

室蘭工業大学航空宇宙機システム研究センター年次 報告書 2017 全1冊

メタデータ	言語: Japanese
	出版者: 室蘭工業大学航空宇宙機システム研究センター
	公開日: 2019-04-22
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/00009873

国 立 大 学 法 人	国立大学法人
へ 室 蘭 工 業 大 一	室蘭工業大学
F 航空宇宙機システム研究セ	航空宇宙機システム研究センター
ンター年次報告書2017	年次報告書2017

Muroran Institute of Technology Aerospace Plane Research Center *Annual Report 2017*

年次報告書2017

2018年9月

航空宇宙機システム研究センター

今, そしてこれからの当センターの研究開発

航空宇宙機システム研究センター長 内海政春

ものづくりの真価は、人々の創造性を超えた大いなる意思の働きが表面化された事象の一部で ある一.これは、先日、列車に乗っていた時に目に入ったある企業の広告に書かれていた文章の 一部です.ものづくりの楽しさ・喜び・奥深さはもちろんのこと、難しさや苦労までもが、上手 に表現されていると思い、記憶に残りました.ものづくりをしなければ失敗はしないし、創作物 を作り上げることができた時の感動は得られません.また、作り上げるプロセスでしか得られな いことも少なくないでしょう.

一方, IT 技術や計算機の飛躍的進歩により,数値解析やシミュレーターを用いた研究開発の利 便性や経済性が重宝されています.しかしながら,ブラックボックス化による技術の空洞化やも のづくりを通じて獲得できるエンジニアリングセンスの希薄化が課題となっているのも事実で す.

人間社会は、狩猟、農耕、工業、情報へと変遷をたどり、第4次産業革命に向けて大きく変化 しようとしています.高度情報化により、IoT、ビッグデータ、AI(人工知能)といったイノベー ションが推進され、仮想空間・情報空間と実在空間・物質空間との境界が不明瞭になりつつあり ます.このような流れが今後さらに加速していく、ということは想像に難しくないことです.

航空宇宙機システム研究センターは、大気中を高速・高高度で飛行するための基盤技術の研究 開発を推進し、離陸から超音速を経て着陸までを可能とする超音速機の実現をめざしています. 高度情報化ツールを活用しつつ、実際に基盤研究で獲得した成果を用いて、実機を設計・製作し、 その結果を研究開発にフィードバックするという、いわゆる実践的な教育研究を主眼としていま す.航空宇宙機の実飛行を実践とすることは、どこかに失敗の要素があれば、飛行できない、あ るいは墜落するということに他なりません。航空宇宙分野の実践研究は大きなトラブルに至るこ とも少なくありませんが、当センターでは失敗に学ぶものづくりや実践的な教育研究にこだわっ て、これからもチャレンジしていく所存です.

昨年度は、12月14日に無人飛行機の飛行試験公開を実施いたしました. 無人飛行機は所定の 経路を計画どおり飛行・着陸し、完全自律飛行に成功いたしました. このことは、フライングテ ストベッドである小型無人超音速機(オオワシ)の研究開発のひとつのマイルストーンをクリア したことを意味しています.

航空宇宙工学はシステム工学の典型であり、小型無人超音速機の研究開発は、空力・飛行力学、 構造・材料工学、誘導制御・通信工学、エンジン・推進工学を柱とする各技術の統合の上に成り 立っています.これらのシステム工学の技術的成果を社会実装するための取組みを、積極的に展 開していきたいと考えております.

また、これまで以上に他大学や産業界との連携を強化・促進し、多面的な活動を通じて、社会の要請に応えらえる機関となるよう、当センターの教員一同努めていきます.

当センターの研究開発の進捗や試験設備等の詳細については、当センターのホームページをご 参照いただければ幸いです.(<u>http://www.muroran-it.ac.jp/aprec/</u>)

今後ともどうぞよろしくお願い申し上げます.

目 次

巻頭言一 今, そしてこれからの当センターの研究開発	
連携·共同研究·····	•••1
啓蒙活動·見学者······	•••3

研究成果の概要

[推進関連]

GG-ATR エンジン GN2 GHe 冷走試験について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••5
GG-ATR エンジン用点火器試験について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•• 9
GG-ATR エンジン用エアインテークの風洞試験について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••13
GG-ATR エンジンターボ翼素の断熱効率に関する研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••17
GG-ATR エンジンターボ軸系の振動特性について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••24
GG-ATR エンジン用ラム燃焼器ミキサーの風洞試験について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••27
ATR-GG推薬供給系の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••31
アルミー水反応の衛星推進系への適用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••36
軸流反転ファンの効率特性に関する研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••43

[空力関連]

小型超音速飛行実験機のエリアルールに基づく遷音速抗力の低減・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•46
小型超音速飛行実験機のエリアルール適用形状の飛行性能予測・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 50
小型超音速飛行実験機の亜音速静的空力特性の再評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 54
小型超音速飛行実験機のピッチおよびヨーレートによる動的空力特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 58
小型超音速飛行実験機のロールレートによる動的空力特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•62
小型超音速飛行実験機の CFD 解析による動的空力評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•66
小型超音速飛行実験機の車載走行試験による舵面空力評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 70
小型超音速飛行実験機の1/3スケール縮小機体の製作・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•74
共同研究報告 RBCC スペースプレーンの遷音速風試・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•76

[構造関連]

オオワシ2号機の機械環境条件緩和に対する軽量化構造概念検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••79
オオワシ2号機軽量化機体の脚設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••82
オオワシ2号機エンジンマウント保持部減衰器試作品の振動試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••88
オオワシ2号機の主翼フラッター簡易解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••92

[誘導制御·通信]

超音速無人航空実験機用テレメトリ・コマンド系無線の電波伝搬の研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•95
900MHz 帯を用いた無人航空機用遠隔監視用無線システムの研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•99
VHF 帯を用いた無人航空機用中距離テレメトリ, コマンド無線システムの研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	104
エンジン模型飛行機搭載慣性航法装置に対する振動対策の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	107
揚力を最大限利用した高性能自動着陸技術の研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	112
超音速飛行達成のための最適飛行経路生成の研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
3 分の 1 スケール小型無人超音速機オオワシ 2 号の滑走試験・・・・・・・・・・・・・・・・・・・・・・・	122
小型無人超音速機オオワシ2号機における重心位置変動による制御性能の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	126
無人航空機向け上昇率最大経路の生成技術の研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	130
風向きを考慮した無人航空機のための最適帰還経路の生成及び誘導技術の研究・・・・・・	134
発表論文一覧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	138

内海 政春(航空宇宙機システム研究センター長・教授) 〇中田 大将(航空宇宙機システム研究センター 助教) 溝端 一秀(航空宇宙システムエ学ユニット 准教授)

1. IHI/IHI エアロスペースとの共同研究「LNG RCS の着火試験」

LOX/LNG を用いた小型スラスタのレーザー着火実証試験を行い(図1),予冷工程や着火シー ケンスを確立した.

図1 LOX/LNG スラスタのレーザー着火試験

2. IHI との共同研究「燃焼基盤研究」

酸素=窒素=プロパン三元系の着火特性について雰囲気圧力を変化させながら実施した.

3. JAXA/名古屋大学との共同研究

名古屋大学で研究されている Rotating Detonation Engine および Pulse Detonation Engine を JAXA/ISAS の観測ロケットに搭載し,飛行試験を平成 31 年度に実施予定である. フライトモデ ル相当の統合推進システムを白老実験場にて実証した.

図2 Rotating Detonation Engine の燃焼実験

4. JAXA との共同研究「RBCC の機体統合型設計技術の研究」

前年度に引き続き,Rocket-Based Combination Cycle(RBCC)エンジンを搭載したスペースプレーンの実現のために必要なエンジン・機体統合の空力設計技術の指針を獲得することを狙って,機体形状を提案し,機体模型を試作して,内蔵ロケットからの排気を模擬したガス噴射状態での風洞試験を JAXA/ISAS 遷音速風洞において実施した.ガス噴射による空力変化の計測について,ガス供給配管の内圧,および冷却による軸力の評価が課題であることが判明した.

図3 RBCC エンジンを模擬したスペースプレーン機体模型

5. 東京都市大学との共同研究「教育用ロケットの基盤技術に関する研究」

室蘭工大では亜酸化窒素を酸化剤とする自己加圧型ハイブリッドロケットの基礎実験を行っているが、外気温によって流量特性が大きく変化する.室蘭工大で実験的に取得された亜酸化窒素流動特性に対し、東京都市大学がANSYS Fluentを用いた VOF 法による気液二相流計算を実施し、現象解明を試みた.

6. JAXA との共同研究「極低温 RCS に関する基礎試験検討」

LOX/プロパンを用いた極低温 RCS の最小液出流量について基礎検討を行った.また,次年度 以降の実証試験に必要な系統図および運用方法について考察した.

啓蒙活動の概要および見学者

〇内海 政春(航空宇宙機システム研究センター 教授)中田 大将(航空宇宙機システム研究センター 助教)

航空宇宙機システム研究センターには、報道機関の取材、国外の大学関係者、中学・高校の教 諭が見学のため来訪されます.見学の対象は主に超音速風洞設備、オオワシ2号機モックアップ、 反転ファン試験設備、フライトシミュレーター、高速走行軌道実験設備、白老エンジン実験場で す.平成 29 年度に訪問された学外の見学者を表1に示します.

菱友システムズ	平成 29 年 4 月 24 日	3	小野様,大久保様,金沢様
MyROT 研究所	平成 29 年 4 月 25 日	1	松下様
新川電機	平成 29 年 4 月 26 日	1	佐々木様
宮城県多賀城高校	平成 29 年 5 月 10 日	5	主幹教諭 小野勝之様, 生徒4名
JAXA	平成 29 年 5 月 19 日	1	上垣内茂樹 宇宙飛行士・運用管制ユニッ ト長
川重岐阜エンジニア リング	平成 29 年 5 月 19 日	2	齊藤 取締役管理本部長, 採用担当 井出様
荏原製作所	平成 29 年 5 月 24 日	2	渡邉啓悦様, 渡邊裕輔様
日本製鋼所	平成 29 年 6 月 12 日	1	室蘭研究所長 茅野林造様
JSME v-TECH	平成 29 年 6 月 13 日	17	神戸大名誉教授 岩壺卓三様,他16名
Tennessee Univ. Middle Tennessee Univ. の卒業生	平成 29 年 6 月 27 日	3	(室蘭=テネシー州 Knoxville 姉妹都市交 流)
日本粉体工業技術協 会・粉砕分科会	平成 29 年 7 月 6 日	29	
名古屋大学	平成 29 年 7 月 6 日	1	青木宏 特任教授
	平成 29 年 7 月 7 日	1	平田邦夫様(元静岡大学教授・元 JAXA)

表1 航空宇宙機システム研究センターを訪問された見学者

JAXA 研究開発部門	平成 29 年 8 月 1 日	1	高田仁志 主幹研究員
第4研究ユニット		1	
北海道経済部産業振			科学技術振興室 渋谷紀一郎様,
興局	平成 29 年 9 月 11 日	3	胆振総合振興局産業振興部 横山諭様,
			他1名
文科省	平成 29 年 9 月 28 日	2	大臣官房 池田参事官,大臣官房人事課
			村上良行様
IHI	平成 29 年 10 月 6 日	3	石崎部長,高橋様,喜多様
土木同窓会	平成 29 年 10 月 18 日	16	松岡元学長,他15名
壮瞥中学校	平成 29 年 10 月 18 日	33	3年29名, 教員4名
СОС	平成 29 年 10 月 26 日	20	COC+関係者
	平成 29 年 10 月 31 日		
千歳高校 			
可視化情報学会風洞	平成 29 年 11 月 2 日		
研究会			
文科省	平成 29 年 11 月 17 日	2	大臣官房人事課 武井久幸様,他1名
大阪都島工業高校	平成 29 年 11 月 20 日	6	
インターステラテクノ	平成 29 年 12 月 12 日	5	金井様, 堀尾様, 斎藤様 他2名
北海道経済産業局			北海道経済産業局 北風槎 仙
NHK、室蘭民報,道新	平成 29 年 12 月 14 日		(小型無人機報道公開)
朝日新聞,読売新聞			
北海道経済産業局長	平成 30 年 2 月 7 日	1	佐藤靖史様
 川重岐阜エンジニア	平成 30 年 2 月 9 日		管理本部長 齊藤勝也様, 他 2 名
リング		3	
室蘭市経済部産業振	平成 30 年 3 月 16 日	2	岩田様, 今野様, 他1名
興課		5	
JAXA	平成 30 年 3 月 17 日	2	高田様,角銅様

GG-ATR エンジン GN2 GHe 冷走試験について

○湊 亮二郎 (航空宇宙システム工学ユニット 助教)
向江 洋人 (航空宇宙総合工学コース 博士前期2年)
石原 眞優 (航空宇宙総合工学コース 博士前期2年)
鈴木 竜司 (航空宇宙総合工学コース 博士前期1年)
橋本 啓吾 (航空宇宙システム工学コース 4年)
中田 大将 (航空宇宙機システム研究センター 助教)
内海 政春 (航空宇宙機システム研究センター 教授)
東野 和幸 (航空宇宙機システム研究センター 特任教授)

1. はじめに

現在,小型無人超音速機オオワシ2号機用推進エンジンとして,ガスジェネレータサイクル・ エアターボラムジェット (Gas Generator Cycle Air Turbo Ramjet, GG-ATR) エンジンが想定されて いる. 圧縮機・タービン等のターボ系回転要素については,既に完成しており,2016年度には窒 素(GN2)を用いた回転試験を実施した.GN2による冷走試験では,最大回転数が43000 rpm までし か実施できなかったので,2017年度はヘリウムガス(GHe)による冷走試験を実施し,設計回転数 である 58000 rpm までの冷走試験を実施した.

この GHe 冷走回転試験の目的は主に二つあり、そのうち一つは圧縮機の空力性能データの取得 にある.設計回転数 58000 rpm まで回転させて、圧縮機の空気流量、圧力比、断熱圧縮効率など のデータを取得する.計測した実験データと、既に実施した CFD 解析による予測値との比較を行 う.もう一つの目的は、設計回転数における回転体振動や軸受等の作動状態について、健全性が 確保されているか判断することにある.回転試験中の振動加速度、回転軸変位、及び軸受外輪温 度など、回転系要素の作動特性データを取得し、エンジンの安定作動を検証する.

2. 試験設備・エンジン仕様

GG-ATR エンジン冷走試験は、白老試験場にて実施した.GG-ATR エンジン冷走試験設備では、 高圧ガスボンベカードルを3基接続して、そこからタービン駆動ガスを供給させる.ヘリウム試 験の場合およそ 50 秒間の試験が可能である.図1,2 に GG-ATR エンジンと冷走試験設備を示す.

図 1 GG-ATR エンジン

図2 GG-ATR エンジン冷走試験設備

定格回転数	58000	rpm
空気流量	3.47	kg/sec
圧縮機圧力比 (Total to Static)	2.28	
断熱圧縮効率 (Total to Static)	70.1 %	
GG 燃焼温度	1100	Κ
GG 燃焼圧力	1.35	MPa A
タービン膨張比 (Total to Static)	6	
断熱タービン効率 (Total to Static)	65.0 %	
ラム燃焼器温度	2363	Κ
推力	3700	Ν
Isp	554	sec

表1 GG-ATR エンジン性能諸元

表1に本航空宇宙機システム研究センターで研究開発が進められている,GG-ATR エンジンの 地上静止状態における性能諸元を示す.

3. 試験結果

3-1. 回転振動特性

図3にGHe 冷走試験における軸振幅を,図4にGHe 冷走試験中の軸受外輪温度の時間履歴を 示す.軸変位センサーは,圧縮機インペラ背後で同じ軸方向位置で2点計測するようにして,そ れらは周方向に90°の位相差を持った位置に配置した.軸変位計測結果から,1次の危険速度付 近で大きな軸変位が計測されているが,それ以外では40 µm 以下に留まった.

図4の軸受外輪温度結果から,回転数が50000 rpmを超えたあたりで急上昇していることが分かる. 今後,このような軸受の温度急上昇はエンジンの安定作動に影響を及ぼすか,慎重に判断する必要がある.

図4 GG-ATR エンジン回転試験中での軸受外輪温度の時間履歴

また,回転数が 20000 rpm 付近でも,後部軸受外輪温度が一時的に急上昇していることも分かる.軸変位計測結果と軸受外輪温度の結果から,分析してエンジンの回転軸系の安定作動について,更に検証を進めていく必要がある.

3-2. 圧縮機空力特性

修正回転数が定格値の 40~70 %の結果は, GN2 冷走試験で得られたデータである. ヘリウムガスは高価であるため試験回数が限られており, 修正回転数が 90~97 %における 3 点のみが, GHe 冷走試験で得られたデータである. 図 5 には試験で得られた計測値だけでなく, CFD 解析によって得られたデータも示した. GN2, GHe 冷走試験で得られた試験結果は, 概ね CFD 解析値と一致しており, 斜流圧縮機インペラの設計が妥当なものであることが分かった.

4. まとめ

GG-ATR エンジンの GHe 冷走試験を実施し,斜流圧縮機の空力性能,及び回転軸の振動特性, 軸受作動特性について試験データを取得した.取得したデータから,GG-ATR エンジンの性能・ 作動特性について評価を行った.斜流圧縮機の圧力比-修正空気流量特性に関しては,計測したデ ータと CFD による予測値は良い一致を見せた.一方,軸受外輪温度については,高速回転時に急 激な上昇を見せていることから,今後,定格回転数付近での作動について,更なる検証を進める 必要がある.

