that in the FS

space (twelve dimensional), are calculated as follows:

d′T( j, k) =
√
{q′BI( j) − q′BI(k)}2 + {q′ApEn( j) − q′ApEn(k)}2

d′S( j, k) =

√√√ 6∑
i=1

[{ f̄ ′i ( j) − f̄ ′i (k)}2 + {s̄′i ( j) − s̄′i (k)}2]

d̄T =
1

M2

M∑
j=1

M∑
k=1

d′T( j, k)

d̄S =
1

M2

M∑
j=1

M∑
k=1

d′S( j, k)

dT( j, k) = d′T( j, k)/d̄T (10)

dS( j, k) = d′S( j, k)/d̄S (11)

where q′BI( j) and q′ApEn( j) are the standardized BI and ApEn of
the jth Mocap data stream, f̄ ′i ( j) and s̄′i ( j) are the standardized
spatial-domain feature quantities of the jth data stream, M is the
total number of data streams, and dT( j, k) and dS( j, k) are the nor-
malized distance between the jth and kth data streams in the FT

space and that in the FS space, respectively.
Next, the normalized distance of each Mocap-data-stream pair,

including both the time- and spatial-domain feature quantities, is
calculated as follows:

D′( j, k) =
√

dT( j, k)2 + dS( j, k)2

D̄ =
1

M2

M∑
j=1

M∑
k=1

D′( j, k)

D( j, k) = D′( j, k)/D̄ (12)

where D( j, k) is the normalized distance between the jth and kth
Mocap data streams. In Eq. (12), the distance in the FT space and
that in the FS space are evaluated with the same weighting. As a
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result, the requirement of Item ( 1 ) is satisfied.
Then, the distances of all dance pairs are calculated. To satisfy

the requirement of Item ( 2 ) (assignment of the same weight to
each dance), we use the Earth Mover’s Distance (EMD) [24] as
follows:

DEMD(P,Q) =

∑MP
j=1

∑MQ

k=1 D( j, k)u( j, k)∑MP
j=1

∑MQ

k=1 u( j, k)
(13)

where DEMD(P,Q) is the EMD between the P and Q dances,
u( j, k) is the “flow” from the jth Mocap data stream to the kth
one (obtained by solving a transportation problem [24]), and MP

and MQ are the number of the data streams included in the data set
of the P dance and that of the Q dance, respectively. In Eq. (13),
the jth Mocap data stream belongs to the P dance and the kth
Mocap data stream belongs to the Q dance. Here, we solve the
transportation problem under the following conditions:

MQ∑
k=1

u( j, k) =
1

MP
,

MP∑
j=1

u( j, k) =
1

MQ
(14)

This means that every dance is evaluated with the same weight-
ing, regardless of the difference in the Mocap-data-stream num-
bers of the respective dances. Consequently, the requirement of
Item ( 2 ) is satisfied. However, in the calculation of EMD, the
dispersion of a set of Mocap data streams belonging to the same
dance is reflected in the value of distance. The condition of the
dispersion of dancing style may imply a characteristic peculiar to
each dance, and EMD provides information related to this condi-
tion. This can be regarded as an additional advantage of adopting
EMD.

After calculating the EMDs of all dance pairs, every dance is
mapped on a two-dimensional scatter plot by multidimensional
scaling (MDS) [25]. Because the normalized distance D( j, k)
used in Eq. (13) is the Euclidean distance (i.e., metric), and the
total weight of a set of Mocap data streams belonging to the same
dance is unified by the conditions of Eq. (14), the EMD used in
this study becomes a true metric [24]. Hence, we apply a tech-
nique of metric MDS [25] to the obtained set of EMDs. There-
fore, the mapping of all the constituents of the “Dance” level is
completed.

