

加速器材料としてのSiC/SiC複合材料の可能性探索: 真空喪失時のNITE-SiC/SiC複合材料の酸化挙動

メタデータ	言語: jpn
	出版者: 室蘭工業大学地域共同研究開発センター
	公開日: 2019-03-14
	キーワード (Ja):
	キーワード (En):
	作成者: 朴, 峻秀, 岸本, 弘立, 中里, 直史, 青木, 正治, 牧村,
	俊介, 的場, 史朗
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/00009780

加速器材料としての SiC/SiC 複合材料の可能性探索

- 真空喪失時の NITE-SiC/SiC 複合材料の酸化挙動 -

朴峻秀*1,岸本弘立*1,中里直史*1

青木正治*2,牧村俊介*3,的場史朗*3

1 はじめに

物質を構成する最小単位は素粒子と考えられる.素粒 子科学研究においてミュオン,パイオン,中性子,ケイオ ン等の様々な二次粒子素を大強度の陽子加速器を用い て生成する事が求められる.二次粒子の発生と効率的な 輸送には高密度元素で出来た加速器ターゲット材料が 好ましいことから,放熱,放射化の観点から様々な検討 が行われている.現在は,ミュオンやパイオンの生成に おいて,不活性雰囲気中の耐熱性および低放射化の観点 から等方性黒鉛がターゲット材料として採用されてい るが,炭素(C)は基本的に低密度材料であり酸素の存在 する高温雰囲気では容易に酸化されることから,加速器 運転時の予期せぬ大気導入時には,酸化により放射線物 質が飛散する恐れがある.

炭化ケイ素(SiC)は炭素より高密度であり,優れた耐 熱性と低放射化特性を有する.[1-3] 但し,SiC はセラミ ックスであるため「脆性」であり、この特性は構造材料 としての応用においては致命的な弱点となる.近年,SiC 繊維で SiC マトリックスを強化した SiC/SiC 複合材料 が開発されており,加速器ターゲット素材としても非常 に適合した素材と考えられる.本学の環境・エネルギー システム材料研究機構 (OASIS) では他製造手法に比べ て極めて緻密で結晶生の高い SiC マトリックスを有す

*1:環境・エネルギーシステム材料研究機構

*2:大阪大学 素粒子物理学実験研究グループ

*3:高エネルギー加速器研究機構

る SiC/SiC 複合材料の製造に関連した特有技術 (NITE プロセス)を長年研究しており,その優れた性能に対し て国内外から注目されている.[4-7]

SiC/SiC複合材料は主にSiC繊維,SiCマトリックス及 び繊維/マトリックス界面として構成される.航空宇宙 分野向けのSiC/SiC複合材料では耐酸化の観点から窒 化ホウ素(BN)が用いられるが,加速器,原子力,核融合な どの応用分野においては中性子吸収や核変換によるガ ス発生の問題から,Cが繊維/マトリックス(F/M)界面 素材として用いられる.特に,Cは不活性雰囲気での高 い耐熱特性と共に,SiC繊維,SiCマトリックスとの適度 の結合強度,弾性係数,摩擦係数,熱膨張率を有しており SiC/SiC複合材料のF/M界面として非常に適している と言える.

しかしながら,CはSiCに比べて耐酸化性に乏しく,C をF/M界面として採用している場合は酸化雰囲気での 酸化に関する検討が必要である.従来の研究として SiC/SiC 複合材料の 1000℃以上の大気酸化に関しては 酸化により損耗されるF/M界面層がSiCマトリックス の保護酸化により形成されるSiO2により塞がり,継続 的な酸化は抑制される事が報告されている.[8,10]なお, 加速器,核融合などへのSiC/SiC 複合材料の応用におい て,その使用雰囲気は高い真空状態(10⁻⁵~10⁻⁷ Pa)であ る事から,酸化によるSiC/SiC 複合材料の損傷は考慮す る必要はない.

但し,通常運転時でも使用後に十分に冷却されていな い状態でのシステムの大気開放などによる酸化雰囲気 との接触や真空喪失事故(Loss of Vacuum Accident, LOVA)発生時での材料の健全性,寿命予測が必要であ る.なお,加速器,核融合炉での運転温度は 1000℃以下で あり,LOVA 事故時でもシステムの停止により自然に冷 却されるので,温度は下がるが,中・低温では SiO₂の形 成が遅い事から,SiO₂によるF/M界面損耗層の自己密閉 は起こらない.