参考文献

- [1] 橋本啓吾 "GG-ATR エンジンの軸系モデリングとその挙動に関する研究"室蘭工業大学平成 29 年度卒業論文 2017.
- [2] 向江洋人 "GG-ATR エンジン用軸受の温度特性と対策に関する研究"室蘭工業大学平成 29 年 度修士論文 2017.
- [3] 向江洋人,石原眞優,湊亮二郎,中田大将,東野和幸,内海政春"小型超音速機エンジン用玉 軸受の発熱/冷却特性評価"ターボ機械 掲載決定
- [4] 湊亮二郎,中田大将,内海政春,東野和幸,向江洋人,石原眞優"ヘリウムガスを用いた GG-ATR エンジン冷走試験について"日本航空宇宙学会北部支部 2018 年講演会ならびに第 19 回再使 用型宇宙推進系シンポジウム

○八木橋 央光 (航空宇宙システム工学コース 学部4年)
 森下 海怜 (航空宇宙総合工学コース 博士前期2年)
 吉川 稲穂 (航空宇宙総合工学コース 博士前期1年)
 中田 大将 (航空宇宙機システム研究センター 助教)
 湊 亮二郎 (航空宇宙機システムエ学ユニット 助教)
 内海 政春 (航空宇宙機システム研究センター 教授)
 東野 和幸 (航空宇宙機システム研究センター 特任教授)

1. はじめに

室蘭工業大学航空宇宙機システム研究センターでは、現在、次世代の超音速輸送機における基 盤技術の飛行実証のため、小型無人超音速実験機オオワシIIの研究開発が進められている.同実 験機は、飛行マッハ数1.3 で離陸から飛行、そして着陸までを自律飛行で行うことを目指してい る.そこで、推進エンジンには、従来のジェットエンジンシステムと比較して小型・大推力・高 比推力であることが求められる.これを満たすエンジンとして図1に示すガスジェネレータサイ クル・エアターボ・ラムジェットエンジン(Gas Generator Cycle - Air Turbo Ramjet, GG-ATR Engine)が候補に選定された.同エンジンは、通常のターボジェットエンジンとは異なり、独立し たガスジェネレータ(Gas Generator, GG)の燃焼ガスによりタービンを駆動する.現在、GG 単体 燃焼試験の準備を進めており、今年度は図2に示す GG の主要構成要素のひとつである GG 用点 火器の着火・燃焼試験を行った.

図2 ガスジェネレータ

2. 点火器諸元

GG-ATR エンジン搭載用ガスジェネレータの主要構成要素である点火器は、図3に示すフィル ムクーリング式 GOX/GH2 トーチ点火器を採用している.前年度までは図3左のようなノズルが 分岐されていない点火器で着火試験を行ってきた.しかし、図2で示したように2基の GG をひ とつの点火器で着火させるため、本年度は図3右に示すノズルを二股に分岐させた点火器につい て着火試験を行った.以下の表1に GG 点火器の仕様を示す.

項目	記号	単位	点火器
酸化剤	0	-	GOX
燃料	F	-	GH2
総流量	'n	g/s	約 4.0
混合比	0/F	-	コア部 20 ノズル部 2
燃焼室圧力	P_{IG}	MPaA	<0.5

表1 GG 点火器仕様

図 3 GG 点火器

3. 試験方法

3-1. 供給系

点火器試験を行うときの供給系系統図を図4に示す.酸化剤流量および燃料流量はチョークオ リフィスにより式(1)を用いて求める.

$$\dot{m} = C_d A_{OR} \frac{P_{FD}}{\sqrt{RT_{FD}}} \sqrt{\gamma \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}$$
(1)

図4 GG 点火器試験供給系系統図

3-2. 作動シーケンス

点火器試験における作動シーケンスを図5に示す.点火開始をx=0[s]とする.また酸素および 水素をx=-3.0[s]から流し始めることにより,定常状態での点火を行う.カットオフは火炎温度 の上昇を防ぐため,酸素供給を先に停止し燃料過多の状態で行う.

t	-5	-4	-3	-2	-1	0	1	2	3	4	5
GOX main valve											
GH2 main valve											
GOX side purge valve											
GH2 side purge valve			1								
Spark						-	1				

図5 GG 点火器作動シーケンス

4. 着火試験

着火試験より得た燃焼ガス温度及び燃焼ガス流量から,GG 点火器の点火エネルギを算出した.その結果を図6に示す.点火エネルギとは,推進剤着火の可否を判断するひとつの指標である.

図6 点火エネルギ

図6には、ノズルの長さ(ノズルの長いほう:-L、ノズルの短いほう:-S)を記載している.また、■に×印は、分岐管有りの試験で、燃焼ガスによって熱電対が振られることなく計測できたものである.本試験で得られた点火エネルギは最低で約11.5 kJ/s である.この結果から LOX-Ethanol への着火可能の見込みはあるが、着火しない場合には酸素ガスおよび水素ガス流量を増やす等の対策が必要である.

参考文献

[1] 森下海怜, GG-ATR エンジン搭載用 LOX-Ethanol ガスジェネレータにおける着火・燃焼特性の 基盤的研究,室蘭工業大学平成 29 年度修士論文, 2017.

GG-ATR エンジン用エアインテークの風洞試験について

○山口 凱(生産システム工学専攻航空宇宙総合工学コース 博士前期2年)
 湊 亮二郎(もの創造系領域 航空宇宙システム工学ユニット助教)
 伊藤 大貴(機械航空創造系学科4年)

1. はじめに

室蘭工業大学航空宇宙機システム研究センターで開発が進められている小型無人超音速機オ オワシII号機には、ガスジェネレータサイクル・エアターボラムジェット(Gas Generator Cycle Air Turbo Ramjet, GG-ATR)エンジンを搭載することが考えられており、このエンジンには超音 速エアインテークが取り付けられる.超音速飛行実現のための遷音速飛行では、衝撃波の発生や 境界層などの影響から機体に発生する抗力の評価や流れの再現が困難となってくるため、遷音速 域での抗力変化の知見と抗力低減のための設計が必要不可欠である.特にエアインテークの外部 抗力は、機体空力性能に大きな影響があり、その影響を風洞試験で検証する必要がある.本報告 では、2017年度に行った風洞試験の概要・試験結果について報告する.

2. 風洞供試体インテークモデルと試験設備

2-1. 風洞供試体

遷音速域でのエアインテークに発生する外部抗力を計測するために,通常のインテークモデル と,抗力低減を目的としたダイバータレスインテークモデルの2種類の風洞供試体を実機4分の 1サイズで設計した.通常のインテークモデルでは,インテークと胴体の間にあるダイバータが 境界層を取り込む事で,境界層流入を防いでいる.一方,ダイバータレスモデルではランプの部 分がコブ形状となっており,そのコブ形状で流入してくる境界層を圧縮し,引き裂くことでイン テーク内への境界層流入を防いでいる.

図1 通常のインテークモデル

図2 ダイバータレスインテークモデル

インテークの出口にはオリフィスプレートが設置されている.インテークの出口流量を流量捕 獲率 MCR が 0.5~0.9 になるよう調節しており、このオリフィスプレートを試験ごとに交換した. また、オリフィス上流には全圧計測ピトー管を5か所設置している.

2-2. 風洞試験設備

今回神奈川県相模原市にある JAXA/ISAS の遷音速風洞試験場を 7/31~8/4 の間に使用し,風洞 試験を行った.試験マッハ数は遷音速域 M=0.7~1.3 を連続的に変化させるマッハスイープとし, 供試体抗力,オリフィス上流全圧を 5 点,ベース静圧を 4 点,シュリーレン映像を計測した.風 洞試験は 5 日間で 20 回行った.

図3 風洞試験概略図

3. 風洞試験結果

3-1. インテーク性能

図 3,4 に風洞試験によるインテーク性能結果を示し、全圧回復率 TPR と流量捕獲率 MCR の変 化を表す.ダイバータありのインテークでは、流量の変化に対して全圧がほとんど低下していな いことが分かった.一方ダイバータなしの方では、TPR と MCR がダイバータありと比べて全体 的に低下していることから、ダイバータレス化によるインテーク性能の悪化が見られた.また MCR=0.7~0.6 にかけて境界層の剥離と考えられる大きな全圧低下が起こる事も分かった.

図4 MCR-TPR(ダイバータなし)

3-2. 外部抗力性能

図 5,6に風洞試験によるインテーク外部抗力特性結果を示す,外部抗力 C_D と流量捕獲率 MCR の変化を表す.ダイバータありのインテークでは線形的に抗力が変化していることが分かった. さらに速度の増加によって抗力増加が生じることが分かった.ダイバータレスの方では,流量が 多い場合は速度による抗力差があまり生じないことが分かった.また,実機の遷音速域抗力は C_D=0.05 と推算されていることから,ダイバータレスインテークの外部抗力は実機の 1/10 程度に なっていることが分かった.また図 5,6 を比較すると,全体的にはダイバータレス化による抗力 低減効果が見られるが,設計点近傍 (MCR=0.9 付近)では,ダイバータの有無による抗力の差が ほとんど見られないことが分かった.これはインテーク性能の悪化によって抗力差が小さくなっ たと考えている.

図5 MCR-C_D(ダイバータあり)

図 6 MCR-C_D(ダイバータなし)

4. まとめ

2017 年度では、GG-ATR エンジン用エアインテークのダイバータありとなしの2 種類の風洞試験モデルを設計し、風洞試験を行うことで遷音速域でのインテーク性能や空力性能を定量的に評価することができた.ダイバータレスインテークではインテーク性能が悪化することで、設計点近傍での抗力低減効果が悪くなっている可能性がある.現在は、これらの風洞試験結果について、CFD 解析を実施して実験結果との比較を行っている.

今後は、さらなる外部抗力低減やインテーク性能向上のためにダイバータレスインテークの再 設計をする予定である.また、ダイバータレスインテーク用のダクト形状の設計を行い、風洞試 験や CFD 解析によって評価を行うことで、オオワシⅡのインテーク形状を決定していくことを考 えている.

〇石原 眞優	(航空宇宙総合工学コース 博士前期2年)
湊 亮二郎	(航空宇宙システム工学ユニット 助教)
中田 大将	(航空宇宙機システム研究センター 助教)
東野 和幸	(航空宇宙機システム研究センター 特任教授)
鈴木 竜司	(航空宇宙総合工学コース 博士前期1年)
内海 政春	(航空宇宙機システム研究センター 教授)

1. はじめに

近年,観測衛星の打上や宇宙利用ビジネスが推進されており,宇宙空間の利用・開発が活性化 している[1][2]. この背景を踏まえて,室蘭工業大学航空宇宙機システムセンターでは,従来の宇 宙輸送機が抱える製造運用コストや環境適合性といった課題に対する新たな技術として,再使用 型宇宙往還機(RLV)の研究開発を行ってきた.推進エンジンとして採用されたガスジェネレータサ イクル・エアターボラムジェットエンジン(Gas Generator Cycle Air Turbo Ramjet, GG-ATR)はこれ までに GN₂ ガス駆動による冷走試験を実施してきた. 2017 年度は GHe ガス駆動による定格回転 数(58000[rpm])でのデータ取得を目指した冷走試験を実施し,CFD の結果も用いて圧縮機やタービ ンの作動特性および空力性能の把握と評価を試みたので,ここに報告する.

2. 冷走試験について

冷走試験はこれまでに計 69 回行った. GN₂を用いた際の最大回転数は約 43000[rpm], GHe を用 いた際の最大回転数は 56000[rpm]であった. 図1に試験装置の概要図を示す. REG1 はドームレ ギュレータである. 冷走試験時に燃焼器は装着しておらず, タービン出口は大気開放となってお り, 圧縮機出口は実験条件に応じてオリフィスにより流路を絞っている. また, 図2に試験装置 の計測系概要図を示す. 計測システムとして NATIONAL INSTRUMENTS の LabVIEW を使用して 計測および収録を行っている.

3. 圧縮機について

試験回数 69 回のうち、56 回はベルマウス内にある防塵用金網を装着したことにより、チョー クが発生して空気流量を目標量まで捕獲できなかった。57 回目以降の結果を図 3 に示す。実線で 示してあるものが CFD 解析結果、三角形で示してあるものが各回転数での試験結果である。 白 抜きの赤丸で囲まれている点が設計点である、CFD 結果と試験結果の P-Q マップは、ほぼ一致し ていることが分かる。試験結果よりオリフィスエリア比 45[%]で設計点 3.47[kg/s]での圧力比を推 算すると、1.97[-]となる。設計点 2.28[-]にするには、冷走試験の際に圧縮機出ロオリフィスエリ ア比を 45[%]未満にする必要があると考えられる。しかし、今までの冷走試験では 40000[rpm]付 近でもオリフィスエリア比を 45[%]未満で行っていないため、サージ領域に入るかは未確認であ る。また、図 4 に試験結果と CFD 結果より求めた圧縮機断熱効率を示す。実線で示してあるもの が CFD 結果であり、三角形のプロットが冷走試験結果である。冷走試験結果より、最高効率は 78.1[%]であることが分かる。設計点は 78.1[%]なので、目標に達する性能が得られたことが分か る。次に、試験結果と CFD 解析結果を比較すると、総じて CFD <Exp. という傾向が見られる。 通常は CFD で考慮されない様々な損失のために EXP. <CFD となるため、両者の効率差について 検討を行う必要があることが分かった。

さらに、CFD よるコンター図を、図 5(34800[rpm])および図 6(40600[rpm])に示す.各回転速度で の修正流量はそれぞれ 2.058、2.387[kg/s]であり、揚程特性における右下がり勾配の領域よりも小 流量側の条件である.回転速度 70%でのチップ周速は 319.8[m/s]であるが、インペラ入口 部でのスパン 70[%]の位置には、マッハ数 1 を超えて弱いながらも衝撃波の発生がみられる. 図 6 より、損失発生が顕著となる領域として翼前縁部と翼端部が挙げられる.前者は図 5 に対応 した衝撃波によるものであり、後者は翼端漏れ流れによるものである.今回解析を行った条件は、 S-A 乱流モデルであり、剥離を過大評価するというデメリットがある.そのため、効率を求める 際、損失を大きく評価してしまい、実際よりも低い値が出たのではないかと考えられる.今後乱 流モデルの評価を実施する必要がある.

図5 マッハ数分布 N=60%(左), 70%(右)

図 6 エントロピー分布 N=60 %(左), 70 %(右)

4. タービンについて

4-1. 試験結果について

タービン断熱効率の結果を図7と図8に示す.図7から最高効率が60[%]程度であり,設計点の65[%]に達していないことが分かるが,図8に示すGHeを用いた高回転数試験では65[%]に達していることが分かる.しかし,55100[rpm]付近で36[%]と70[%]の差があり,タービン断熱効率のばらつく結果となった.そこで,タービン断熱効率のばらつきについて考察した.

図7 GN2試験時のタービン断熱効率

図8 GHe 試験時のタービン断熱効率

4-2. 全体効率による評価

ターボ系翼素の評価指標として,式(1)で表せる試験結果の全体効率を図9に示す.図9の50[%] 付近にある試験3回はTCHe68(55400[rpm]), TCHe69(46400[rpm], 49700[rpm])である.図8のタ ービン断熱効率が65[%]に達しているものと同じであり,圧縮機の影響ではないと推察される.

 $\eta_{total} = \eta_{comp} \times \eta_{turbo}$

(1)

図9 全体効率

TCHe68 および TCHe69 とこれらの試験以前の試験には、タービン出口温度の熱電対差込長さの 違いがある.そこで、差込長さによるタービン効率への影響を検討した.図10に熱電対差込長さ 変更前後のタービン出口温度の関係を示す.熱電対の差込長さの変更前を1(横軸)、変更後を3(横 軸)とした. TCHe67 以前の差込長さは約5[mm]と考えられ、TCHe68 と TCHe69 では約40[mm] とした.熱電対の差込長さ変更前は平均で約226[K]、変更後は平均で約175[K]となっており、そ の差は約50[K]である.そこで、差込長さの違いによるタービン断熱効率への影響を調べるため、 CFD 解析により温度分布を調べた.

回転数 40000~55000[rpm]をプロット 横軸の1は差込長さ 5mm, 3 は 40mm

図 10 差込長さ変更前後のタービン出口温度の関係

4-3. CFD 解析結果

CFD 解析結果の温度分布を図 11 と図 12 に示す. 各図の赤矢印は熱電対の差込長さ方向を表す. 図 11 の①はタービン出口であり、②と③は、①からさらにエンジン下流での解析位置を表す.図 12 より、タービン出口からエンジン下流になるほど、温度が高くなる傾向があることが分かる. また、差込長さ 0.005[m]での各位置①~③について比較すると、①と③で約 16[K]の温度差がある ことがわかった.冷走試験における図 10 の 50[K]温度差に関して、図 12 の CFD 結果から温度と 計測場所との関係は以下と推定される.

・約 226[K]は壁面から半径方向に 1.25[mm] (差込長さ 5 mm に相当)

・約 175[K]はタービン出口にて,壁面から半径方向に 6.25[mm](差込長さ 40 mm に相当)

よって、熱電対は変更前と後で図 13 に示すような計測位置になっていたと考えられる.

4-4. 解析結果と試験結果の比較

試験結果とCFD 解析結果の比較を図 14 と図 15 に示す.図 14 から,差込長さが 5 mm では実験での計測温度が高く,CFD 結果よりも効率が低く算出されることが分かる.図 15 から,同一回転数であっても差込長さによって効率が大きく異なることがわかる.また,同一の差込長さのTCHe68,TCHe69 では,CFD と Exp.の結果がほぼ一致していることがわかる.よって,差込長さが浅かった試験ではタービン断熱効率が過少評価されており,TCHe68 以降のデータによるタービン断熱効率の方が真値に近いと考えられる.

図 14 CFD 解析と冷走試験結果(GN₂)

4-5. TCHe68 以前のタービン断熱効率の推定

CFD 解析結果より, 熱電対の差込長さとタービン出口温度の関係を図 16 に示す. また, 4[mm], 5[mm]も CFD 解析の結果から参照してプロットした. 図 17 に, 回転数と温度差(差込長さ 1.25[mm] と 6.25[mm]の差)の関係を示す. 図 17 の赤い点線前後の回転数で駆動ガスが異なる. 各試験によって, 回転数や流量などの試験条件が異なっているため, 温度差にばらつきがあるが, ガス種に分けてみれば高回転になるほど温度差は大きくなっている.

6.25[mm]と1.25[mm]との温度差を補正して推定したタービン断熱効率の結果を図 18 に示す. 図 18 からわかるとおり,温度補正することにより平均で約 30[%]上昇した. 30000[rpm]の効率が 他の回転数に比べてやや高く出ているが,おおむねタービン断熱効率は 65[%]付近を示しており, ほぼ設計点に近い結果となった.図 19 に温度補正を考慮した全体効率を示す.

図18 試験結果の温度補正による断熱効率

図19 温度補正した全体効率

図 19 より全体効率が 50[%]付近に近づく傾向になったが,ばらつきがある.図 20 に縦軸に全体効率を,横軸に回転数の図を示す.図 20 から特に 35000[rpm]~40000[rpm]の間の全体効率が大きくばらついている結果となった.その要因の特定は今後の課題である.