However, to map Mocap data streams that are the constituents
of the “Mocap” level, we formulate the conversion from the
fourteen-dimensional feature vector, Q, to the components of a
two-dimensional scatter plot [ q1 q2 ]T. We use a multiple lin-
ear regression model [26] shown below:

qi = βi1q′BI + βi2q′ApEn + βi3 f̄ ′1 + · · · + βi8 f̄ ′6
+βi9 s̄′1 + · · · + βi14 s̄′6 + βi0(P) (15)

where qi (i = 1 or 2) is the coordinate on the ith axis of a scatter
plot, βi j’s ( j = 1, 2, · · · , 14) are the partial regression coefficients
and βi0(P) is the constant corresponding to the P dance (changed
at every dance), respectively. On the right side of Eq. (15), the
components of Q are used as predictor variables, whereas each of
the components of [ q1 q2 ]T is used as a response variable on
the left side. The values of βi j’s are obtained by weighted linear
regression analysis [26]. In the analysis, all the Q’s of the Mo-
cap data streams investigated are used as samples of the predictor

variables, and each of the coordinate values of [ q1 q2 ]T of the
dance corresponding to each sample Mocap data stream is used as
a sample of the response variable. The weight for the jth sample
Mocap data stream is given as follows:

w j =
1

MP
(16)

where MP is the number of the Mocap data streams belonging to
the P dance, which the jth Mocap data stream also belongs. This
weight is set to give every dance the same total weight (this con-
dition corresponds to Item ( 2 )). The value of βi0(P) in Eq. (15) is
given at every dance as follows:

βi0(P) = qi(P) − βi1q′BI|P − βi2q′ApEn|P
− βi3 f̄ ′1 |P − · · · − βi8 f̄ ′6 |P − βi9 s̄′1|P − · · · − βi14 s̄′6|P (17)

where qi(P) is the coordinate of the P dance on the ith axis of
a scatter plot and ζ |P is the mean of the quantity, ζ, in the set
of the Mocap data steams belonging to the dance P, respectively.
Eq. (17) is introduced to fit the location of a dance to the centroid
of the Mocap data streams belonging to this dance.

3.5 Graphic Symbols for the Visualization of the Relation-
ship among Motion-capture Data, Folk Dances, and Set-
tlements

The locations of the constituents of the “Dance” and “Mocap”
levels in a two-dimensional scatter plot are determined by the pro-
cedures mentioned in Sections 3.2, 3.3 and 3.4. Here, we define
a visualization format of the graphic symbols that indicates the
relationship of the constituents of the “Group” and “Settlement”
levels with those of the “Dance” and “Mocap” levels. Display-
ing the above information according to the defined format is the
final procedure required to systematically visualize the motion-
characteristic distribution of folk dances.

Figure 5 shows the visualization format. First, dances and Mo-
cap data streams are plotted. The large circles in Fig. 5 are dances
and the small circles are Mocap data streams. The first axis of the
scatter plot (i.e., Axis 1 in Fig. 5) is set to give the largest standard
deviation of the coordinate values of the dances in all axes.

Next, the information on the “Settlement” level is displayed.
Dances belonging to the same settlement are connected by
straight lines. The lines are arranged to form a minimum span-
ning tree [27]. The values of EMD are used as the edge lengths
evaluated in the minimum-spanning-tree analysis. We adopted
a minimum spanning tree in order to indicate the distribution of
dances at each settlement as simply as possible, i.e., with a mini-
mized number of lines kept as short as possible.

Then, the information on the “Group” level is displayed.
Dances belonging to the same group are surrounded by a set of
broken lines constituting a closed loop that represents the region
of the group. The closed loop can be obtained by drawing a
convex hull [27] enclosing all the dance points belonging to the
same group. Specifically, a convex hull enclosing all the auxil-
iary points added to each of the dance points is used. The aux-
iliary points are added to intelligibly display the region of each
group. Eight auxiliary points are plotted around each dance point
as shown in Fig. 5 (these points are not displayed in an actual
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Fig. 5 Visualization format of motion-characteristic distribution.

scatter plot). The distance between a dance point and each of the
auxiliary points is set to 0.15σ1 (σ1: standard deviation of the
coordinate values on Axis 1).