本報告では加速器や核融合炉などの通常運転,LOVA 時での損耗を想定し,SiO₂による自己密閉されない 1000℃以下酸化雰囲気での SiC/SiC 複合材料の酸化挙 動を定量的に評価すると共に,事故時に確実に損耗が予 想される F/M 界面層を保護する手段として化学気相蒸 着(Chemical Vapor Deposition, CVD) による SiC 耐環境 被覆(Environmental Barrier Coating, EBC)の導入による NITE-SiC/SiC 複合材料の耐酸化特性向上に関して述べ る.

2 実験方法

2.1 供試材

酸化試験には NITE-SiC/SiC 複合材料,CVD-SiC 耐環 境被覆を施した NITE-SiC/SiC 複合材料を用いた.なお, 比較検討用として当方性黒鉛(IG-430U,東洋炭素社製) を用意した.NITE-SiC/SiC 複合材料の繊維強化構造は 繊維を一方向(Uni-direction, UD)に並べてシート状にし た UD プリプレグシートを 0°と 90°に交互に積層し たクロスプライ(Cross-ply, XP)構造である.強化繊維は 高結晶性で近化学量論組成の SiC 繊維である Hi-Nicalon Type-S (NGS アドバンスド・ファイバー社)を 用いた.繊維表面には CVD 法により厚み 300~500nm 程 度の薄い熱分解カーボン(PyC)層を形成させた.本研究 で用いた NITE-SiC/SiC 複合材料の密度は 3.0g/cm³であ る.繊維,F/M 界面,SiC マトリックスの体積率はそれぞれ 53vol%, 7vol%, 40vol%である.

酸化試験の為に NITE-SiC/SiC 複合材料を幅 10mm× 長さ 10mm×厚さ 2mm の試験片形状に加工した.試験 片はダイヤモンド砥石により研削しており,鏡面研磨は 施していない.

CVD 法を用いて NITE-SiC/SiC 複合材料の表面に EBC 層を形成させた.酸化雰囲気から試験片を完全に 保護する為には全周被覆が必要である事から,CVD 被 覆処理は穴を開けた NITE-SiC/SiC 複合材料を CVD 炉 内にぶら下げた状態で2回行った.CVD-SiC 層の厚みは 約 150µm である.なお,比較材として当方性黒鉛(IG-430U, 東洋炭素社)を用意した.それぞれの試験片の外 観を図1に示す.

図 1 酸化試験に用いた試験片の外観,(1) IG-430U,(2) NITE-SiC/SiC,(3) CVD-SiC 被覆 NITE-SiC/SiC

2.2 酸化試験

酸化試験は赤外線ゴールドイメージ炉(ULVAC 社製) を用いて行った.炉内での試験片位置と酸化雰囲気ガス のフロー経路を図2に示す.雰囲気ガスは石英製のノズ ルから試験片の上部から供給される.試験片は石英製の 半円筒状の支持台に載せられ,ほぼ浮いた状態で石英管 の内部に挿入した.炉内の全圧は1 atm であり,雰囲気ガ スの流量は200ml/min である.酸化挙動における酸素分 圧の影響を調べる為に,大気(酸素 21%)と混合ガス(窒 素+酸素 1%)の2種類の雰囲気ガスを用いた.

酸化試験は 400℃~1000℃の温度範囲及び 1 分~10 時間の時間範囲で行われた.図 3 のように試験片本数の 制約により酸化試験では単純加熱と繰返加熱の二つの 試験パターンを用いた.試験片は目標温度まで1分で到 達できるように急速に加熱しており,保持時間経過後に は炉内で冷却した.加熱・冷却中にも雰囲気ガスは継続 的に供給した.よって,冷却中での冷たい雰囲気ガスが 供給された事により試験片は室温まで 5 分以内に素早 く冷却された.試験前後の試験片の重量は測定分解能 0.1mg の精密電子天秤を用いて測定した.

図2赤外線ゴールドイメージ炉を用いた酸化試験概念 図

図3酸化試験時の加熱パターン

酸化試験条件を纏めて表 1 に示す.低温側では酸化 による試験片の重量減少が電子天秤で測定し難いほど 小さい.なお,黒鉛の場合は高温・長時間処理で完全に焼 失される事から,一部の条件では試験を行っていない. 重量減少率は重量減少量を試験前の外周表面の面積と 処理時間で割った数値である.本研究では試験中に酸化 による試験片形状及び表面積の変化は無視する.