図 20 全体効率と回転数の関係

参考文献

[1] 年次報告書 2016,国立大学法人室蘭工業大学航空宇宙機システムセンター,(2016), pp. 5-9
 [2] JAXA 宇宙情報センター スペースプレーン, http://spaceinfo. jaxa. jp/ja/space_plane. html

O橋本 啓吾	(航空宇宙システム工学コース 学部4年)
向江 洋人	(航空宇宙総合工学コース 博士前期2年)
湊 亮二郎	(航空宇宙システム工学ユニット 助教)
中田 大将	(航空宇宙機システム研究センター 助教)
東野 和幸	(航空宇宙機システム研究センター 特任教授)
内海 政春	(航空宇宙機システム研究センター 教授)

1. はじめに

本学航空宇宙機システム研究センターでは大気中を高速・高高度で飛行するための革新的基盤 技術の研究開発を行っており、そのフライングテストベッドとして小型無人超音速機の開発が進 められている.その推進エンジンには Gas Generator Cycle Air-Turbo Ramjet Engine (GG-ATR エン ジン)が搭載される.このエンジンは、インテークから取り込まれた空気を高圧状態にしてラム 燃焼器に送り続けるために、高い信頼性を有する高速回転機械が必要となる.高速回転は必然的 に軸の振動を発生させるため、GG-ATR エンジンの安定作動の実現には、ターボ軸系の振動特性 を把握することが重要となる.2017年度は、昨年度行われていた GN₂冷走試験の次のステップ として、GHe を用いた冷走試験を実施し、定格回転数(58000 rpm)付近での軸振動データを取得し た.それに加えて、軸系全体の挙動を評価するために、有限要素モデルを用いた軸振動解析を実 施した.それらの結果をもとに、軸系挙動を評価したので、その概要について報告する.

2. 冷走試験結果

GHe 冷走試験で得られた起動・停止過渡時の GG-ATR エンジンの軸振幅を図1に示す.

この図は計測断面(圧縮機背面)での回転数に対する軸振幅を示している.このエンジンは定格 作動させるまでに1次と2次の危険速度を乗り越える必要があることがわかった.危険速度と は、不釣り合い力などの強制力の振動数が、軸の固有振動数に一致することで共振現象が生じる 時の回転数である.1次危険速度で 60 µm を超える大きな共振振幅が生じている.また,急な加 減速を行うため,昇速時と降速時では,危険速度や共振振幅に有意な差が生じていることがわか った.その一方で,2次の共振振幅は1次よりも小さい結果となっている.

3. ターボ軸系の仕様と有限要素モデリング

3-1.ターボ軸系の仕様

GG-ATR エンジンの断面図を図2に示す.ターボ軸系は斜流圧縮機,高圧・低圧タービン,主軸,軸シール,前側・後側軸受,軸受用のソフトマウント等で構成される. 圧縮機の質量が大きく,その配置からオーバーハングの大きな回転体である. 軸振動の計測断面は圧縮機背面のみであり(ただし互いに90°離れた2位相),試験ではタービン側の軸挙動は計測していない.

図2 GG-ATR エンジン断面図

3-2. 有限要素モデリング

GG-ATR エンジンのターボ軸系について、1次元はり要素で軸振動解析モデルを構築した.図 3は有限要素モデルを上半分に、軸系の断面を下半分に示したものである.有限要素モデルにお ける圧縮機やタービンは3次元 CAD モデルより算出した質量特性を用いて、剛体の集中質量と してモデル化している.

軸系有限要素モデルの運動方程式を式(1)に示す. 軸系のモード形状(固有振動数に対しての軸の振れまわり形状)や振動挙動はこの方程式の解により求まる.

 $M\ddot{Z} + (C_r + C_b + \Omega G)\dot{Z} + (K_r + K_b)Z = F_{un}$

 $M: 質量行列 C_r: 軸減衰行列 C_b: 軸支持部減衰行列 G: ジャイロ行列$ $Kr: 軸剛性行列 K_b: 軸支持部剛性行列 Z: 変位ベクトル F_{un}: 不釣り合い力 <math>\Omega: 軸回転速度$ (1)

4. 軸振動解析結果

本研究では計算負荷や計算精度を考え、定常軸振動解析を行った.自由振動解析によって得た 軸系のモード形状を図4に示す.また、不釣り合い応答解析によって、回転数に対する任意断面 における軸振幅を得ることができる、その結果を図5に示す.

軸系のモード形状から、1次モードでは圧縮機側が、2次モードではタービン側(後部軸受部)が 大きく振れる形状となることがわかった.1次と2次のモードは剛体モードであり、58,000 rpm の運用回転数までロータの弾性変形が支配的な危険速度に近づかないため、剛性ロータであるこ とがわかった.軸剛性に対して軸支持部の剛性が小さいためだと考えられる.

図1に示したように、軸振動の計測断面では2次危険速度の共振振幅は30µm程度であるが、 この不釣り合い応答解析によって後側軸受部では95µmに達する大きな共振振幅を持つことが明 らかになった. 試験結果のみで軸挙動を考察すると過小評価することとなる.2次モードでは後 側軸受部が大きく振れまわる形状であるにもかかわらず、そこに減衰不足が生じていることが示 唆される.後側は燃焼ガスによって高温にさらされるため、耐熱性の観点からダンパが組み込ま れていないことが原因として考えられる.この共振振幅によって後側軸受に大きな荷重が作用す ることが懸念されるため、その対策として耐熱性に優れるダンパの開発を検討中である.

参考文献

[1] 橋本啓吾,GG-ATR エンジンの軸系モデリングとその挙動に関する研究,室蘭工業大学平成 29 年度卒業論文,2017.

GG-ATR エンジン用ラム燃焼器ミキサーの風洞試験について

○湊 亮二郎 (航空宇宙システム工学ユニット 助教) 清野 嵩登 (航空宇宙システム工学コース 学部4年)

1. はじめに

現在,小型無人超音速機オオワシ2号機用推進エンジンとして,ガスジェネレータサイクル・ エアターボラムジェット(Gas Generator Cycle Air Turbo Ramjet, GG-ATR)エンジンが想定されて いる. GG-ATRエンジンでは、ガスジェネレータで発生させた高温高圧の燃焼ガスを用いて、タ ービンを駆動させる. GGでは、タービン翼の熱負荷を考え燃料過剰条件で燃焼させており、タ ービン駆動後の GG 燃焼ガスは、ラム燃焼器で圧縮機によって昇圧された空気と混合・燃焼し、 ノズルから噴射される.エンジンの推進性能を確保するには、大幅な圧力損失を避けつつ、ラム 燃焼器での混合性能を上げて、燃焼効率を上げる必要がある.

本報告では、低速風洞においてラム燃焼器用模擬ミキサーを用いた混合試験を実施したので、 その概要について報告する.

2. 試験装置·設備

2-1. 試験装置·風洞

ラム燃焼器用ミキサー混合試験は、図1に示すような簡易模擬ラム燃焼器モデルを用いて、室 蘭工大航空宇宙機システム研究センター内の回流式低速風洞で実施した.このモデルの流路部内 径は70 mm であり、実機サイズの1/3 のサイズである.図2に使用したラム燃焼器用ミキサーモ デルを示す.このミキサーはローブ型ミキサーと呼ばれるタイプの形状を持っており、襞状の端 部から縦渦を発生させ混合を促進させる.この風洞試験用のミキサーは、本学のものづくり基盤 センター内にある、3次元造型機で製作した.図3には、実験に使用した回流式低速風洞の概観 を示した.この風洞の測定部は300 mm×300 mm のサイズを持っており、風速は最大30 m/sec に達する.

図1 低速風洞試験用模擬ラム燃焼器

図2 ラム燃焼器用ミキサー模型

図3 回流式低速風洞

ミキサー混合性能試験では、GG 燃焼ガスを直接用いることは出来ないので、高圧ガスボンベ から窒素ガスを供給して、それを GG 燃焼ガスとして用いる. 窒素ガスは、模擬ラム燃焼器の中 央部にあるミキサー部流路に供給し、ミキサーでベルマウスから流入してきた空気と混合させ る. 空気と窒素が混合した気体は、ミキサー下流で酸素濃度を計測することで、ミキサーの混合 性能を評価する.

2-2. 計測項目

本研究での計測項目は、1) ミキサー出口速度分布及びベルマウス入口流速、2) ミキサー出 口酸素濃度分布、3) 窒素ガス流量 の3項目である. Pitot 管はベルマウス入口部に1ヶ所と、 模擬ラム燃焼器の出口に5ヶ所設置した. 更に Pitot 管設置位置での、模擬ラム燃焼器部の静圧 を計測した. 図4にミキサー出口でのPitot 管設置箇所を示す. ミキサー出口のPitot 管は、ミキ サー後端から56 mmの位置に設置した. それらの位置は中央に1ヶ所と、半径28 mmの箇所に 上下左右の4ヶ所設置した. 更にこれら5ヶ所のPitot 管の背後でガスサンプリングを行い、酸 素濃度を計測した.

GG 燃焼ガスを模擬するため,窒素ガスを供給するが,その窒素ガスの流量も計測した.

図4 ミキサー出口部における Pitot 管計測位置

3. 試験結果

3-1. 低速風洞試験

低速風洞試験では、ミキサー出口における混合性能と流速分布を計測した. 図5に速度分布の例を示す.この速度分布結果はミキサー無しで取得したデータであるが、出口 中央部での速度は、他の4ヶ所の速度よりも大幅に下がっていることが分かる.

図5 ミキサーなしの場合の流速-窒素ガス流量の関係

図6 ミキサー有りの場合の酸素濃度時間履歴

図6に酸素濃度の時間履歴を示す.酸素センサーは1台しかないので,試験ごとに計測点を変 えて試験を行った.図6において各点での計測時間が異なっているのはそのためである.図6よ り,中心部に酸素濃度が高く,周辺部は低くなっている.このことから噴射された窒素ガスは, 中央から周辺部へと拡がるように拡散していることが分かった.

3-2. CFD 解析

ラム燃焼器用ミキサーの風洞試験について, CFD 解析も実行してみた.使用したソフトウェ アは Solid Works Flow Simulation である.図7及び8に CFD 解析例を示す.本解析では、窒素ガ ス供給管の形状も考慮して解析を行っており、その結果から、窒素ガスを供給するベント管によ る流れの影響が関わっている可能性が示された.

図7 ベント管内部流れの CFD 解析例

図8 ミキサー出口部における酸素濃度分布の CFD 解析例

4. まとめ

ラム燃焼器用ミキサーについて、1/3 スケールモデルを用いて、低速風洞にて混合性能の試験 を行った.今後は、実験と CFD の精度検証を進めると共に、実際のエンジンでの流れの条件に 見合うような試験条件の設定を進めていく必要があると考えている.

参考文献

[1] 清野嵩登 "GG-ATR ラム燃焼器用ミキサー形状に関する研究"室蘭工業大学平成 29 年度卒業 論文 2017. ○佐藤 侑也 (航空宇宙システム工学コース 学部4年)
西村 健 (航空宇宙システム工学コース 学部4年)
今井 良二 (航空宇宙システム工学ユニット 教授)
中田 大将 (航空宇宙機システム研究センター 助教)
内海 政春 (航空宇宙機システム研究センター 教授)
東野 和幸 (航空宇宙機システム研究センター 特任教授)

1. はじめに

小型無人超音速実験機オオワシ II の推進剤供給システム開発の一環として,昨年度までに(1)高 速軌道を利用した高加速度環境下サブスケールタンク内スロッシング特性試験,(2)タンク製造方 法の検討[1],(3)バイオエタノールタンクの実寸大モデルによる液体排出特性の計測,可視化を実 施した[2].本年度はこれに引き続き,バイオエタノールタンクの液排出特性の解析,検証実験お よび LOX タンクにおける液排出時の熱流動解析を実施した.

2. 内容

2-1. バイオエタノールタンク液排出解析,検証試験

オオワシ2号機実フライト時の加速度の時間変化を考慮した場合の、タンク内液体挙動を数値 解析により求めた.ここでフライト条件として、機体乾燥重量を音速突破が可能な最小値である 240 kg,推進剤重量 30.5 kg とした.二次元三自由度飛行解析により得られたマッハ数、機体に作 用する加速度の時間変化を図1に示す.

図1 マッハ数(左),機体に作用する加速度(右)の時間変化

上記加速度を入力して得られたタンク内部液体挙動の解析結果を図2に示す. 図はタンク内部 の気相の体積割合のフライト開始からの時間変化を示し,赤い部分が気相,青い部分が液相を示 す. 図より機軸方向加速度により液面が傾斜しており,30 sec 以降,機体の経路角が25 deg から 0 deg に変化する際,機軸に対し上方向の加速度が作用し,液体が下部から上部に急激に移動する. これに伴い,液排出部が気相に面し,ガスが排出される恐れがある. 液体捕捉機構を液排出口に 設置する必要がある.

本研究では上記解析結果の検証を目的とし、加速度印加時のタンク内液体挙動につき、実寸大 模擬タンクによる液体挙動可視化および解析結果との比較検証を実施した.なお、本実験では液 体として純水を用いた.図3に模擬タンクおよび加速度印加方法を示す.加速度は図に示すよう にタンクを傾斜させることにより印加した.また、加速度はジャイロ式加速度計を用いて計測し、 加速度の実測値を解析条件として入力した.

図2 可視化用模擬タンク(左)および加速度印加装置(右)

図3に実験結果および解析結果を示す.実験結果と解析結果を比較すると、タンク内の液体と 壁との接触面は解析結果の方が実験結果よりも丸みを帯びているが、タンク内の液面挙動は概ね 一致したと言える.但し、実験結果で見られた気液の混合領域は、解析において十分に再現する ことが出来なかった.これは解析で用いたタンクが二次元モデルであり、実験で用いたタンクの 形状とは異なることが原因であると考えた.これらのことを踏まえると、本解析技術を用いてタ ンクに形成される気液の混合領域を再現することは困難であるが、本解析技術の加速度条件下に おける液面挙動の概略は再現可能と考える.

可視化結果

数值解析結果

加振開始 8sec 後

可視化結果

数值解析結果

加振開始 12sec 後 図 3 加速度印加時のタンク内流体挙動 (左:実験結果 右:数値解析結果)

2-2. 推薬タンク調圧システムの試作、検証

図4に示す推薬タンク調圧システムを試作した.推薬タンクの上流に加圧用の窒素ガスボンベ を接続し、窒素ガスボンベと推薬タンクの間にレギュレータ、ソレノイドバルブ、ガス流量計を 設置した.タンク内部の圧力は圧力計で計測するとともに、計測値をフィードバックし、目標圧 力以下で電磁弁を開放、目標値を超えると電磁弁を閉鎖するオンオフ制御を適用した.

図4 推薬タンク調圧システム

図5に目標圧力を0.2~0.21 MPa,初期圧力を0.21 MPa,窒素ガスボンベの供給圧力(レギュレ ータ二次側圧力)を0.3 MPa,液排出流量を12 L/min とした場合の,タンク内部圧力の時間変化 を示す.タンク内圧力に関し,前述のオンオフ制御を行っているため,図に示すような圧力の上 昇,下降を繰り返す時間変化を示す.液体排出直後のタンク内ガス相体積が小さい場合は圧力降 下量が大きく,液体排出開始後1[s]と3[s]で目標圧力の下限値である0.2[MPa]より0.01[MPa]近く 下がった.その後ガス領域が増加するとともに,目標圧力との差が小さくなった.また,排出直 後は加圧の間隔が短く,時間が経過すると加圧の間隔が長くなった.これは、タンク内ガス相体 積が大きくなるに伴い,加圧と圧力降下が緩やかになるためである.圧力変動幅を小さくするた めには、供給圧力を上昇させる必要がある.

図4 推薬タンク調圧システム

2-3. LOXタンク内熱流動挙動解析

オオワシ2号機実フライト時の加速度の時間変化を考慮した場合の、タンク内熱流動挙動を数 値解析により求めた.加速度条件は2-1で述べたものと同一のものを与えた.図5に解析で得 られたタンク内部温度分布およびガス相体積分率を示す.図より気相体積分率に関しては、バイ オエタノールタンクと同様にフライト後35 sec 以降に液排出口にガス相が面し、ガス巻き込みが 発生する可能性があることを示している.一方温度分布に関しては加速度変動がない場合に比べ 気相内部の攪拌が十分になされ、温度分布幅が小さくなっていることがわかる.なお、本解析結 果の検証にあたっては、液体窒素等の極低温液体を用いた検証試験が必要である.本検証試験は、 次年度以降実施する予定である.

〇今村	卓哉	(航空宇宙総合工学コース 博士前期2年)
貝瀬	柚子	(航空宇宙システム工学コース 学部4年)
今井	良二	(航空宇宙システム工学ユニット 教授)
杉岡	正敏	(航空宇宙機システム研究センター 名誉教授)
東野	和幸	(航空宇宙機システム研究センター 特任教授)

1. 背景

現在,宇宙機推進システムの燃料として主にヒドラジンが使用されている.ヒドラジンは高比 推力で着火性に優れる燃料であるが毒性を有するため,現在,代替燃料を用いた推進システムの 開発が進められている.航空宇宙機システム研究センターでは,アルミと水の反応から得られる 水素を宇宙機推進システムに適用する研究をこれまでに実施してきた.本システムではアルミタ ンクから取り出したアルミと水タンクから取り出した水を反応器で混合して高圧水素製造反応を 起こし,水素をスラスタに供給する構成としている.本システムでの反応物である水およびアル ミ,反応生成物の水素および水酸化アルミはいずれも毒性を有さないため,次世代の推進系への 適用が有望である.

昨年度までに,(1)微小重力環境下におけるアクリル樹脂製[1]および金属製[2]水タンク液体捕捉 機構の考案,検証,(2)微小重力環境下における反応槽内部の流動挙動の検討[1],(3)水素製造循環 における酸化アルミニウムの窒化の実証,を実施してきた.上記に引き続き本年度は,(1)アルミ 合金粉末搬送機の試作および微小重力環境下での検証,(2)メカニカルアロイングによるアルミー 水反応高速化に関する検討,を実施した.本報では本年度の研究成果についてまとめた.

2. 内容

2-1. アルミ合金粉末搬送機の試作および微小重力環境下での検証

2-1-1. はじめに

本章では、Al/水反応推進系の構成要素の一つであるアルミ合金粉末搬送機の考案、試作、短時 間微小重力環境下での搬送特性の検証結果について述べる.なお、短時間微小重力実験は㈱植松 電機が所有する微小重力実験塔「COSMOTORRE」を利用した.