Finally, the axes of influential motion-characteristic feature
quantities are drawn. As for a scatter plot obtained by MDS, the
process of interpreting the meaning of each axis is often tedious,
and sometimes requires extensive knowledge of analysis objects.
Automatically displaying the axes representing influential charac-
teristics allows us to easily grasp the meaning of the constellation
obtained by MDS, without exerting the effort needed to interpret
the meanings of the horizontal and vertical axes of the scatter plot
itself. The arrowed lines in Fig. 5 are the axes of the feature quan-
tities that are selected as influential characteristics. The axes of
the feature quantities are obtained by using the correlation coef-
ficients between the components of a scatter plot and the feature
quantities as follows:

ABI = RBI
q1 ,q2

[ rq2

BI,q1
rq1

BI,q2
]T∣∣∣∣[ rq2

BI,q1
rq1

BI,q2
]T
∣∣∣∣ (18)

AApEn = RApEn
q1 ,q2

[ rq2

ApEn,q1
rq1

ApEn,q2
]T∣∣∣∣[ rq2

ApEn,q1
rq1

ApEn,q2
]T
∣∣∣∣ (19)

A f̄i = Rf̄i
q1 ,q2

[ rq2

f̄i ,q1
rq1

f̄i ,q2
]T∣∣∣∣[ rq2

f̄i ,q1
rq1

f̄i ,q2
]T
∣∣∣∣ (20)

As̄i = Rs̄i
q1 ,q2

[ rq2
s̄i ,q1

rq1
s̄i ,q2

]T∣∣∣∣[ rq2
s̄i ,q1

rq1
s̄i ,q2

]T
∣∣∣∣ (21)

where Aζ is the vector representing the direction and magnitude
of the axis of the feature quantity, ζ, Rζa,b is the multiple correla-
tion coefficient between ζ and a set of the variables a and b, and
rb
ζ,a is the partial correlation coefficient between ζ and a holding

b fixed. In the calculation of Eqs. (18) to (21), all the Mocap data
streams investigated are used as samples, and the weighted corre-

lation coefficients [28] are used to satisfy the requirement of Item
( 2 ) in “3.4. Dimensionality reduction” (weight of each Mocap
data stream: given by Eq. (16)). The axes that have a large mag-
nitude, i.e., show a high correlation between the components of a
scatter plot and a particular feature quantity, are regarded as those
of influential motion-characteristic feature quantities.

4. Results and Discussion

4.1 Folk Dances Used as Sample Objects
This section presents an example application of the proposed

method. The folk dances shown in Fig. 2 (a), i.e., the Bon Odori

dances of the Akita Prefecture, are used as sample objects. As
shown in this figure, Bon Odori dances of the Akita Prefec-
ture are classified into four groups: Akita-Ondo, Yuri-Bon-Odori,
Kazuno-Odori and Nanshū-Odori Systems. This grouping was
proposed based on the condition of the dances in 1937 [16]. How-
ever, most of the dances belonging to the Yuri-Bon-Odori Sys-
tem have been lost until now [29]. Therefore, we analyze only
the dances belonging to the three groups, i.e., the Akita-Ondo,
Kazuno-Odori and Nanshū-Odori Systems. Figure 6 shows the
hierarchical-structure model of the analyzed folk dances. The
dances passed down in the seven settlements shown in Fig. 2 (a)
are analyzed. The forty Mocap data streams corresponding to the
fourteen folk dances are used in the analysis.

4.2 Results
Figure 7 shows the scatter plot obtained by the proposed

method. The items and scales of the vertical and horizontal
axes were adjusted to make it easier to grasp the relationship to
the map shown in Fig. 2 (a). The top four feature-quantity axes
were displayed as representative influential motion-characteristic
quantities.

It can be observed from the figure that the three groups formed
their respective clusters, and the cluster of the Akita-Ondo Sys-
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Fig. 6 Hierarchical-structure model of the Bon Odori dances of the Akita Prefecture.

Fig. 7 Motion-characteristic distribution of the Bon Odori dances of the
Akita Prefecture (obtained by the proposed method).

tem was located at a distance from both the Kazuno-Odori and
Nanshū-Odori Systems, mainly due to the difference in the fea-
ture quantity, qApEn, which represents the “Complexity” of the
rhythmic style. From the numbers of frames and the fps values
of the corresponding Mocap data streams shown in Fig. 6, one
can recognize that the dances of the Akita-Ondo System have a
much longer performance length than the other groups. This pro-
vides the possibility that these dances may include various types

of motion patterns. For example, in the case of the settlement
Nishimonai, the number of keyposes used to illustrate the motion
sequence of Ondo (“O” in Fig. 7) is twenty five, and that of Ganke

(“G” in Fig. 7) is twenty nine [30]; whereas, the number of key-
poses used to illustrate the motion sequence of the dances belong-
ing to the other groups are in the range of six to twelve [31], [32].
This fact suggests that the dances of the Akita-Ondo System have
many motion patterns contributing to the complexity of motion
sequences. The results obtained from the scatter plot are consis-
tent with this tendency.