表1酸化試験条件のまとめ

		大気(酸素21%)					混合ガス(窒素+酸素1%)				
	温度 [℃]	時間 [min] ()は繰返加熱パタン時適用 の累積時間			温度 [℃]	時間 [min] ()は繰返加熱パタン時適用 の累積時間					
		1	10	60	600		1	10	60	600	
		(1)	(11)	(71)	(671)		(1)	(11)	(71)	(671)	
IG-430U	400			c	c	400					
	600		с	с	с	600					
	800	M C	M C	M C		800	M C	M C	M C	c	
	1000	с	с			1000					
NITE- SiC/SiC	400			M	м	400					
	600		м	M	м	600					
	800	c	M C	M C	с	800	с	M C	M C	с	
	1000		Μ	M		1000					
CVD-SiC coat	400					400					
	600					600					
	800	с	с	с	с	800	с	с	с	с	
	1000	c	с	с	с	1000					
 M:単純加熱パタン(Monotonic heating pattern) C:繰返加熱パタン(Cyclic heating pattern) 											

酸化試験後には試験片を精密ダイヤモンド切断器 で半分に切断した後,樹脂でマウントしたサンプルに対 しダイヤモンドスラリー(粒径 3µm)を用いて鏡面研 磨を行った.洗浄・乾燥させた試験片を FE-SEM(JSM-6700F型,日本電子社)を用いて表面損耗状態を観察し た.

3 試験結果・考察

3.1 IG-430Uの酸化挙動

図4にIG-430Uの時間と重量減少率の相関を示す. 図5に酸化試験後のIG-430Uの断面観察写真を示す.ま ず,繰返加熱パターンにより処理した試験片の重量減少 率には繰返し加熱・冷却時の重量減少分も含めている ため,単純加熱パターンにより処理した試験片の重量減 少率より若干過大評価されるが,その差は大きくない.

図4 IG-430Uの重量減少率と時間との相関

600℃以下では IG-430U の重量減少は非常に小さい が,試験温度の上昇に伴い重量減少率は急激に増加し た.1000℃,大気雰囲気での IG-430U の重量減少率は 8.7 ×10⁻⁵ g/mm²/min 以上である.IG-430U の重量減少率は 処理時間と関係なく,ほぼ一定に維持される傾向が見ら れる.断面観察写真でも,IG-430U は処理時間が長くなる 事につれ厚みは減少しており,長時間処理では試験片は 完全に焼失している.重量減少率の計算では酸化による 試験片の表面積変化は考慮していないにも関らず,IG-430Uにおける重量減少率の維持は酸化損耗が加速的 に進んでいる事を意味する.

800[°]Cでの酸化試験では大気(酸素 21%)で処理した試験片の重量減少率は $1.7~2.7 \times 10^5$ g/mm²/min,混合 ガス(窒素+酸素 1%)で処理した試験片の重量減少率 は $1.6~4.0 \times 10^6$ g/mm²/min であった.大気雰囲気の酸素 濃度が混合ガスに比べて 21 倍高いにも関らず,重量減 少率は 6~10 倍程度に止まっており,期待値より低い結 果となった.これは C と O との反応により試験片の表 面に形成される CO,CO₂ ガス層による酸化反応抑制機 構の存在が疑われるが,補足検討による検証が必要であ る.

3.2 NITE-SiC/SiC 複合材料の酸化挙動

NITE-SiC/SiC 複合材料の重量減少率と処理時間との相関を図6に示す.NITE-SiC/SiC 複合材料の重量減少率は IG-430U と全く異なる傾向を示している事がわかる.また,温度,酸素濃度が重量減少率に及ぼす影響も確認出来ない.しかし,NITE-SiC/SiC 複合材料の重量減少率は処理時間に強く依存する.800℃,大気(酸素 21%)で1 分処理した試験片の重量減少率は3.6 g×10⁵/mm²/min であったが,重量減少率は時間の経過に伴い,急速に減少した.