2-1-2. 実験装置

微小重力環境下でのアルミ合金粉末の搬送方法として、スクリューコンベア方式を選定した. 本方式のメリットを以下に記す.

(1)構造が単純で輸送量も安定しており、運転及び保守が容易であるため信頼性が高い.

(2) 密閉構造にしやすく、粉塵の飛散防止が容易である.

図1に本研究で検討したアルミ合金粉末搬送装置を示す.

本装置では、粉末投入エリアに粉末試料を投入し、輸送エリアにおいてスクリューをモーター で回転させ試料を輸送、粉末貯蔵容器に輸送された試料を貯蔵した.微小重力下では、粉末投入 エリアにおいて重力による試料の投入ができないため、ピストンで押し込む仕組みとした.ケー シングには内部の可視化するために,透明の排水管用のパイプ及び継手(呼び径 30,内径 31 mm) を使用した.スクリューの仕様を以下に示す.

・外径	: 30 mm	・厚さ	: 3 mm
・軸径	: 10 mm	・長さ	: 90 mm
・ピッチ	: 15 mm	・回転数	: 200 rpm

スクリュー先端には、厚さ1mmのフェルトシールを貼り付け、ケーシング内壁との隙間をシ ールした.これは、試料の粒径が小さくなるとスクリューとケーシング内壁の隙間から試料が流 れ出し、試料充填時の初期状態が実験条件毎に異なることを防ぐためである.

図1 アルミ合金粉末搬送検証モデル

図2に短時間微小重力実験用カプセルに搭載した実験供試体および電源系の搭載状況を示す. 供試体および各種計測機器,実験機器は木製の円盤状プレートに配置させた.アルミ合金粉末搬 送検証モデルおよび画像取得装置(デジタルビデオカメラ)を同一のプレートに配置し,光源は, 上部に搭載したプレートの底部に配置した(図2(a)).また,モーターおよび駆動用のインバータ 電源,モーター用ドライバを同一プレートに配置した(図2(b)).インバータへ供給する電源は, 12VDCのゲル状バッテリを用いた.本バッテリは,カプセル最下段に配置した.

2-1-3. 実験条件

実験条件を表1に示す.表に示した条件で,微小重力実験と地上重力実験を行い比較した.充 填率については,50%は粉末投入エリア直下の輸送エリアに試料が50%程度充填させている状態, 100%は粉末充填エリアまで一杯に充填し,ピストンで押し込んでいる状態を意味する.実機で使 用する Al 粉末の粒径は150~50 µm であることに対し,それよりも大きい粒径の試料を使用して いるのは,粒子の個別の挙動を詳細に観察することを狙ったためである.

図2 短時間微小重力実験用カプセルおよび実験機器の搭載状況

Experimental conditions	Filling rate	Powder sample	Particle size	Powder shap
No.1	50%	Bullets for model guns	6mm	Sphere
No.2	50%	Glass beads A	710∼500µm	Sphere
No.3	50%	Glass beads B	150~125µm	Sphere
No.4	50%	Aluminum powder	500∼150µm	Needle, Spindle
No.5	100%	Glass beads B	150~125µm	Sphere
No.6	100%	Aluminum powder	500~150µm	Needle, Spindle

表1 実験条件

2-1-4. 実験結果

充填率 50%における実験結果について述べる.図3に条件 No.1の実験結果を示す.図より, 地上重力下では、重力が存在しているため試料はスクリュー下部に溜まった状態で輸送され、微 小重力下では、ケーシング内壁に沿って試料が拡がった状態で輸送されることが分かった.微小 重力環境下では粉末試料に作用する力はスクリューの回転による遠心力が支配的となり、試料は スクリュー軸付近から周方向に排出され、ケーシング内壁に押し付けられているためと考えられ る.この粉末挙動は、条件 No.3 と条件 No.4 においても同様であった.つまり、粒径が小さく、 また粒形状が異なっていても輸送中の粉末の挙動に大きな差異はないと言える.以上の結果から、 微小重力の場合,輸送中の紛体はケーシング内壁に沿って一様に存在するため,スクリュー先端 とケーシング内壁との隙間で噛み込みが起こりやすくなると考えられる.加えて実使用の場合, 微細な Al 粉末 (150~50 μm)を使用するため摩擦により発火し粉塵爆発を起こしてしまう危険性 が増加すると考えられる.よって,スクリューとケーシング内壁の隙間のシーリングは必須であ ると考えられる.

図3 実験条件1における試料挙動の可視化結果 (粉末充填率50%,試料:モデルガン用弾丸(直径 \$ 6 mm)

図4に条件 No.5 の実験結果を示す.図より,地上重力下及び微小重力下ともに,試料が輸送されていることがわかった.また,地上重力下及び微小重力下ともに充填率50%の場合と比べて, 充填率100%の場合は試料が常に供給されているため,輸送されている試料の密度は高くなっていたが,輸送中の挙動については大きな差異はなかった.

図4 実験条件5における試料挙動の可視化結果 (粉末充填率100%,試料:ガラスビーズ(直径φ150-125 μm)

ただし微小重力下では、図中の赤枠の部分に空間が形成されており、地上重力下よりも輸送効率が低下する可能性がある. 試料に Al 粉末を使用した条件 No.6 の実験結果では、条件 No.5 とほとんど同等の挙動を示した. 以上の結果から、粒径及び粒形状が異なっていても粉末挙動に大差はないことが示された. よって、実機で使用する Al 粉末で、直径の大きい粒子(150~125 μm)においても同様に輸送できると考えられる.

以上より,スクリューコンベアは Al/水反応推進系における Al 粉末供給機構に適用可能である 見通しが示された.

2-2.メカニカルアロイングによるアルミ-水反応高速化に関する検討[3]

2-2-1.はじめに

本研究ではAl/水反応を用いた水素製造の効率向上およびAl合金粉末製造の効率化を目的とし、 水素製造効率の高いメカニカルアロイング(MA)を用いたAl合金粉末の製造,これによる水素 製造実証を実施した.

2-2-2、メカニカルアロイング(MA)

MA はボールミルの力学的エネルギーを用いて金属粉末を粉砕混合し,機械的に合金化する方法である.この手法は常温での合金化が可能であるなどの利点があり,新しい省エネルギー合金化プロセスとして注目されている.本研究では MA に遊星回転ポットミル(株式会社伊藤製作所:型式 LP-1)を用いた.試薬と少量のエタノールを容器に投入し,アルゴンガス雰囲気で破砕し,Al 合金粉末を製造した.エタノールは合金粉末の凝集防止のために添加した.表2に MA の条件を示す.

	Al-30%Sn	Al-30%Zn	AI-40%Sn-10%Bi
AI質量[g]	14	10.5	10
➡遊啠巪[~]	6	4.5	8(Sn)
武栄貝里[g]			2(Bi)
粉砕時間[h]	20, 40		
粉砕速度[rpm]	250		
粉砕ボール数[個]	30		
粉砕ボール径[mm]	φ 10		

表 2 メカニカルアロイング(MA)の条件

2-2-3. 水素製造実証

水素製造はオートクレーブ(オーエムラボテック株式会社:型式 MMJ-100)を用いた. ヒータ ーで加熱しながら Al 合金粉末と蒸留水の混合物を攪拌棒で攪拌し,発生した水素を水上置換法で 捕捉した. なお,反応性が高いと予想された試料については,ヒーターによる加熱および攪拌は せずに予備実験としてガラス製反応容器を用いた実験を行った.実験の条件を表3に示す.

合金組成		Al-30%Zn		Ai-30%Sn	
メカニカルアロイング時間[h]	20	40	2	0	40
実験温度[℃]		6	60		
実験時間[min]	360 21		210		
試料質量[g]	5 1		1		
試料粒径[μm]		試薬粒	ī径J	以下	
蒸留水体積[ml]	80				
攪拌速度[rpm]		13	850		

表 3 水素製造実証実験条件

図 5 に Al-30wt%Zn を用いた実験の結果を示す. 製造手法ごとに比較すると, Al-30wt%Zn と Al-30wt%Sn 共に MA を 40 時間実施した試料が最も水素製造効率の向上が見られた. 理由として 長時間 MA を実施すると獲得粒径が減少し,水との接触面積が増加したことが挙げられる. 組成 ごとに比較すると, Al-30wt%Zn を用いた場合には Al-30wt%Sn よりも水素製造効率の向上が見ら れた.

図5 MAにより生成したアルミ合金粉末による水素製造量の時間変化

参考文献

[1] Ryoji Imai, Takura Imamura, Masatoshi Sugioka, Kazuyuki Higashino, Research on Liquid
 Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production
 System Utilizing Aluminum and Water Reaction, Microgravity Science and Technology, Vol.29, No.9,
 pp.475-484, 2017, https://doi.org/10.1007/s12217-017-9566-5.

[2] Takuya Imamura, Masatoshi Sugioka, Kazuyuki Higashino, Ryoji IMAI, Study on Liquid Management Technology in Water Tank for Propulsion System Utilizing Aluminum and Water Reaction (Improvement of Liquid Acquisition Performance by Hydrophilic Coating in Metallic Tank), International Journal of Microgravity Science and Application, Vol.35, No.1, pp35103-1-6, 2018, DOI:10.15011//jasma.35.350103. [3] 今井良二, 今村卓哉, 貝瀬柚子, 杉岡正敏, 東野和幸, アルミ水高圧水素製造反応の宇宙推進 システムおよび CO2 フリー水素製造プラントへの適用に関する研究,「第15回 HASTIC 学術技術 講演会」兼「第27回短時間無重力利用に関する講演会」, 札幌, 2018. 〇長谷川 雄人 (航空宇宙システム工学コース 学部4年) 中田 大将 (航空宇宙機システム研究センター 助教) 内海 政春 (航空宇宙機システム研究センター 教授)

1. はじめに

軸流反転ファンとは、動翼間に静翼を持たず2枚の動翼を反対方向に回転させることで、通常の軸流ファンに比べ高圧力比・高効率が得られる技術である.この技術は船のスクリューやPCの冷却ファンなど亜音速領域では広く採用されているが、ファンの相対速度が超音速に達する領域では効率が低下する性質がある.そこで、前述の超音速領域での効率特性を明らかにし、改善することが本研究の最終的な目的である.そのため、本学ではジェットエンジンへの適用を視野に、実験や数値解析をおこなってきた.本年度は実験装置の精度評価をおこない、計測系を改良することで実験データの精度向上に成功した.さらに、CFD 解析をおこなうことで回転数ごとのファン効率の特性を明らかにした[1].

図1 軸流反転ファン実験装置(ケーシングなし)

2. 精度評価

2-1.実験装置の精度向上

実験で得られたデータを参考に精度評価をおこなった.結果を図2に示す.

図2より, 圧力比は約1.0, 修正質量流量では約0.4 kg/sの誤差が生じることがわかる.この結果を参考にして圧力計の精査をおこない,3種類の圧力計を新たに購入し精度の向上を図った. 例として図2の実験データをもとに算出すると,次回以降の実験では図3に示すような精度を得ることができる.

2-2. 先行研究の精度評価

新たに購入した圧力計を用いて従来の実験に使用していた圧力計のキャリブレーションをおこ なった.周囲圧力約5kPa時の計測値を図4に示す.図4より,従来の圧力計の精度は計測値±0.1 kPaであることがわかったため,この結果を用いて平成28年度以前の実験値について精度評価を おこなった.結果を図5に示す.

3. CFD 解析

軸流反転ファン実験装置の様々な実験条件での効率特性を取得するために,CFD 解析をおこなった.境界条件は入口に全圧・全温を指定し,出口に質量流量を指定した.乱流モデルには先行研究[2]との比較も兼ね,汎用性の高いk-εモデルを採用した.解析条件を表1に示す.また,解析に使用した 3D モデルを図4に示し,解析領域を図5に示す.

ŕ	F動流体	理想気体	
回車	云数 [rpm]	$24000\sim40000$	$25200 \sim 42000$
プロタ供	全圧 [kPa]		
八口采件	全温 [K]	28	
出口条件 質量流量 [kg/s]		0.033 ~ 0.055	
乱流モデル		$k-\epsilon^{-2}$	モデル

表1 境界条件一覧

ファンの定格回転数である N1 = 40000 rpm , N2 = 42000 rpm と, その 60 %である N1 = 24000 rpm, N2 = 25200 rpm の間で回転数を変化させ解析をおこなった. 結果を図 6 に示す.

図6 CFD 解析によって得られた回転数ごとのファン効率の比較

図6より回転数を変化させることによって、効率特性が変化することがわかった.また、図6 中の"実験値"は定格回転数でファン効率を取得したものである.実験値と40000 rpm、42000 rpm の解析値を比較すると、定量的に異なっていることがわかる.そのため、今後は解析モデルの改 良を実施する予定である.

参考文献

[1] 長谷川雄人, 軸流反転ファンの効率特性に関する研究, 室蘭工業大学平成 29 年度卒業論文, 2018.

[2] 立桶薫, 超音速軸流反転ファン実験装置の構築及び評価, 室蘭工業大学平成 27 年度修士論文, 2016.

〇三尾 太一 (航空宇宙システム工学コース 学部4年)
 山崎 優樹 (航空宇宙総合工学コース 博士前期2年)
 溝端 一秀 (航空宇宙システム工学ユニット 准教授)
 東野 和幸 (航空宇宙機システム研究センター 教授)

1. はじめに

これまでの風洞試験とエンジンの熱サイクル解析によれば,第二世代小型超音飛行速実験機(オオワシ)の M2011 空力形状(図1)とガスジェネレータサイクル・エアターボラムジェット(GG-ATR) エンジンの組み合わせにおける推力余裕(推力–抗力)は,遷音速域で不足するものと予測されている(図2).その改善策として,遷音速抗力低減のためのエリアルール(Area Rule)に基づく形状修正が提案された[1,2].本研究では,第二世代実験機のさらなる推力余裕改善を目指して,遷音速抗力低減が見込まれる形状を提案し,その効果を CFD 解析,風洞試験,および造波抗力推算によって明らかにする.

2. エリアルール準拠形状の提案・設計

エリアルールは 1952 年に R.T.Whitcomb によって非常に小さい翼を有する細長物体の落下試験 によって実験的に発見され、「マッハ 1.0 における造波抗力を低減するには機軸に垂直な面で機体 を切った断面積の機軸方向分布を滑らかにすべき」という内容であった[3,4]. このエリアルール は非粘性超音速流の微小擾乱近似の一類型である細長物体理論 Slender Body Theory により理論的 に証明された.また造波抗力を最小にする断面積分布は Sears-Haack 曲線であることが知られてい る.しかし、実際の有翼機体で造波抗力を低減するには、断面積分布を滑らかにするだけでなく、 機体各部で局所的に強い圧縮波が発生しないようにすることが肝要である.

そこでこの立場から,エリアルールを参考にしつつも CFD 解析に基づいて機体各部の圧縮波発 生を低減できるエリアルール準拠形状を考案する.その機体形状のゼロ揚力抗力を風洞試験によ って計測する.さらに,細長物体理論に基づく造波抗力推算を実施し,風洞試験結果と比較検証 する.本年度設計製作したエリアルール準拠形状のパーツとその設計の狙いを表1に示す.なお, 設計マッハ数は1.1 である.

設計項目	パーツ名称	設計の狙い
ノーズコーン	ARNose-C	Sears-Haack 曲線に収まるようにノーズを鋭く尖らせる.
	Bottleneck6 or Bottleneck7	Bottleneck の修正形状. 圧縮波を弱めるために曲率半径を拡大. 輪 郭形状の定義は Bottleneck6 では円弧, Bottleneck7 ではスプライン.
胴体	Bulge6C Bulge6S Bulge7C Bulge7S	主翼・尾翼間の急激な断面積変化の緩和. Bottleneck6 および 7 にそ れぞれ滑らかに接続できるように設計. Bulge6C および 7C では外 形定義に円弧を用い, Bulge6S および 7S ではスプラインを用いる.

表1 エリアルールに基づく形状修正

3. 風洞試験

エリアルール準拠形状の空力特性データを取得するために JAXA/ISAS 遷音速風洞を用いて風 洞試験を実施する. 六分力内装天秤によって空気力を測定し, 抗力係数を推算する. マッハ数は 0.7~1.3 である. 小さいピッチ角範囲でのピッチスイープ試験を実施し, 抗力係数の最小値 (Drag Polar の底) をもってゼロ揚力抗力係数とする.

風試模型は第二世代実験機に対し縮小比 7/60 で設計・製作されている. 基本形状模型では, 主 翼下の中胴部を天秤インターフェースとすることによって, 風圧中心の近くに天秤を置き天秤中 心周りのピッチングモーメントを抑えている. 一方, エリアルール準拠形状では中胴部を Bottleneck としていることから後胴部に天秤インターフェースを設けており, 風圧中心から天秤中 心までの距離が大きいことから, 天秤中心周りのピッチングモーメントが大きくなる. これが天 秤秤量を超えないよう, ピッチスイープの範囲を小さく設定する. 模型の遷音速風洞への設置状 況を図3に示す.

図3 風試模型の遷音速風洞への設置状況

4. 結果と考察

4-1. CFD 解析

エリアルール準拠形状の抗力低減効果の予測のために, CFD 解析によって迎角ゼロにおける抗 力係数および機体まわりの圧力分布を推算した.推算結果を図4~5に示す.旧 Bottleneck に比べ, Bottleneck7 は曲率半径を大きくしてスプライン曲線を用いることによって,曲率一定ではないも のの前後端の接続点で曲率変化を抑えることで圧縮波の集積を防ぐことができている.同様に曲 率半径が大きくかつ一定である円弧を用いた Bottleneck6 と,これに滑らかに接続できるようにス プラインを用いた Bulge6S も圧縮波の集積を防ぐことができている.これらのことから,今回設 計のエリアルール準拠形状の抗力低減効果が期待され,これらの形状の風試模型が製作された.

図4 旧 Bottleneck 搭載形状の圧力分布

図 5 Bottleneck7 搭載形状の圧力分布

図 6 Bottleneck6 および Bulge6S 搭載形状の圧力分布

4-2. 風洞試験結果

ピッチスイープ通風によって計測されたゼロ揚力抗力係数を図7に示す. M2011 基本形状と比較して、マッハ数の全域においてエリアルール準拠形状によって抗力が低減されている. ARNose-C のみを搭載したピンク線と比較すると、Bottleneck6、7の付加によって遷音速域で抗力低減が見られる. 特に設計点のマッハ 1.1付近では大幅な抗力低減がなされている. また Bulge 搭載によりマッハ 1.0~1.1 でさらなる抗力低減に成功している. 抗力係数の値において10⁻⁴を1 count と呼ぶが、マッハ 1.1において Bottleneck7 は M2011 基本形状から約 128 カウント(約25%)だけ抗力低減している.