It is also seen that the axis of the feature quantity, σzz mean, rep-
resenting “Sagittal Ax. Spread,” is nearly in parallel and oppo-
site to that of “Complexity.” There are few reports that focus on
the variation of sagittal-direction motion with respect to the Bon

Odori dances of the Akita Prefecture; therefore, new knowledge
on the dance may have been obtained by the proposed method.
By concurrently considering the above characteristics with the
geographic distribution shown in Fig. 2 (a), one can visually rec-
ognize that the Bon Odori dances of the southern part of the Akita
Prefecture are distinguished by their rhythm complexity, whereas
those of the northern part are distinguished by the spread of the
body segments along the sagittal axis. In the illustration of the
motion sequence of the Hitoichi settlement [31], a relatively large
number of front-rear-direction movements of the legs exist. As
for the case of the Kemanai settlement, the action of reaching
out ones arms in a forward direction is seen [32]. These results
suggest that the proposed method actually provides clues to un-
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Table 1 Multiple correlation coefficients between the feature quantities and
the coordinates of the scatter plot.

Feature quantity Correlation coefficient
Time domain

Beat Intensity qBI 0.983
Complexity qApEn 0.988

Spatial domain
Frontal Ax. Spread σxx mean 0.342
Vertical Ax. Spread σyymean 0.298
Sagittal Ax. Spread σzz mean 0.791
Frontal Pl. Spread σxymean 0.699
Sagittal Pl. Spread σyz mean 0.552
Horizontal Pl. Spread σzx mean 0.355
Frontal Ax. Flctn. σxx SD 0.210
Vertical Ax. Flctn. σyy SD 0.587
Sagittal Ax. Flctn. σzz SD 0.560
Frontal Pl. Flctn. σxy SD 0.564
Sagittal Pl. Flctn. σyz SD 0.652
Horizontal Pl. Flctn. σzx SD 0.142

derstanding the relevance of the motion-characteristic distribu-
tion to another property, such as the geographic distribution of
the dances.

The dances passed down in the Hitoich settlement are dis-
tributed along the axis of the feature quantity, qBI, representing
“Beat Intensity.” In addition, the dances of the Kemanai settle-
ment were located in the area where “Beat Intensity” is mild. In
the case of Hitoichi, the dances Dendenzuku (“D” in Fig. 7) and
Kitasaka (“K” in Fig. 7) are known to have a quick and dynamic
tempo, whereas Sankatsu (“S” in Fig. 7) has a slow and graceful
tempo [31]. With regard to the dances of Kemanai, their chore-
ography is often characterized by elegance and refinement [32],
and it was pointed out that this impression was caused by their
long between-keypose intervals, i.e., their slow tempo [18]. The
obtained results agree with the above characteristics.

It is also seen in Fig. 7 that the dances of Kemanai were charac-
terized by the feature quantity, σxymean, which represents “Frontal
Pl. Spread.” In fact, the action of reaching out the arms in a
transverse direction is known as a distinctive motion in these
dances [18], and this action causes the spread of the body seg-
ments on the frontal plane. This characteristic was reflected in
the obtained scatter plot. As a whole, the motion-characteristic
distribution of the Bon Odori dances of the Akita Prefecture was
visualized almost exactly, while remaining consistent with the
knowledge acquired in previous studies.

Table 1 shows the values of multiple correlation coefficients
between the feature quantities and the coordinates of the scatter
plot (calculated by using Eqs. (18) to (21)). It is noted that the fea-
ture quantities of the time-domain motion characteristics (i.e., qBI

and qApEn) gave large values compared with those of the spatial-
domain motion characteristics. This suggests that the condition
of temporal motion-speed variation had a significant influence
on the motion-characteristic distribution of the Bon Odori dances
of Akita Prefecture. This property could have been extracted by
separately analyzing the time-domain and spatial-domain motion
characteristics.