大雑把に NITE-SiC/SiC 複合材料に含まれる PyC の

体積率・重量率を計算するとそれぞれ 7.0 vol%と 4.6 wt%である.NITE-SiC/SiC 複合材料の重量損失は主に F/M 界面層である PyC の損耗によるものであり,酸化試 験後の PyC の残量が推定できる.図 7 に NITE-SiC/SiC 複合材料のPyC残量と重量減少率との相関を示す.単純 加熱パターンによる酸化試験で用いられたそれぞれの 試験片は含まれる SiC 繊維,F/M 界面,SiC マトリックス の量が少しばらつく事から,試験結果において誤差が比 較的大きい.しかし,繰返加熱パターンを用いた試験結 果においては同一試験片を用いている事から,重量減少 率と PyC 残量との明白な相関が見える.IG-430U の酸化 試験では重量減少率が時間経過と共にほぼ一定であっ たことから,これらの強い相関を単純に残っている炭素 の損耗のみで説明する事は困難である.

図 6. NITE-SiC/SiC 複合材料の重量減少率と 処理時間との相関

酸化試験後の NITE-SiC/SiC 複合材料の断面観察写 真を図8に示す.NITE-SiC/SiC 複合材料の厚みは変化し ておらず,SiC 自体は本酸化試験条件では損耗されない 事から当然な結果と言える.図9に酸化試験後の繊維束 の拡大写真を示す.酸化試験後に F/M 界面層の PyC が 焼失している束(図9(a))とまだ健全に残っている束(図 9(b)) が混在していた.図7の結果から推定されるよう に,図9で示している試験片の場合は酸化試験後でも約 40%の PyC がまだ残っていると考えられる.

NITE-SiC 単体及び NITE-SiC/SiC 複合材料は分子の 小さい H₂ 及び He においても非常に優れたガス気密性 を示す. [13,14] 前述しているように,本酸化試験に用い た NITE-SiC/SiC 複合材料は 0°/90° XP 繊維強化構造を 有しており,UD プリプレグシートの交合積層により形 成された物である.厚さ方向に積層された繊維束は束間 の SiC マトリックスにより分離されている.

これらの SiC 繊維束と SiC マトリックスの積層構造 により上下方向からは雰囲気ガスは浸透し難く,機械加 工により露出されている試験片側面から PyC の酸化が 進むことが考えられ,酸化は側面から徐々に浸透してい く.

さらに,図 9(a)で見える様に,繊維とマトリックス間 のギャップは約 300nm 程度に過ぎず,NITE-SiC/SiC 複 合材料の内部へ雰囲気ガスは浸透し難い.

図 7. NITE-SiC/SiC 複合材料中の残存 PyC と 重量減少率との相関

図8.酸化試験後のNITE-SiC/SiC 複合材料の断面

(b) 酸化試験後も健全に残っているPyC F/M界面

図 9. 酸化試験後の NITE-SiC/SiC 複合材料中の繊維束 (800℃, 混合ガス(窒素+酸素 1%), 繰返加熱パタン,処 理時間 671 分)

3.1 CVD-SiC 被覆した NITE-SiC/SiC の酸化挙動

CVD-SiC 被覆した NITE-SiC/SiC 複合材料の重量減 少率と処理時間との相関を図 10 に,酸化試験後の断面 観察写真を図 11 に示す. CVD-SiC 被覆した NITE-SiC/SiC 複合材料の非常に優れた耐酸化特性が確認出 来た.温度,酸素濃度の影響は無視出来る.処理時間が重 量減少率に影響を及ぼしている様に見えるが,CVD-SiC 被覆した NITE-SiC/SiC 複合材料の酸化による重量減少 の絶対値が電子天秤の測定限界に近い事から断言出来 ない.

図11で示しているように,F/M 界面層である PyC が 酸化試験後でも健全な微細組織を保っており,CVD-SiC 被覆した NITE-SiC/SiC 複合材料の酸化による損耗は明 確に確認出来ない.CVD-SiC 単体による全面被覆は NITE-SiC/SiC 複合材料に含まれている PyC の保護に非 常に効果的である事が証明できた.

図 10. CVD-SiC 被覆した NITE-SiC/SiC 複合材料の 重量減少率と処理時間との相関

図 11. CVD-SiC 被覆した NITE-SiC/SiC 複合材料の 酸化試験後の断面(大気(酸素 21%),800℃)