4-3. 造波抗力推算結果

細長物体理論に基づく造波抗力推算プログラム WAVEDRAG (NASA Langley Program D2500) [5]を用いて造波抗力を推算した.対象形状は,M2011 基本形状とエリアルール準拠形状を含めた8つである.その結果を図8に示す.M2011 基本形状と比較して,マッハ1.0以上においてエリアルール準拠形状によって抗力が低減されており,風試結果と同様の結果となっている.一方, 風試で観察されたBulge 搭載によるマッハ1.0~1.1 における抗力低減は,今回の造波抗力推算では表れていない.

5. まとめ

M2011 基本形状の遷音速抗力低減を目的にマッハ 1.1 を設計点としてエリアルールに基づいた 形状修正を行い,造波抗力解析,CFD 解析によって抗力低減効果を予測し,JAXA/ISAS 遷音速風 試にて空力特性を評価した.エリアルール準拠形状によって遷音速域でゼロ揚力抗力係数が M2011 基本形状から約 128 カウント(約 25 %)だけ小さくなることが示された.また,Bulge 搭 載によってマッハ 1.0~1.1 で約 15 カウントの抗力低減に成功した.しかし,マッハ 1.1 以上では Bulge 搭載によって抗力が増大する傾向が示された.今後マッハ 1.1 以上の領域で抗力低減できる Bulge 形状を探索し,さらなる抗力低減を目指す.

参考文献

[1] 大石栄,「室工大第二世代超音速実験機の抗力特性の評価と抗力低減の試み」,室蘭工業大学修士学位論文,2014年1月.

[2] 山﨑優樹,「室蘭工大小型超音速飛行実験機のエリアルールに基づく抗力低減」,室蘭工業大学 卒業論文,2016年2月.

[3] Whitcomb, R. T., "A Study of the Zero-lift Drag-Rise Characteristics of Wing-Body Configurations Near the Speed of Sound," NACA Rep. 1273, 1956. (Supersedes NACA RM L52H08)

[4] Jones, R. T., "Theory of Wing-Body Drag at Supersonic Speeds," NACA Rep. 1284, 1956. (Supersedes NACA RM A53H18a)

[5] Craidon, C. B., User's Guide for a Computer Program for Calculating the Zero-Lift Wave Drag of Complex Aircraft Configurations, NASA Technical Memorandum 85670, 1983.

○小林 悠二 (航空宇宙システム工学コース 学部4年) 山﨑 優樹 (航空宇宙総合工学コース 博士前期2年) 三尾 太一 (航空宇宙システム工学コース 学部4年) 溝端 一秀 (航空宇宙システム工学ユニット 准教授)

1. はじめに

これまで、第二世代小型超音速飛行実験機(第二世代オオワシ)の M2011 空力形状とガスジェ ネレータサイクル・エアターボラムジェット(GG-ATR)エンジンの組み合わせについて,風洞試 験による空力データ、および熱サイクル解析によるエンジン性能データを用いて飛行解析が実施 され,遷音速域での推力余裕が不十分であり遷音速域突破が困難であると予測されている[1].そ の改善策として, 遷音速抗力低減のためのエリアルール(Area Rule: 面積則)に基づく形状修正 が提案され、ノーズ部を鋭くする ARnose-C, ならびに主翼下の胴体をくびれさせる Bottleneck6 お よび7を組み合わせた機体形状は、風試と CFD 解析に基づいて十分な抗力低減が期待されている [2]. また,主翼・尾翼間の胴体を膨らませる Bulge の設計が進められている.本研究では、この ようなエリアルール適用機体の遷音速・超音速飛行性能を明らかにするために、推力余裕推算と 飛行経路解析を実施する.対象とする機体形状を Fig.1 に示す.

(a) Baseline configuration with the nose-C.

(b) Area-ruled configuration with the ARnose-C.

(c) Area-ruled configuration with the ARnose-C (d) Area-ruled configuration with the ARnose-C, and the Bottleneck7.

Bottleneck7, and an intake.

Fig. 1. The baseline and the area-ruled configurations.

2. 解析手法

地球中心の三次元慣性極座標系において機体を質点として扱う.機体にはたらく外力(揚力, 抗力, 推力, 重力)を推算しつつ機体の三自由度運動方程式を Runge-Kutta-Fehlberg 法で解く. そ の解析プログラムは FORTRAN で記述してある. 基礎データとして風試による揚力係数・抗力係 数,構造設計による機体質量,および GG-ATR エンジンの設計解析による推力・比推力データを 用いる. 推力余裕マップにおける推力余裕の尾根線を辿るように、機体の迎角・バンク角および スロットル開度の時間履歴を試行錯誤的に調整しながら、機体重心の並進運動を解く.

3. 使用する空力データ

3-1. ゼロ揚力抗力係数

飛行解析のための基礎データとして、風試で得られた種々の空力データを統合する.まず、イ ンテーク非搭載形状のゼロ揚力時の抗力係数とマッハ数の関係を Fig. 2 (a)に示す.エリアルール 適用形状では M 1.3 を越える領域で風試を行っていないため、M2011nose-C 基本形状の抗力係数 と同等のマッハ数依存性を仮定する.マッハ 2.0 以上の領域では空力係数のマッハ凍結を仮定す る. これらマッハ 1.3 以上での推定値を Fig.2 では破線で示している. さらに, 推進器空気取り入 れ口(インテーク)の外部抗力の風試データ[3]を取り入れた抗力係数を Fig. 2 (b)に示す.

(a) Configurations without an intake.

Fig. 2. Zero-lift drag coefficient vs Mach number.

3-2. 推力余裕マップ

Fig.2 の抗力係数と GG-ATR エンジンの推力データから推算される推力余裕を Fig.3 に示す.ま た,後述の飛行解析による推進剤燃え切りまでの飛行経路を白線で示す.エリアルール準拠形状 により遷音速域で推力余裕が大幅に改善され、到達マッハ数も大幅に向上することが分かる.

(a) Baseline configuration with the nose-C.

(b) Area-ruled configuration with the ARnose-C.

(c) Area-ruled configuration with the ARnose-C (d) Area-ruled configuration with the ARnose-C, and the Bottleneck7. Bottleneck7, and an intake.

Fig. 3. Thrust margin maps for the baseline and the area-ruled configurations.

4. 飛行経路解析

飛行経路解析の条件として,機体乾燥質量,搭載推進剤質量,およびエンジン回転数は固定す る. 解析結果を Table 1 および Fig. 4 に示す. エリアルール適用による抗力低減により, マッハ 1.0 ~1.5 にかけて加速性能が大きく改善されている. 現段階の設計のインテークを搭載するとき,目 標マッハ数 2.0 に到達できる機体形状は Bottleneck6 および 7 である. また, Bulge 搭載による抗 力低減によって更なる加速性能が期待される.

				je i je i j	
Valiate	Assumed drag	With (0) or	Time at max	Attainable	Propellant
venicle	reduction by Bulge	without (-)	Mach number, i.e.	max Mach	mass [kg]
configuration	(1.1 <mach)< td=""><td>Intake</td><td>burnout[s]</td><td>number</td><td>at M2.0</td></mach)<>	Intake	burnout[s]	number	at M2.0
M2011 page C	09/	w/o	278	1.57	-
WI2011 Hose-C	070	W	298	1.33	-
	00/	w/o	252	2.04	2.3
A Proso C	0%	W	269	1.57	-
AKnose-C	-5%	w/a	244	2.21	9.7
	-10%	W/0	239	2.39	17
ARnose-C	00/	w/o	235	2.42	17
Bottleneck6	0%	W	244	2.00	0.19
	00/	w/o	232	2.54	20
ARnose-C Bottleneck7	0%	W	241	2.14	6.3
	-5%		226	2.66	23
	-7.5%	w/o	224	2.75	25
	-10%		222	2.86	27

Table 1. Attainable maximum Mach number predicted by flight trajectory analysis

(b) Flight Mach number histories.

Fig. 4. Predicted flight trajectories without a bulge and an intake.

Table 1 の種々の飛行条件において、マッハ 2.0 到達時に推算剤が残っている例が多い. そこで、 その分の推進剤を離陸時の搭載推進剤から減ずると、加速上昇性能が改善され、マッハ 2.0 到達 時になおも推進剤が残る. この解析を反復して得られるマッハ 2.0 到達のための推進剤最小搭載 量を Table 2 に示す. また, その条件での飛行経路を Fig.5 に示す. 搭載推進剤を減らすことによ ってマッハ2.0に到達するまでの時間が大幅に短縮されることが判る.

Table 2. Minimum propellant mass for reaching M2.0.

configuration	Propellant mass [kg]
ARnose-C, Bottleneck6, w/o intake	108
ARnose-C, Bottleneck7 w/o intake	103

Fig.5. Flight Mach number histories on the basis of reduction of loaded propellants.

5. まとめ

第二世代オオワシの遷音速・超音速飛行の実現可能性予測のために,エリアルール適用形状で の飛行経路解析を行った.その結果,以下のことが分かった.

1) エリアルール適用形状ではマッハ 1.0~1.5 における推力余裕が大きく改善され,目標とする マッハ 2.0 に到達できる.

2) インテーク搭載時において Bottleneck6 および 7 を搭載した機体は目標飛行マッハ数 2.0 に到 達できる. Bulge 搭載により更なる飛行性能の向上が期待される.

3) エリアルール適用形状では離陸時の推進剤搭載量を低減することができることから, さらに 飛行性能が改善される.

今後の課題として、帰還飛行を考慮することによって一層実際的な飛行経路を予測する計画で ある.

参考文献

[1] 近藤賢,「室蘭工大小型超音速飛行実験機(オオワシ)の飛行性能予測」,室蘭工業大学修士論 文,2015年1月.

[2] 山﨑優樹,「室工大小型超音速飛行実験機のエリアルールに基づく遷音速抗力の低減」,室蘭 工業大学修士論文,2018年1月.

[3] 伊藤大貴,「超音速インテークの外部抗力の評価に関する研究」,室蘭工業大学卒業論文,2018 年1月.

小型超音速飛行実験機の亜音速静的空力特性の再評価

櫻井 和也 (航空宇宙システム工学コース 学部4年)
 白方 洸次 (航空宇宙総合工学コース 博士前期1年)
 塩野 経介 (航空宇宙総合工学コース 博士前期2年)
 ○溝端 一秀 (航空宇宙システム工学ユニット 准教授)

1. はじめに

小型超音速飛行実験機(オオワシ)の M2011_NoseC 形状については、これまでの亜音速風試 によって、迎角αないしは横滑り角βの単独変角における概略の空力特性、および高迎角条件に おいてエルロンの効きが損なわれる「ロールリバーサル(Roll reversal)」の発生可能性が明らか にされている[1]. しかし、今後 M2011_NoseA 形状の 1/3 スケール縮小機体による飛行試験が予 定されており、NoseA 形状の詳細な空力特性の評価が必要である.また、自律制御系設計のため には、低速・大迎角条件での空力特性、操舵に起因する空力特性変化、姿勢変化角速度に起因す る空力特性変化、等の知見が必要である.そこで本研究では、M2011_NoseA 形状の低速・大迎 角条件での空力特性、操舵に起因する空力特性変化、およびロールリバーサルの発生可能性を評 価することを目的とする.

2. 理論と手法

有翼飛行体の各舵面は、それぞれが司る方向以外にも副次的にモーメントを発生させる[2].例 えば、エルロンやエレボンはローリングだけでなくヨーイングモーメント、ラダーはヨーイング だけでなくローリングモーメントを発生させる.これらが複合的に作用する結果として、大迎角 でロール制御を行う場合に機体全体としてロール応答が反転する現象が起こり得る.この現象は ロールリバーサル (roll reversal) あるいは横制御発散 (lateral control departure) と呼ばれ、その 発生可能性は *AADP*(Aileron alone departure parameter)ないしは *LCDP*(Lateral control departure parameter)によって評価される.これらの定義は以下の通りである:

$$AADP = C_{n\beta} - C_{l\beta} \left(\frac{C_{n\delta_a}}{C_{l\delta_a}} \right) \cdots \cdots (1) \qquad LCDP = C_{n\beta} - C_{l\beta} \left(\frac{C_{n\delta_a} + k_e C_{n\delta_{elevon}} + kC_{n\delta_r}}{C_{l\delta_a} + k_e C_{n\delta_{elevon}} + kC_{l\delta_r}} \right) \cdots \cdots (2)$$

AADPは、エルロン操舵のみによってロール制御する場合の指標であり、LCDPはエルロン、エレボン、ラダー等の舵面の複合操舵によってロール制御する場合の指標である.

M2011 空力形状のように大きな後退角,および高翼形態を有する機体は上反角効果が大きい $(C_{l_{\beta}} < 0)$.また,ノーズが長いことから風見安定を喪失 $(C_{n_{\beta}} < 0)$ しやすい.これらと操舵に よるアドバースヨー効果 $(C_{l\delta_{a}} < 0)$ が相俟って, *AADP* ないしは *LCDP* の値が負になりやす く,ロールリバーサルに陥る可能性がある.

風洞試験には室工大亜音速風洞を用いる.熱線風速計を用いて流速と温度を計測し,別途計測 した大気圧を併用して気流密度と動圧を推定する.Fig.1のようにヨー駆動装置に機体模型を設 置し,ステッピングモータを用いて横滑り角βのスイープを行う.さらに迎角αを2°間隔で 静的に与えることによって αβ 複合変角を実現する.模型の胴体内に六分力内挿天秤を設置し, 学力および外力モーメントを計測する.通風時の計測データから無風時の計測データを差し引く ことによって重力等の空気力以外の成分を除去する.

Fig.1. Overview of the beta sweep mechanism.

3. 結果と考察

M2011 (NoseC 及び NoseA) 空力形状のローリングモーメント係数 C_l 及びヨーイングモーメン ト係数 C_n を Fig.2 および Fig.3 に示す. 両形状の C_{l_β} は全て負の値になっていることから, ロール 静安定が確保されている. C_{n_β} については, 両形状において迎角が大きくなるほど C_{n_β} の値が小さ くなって風見安定が減少する. 特に M2011_NoseC 形状では, 迎角 10 °以上では負になって風 見不安定となる.

風試によって取得された空力データから推算された *AADP*, *LCDP* を Fig.4.に示す.両形状と もエレボン操舵併用によってロールリバーサルが発生しやすくなり, ラダー操舵併用によって抑 えられる.また,ノーズが長いとロールリバーサルが発生しやすくなる.これらの原因は,エレ ボン操舵によってアドバースヨーが発生すること,ノーズ長が長いほど風見安定が悪化するこ と,ラダー操舵によって風見安定が補強されることである.

Fig.2. Rolling moment coefficient C_l vs. side slip angle.

Fig.3. Yawing moment coefficient C_n vs. side slip angle.

(a) *AADP* vs. angle of attack for M2011_NoseA and M2011_NoseC.

(c) *AADP*, *LCDP* vs. angle of attack for M2011_NoseA with and without coordinated control surface deflections.

Fig.4. Estimated AADP and LCDP.

4. まとめ

室工大亜音速風洞において小型超音速飛行実験機(オオワシ)の M2011_NoseA 形状について, 低速・大迎角条件での静的空力特性,および操舵に起因する空力特性変化を計測した.その結果, 以下のことがわかった.

- (1) ロール静安定すなわち上反角効果が確認された.
- (2) 風見安定が確認されたが、迎角が大きくなるにつれて風見安定が減少する.
- (3) 低速・大迎角条件において、エルロン操舵にエレボン操舵を併用することによってロールリ バーサルが発生しやすくなり、ラダー操舵併用によって抑えられる.また、ノーズが長いと ロールリバーサルが発生しやすくなる.
- (4) NoseA 形状については、今回計測した迎角 16°までの範囲では、いずれの操舵方法でもロールリバーサルは発生しない.

参考文献

[1] 鈴木祥弘,「室蘭工大小型超音速飛行実験機(オオワシ)の空力特性の解明」,室蘭工業大学修士学位論文,2015年1月.

[2] 加藤寬一郎, 大屋昭男, 柄沢研治, 航空機力学入門, 東京大学出版会, 2009.

塩野 経介 (航空宇宙総合工学⊐ース 博士前期2年) 白方 洸次 (航空宇宙総合工学⊐ース 博士前期1年)

〇溝端 一秀 (航空宇宙システム工学ユニット 准教授)

1. はじめに

小型超音速飛行実験機(オオワシ)の6自由度飛行経路解析[1]や自律的誘導制御系設計のため に必須のピッチおよびヨー角速度に起因する動的空力微係数について,前年度に引き続き亜音速 風試によって評価を進める.すなわち,超音速飛行用の基本的空力形状 M2011Nose-C について, 迎角 α または横滑り角 β の範囲を 0~+20 [deg.]と大きく取って,室蘭工大低速風洞において詳 細な風洞試験を実施する.その際,模型駆動系と天秤計測系の電磁干渉を低減すると共に,模型・ 天秤系の機械的固有振動成分を除去して計測データの信頼性を高める.また,複数回の計測によ って計測データの再現性や散らばりを把握する.

2. 風洞試験

2-1. 試験装置

風洞試験設備として室蘭工大のゲッチンゲン型回流式亜音速風洞を用いる.測定部断面は約 450×450mmの正方形であり,空力測定には機体模型の胴体内部に設置された 6 分力内挿天秤 を用いる.また,装置の設置台としては,高さ調節が容易な油圧式ハンドリフターを用いる.機 体にピッチおよびヨー角速度を与えるために,前年度までに構築されたピッチヨー駆動装置を用 いる[2].その概観を図1に示す.駆動装置内の回転軸に取り付けられたポテンショメータによっ て機体模型のピッチまたはヨー角を計測する.駆動にはステッピングモータを用い,PC からの数 値制御によって正確かつ再現性良く駆動できる.また,ステッピングモータ駆動回路と天秤計測 系回路の電磁干渉を防ぐために,各回路のケーブル・コネクター・端子等に念入りに電磁シール ドを施す.これらの外観を図2に示す.