4.3 Discussion
To discuss the effectiveness of the proposed method, we com-

pare the results shown in “4.2 Results” with those obtained by

Fig. 8 Motion-characteristic distribution of the Bon Odori dances of the
Akita Prefecture (obtained by PCA).

Table 2 Components of the eigenvectors obtained by PCA.

Feature quantity PC1 PC2
Time domain

Beat Intensity qBI 0.032 0.182
Complexity qApEn 0.382 0.037

Spatial domain
Frontal Ax. Spread σxx mean −0.086 0.303
Vertical Ax. Spread σyymean 0.048 0.461
Sagittal Ax. Spread σzz mean −0.422 −0.050
Frontal Pl. Spread σxymean −0.378 −0.173
Sagittal Pl. Spread σyz mean −0.308 0.296
Horizontal Pl. Spread σzx mean −0.180 −0.479
Frontal Ax. Flctn. σxx SD −0.186 0.194
Vertical Ax. Flctn. σyy SD 0.257 0.229
Sagittal Ax. Flctn. σzz SD −0.426 0.143
Frontal Pl. Flctn. σxy SD −0.007 0.149
Sagittal Pl. Flctn. σyz SD −0.096 0.418
Horizontal Pl. Flctn. σzx SD −0.323 0.056

Contribution rate 26.0% 19.9%

another analysis method. We use a technique called principal
component analysis (PCA) [25], which is known as a typical
dimensionality-reduction method. In the analysis, PCA is applied
to a set of the fourteen-dimensional feature vectors extracted from
all the Mocap data streams shown in Fig. 6, and the location of
each dance is determined by calculating the centroid of the Mo-
cap data streams belonging to it.

Figure 8 and Table 2 show the scatter plot and the component
values of the eigenvectors obtained by PCA. The items and scales
of the axes of the scatter plot were adjusted in the same manner
as the case presented in Fig. 7. In Table 2, the eigenvector of
PC1 (corresponding to the vertical axis of Fig. 8) gives high com-
ponent values to the following feature quantities: qApEn (“Com-
plexity”), σzz mean (“Sagittal Ax. Spread”), and σzz SD (“Sagittal
Ax. Flctn.”). The eigenvector of of PC2 (corresponding to the
horizontal axis of Fig. 8) gives high component values to σyymean

(“Vertical Ax. Spread”), σzx mean (“Horizontal Pl. Spread”), and
σyz SD (“Sagittal Pl. Flctn.”). This means that the vertical axis
almost corresponds to the combination of the axes of “Complex-
ity” and “Sagittal Ax. Spread” in Fig. 7, whereas there is no axis
corresponding to the horizontal axis of Fig. 8.

It is seen in Fig. 8 that the three groups were not clearly sepa-

c© 2018 Information Processing Society of Japan 82



Journal of Information Processing Vol.26 74–84 (Feb. 2018)

rated from one another. In the case of Fig. 7, in which the groups
were clearly separated, the feature quantities “Complexity” and
“Beat Intensity” played important roles as already shown in the
correlation-coefficient values of Table 1. These time-domain fea-
ture quantities, occupying only two of the fourteen components
of the feature vector, may have been underestimated in PCA. In
fact, the component values of the eigenvectors corresponding to
the feature quantity, qBI, representing “Beat Intensity,” are ex-
tremely small in both PC1 and PC2, as shown in Table 2.

However, in Fig. 8, the dances of the Kakumagawa and Iwasaki
settlments were located at positions close to one another. In
Fig. 7, the Kakumagawa and Iwasaki dances were located at posi-
tions far from each other. As shown in Fig. 6, only a single Mocap
data stream is provided for each of the Kakumagawa and Iwasaki
dances. In PCA, the same weight is assigned not to each set of
the Mocap data streams belonging to the same dance, but to each
single Mocap data stream. This may have caused the underesti-
mation of the dances of Kakumagawa and Iwasaki. This suggests
that the results of PCA show the effectiveness of the proposed
method on some level.