5 おわりに

加速器ターゲット材として SiC/SiC 複合材料は有望 であり、結晶性が高く緻密な SiC マトリックスが形成で きる NITE プロセスを用いた SiC/SiC 複合材料製ター ゲットの開発が行われている.通常運転及びLOVA時を 想定した NITE-SiC/SiC 複合材料の耐酸化挙動を評価し た.IG-430Uに比べて、NITE-SiC/SiC 複合材料は高い耐酸 化特性を示している.しかしながら,重量減少率と処理 時間との相関及び酸化試験後の断面観察から、雰囲気ガ スは SiC/SiC 複合材料の側面から浸透し,PyC を酸化損 耗させることが分かった.一方で.CVD 法により SiC 単 体層を全表面に形成させた NITE-SiC/SiC 複合材料は被 覆なしのNITE-SiC/SiC 複合材料と比較して高い耐酸化 特性を示しており、断面観察でもPvCの酸化損耗の痕跡 は見つからない事から、SiC 単体層は耐環境被覆層とし て効果的である事が確認できた.なお,OASIS により試 作した NITE-SiC/SiC 複合材料製ターゲットは国内での 加速器での実用テストのみならず CERN でのテストも 行われている.今後,本研究が素粒子科学研究に少しで も貢献出来る事を期待する.

文献

 G.R. Hopkins, Silicon carbide and graphite materials for fusion reactors. Proc. IAEA Symp. on Plasma Physics and Controlled Nuclear Fusion Research (59th ed.), IAEA-CN-33/s3-3, Tokyo, Japan, International Atomic Energy Agency, Vienna (1974)

- (2) S.J. Zinkle, N.M. Ghoniem, Operating temperature windows for fusion reactor structural materials, Fusion Engineering and Design, 51-52, 2000, p55-71
- (3) T. Nishitani, H. Tanigawa, T. Nozawa, S. Jitsukawa, M. Nakamichi, T. Hoshino, T. Yamanishi, N. Baluc, A. Möslang, R. Lindou, S. Tosti, E.R. Hodgson, S. Clement Lorenzo, A. Kohyama, A. Kimura, T. Shikama, K. Hayashi, M. Araki, Recent progress in blanket materials development in the Broader Approach, Journal of Nuclear Materials, 417, 2011, p1331-1335
- (4) A. Kohyama, S. M. Dong and Y. Katoh, "Development of SiC/SiC Composites by Nano-Infiltration and Transient Eutectoid (NITE) Process," Ceramic Engineering and Science Proceedings, 23 (3), 2002, p311-318.
- (5) S.M. Dong, Y. Katoh, A. Kohyama, Processing optimization and mechanical evaluation of hot pressed 2D Tyranno-SA/SiC composites, Journal of the European Ceramic Society, 21, 2003, p.1223-1231
- (6) K. Shimoda, J.S. Park, T. Hinoki, A. Kohyama, Microstrucutral optimization of high-temperature SiC/SiC composites by NITE process, Journal of Nuclear Materials, 386-388, 2009, p634-638
- (7) A. Kohama, J.S. Park, H.C. Jung, Advanced SiC fibers and SiC/SiC composites toward industrialization, Journal of Nuclear Materials, 417 (1-3), 2011, p340-343
- (8) R.R. Naslain, R. J.-F. Pailler, J.L. Lamon, Single- and Multilayered Interphases in SiC/SiC Composites exposed to severe environmental conditions: An Overview, International Journal of Applied Ceramic Technology, 7 (3), 2010, p263-275
- (9) W. Yang, A. Kohyama, T. Noda, Y. Katoh, T. Hinoki, H. Araki, J. Yu, Interfacial characterization of CVI-SiC/SiC composites, Journal of Nuclear Materials, 307-311, 2002, p1088-1092
- (10) Y. Chai, X. Zhou, H. Zhang, Effect of oxidation treatment on KD-II SiC fiber-reinforced SiC composites, Ceramics International, 43, 2017, p9934-9940.
- (11) J.E. Antill, J.B. Warburton, Active to passive transition in the oxidation of SiC, Corrosion Science, 11[6], 1971, p337-342
- (12) T. Narushima, T. Goto, T. Hirai, Y. Iguchi, High-temperature oxidation of silicon carbide and silicon nitride, Mateirals Transactions, 38[10], 1997, p821-835
- (13) T. Hino, E. Hayashishita, Y. Yamauchi, M. Hashiba, Y. Hirohata, A. Kohyama, Helium gas permeability of SiC/SiC composites used for in-vessel components of nuclear fusion reactor, Fusion Engineering and Design, 73, 2005, p51-56
- (14) D. Hayasaka, J.S. Park, H. Kishimoto, A. Kohyama, Gas leak tightness of SiC/SiC composites at elevated temperature, Fusion Engineering and Design, 109-111, 2016, p1498-1501