(a) ピッチ駆動
 (b) ヨー駆動
 図1 ピッチおよびロール駆動の概観

図2 低速風洞に機器を設置した様子

2-2. 試験方法

風試模型は、基本的空力形状 M2011Nose-C の 7/60 スケールである.風試条件として 5 通りの 角速度(6,10,20,40,57.6 [deg./s])と 5 通りの迎角 α または横滑り角 β (0,+5,+10,+15,+20 [deg.]) を組み合わせる.流速は約 20 m/sec であり、通風毎の流速を熱線流速計で計測する.模型を駆動 しながら通風し、6 分力内挿天秤によって空気力を計測する.模型・天秤系の機械的固有振動成 分をデジタルフィルタによって除去する.各条件で 3 回ずつ通風計測し、空力係数・微係数につ いて 3 回の平均値と標準偏差を求める.これらの結果を理論解析、CFD 解析、および静的風試結 果と比較検証する.

2-3. データ解析手法

機体模型にピッチ角速度qまたはヨー角速度rを与えながら通風し,内挿天秤によって6分力を 計測する.別途機体模型の重心位置を計測し,重力,遠心力,およびそれらによるモーメントを 推算して,6分力計測値から減ずる.得られた各空力係数は,迎角 α または横滑り角 β に対し てヒステリシス特性を示す. C_m を例に取れば図3のようなヒステリシス曲線を描く.その縦軸切 片付近で近似直線 y_1 , y_2 を式(1),(2)のように求めると,その傾斜が静的微係数 $C_{m\alpha}$ に対応し,縦 軸切片が動的空力成分と偏差 ε の和に対応する.ここで偏差 ε は流れや模型の非対称性等に起因 すると考えられる.そこで,式(3)の通り近似直線の方程式(1),(2)の減算によって動的微係数 C_{mq} を推定できる.ここで \hat{q},\hat{r} は無次元角速度であり,有次元角速度q,r,翼幅b,主翼平均空力翼弦 長cおよび機体X軸方向の流速 U_0 を用いて式(4),(5)で与えられる.以上のように動的風試データ から動的微係数と静的微係数を同時に推定できる.

$$y_1 = C_{m\alpha}\alpha + C_{mq1}\hat{q} + \boldsymbol{\varepsilon} \tag{1}$$

$$y_2 = C_{m\alpha}\alpha + C_{mq2}(-\hat{q}) + \varepsilon$$
(2)

$$C_{mq} = \frac{C_{mq1} + C_{mq2}}{2} = \frac{y_1 - y_2}{2\hat{q}}$$
(3)

$$\hat{q} = q \cdot \frac{c}{2U_0} \tag{4}$$

$$\hat{r} = r \cdot \frac{b}{2U_0} \tag{5}$$

図3 動的風試から得られる空力係数の ヒステリシス曲線の概念

3. 試験結果および考察

上述の手法で得られた静的および動的微係数を,図4~図10に示す.室蘭工大における2017 年度の風試結果(FY2017Muroran-IT)には,各条件での3回の通風・計測による標準偏差をエラ ーバーとして記載している.

ピッチ角速度を与えた場合のピッチ静安定微係数C_{ma}を図4に示す.横滑り角10度以上でC_{ma}は正となっており,これは静的なピッチ不安定に相当する.この静的不安定性はピッチ角速度が大きいほど強まることが判る.

ピッチ角速度を与えた場合の動的微係数*C_{mq}*を図5に示す.全体的に負の値となっており、ピッチダンピング効果が示されている.ピッチ角速度が大きくなるほど、また横滑り角が大きくな

るほど、ピッチダンピングが強くなることが分かる.また、ピッチ角速度の小さい場合はエラー バーが大きくなっており、これはピッチ角速度が小さい故に動的空力成分が小さくノイズに埋も れやすくなっているためである.

ヨー角速度を与えた場合の横滑り角 β に関する静的微係数 $C_{l\beta}$, $C_{n\beta}$ および $C_{y\beta}$ を図6~図8に示 す. $\alpha = 0$ の動的風試結果は、他の手法による値と良く一致しており、動的風試の手法は概ね妥当 であるといえる.3つの静的微係数ともに迎角の増加に伴って負の方向へ増加する.その過程で、 風見安定微係数 $C_{n\beta}$ は、迎角5度を超えると正から負に転じており、これは風見不安定を表す.

ヨー角速度を与えた場合の動的微係数 C_{lr} および C_{nr} を図9および図10に示す. C_{lr} については 理論値はほぼゼロであるが,他の手法による値はゼロを挟んで正負に散らばっており,一貫した 傾向が明確でない.風試で計測することは難しい[3]ともされており,風試手法の改良を要する. C_{nr} については,CFD解析の結果を除いて迎角0~20度の範囲で負となっており,ヨーダンピング 効果が示されている.さらに,迎角やヨー角速度が大きいほどヨーダンピングが強くなることが 判る.

ヨー角速度による動的微係数について,各手法による結果が総じてあまり一致しない.これは, 理論解析においてはもちろん CFD 解析においても,ノーズや尾翼周りの剥離を正しく取り扱えて いないためと推察される.

4. まとめ

小型超音速飛行実験機(オオワシ)のピッチおよびヨー角速度に起因する動的空力微係数について,前年度に引き続き,迎角αまたは横滑り角βの範囲を0~+20 [deg.]と大きく取って,室蘭工大低速風洞において詳細な風洞試験を実施した.模型駆動系と天秤計測系の電磁干渉を低減すると共に,模型・天秤系の機械的固有振動成分を除去することによって,散らばりが小さく再現性の良い計測データを得た.その解析の結果,以下のことが分かった.

(1) 姿勢角および姿勢変化角速度が小さい場合, ピッチ, ヨーともに静的及び動的に安定である.

- (2) ピッチ角速度を伴う場合,横滑り角,およびピッチ角速度が大きくなるとピッチは静的不安 定となるが, ピッチダンピングは増大する.
- (3) ヨー角速度を伴う場合,迎角が大きくなると上反角効果は増大するが,方向不安定となる. また,迎角やヨー角速度が大きいほどヨーダンピングが増大する.

なお、本研究は科学研究費助成金(基盤研究(C)、課題番号15K06596)に基づいて実施された.

参考文献

[1] 近藤賢, 溝端一秀, 「小型超音速飛行実験機の飛行性能の予測」, 室蘭工業大学航空宇宙機シ ステム研究センター年次報告書 2013, pp.14-18, 2014 年 8 月.

[2] 塩野経介,白方洸次,石上幸哉,三浦壮晃,溝端一秀,「小型超音速飛行実験機のピッチおよびヨーレートによる動的空力特性」,室蘭工業大学航空宇宙機システム研究センター年次報告書 2016, pp.43-46, 2017 年 8 月.

[3] 加藤寬一郎, 大屋昭男, 柄沢研治, 航空機力学入門, 東京大学出版会(1982), pp86-102.

 $\boxtimes 4$ $C_{m\alpha}$ vs \hat{q}

 $\boxtimes 6 \quad C_{l\beta} \text{ vs } \hat{r}$

 $\boxtimes 5$ C_{mq} vs \hat{q}

 $\boxtimes 7$ $C_{n\beta}$ vs \hat{r}

 $\boxtimes 9 \quad C_{lr} \text{ vs } \hat{r}$

 $\boxtimes 8 \quad C_{y\beta} \text{ vs } \hat{r}$

 $\boxtimes 1 \ 0 \quad C_{nr} \text{ vs } \hat{r}$

○白方 洸次 (航空宇宙総合工学コース 博士前期1年)

- 塩野 経介 (航空宇宙総合工学コース 博士前期2年)
- 溝端 一秀 (航空宇宙システム工学ユニット 准教授)

1. はじめに

小型超音速飛行実験機(オオワシ)の6自由度飛行経路解析[1]や自律的誘導制御系設計のため に必須のロール角速度に起因する動的空力微係数について,前年度に引き続き亜音速風試によっ て評価を進める.すなわち,亜音速飛行用および1/3スケール縮小機体搭載のM2011Nose-A空力 形状および超音速飛行用のM2011Nose-C空力形状について,迎角αの範囲を0~+20[deg.]と大き く取って,室蘭工大低速風洞において詳細な風洞試験を実施する.その際,模型駆動系と天秤計 測系の電磁干渉を低減すると共に,模型・天秤系の機械的固有振動成分を除去して計測データの 信頼性を高める.また,複数回の計測によって計測データの再現性や散らばりを把握する.

2. 動的空力特性の発生メカニズム

機体ロール軸に角速度 p[rad/s]を与えると機体にはローリングモーメント,ヨーイングモーメント,および横力の変化が生ずる.これらの微係数はそれぞれ C_{lp} , C_{np} , C_{yp} と記される.各微係数の発生メカニズム[2,3]を図1に示す.機体に右ロール角速度を与えることによって左右翼に生じる相対流速ベクトルは図1(a)のようになり,これによって右翼に+ $\Delta \alpha$,左翼に $-\Delta \alpha$ の迎角変化が生じ,左右翼の揚力は右翼>左翼となるため,ロール運動を減衰するモーメントが発生する(ロールダンピング).これを表す微係数が C_{lp} である.また図1(b)のように揚力ベクトルは右翼で前傾,左翼で後傾するため,ロール方向とは逆の方向にヨーイングモーメントが発生する(アドバースヨー).これを表す微係数が C_{np} である.主翼同様に垂直尾翼にも迎角が生ずるため,図1(c)のように垂直尾翼に横力が発生し、これを表す微係数が C_{np} である.

(a) 主翼の迎角の変化

(b) 主翼の揚力ベクトルの変化 (c) 垂直尾翼の横力の発生図1 ロール角速度による空力の発生メカニズム[3]

3. 風洞試験

3-1. 試験装置

風洞試験設備として室蘭工大のゲッチンゲン型回流式亜音速風洞を用いる.測定部断面は約 450×450mmの正方形であり,空力測定には機体模型の胴体内部に設置された 6 分力内挿天秤 を用いる.装置の設置台としては,高さ調節が容易な油圧式ハンドリフターを用いる.機体模型 にロール角速度を与えるために,前年度までに構築されたロール駆動装置を用いる[4].駆動装置 内の回転軸に設置されたポテンショメータによって機体模型のロール角を計測する.駆動にはス テッピングモータを用い, PC からの数値制御によって正確かつ再現性良くロール駆動できる.また,ステッピングモータ駆動回路と天秤計測系回路の電磁干渉を防ぐために,各回路のケーブル・ コネクター・端子等に念入りに電磁シールドを施す.これらの外観を図2および図3に示す.

図 2 ロール駆動装置,機体模型,および天秤計 測系の風洞への設置

図3 ロール駆動装置の概観

3-2. 試験方法

機体模型は M2011 Nose-C 形状および M2011 Nose-A 形状で あり, 舵角はすべてゼロである. ピッチ角 θ およびロール角 速度 p は表 1 に示す通りとする. 流速は約 20 m/sec であり, 通風毎の流速を熱線流速計で計測する. 模型を駆動しながら 通風し, 六分力内挿天秤によって空気力を計測する. 模型・ 天秤系の機械的固有振動成分をデジタルフィルタによって除 去する. 各条件で 3 回ずつ通風計測し,空力係数・微係数に ついて 3 回の平均値と標準偏差を求める. これらの結果を理 論解析, CFD 解析, および静的風試結果と比較検証する.

表1 動的風試の試験条件

Roll actuation		
使用するノーズ	A, C	
Pitch angle α[deg]	0, 5, 10, 20	
Roll rate p[deg/sec]	12.24, 23.76, 48.24, 95.76, 192.24	
計測する形状	・基本形状 ・主翼+胴体	
	・尾翼+胴体	

3-3. データ解析手法

ここでピッチ角 $\theta \neq 0$ の場合にロール角 φ を与えると, 迎角 α だけでなく横滑り角 β も生ずる. その換算は(1)式および(2)式で表される.

$$\alpha = \tan^{-1} \left(\frac{\cos \varphi \sin \theta}{\cos \theta} \right) \tag{1}$$

 $\beta = \sin^{-1}(\sin\varphi\sin\theta) \qquad (2)$

機体模型の重心はロール駆動軸すなわち胴体対称軸上に乗っていないことから、ロール駆動の際に重心に遠心力がはたらいて、これによる力およびモーメント成分が天秤信号に含まれる.また、模型にはたらく重力も天秤信号に含まれる.そこで、無風状態と通風状態で同一のロール駆動(ロール角変異および角速度)を実施し、通風時の天秤信号から無風時の天秤信号を差し引くことによって、これら不要な成分の信号を除去する.この手順によって得られる空力係数を *Climeasured*, *Cnimeasured*, *Cyimeasured*とすると、以下の(3)~(5)式が成り立つ.

(3)~(5)式において,風試によって得られた空力係数はβによる成分とpによる成分の和となっている.また,εは,流れや模型の非対称性等に起因する偏差である.ここで例えばローリングモーメント係数Clを横滑り角βに対してプロットすると,図4のようにヒステリシス曲線となる.2 つの縦軸切片近傍での近似直線は式(6)および(7)で表される.この二式を辺々差し引くことによって,式(8)のように動的空力微係数が得られる.また,静的微係数は近似直線(6)および(7)の傾きから求められる.このように動的風試データから動的微係数と静的微係数を同時に推定できる.

$$C_{l,measured} = C_{l\beta}\beta + C_{lp}\hat{p} + \varepsilon_1 \tag{3}$$

$$C_{n,measured} = C_{n\beta}\beta + C_{np}\hat{p} + \varepsilon_2 \tag{4}$$

$$C_{y,measured} = C_{y\beta}\beta + C_{yp}\hat{p} + \varepsilon_3 \tag{5}$$

$$y_1 = C_{l\beta}\beta + C_{lp1}\hat{p} + \varepsilon \tag{6}$$

$$y_2 = C_{l\beta}\beta + C_{lp2}(-\hat{p}) + \varepsilon \tag{7}$$

$$C_{lp} = \frac{c_{lp1} + c_{lp2}}{2} = \frac{y_1 - y_2}{2\hat{p}}$$
(8)

4. 試験結果および考察

M2011Nose-C および Nose-A 形態について,無次元ロール角速度と空力微係数の関係を図5~ 12に示す.各グラフ内の実線は Nose-C 形状,破線は Nose-A 形状に関する計測値であり,各条 件における3回の計測から求められる標準偏差をエラーバーで示している.また比較対象として 理論解析及び CFD 解析による空力微係数も表示している.さらに, *C_{np}について*,主翼および尾 翼それぞれの効果を探るため,尾翼を取り外した主翼・胴体形態,および主翼を取り外した胴体・ 尾翼形態でも風試を実施している.

4-1. 静的空力微係数: $C_{l\beta}$, $C_{n\beta}$

図5より、 $C_{l\beta}$ はいずれの条件においても $C_{l\beta} < 0$ すなわち正の上反角効果を示しており、ロール静安定である.またピッチ角が大きくなるにつれて上反角効果が強くなる.

図 6 より、 $C_{n\beta}$ はいずれの条件においても $C_{n\beta} > 0$ すなわち正の風見鶏効果を示しており、ヨー静安定である.またピッチ角が大きくなるにつれて風見鶏効果が弱くなる.

4-2. 動的空力微係数: C_{lp} , C_{np}

図7より、 C_{lp} は $\hat{p} > 0.01$ の範囲ですべての条件で $C_{lp} < 0$ であり、ロール動安定すなわちロー ルダンピングがあることがわかる. ピッチ角が大きいほどロールダンピングが弱くなる傾向があ るが、ノーズ長に対する依存性は小さい. 風試結果は CFD 解析や理論解析の結果と概ね良く一致 している.

図8より, C_{np} は M2011Nose-A 形態ではピッチ角 0deg で $C_{np} > 0$ となってアドバースヨーは生じないが, ピッチ角が増すに従って C_{np} の値は負となりアドバースヨーが発生する. Nose-C 形態ではピッチ角ゼロでもアドバースヨーが発生している. CFD 解析および理論解析では C_{np} はほぼゼロとなっており, 動的風試結果と異なる.

4-3. 主翼及び尾翼が*C_{np}*に及ぼす効果

図9~12より, ピッチ角 5deg では*C_{np}*は主翼による効果が主であり, ピッチ角 10, 20 deg で は尾翼による効果が主であることがわかる. 全備形態および胴体・尾翼形態の*C_{np}*がピッチ角の増 加に伴い負の方向に増大していることから, 水平尾翼においてアドバースヨーモーメントが生成 され, これが迎角増加にともなって増大するものと考えられる. これらのメカニズムは追加検証 を要する.

5. まとめ

小型超音速飛行実験機(オオワシ)のロール角速度に起因する動的空力微係数について,前年 度に引き続き,迎角 α の範囲を 0~+20 [deg.]と大きく取って,室蘭工大低速風洞において詳細な 風洞試験を実施した.模型駆動系と天秤計測系の電磁干渉を低減すると共に,模型・天秤系の機 械的固有振動成分を除去することによって、散らばりが小さく再現性の良い計測データを得た. その解析の結果、以下のことが分かった.

- (1) 上反角効果およびロールダンピングがあり、風見安定も確認された.
- (2) C_{lp}(ロールダンピング)はロール角速度によらず概ね一定であり, 迎角が増えると悪化する.
- (3) C_{nv} (アドバースヨー) は迎角が大きいほど悪化する.
- (4) 迎角の増加に伴い水平尾翼では強いアドバースヨー効果が発生すると推定される.水平尾翼 と垂直尾翼の効果を分離計測することによって発生メカニズムを検証する必要がある.

なお、本研究は科学研究費助成金(基盤研究(C)、課題番号15K06596)に基づいて実施された.

参考文献

[1] 近藤賢, 溝端一秀, 「小型超音速飛行実験機の飛行性能の予測」, 室蘭工業大学航空宇宙機シ ステム研究センター年次報告書 2013, pp.14-18, 2014 年 8 月.

[2] 加藤寬一郎, 大屋昭男, 柄沢研治, 「航空機力学入門」, 東京大学出版会, 1982.

[3] Yechout, T. R., Morris, S. L., Bossert, D. E., and Hallgren, W. F., Introduction to Aircraft Flight Mechanics, American Institute of Aeronautics and Astronautics, 2003, pp.266-273.

[4] 石上幸哉,塩野経介,白方洸次,三浦壮晃,溝端一秀,「小型超音速飛行実験機のロールレートによる動的空力特性」,室蘭工業大学航空宇宙機システム研究センター年次報告書 2016, pp. 38-42, 2017年8月.