As shown in the above results, the motion-characteristic dis-
tribution of the folk dances passed down in certain areas is sys-
tematically and quantitatively visualized by the proposed method.
In the visualization process, fourteen feature quantities are used.
As mentioned in the last paragraph of “2. Related Work,” these
quantities represent only the overall tendency of the motion style
of each Mocap data stream. This means that the information on
motion content *5, which includes that of the structure of a motion
sequence along the time axis, cannot be sufficiently extracted by
the proposed method. Additional work is needed to address this
issue.

5. Conclusion

The main contribution of this study is to provide a technique to
systematically visualize the motion-characteristic distribution of
Japanese folk dances passed down in a certain area. We adopted
an approach that utilizes Mocap data to make it possible to un-
derstand the distribution based on objective quantitative analysis.
The visualization process was systematized by separating it into
the three stages, i.e., the modeling of the relationship among Mo-
cap data, folk dances, and settlements, the extraction of motion
characteristics from Mocap data streams, and the visualization of
the distribution in a two-dimensional scatter plot. The analysis
results demonstrated the effectiveness of the proposed method to
a certain extent. However, the example application is still limited
to the dances of only one area. In addition, the proposed method
does not use a restricted condition in Japanese folk dance, and
there still remains a possibility of visualizing another dance cate-
gory. Therefore, future work will be required to clarify the appli-
cation range of the proposed method.
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Hiroshima), Nannansha (2004) (in Japanese).

[18] Miura, T., Kaiga, T., Katsura, H., Shibata, T., Tajima, K. and
Tamamoto, H.: Quantitative Motion Analysis of the Japanese Folk
Dance “Hitoichi Bon Odori,” IPSJ Symposium Series, Vol.2013, No.4,
pp.167–174 (2013).

[19] Pincus, S.M.: Approximate Entropy as a Measure of System Com-
plexity, Proc. Natl. Acad. Sci. USA, Vol.88, pp.2297–2301 (1991).

[20] Kaffashi, F., Foglyano, R., Wilson, C.G. and Loparo, K.A.: The Ef-
fect of Time Delay on Approximate & Sample Entropy Calculations,
Physica D, Vol.237, No.23, pp.3069–3074 (2008).

[21] Manis, G.: Fast Computation of Approximate Entropy, Computer
Methods and Programs in Biomedicine, Vol.91, No.1, pp.48–54
(2008).

[22] Bartlett, R.: Introduction to Sports Biomechanics, 2nd ed., Routledge
(2007).

[23] Miura, T., Kaiga, T., Shibata, T., Katsura, H., Uemura, M., Tajima,

c© 2018 Information Processing Society of Japan 83



Journal of Information Processing Vol.26 74–84 (Feb. 2018)

K. and Tamamoto, H.: Motion Characteristics of Bon Odori Dances
in Areas along Ushu Kaido Road in Akita Domain, IPSJ Symposium
Series, Vol.2015, No.2, pp.269–276 (2015).

[24] Rubner, Y., Tomasi, C. and Guibas, L.J.: The Earth Mover’s Distance
as a Metric for Image Retrieval, International Journal of Computer
Vision, Vol.40, No.2, pp.99–121 (2000).

[25] Hair, Jr., J.F., Black, W.C., Babin, B.J. and Anderson, R.E.: Multivari-
ate Data Analysis, 7th ed., Pearson Education Inc. (2010).

[26] Tasker, G.D.: Hydrologic Regression with Weighted Least Squares,
Water Resources Research, Vol.16, No.6, pp.1107–1113 (1980).

[27] Skiena, S.S.: The Algorithm Design Manual, 2nd ed., Springer (2008).
[28] Bland, J.M, and Altman, D.G.: Calculating Correlation Coefficients

with Repeated Observations: Part 2 – Correlation between Subjects,
BMJ, Vol.310, p.633 (1995).

[29] Miura, T., Kaiga, T., Shibata, T., Katsura, H., Tajima, K. and
Tamamoto, H.: Utilization of Motion Capture Data for Research on
Folk Performing Arts of Akita Prefecture, IPSJ SIG Technical Report,
Vol.2015-CH-108, No.5, pp.1–6 (2015) (in Japanese).

[30] Kosaka, T.: Nishimonai Bon Odori – Waga Kokoro no Genfūkei
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