 $\boxtimes 8 \quad C_{np} \operatorname{vs} \hat{p}$

 $\boxtimes 1 \ 1 \ C_{np} \operatorname{vs} \hat{p}, \ \theta = 10[\operatorname{deg}]$

0.6

0.4

0.2

-0.2

-0.4

-0.6

0.005

0.01 0.015 p^

 $\boxtimes 1 \ 0 \ C_{np} \operatorname{vs} \hat{p}, \ \theta = 5[\operatorname{deg}]$

0.02

0.025

g o

 \boxtimes 9 C_{np} vs \hat{p} , $\theta = 0$ [deg]

 $\boxtimes 1 \ 2 \ C_{np} \operatorname{vs} \hat{p}, \ \theta = 20[\operatorname{deg}]$

〇西田 明寛(航空宇宙システム工学コース 学部4年)
 白方 洸次(航空宇宙総合工学コース 博士前期1年)
 塩野 経介(航空宇宙総合工学コース 博士前期2年)
 溝端 一秀(航空宇宙システム工学ユニット 准教授)

1. はじめに

先行研究[1]において第二世代オオワシの M2011NoseC 基本空力形状について動的 CFD 解析が 実施され,ロールレートに起因する空力微係数が推算されているものの,そこでは風試における ロール往復運動を再現せずに一方向のロール回転を想定していることから,動的空力微係数を正 確に評価できていない可能性がある.そこで,本研究では風試におけるロール往復運動を再現で きるように CFD 解析手法を再整備して,ロールレートによる空力微係数*C_{l_p}, C_{n_p}, C_{l_p}, C_{n_p}*を算 出し,第二世代オオワシの動的空力特性を正確に評価することを狙う.

2. 解析手法

2-1. 格子生成

メッシュの生成には Pointwise を使用する. 生成されたメッシュを図1に, メッシュ生成条件お よび境界条件を表1に示す. 機体形状は M2011NoseA および NoseC とし, 寸法は風試模型と同等 であり NoseA では全長 677 mm, NoseC では全長 910 mm, 全幅は共に 282 mm である. ノーズ先 端には格子形状の歪みを防ぐために 0.1 [mm]の曲率半径を与える. 外部圧縮性流れの球状領域の 中央に機体を配置する. 解析領域は直径 2 m と 4 m の 2 重球状とし, 内側の直径 2 m の球内の格 子は機体と共にロール運動する.

図1 CFD 解析のためのメッシュ

-		2 = 2 + 1 + 1 + 1	
	Mesh type	Tetrahedral Mesh	
Mesh generation conditions	Mesh spacing	Body surface : 1[mm] Outer half circle : 60 [points]	
	Number of Cells	4,964,069	
	M2011 body	Wall	
Boundary conditions	Spherical surface with a diameter of two meters	Interface	
	Spherical surface with a diameter of four meters	Pressure-far-field	

表1 メッシュ生成条件および境界条件

2-2. 流体解析

CFD 解析コードとして ANSYS 社の Fluent を使用する. 主要な解析条件を表2に示す. ピッチ 角は解析領域の流入条件として与え,温度と圧力は2016 年度に室工大低速風洞で実施した風試の データを使用し,おおむね常温・常圧である. また,比較的遅い流れの解析であるため数値解析 ソルバーとしては圧力ベースソルバーを用いる.

C	Three-dimensional
Governing equation	Navier-Stokes equations
Spatial Disoratization	Second-order upwind
Spatial Discretization	differencing
Fluid	Air/Ideal-gas
Turbulance model	Spalart-Allmaras
Viscosity model	Sutherland
Mach number	0.29

表2 CFD 解析条件

2-3. 空力微係数の算出方法

先行研究[1]の CFD 解析では計算スキームの非対称性の影響が解に含まれていたため、今回は これを除去して空力微係数を算出する.それにはヒステリシス解析を用いる.ローリングモーメ ント係数 C_l を例に取ると、CFD 解析で得られた空力係数 C_l を横滑り角 β に対して描くとヒステリシ ス曲線となり(図2)、その縦軸切片近傍での近似直線は式(1)(2)で表される.ここで ϵ は、計算ス キームの非対称性に起因する偏差である.この2式の差を取ることによって ϵ がキャンセルされ、 式(3)のように動的空力微係数 C_{lp} が推算される.また、近似直線の傾きとして静的空力微係数 C_{lp} が 求められる.

$$C_l^+ = C_{l\beta} \cdot \beta + C_{lp} \hat{p} + \varepsilon \tag{1}$$

$$C_l^- = C_{l\beta} \cdot \beta + C_{lp}(-\hat{p}) + \varepsilon$$
⁽²⁾

$$C_{lp} = \frac{C_l^+ - C_l^-}{2\hat{p}} \tag{3}$$

図2 ローリングモーメント係数及びヨーイングモーメント係数のヒステリシス曲線

2-4. ロール運動の再現

CFD 解析におけるロール角の時間推移を図3に示す.風試でのロール駆動条件はロール角±90 deg の範囲の往復駆動であり,図3より風試と同等のロール駆動が再現できていることがわかる.

3. 解析結果

3-1.静的空力微係数 ($C_{l\beta}$, $C_{n\beta}$)

図 4 (a)と(b)は M2011NoseA 空力形状と M2011NoseC 空力形状についてのピッチ角 $\theta=5$ deg にお ける静的空力微係数 $C_{l\beta} \ge C_{n\beta}$ である.青と赤の線(CFD)は今回の CFD 解析,水色と橙色の線 (DWT)は動的風試,黄色の線(SWT)は静的風試,灰色の破線(CFD_Previous)は先行研究[1] の結果である.動的 CFD 解析結果は動的風試および静的風試と概ね良く一致している.また, $C_{l\beta}<0, C_{n\beta}>0$ となっており、上反角効果と風見安定性はあるが、M2011NoseC 空力形状は M2011NoseA 空力形状よりも $C_{n\beta}$ の値が小さいため風見安定性が低い.

3-2.動的空力微係数(C_{lp} , C_{np})

図 5 (a)と(b)は M2011NoseA 空力形状と M2011NoseC 空力形状についてピッチ角 θ =5 deg におけ る動的空力微係数 C_{lp} と C_{np} である.動的 CFD 解析結果は \hat{p} が大きいところでは動的風試とよく一 致しているが、 \hat{p} が小さいところではあまり一致していない.これは動的風試において \hat{p} が小さい 場合にはロール角速度に起因する空気力が小さいことから計測信号の S/N 比が劣化しているもの と推察される.また、 C_{lp} <0 となったことからロールダンピングはあり、 C_{np} >0 となったことから アドバースヨー効果は無い.

図5 動的空力微係数

4. まとめ

CFD 解析手法を整備して風試と同等のロール駆動を CFD 解析で再現し、小型超音速飛行実験 機(オオワシ)の M2011NoseA 空力形状及び M2011NoseC 空力形状について動的 CFD 解析を実施し て空力微係数を推算した. その結果を風試結果と比較検証した結果、静的空力微係数については 風試と概ね一致する結果を得られた.動的空力微係数はロールレートĵの値によって動的風試との 一致度にばらつきがある.ĵの値の小さい場合の風試データの散らばりが大きいことから、風試手 法の改良を要する.また、今後はロールレートĵやピッチ角 θの多様な値について風試データを蓄 積すること、ピッチ・ヨーレートによる動的空力も風試と同等の条件で CFD 解析すること、さら には機体表面での流れの剥離・再付着の再現性を検討・確認すること、等を計画している.

なお、本研究は科学研究費助成金(基盤研究(C)、課題番号15K06596)に基づいて実施された.

参考文献

[1] 三浦壮晃, 室蘭工大小型超音速飛行実験機の動的 CFD 解析による空力評価, 室蘭工業大学修 士論文(2017年2月), pp.24

○久保田 穏 (航空宇宙システムエ学コース 学部4年) 溝端 一秀 (航空宇宙システムエ学ユニット 准教授)

1. はじめに

第二世代小型超音速飛行実験機(オオワシ)の翼構造および舵面制御系の設計のためには,飛行中に舵面にはたらく空気力モーメント(ヒンジモーメント)の推定が必要である.これまで風 試に供してきたサイズの模型(翼幅28cm)では,舵面が小さすぎてロードセル等計測機器の設置 が困難である事から,先行研究[1,2]において 1/3 スケール縮小機体を高速走行軌道装置に設置し 走行試験を行うことで舵面ヒンジモーメントの計測を試みた.しかし,諸般の事情から年に数回 しか試験が行えず,十分なデータを得ることが困難であった.そこで本研究では,乗用車の屋根 上に縮小機体を搭載して走行する簡易な「車載走行試験」を反復的に実施し,十分なデータを取 得して舵面空力特性を評価する.

2. 理論と手法

舵面ヒンジモーメントは,以下のヒンジモーメント係数 C_hによって評価できる[3].

$$C_h = \frac{H}{q \, S_e \, C_e} \tag{1}$$

Hはヒンジモーメント, qは動圧, S_eは舵面面積, C_eは舵面の平均翼弦である. ヒンジモー メント Hは舵面リンケージに組み込まれた引張圧縮両用ロードセルで計測される. ロードセルの 定格容量は 50N である. 舵面リンケージに圧縮力がはたらく場合は座屈やバックラッシュが生じ やすいことから,リンケージに引張力がはたらくように操舵方向を定める. 動圧qは機首に設置さ れたピトー管によって計測される. 1/3 スケール縮小機体は昨年度と同一である. また,ワンボッ クスカーのルーフキャリアに図1の櫓を設置し,そこに図2のように縮小機体を設置する. CFD 解析結果より空気流が車体の影響を受けないと推定される前方 3 m の位置に縮小機体を設置して いる.

図1 櫓の三面図

図 2 ワンボックスカーに設置された櫓及び 1/3 スケール縮小機体(2018 年 1 月)

3. 結果と考察

車載走行試験は2018年1月に初めて実施された.2018年1月13日の試験では軌道走行試験の 代替としての有用性を確認した.2018年1月25日の試験では、再現性の確認及び舵角によるヒ ンジモーメント係数変化の解明を試みた.各舵面の舵角設定を表2に示す.おおむね5分に1回 の頻度で走行試験が可能となり、反復実施性が確立された.走行回数は試走行を含めて17回であ る.取得された舵面空力データの一例(ラダー45°、エレボン15°、外翼フラッペロン40°、内翼 フラップ35°)を図3に示す.最大速度は約25m/sであり、最大動圧は約400Paであった.動圧 の変化に伴いヒンジモーメントも変化している.動圧が小さい区間ではピトー管の動圧計測値の ばらつきが大きいことから、ヒンジモーメント係数のばらつきも大きい.十分加速し動圧が大き くなるとヒンジモーメント係数値は安定する.ヒンジモーメント係数が概ね一定になっている区 間の平均値を採用する.グラフから、ラダー、内翼フラップ、外翼フラッペロンに関しては比較 的良好な試験結果と言える.しかし、エレボンについてヒンジモーメントが極めて小さく、空気 力の計測に失敗した可能性がある.なお、表1において1月13日のラダー舵角が記載されていな いのは、試験準備中に起きたロードセルケーブルの断線により計測不可能となったためである.

	2018.1.13	2018.1.25				
control surface	RUN #					
	#1, 2, 3, 4, 5	#6, 7	#8, 9	#10, 11		
	Deflection(deg)					
Rudder	—	45	30	20		
Elevon	10	15	13	11		
Outboard flapperon	40	40	30	20		
Inboard flap	35	45	30	20		

表1 車載走行試験における各舵面の舵角設定

図3 各舵面のヒンジモーメントおよびヒンジモーメント係数の推移

ラダー,外翼フラッペロン,および内翼フラップにおける舵角とヒンジモーメント係数の関係 を図4に示す. 舵角が大きくなるにつれてヒンジモーメント係数も大きくなっている. また,先 行研究で実施した高速走行軌道試験[1]および CFD 解析結果[2]との比較を表2に示す. 車載走行 試験の値は,図4中の近似曲線の関数式から推算された値である. エレボン以外の舵面について は,三手法の間でヒンジモーメント係数の値は概ね一致している.さらに実機スケール(翼幅2.4m) の機体について,離陸時の海面上・対気速度 90 m/s の条件で舵面ヒンジモーメントを推算した. その結果を表3に示す.

今回の走行試験では,舵面空力の大まかな特性を把握する目的で,比較的大きな舵角を設定した.詳細な舵面空力特性の把握には,実際の飛行中に発生する舵角範囲の中で,いっそう多くの データを取得する必要がある.また,走行試験に供されている 1/3 スケール縮小機体の劣化によって計測値が乱されている可能性があるため,機体の改修が必要である.

図4 舵角とヒンジモーメント係数の関係

表 2	車載走行試験	F	先行研究と	・の比較
		\sim		

Control	Car-mounted test		Track test (2016.7.4)		CFD analysis (2016.7.4)	
surface	Ch	Deflection(deg)	Ch	Deflection(deg)	Ch	Deflection(deg)
Rudder	0.13762	35	0.26476	35	0.38262	35
Elevon	_	15	0.00704	15	0.40736	15
Outboard	0.06275	25	0 1608	25	0 14000	25
flapperon	0.00275	23	0.1098	23	0.14999	23
Inboard	0.07020	25	0 12022	25	0.1850	25
flap	0.07930	23	0.13022	23	3	23

表3 実機の舵面ヒンジモーメントの予測(海面上,対気速度 90 m/sec)

Control surface	Deflection(deg)	Hinge moment(Nm)
Rudder	45	8.87
Outboard flapperon	40	5.13
Inboard flap	35	6.38

4. まとめ

第二世代小型超音速飛行実験機(オオワシ)の舵面空力特性を評価するために, 簡易かつ反復 的な「車載走行試験」の手法を確立し, 1/3 スケール縮小機体を用いて 11 回の走行試験を実施し た. その結果以下のことが分かった.

- (1) ラダー,外翼フラッペロン,および内翼フラップのヒンジモーメント係数は,高速走行軌道試 験や CFD 解析結果と概ね一致した.
- (2) 今後さらに試験回数を重ねデータの信頼性を高める必要がある.
- (3) 得られたヒンジモーメント係数から実機の離陸条件でヒンジモーメントを概算した.
- (4) 昨年度, 今年度を通してエレボンの空気力は正しく計測できていない. これは縮小機体の操舵 メカニズムの劣化による可能性が高いことから, 機体の改修が必要である.
- (5) 離陸から加速・上昇,遷音速・超音速飛行,降下・減速,および着陸といった一連の飛行の中 で飛行動圧および所要舵角は刻々と変化するため,各舵面のヒンジモーメントの最大値を評 価するには,詳細な飛行シミュレーションを要する.

参考文献

[1] 田井翔一郎,「室蘭工大小型超音速飛行実験機の舵面空力の計測」,室蘭工業大学卒業論文, 2017年1月.

[2] 田井翔一郎,市川陸,溝端一秀,「小型超音速飛行実験機の舵面空力モーメントの計測とCFD 解析」,室蘭工業大学航空宇宙機システムセンター年次報告書 2016, pp.51-54, 2017 年 8 月.
[3] (社)日本航空宇宙学会,航空宇宙工学便覧 第三版,丸善株式会社 (2005).

小型超音速飛行実験機の1/3スケール縮小機体の製作

〇溝端 一秀 (航空宇宙システム工学ユニット 准教授)
 上羽 正純 (航空宇宙システム工学ユニット 教授)
 東野 和幸 (航空宇宙機システム研究センター 特任教授)

1. はじめに

第二世代小型超音速飛行実験機(オオワシ)の空力特性・飛行特性,およびその誘導・制御系の機能・性能を実際の飛行環境において検証することを狙って,繰り返し簡易に飛行試験を実施するための 1/3 スケール縮小機体について,前年度の設計と内製を元にして,二社による外注製作を進めた.

2. 製作された1/3スケール縮小機体

A 社によって製作された機体の外観を図1に示す.通算で5機製作している.胴体および翼面の外皮については、グラスファイバークロス・バルサ薄板をサンドイッチ状に積層しエポキシ樹脂を含浸させた FRP 材としており、外皮に強度・剛性の余裕があることから、内部の骨組みを簡素化したモノコック(張殻)に近いセミモノコック(半張殻)構造としている.中胴内の竜骨部材と主翼桁には CFRP 積層板を用いて曲げ強度を確保している.図2のとおり、乾燥質量 1.6 kg であり、フライト機器搭載相当の全備質量は 3.5 kg である.

B 社によって製作された機体の概観を図3に示す.これは製作仕様を検討するための試作機体 である.胴体の外皮はA社によるものと同等であるが、内部構造は木質のリングフレームとロン ジロンを多用し、全体としてセミモノコック構造としている. 翼面も木質のセミモノコック構造 である. 表面仕上げはオラカバフィルム貼付である.

今後,これらの機体を艤装試験,滑走試験,離陸・飛行試験,等に供することを通して製作仕様を検討修正し,機体製作を継続実施する計画である.

図1 製作された機体(A社製)の外観

(a) 乾燥状態
 (b) フライト機器搭載相当の全備状態
 図 2 製作された機体(A 社製)の質量計測

図3 製作された機体(B社製)の外観

共同研究報告 RBCC スペースプレーンの遷音速風試

○西村 嘉将(航空宇宙システム工学コース 学部3年)
 山崎 優樹(航空宇宙総合工学コース 博士前期2年)
 白方 洸次(航空宇宙総合工学コース 博士前期1年)
 溝端 一秀(航空宇宙システム工学ユニット 准教授)

1. はじめに

現在,航空宇宙輸送システムとして使い切りロケットや亜音速旅客機等が世界中で使用されて いるが将来の宇宙空間利用の拡大化や商業化を見据え,使い切りロケットに代わる完全再使用型 宇宙往還機(スペースプレーン)の必要性が高まっている.スペースプレーンは,宇宙空間への 物資輸送コストを削減するとともに,従来の航空機の様な運用性と信頼性を達成することが期待 されている.二段式スペースプレーンの初段推進方式として大気吸い込み式エンジンとロケット エンジンを組み合わせた Rocket-Based Combination Cycle(RBCC)方式が提唱されている.これは地 上静止状態から極超音速領域までの広い速度域を1つのエンジンでカバーするために,飛行マッ ハ数に応じて4つのモードを切り替えることで各エンジンの短所を補う.このような RBCC エン ジンそのものの研究は JAXA を中心に比較的進んでいるが,そのエンジンを搭載するスペースプ レーンの空力特性や飛行特性は明らかになっていない.そこで本研究では RBCC エンジンを搭載 するスペースプレーンの空力形状を提案し,風洞試験によってその空力特性を明らかにする.

2. 風試模型と風洞試験

本研究は JAXA との共同研究であり,室蘭工業大学は機体の風試模型の詳細設計および製作, 遷音速風試における機体模型の操作および空気力の計測,ならびにデータ解析を担当した. JAXA の概略設計をもとにした風試模型の詳細設計を図1に示す.模型製作の時間的制約や,今回は縦 の空力特性のみ評価することから,主翼平面形はダブルデルタではなく簡略化してデルタとして いる.

2017 年 12 月に JAXA/ISAS にて遷音速風試を実施した. 通風 Mach 数は 0.3, 0.5, 0.7, 0.9, 1.1 で あり, ピッチスイープ通風によって揚力係数, ピッチングモーメント係数, および抗力係数を計 測した.

図1 風試模型

図2 風試模型の遷音速風洞への設置

3. 結果と考察

風試により得られた揚力係数, ピッチングモーメント係数, および抗力係数を図3~5に示す. 図3より揚力係数*C*_Lは, 迎角に対し良好な線形性を示している. 揚力傾斜は Mach 0.3 で 0.047, Mach 0.8 で 0.055 と, 亜音速に比べ遷音速で揚力が増大している. また, 大迎角時に失速が表れ ていない. これは, デルタ翼が前縁剥離渦によって揚力を得ていることに起因するものであり, 離着陸や大気圏再突入の高迎角飛行に都合が良い.

図4より、ピッチングモーメント係数C_Mのグラフは右下がりであり、静安定が確認される.また、直線性が良好でありピッチング制御上好都合である.ピッチトリムを保ちながら飛行するには、グラフの横軸切片すなわちピッチトリム迎角が定常飛行迎角と一致する必要がある.今回の空力形状では亜音速、遷音速共にピッチトリム迎角は負となっている.そのため、エレベータ操舵によってこれを正にする必要があるが、その実現可能性については操舵を伴う風試で検証する必要がある.

次に、図5より抗力係数*C*_Dのグラフは各 Mach 数で滑らかな2次関数となっている.また、亜 音速抗力係数の最小値が0.067程度の大きな値となっている.これは、主翼の大きさに比して胴 体が太いことや胴体側面のエンジンインテークにより前面投影面積が増大しているためと考えら れる.図6に Mach 数に対するゼロ揚力抗力係数を示す.比較のために目下室蘭工大で研究開発 されている第二世代小型超音速飛行実験機(オオワシ)のデータも掲載する.第二世代オオワシ のゼロ揚力抗力係数は一般的な航空機に近い値であり、それと比較すると今回のRBCCスペース プレーン形状は抗力が格段に大きい.抗力低減を狙った機体形状の改良が必要である.

 \boxtimes 3 C_L vs AOA

77

4. まとめ

今回 RBCC エンジン搭載を想定したスペースプレーン機体の空力形状を提案し,遷音速風試に よって空力特性を評価した. 揚力係数については良好な結果が得られた. ピッチングモーメント については静安定が確認されたがピッチトリムのためにエレベータ上げの操舵が必要である. 実 際のピッチトリム性能については,エレベータ操舵を伴う風試によって検証する必要がある. 抗 力係数については,第二世代オオワシに比べて非常に大きいことから,推進器の性能データを併 用してミッション成立性を検証する必要がある. その結果として抗力低減を要する場合には,機 体形状の改良が必要となる.

参考文献

[1] N. Morita, et al, "Design Study on Booster Vehicles of a TSTO RLV with RBCC Engines Part1: Lifting Body Configuration", JSASS-2015-4453.

[2] N. Morita, et al, "Design Study on Booster Vehicles of a TSTO RLV with RBCC Engines Part2: Waverider Configuration", JSASS-2015-4454.

オオワシ2号機の機械環境条件緩和に対する軽量化構造概念検討

〇勝又 暢久(航空宇宙システムエ学ユニット 助教) 樋口 健(航空宇宙システムエ学ユニット 教授)

1. はじめに

小型,無人,かつ超音速飛行を目標に開発中の実験機「オオワシ2号機」の機体構造は,軽量 かつ過酷な設計制限荷重に耐えうる高強度・高剛性機体構造の開発を目指している.そのため, エンジンマウントなどの高温部を除いては,炭素繊維強化プラスチック(CFRP)を構造要素とし て積極的に使用する設計を行ってきた.また,円筒形状に変形させることが可能なフレキシブル アルミハニカムコアと CFRP スキンによるサンドイッチ円筒を胴体一般部の基本構造要素とする ことで,比強度・比剛性の向上だけでなく,製作性向上とコスト低減も視野に入れて開発中であ る.

小型無人超音速実験機の飛行フェーズが多様化した場合,飛行時間に対応して燃料搭載量が変 化する.搭載燃料の増加は,機体長の延長とそれに伴う機体重量の増加につながるが,機体長の 延長による重量増の影響を少なくするための機体構造概念設計として,昨年度は前部胴体の一体 化,タンク・バルブ・配管系のユニット化,それらのインテグレーション方法を検討した.その 結果,構造重量を軽減するための概念設計は行えた.しかし,着陸衝撃荷重を考慮した着陸ダイ ナミクスシミュレーション,飛行経路解析などの更なるシステム検討を行った結果,更なる機体 重量の軽量化が必要となった.そこで今年度においては,機械環境条件が緩和(設計制限荷重が 緩和)した場合に得られる軽量化効果を検討した.

2. 荷重条件の変更

機体構造の軽量化効果を検討する上で変更した荷重条件を、下記の表に示す.表1に、変更前 の荷重条件、表2に、今年度の軽量化検討に用いた荷重条件を示す.

また,機体設計上で重要となる寸法の整理を軽量化検討と共に実施した.整理した結果を図1 に示す.

計会したて進生	最大離陸重量の	場合(離陸時) 乾燥重量の場合		合(着陸時)	
対象となる構理	設計制限荷重終極荷重		設計制限荷重	終極荷重	
機体および搭載機器					
・機軸方向 1G 1.5G		1.5 G	4 G	6 G	
・機軸直交下方向	3 G	4.5 G	5.7 G 🔆 1	8.6 G 💥 1	
・機軸直交横方向	2 G	3 G	2 G	3 G	
R±n	前脚 3G	前脚 4.5 G	6.0	9 G	
))Ali	主脚 2G	主脚 3 G	0.0		
機首コーン部	動圧 80 kPa に対して座屈しないこと				

表1 変更前の荷重条件

	WET時:WET 重量に荷重倍数6を乗じた荷重が主翼上向きに一様分布
主翼構造の揚力分布	圧力として負荷されるものと仮定
	DRY 時:WET 時と同様

※1 機軸方向に 1.9 G を同時負荷

※2 機軸方向に 2.8 G を同時負荷

お会したて推生	最大離陸重量の	場合(離陸時)	乾燥重量の場合(着陸時)		
対象となる構定	設計制限荷重	終極荷重	設計制限荷重	終極荷重	
機体および搭載機器					
・機軸方向	1 G	1.5 G	2 G	3 G	
・機軸直交下方向	3 G	4.5 G	3 G 💥 1	4.5 G 💥 1	
・機軸直交横方向	1 G	1.5 G	1 G	1.5 G	
R±n	前脚 3G	前脚 4.5 G	前脚 3G	前脚 4.5 G	
line in the second s	主脚 2G	主脚 3 G	主脚 3G	主脚 4.5 G	
機首コーン部	動圧 80 kPa に対して座屈しないこと				

表2 変更後の軽量化検討に用いた荷重条件

※1 機軸方向に2Gを同時負荷

※2 機軸方向に3Gを同時負荷

図1 機体構造各種寸法の整理結果

3. 機体各部の軽量化結果

機械環境条件の変更により得られた機械構造各部の軽量化結果を,表3に示す.表3に示され ている重量は,強度計算を行った上で得られた構造を元に計算された重量である.強度計算結果 上,機体の各部について十分な強度余裕があることが確認されている.

強度設計上重要となる着陸時の荷重条件がこれまでの荷重条件に比べて約 1/2 倍に緩和された ことで、大幅な軽量化が実現された.今回の軽量化結果が実施された場合、64.4 kgの軽量化効果 を得られ、これは変更前重量(173.1 kg)に対して約 37 %の軽量化である.また、今回適用した 荷重条件は、特に誘導制御工学を含めたシステム設計により達成可能な範囲内であることに注意 されたい.

機体構造部名称	個数	変更前重量 kg	変更後重量 kg
ノーズコーン	1	5.1	2.2
前部胴体	1	14.7	7.7
翼胴一体中央胴体	1	72.5	33.2
主翼端部	2	9.0	9.0
後部胴体	1	47.0	31.8
タンク支持構造	1	9.1	9.1
機械計装	1	14.0	14.0
熱計装	1	1.6	1.6
合計重量		173.0	108.6

表3 機械環境条件の緩和による機体各部の軽量化結果

4. まとめ

強度設計上重要となる機械環境条件が緩和された場合の軽量化効果について,機体構造の強度 設計と概念構造設計から検討した.着陸時の荷重条件を従来の約1/2倍(設計制限荷重:3G,終 極荷重:4.5G)に変更することで,機体重量は64.4kg軽量化される結果となった.これは荷重 条件変更前機体重量の約37%に相当するため,大幅な軽量化効果があることが示された.

今回の設計結果を実現するためにも、オオワシ2号機のシステム設計を今後さらに検討する必要がある.

〇樋口 健(航空宇宙システムエ学ユニット 教授)
 勝又 暢久(航空宇宙システムエ学ユニット 助教)
 中尾 拓冶(航空宇宙総合エ学コース 博士前期2年)
 戸松 太暉(航空宇宙システムエ学コース 学部4年)

1. はじめに

オオワシ2号機の機械環境条件の緩和による機体軽量化の構造概念検討に対応するものとして,軽量化された機体に合致する脚構造を事前検討した.

2. オオワシ2号機の機体諸元変更と衝撃吸収脚設計条件

見直された機体諸元は、全長約8.48m, 全幅約2.4m, 胴体外径0.3m(一般部), 離陸重量約270kg, 主翼面積約2.15m²である.機械環境条件の緩和による機体重量の目標値が240kgであり、3脚重量の目標値が30kgである.

脚の設計条件としては,着陸進入速度180km/h,進入角約3°,機体姿勢角18°という厳しい条件でも確実な着陸を実現する衝撃吸収脚が要求される.満たすべき設計条件は,

- ① 着陸時の衝撃加速度が3G以内に留まること
- ② 脚伸縮ストロークを 15 cm 以内に抑えること
- ③ 機体が着陸時に安定した挙動を示すこと(特に,バウンドしないこと)

であり、①が6Gから3Gに緩和された. 主脚構造は、2015年度の検討成果を受けて「姿勢角に 合わせて傾けたトラス型主脚構造案」を採用した(図1). 前脚構造は脚柱1本の構造とした(図 2). 先に接地する主脚ダイナミクスをシミュレーションすることにより、先ず主脚に適切なバネ 係数と減衰係数を設定し、主脚に適切なバネ係数と減衰係数を使用して、引き続きシミュレーシ ョンを行って前脚に適切なバネ係数と減衰係数を設定する.

図1 着陸進入接地条件

3. 着陸ダイナミクス解析手法と機体モデル

脚をモデル化し, MATLAB Simulink, SimMechanics を用いてダイナミクスシミュレーションを 行った. 脚形状, 部材構成, 部材断面積, バネ定数, 減衰係数は 2015 年度及び 2016 年度の検討 成果を用いた. 脚モデルの簡単化のために脚ストラットは剛体棒とし, 骨組構造の結合部は必要 に応じて滑節と剛節を使い分けた.

図2 主脚の構造

図3 前脚の構造

3-1. 主脚緩衝装置のパラメータ設定

まず Simulink で,進入角3°での沈下率2.62 m/s になる初期高さ0.35 m から姿勢角18°で自由 落下させて緩衝装置の選定を行ったが,成立しないことがわかったので,フレアを必ずかけるこ とを前提として,沈下率1.71 m/s になる初期高さ0.15 m から自由落下させた.この沈下率は進入 角2°に相当する.

初期高さを0.15mの時の主脚の最大ストローク量が要求条件②内で,最大の0.15mになる主脚 緩衝装置の弾性係数と減衰係数の組み合わせの選定結果を図4に示す.主脚タイヤ接地時の機体 重心位置の垂直方向加速度最大値と,主脚タイヤのバウンド回数を併せて示す.解析ケース番号 3~9の主脚緩衝装置の組合せで①の要求条件を満たす.解析ケース番号 1~8 で③の要求条件を満 たす.よって,赤枠で示した解析ケース番号 3~8のときに全ての要求条件を満たす.これは,主 脚タイヤ接地時に発生する重心位置の垂直方向加速度が最も小さくなる,主脚最大ストローク量 が0.15mになる主脚緩衝装置を選定したに過ぎないので,赤枠の主脚緩衝装置の組み合わせに対 して減衰係数を固定して弾性係数を上げていき,今度は主脚タイヤ接地時に重心位置の垂直方向 加速度が,①の要求条件内で最大の3Gになる弾性係数を探した結果が図5である.図4の結果 と合わせ,初期高さ0.15mで要求条件①~③全てを満たす主脚緩衝装置の選定結果を図5下の表 にまとめる.

図4 主脚緩衝装置選定解析結果1

初期高さ0.15[m] (沈下率1.71[m/s])

主脚タイヤ接地時の重心位置の垂直方向 加速度が1の要求条件内で最大の3[G]に なる主脚緩衝装置選定結果

解 _亚 K	主脚N	主脚最大	主期79 ヤ		
毌5 号 6	バネ弾性C 数 KO[N//.	8 ンパー減衰C 数 CON1//.	69□—4 量[/.	⊥,™,72 、 バ3 ンド数	
3	33000	1100	0.10	0回	
4	32000	1000	0.10	0回	
5	31000	900	0.11	0回	
6	29000	800	0.11	0回	
7	28000	700	0.12	10	
8	26000	600	0.13	10	

要求条件①~③全てを満たす主脚緩衝装置の選定結果

バネ弾性係数 K/[N/m]	ダンパC 減衰係数 C/[NO/m]	主K タ9 ヤ7 バウンド
14000~33000	1100	64
15000~32000	1000	64
16000~31000	900	64
17000~29000	800	64
19000~28000	700	バネ弾性係数大32518
20000~26000	600	バネ弾性係数大32518

図5 主脚緩衝装置選定解析結果2

3-2. 前脚緩衝装置のパラメータ設定

主脚緩衝装置を選定できたので、そのパラメータを使って次に前脚緩衝装置の選定を行う.初期高さ0.15m,主脚緩衝装置が弾性係数20000 N/m,減衰係数1000 Ns/mの場合の、前脚の最大ストローク量が要求条件②内で最大の0.15mになる前脚緩衝装置の選定結果が図6である.前脚タイヤ接地時の重心位置垂直方向加速度最大値が①の要求条件を満たせない.また、解析ケース番号3~7ではバウンドが発生するため③の要求条件が満たせない.

図6 前脚緩衝装置選定解析結果1

そのため、次は主脚緩衝装置の弾性係数と減衰係数の組合せを図7上の表のように変化させて 初期高さ0.15mの時の緩衝装置を選定した.その結果、赤枠で示した弾性係数と減衰係数の組合 せの時には前脚タイヤ接地時に要求条件①を満たす組合せは存在したものの、前脚タイヤ接地後 に前脚が大きくバウンドするため、要求条件③を満たせないことがわかった.

そこで,試みに主脚タイヤを地面に接地させた状態,つまり初期高さ0m,主脚緩衝装置の弾性 係数7000 N/m,減衰係数2000 Ns/mで,姿勢角18°をつけて垂直落下させた時の前脚緩衝装置の 選定を行った.これによると,やはり前脚タイヤ接地時に要求条件①と②を満たす前脚緩衝装置 は存在したものの,前脚タイヤ接地後に前脚が大きくバウンドするため③の要求条件を満たすこ とができないことがわかった(図8).

- Manananan	Z軸		減衰係数cr[N/m]	1100	1000	900	800	700	600
18° X the h=0.15[m]			15000 15000	16000	17000				
	X軸	主脚緩衝装置	硝枇 <i>杨粉</i> [m[Nia/m]	20000	20000	20000	20000	20000	20000
	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE		JFIT DOX SXXILINS/III]	25000	25000	25000	25000	25000	25000
	h=0.15[m]			30000	30000	30000	29000		

初期高さ0.15[m] (沈下率1.71[m/s]) 主脚緩衝装置(弾性係数と減衰係数の組合せ変化)

初期高さ0 [m] (沈下率0[m/s])

主脚緩衝装置(弾性係数7000[N/m],減衰係数2000[Ns/m])の場合の例

図8 前脚緩衝装置選定解析結果3

また,前脚の胴体接合部の垂直方向加速度では前脚タイヤ接地時に10G以上発生することがわかった. 主脚緩衝装置の弾性係数と減衰係数の組合せを,これ以外にも変化させて初期高さ0mのときの前脚緩衝装置の選定を行っても改善されなかった(図9).

初期高さ0[m]で主脚緩衝装置の組合せを変えても同様の前脚緩衝装置選定結果 が得られた

初期高さ0 [m] (沈下率0[m/s])

主脚緩衝装置(弾性係数7000[N/m], 減衰係数2000[Ns/m])の場合の例

図 9 前脚緩衝装置選定解析結果 4

4. まとめ

脚設計の当初の要求条件である、①機体重心位置の垂直方向加速度を3G以内にする、②脚の 衝撃吸収ストローク量を0.15m以下にする、③機体が転覆や大きなバウンドしない、のうち、① と②の要求条件をかろうじて満たす主脚緩衝装置のパラメータ選定はできても、そのパラメータ では③の要求条件を満たすことができない.

姿勢角 18°で接地する着陸条件では, 沈下率 0m/s であっても, 前脚タイヤ接地時に前脚胴体接 合部では垂直方向加速度が 10G 以上発生することが避けられない.

したがって、脚設計においては要求条件①と②を緩和してでもバウンドが発生しないようにす るか、またはバウンドを許容する必要がある.

○勝又 暢久(航空宇宙システム工学ユニット 助教)
 樋口 健(航空宇宙システム工学ユニット 教授)
 佐藤 伸平(航空宇宙総合工学コース 修士1年)
 吉野 香南(航空宇宙システム工学コース 学部4年)

1. はじめに

小型超音速実験機は、革新的基盤技術の1つである GG-ATR エンジンによる飛行を計画してい るが、エンジンを発生源とする振動の遮断が機体構造や搭載機器である電子機器を保護するため に必要となる.また、エンジン燃焼器外表面は約 1000 ℃と高温になることが予想されることか ら、油圧や空気圧を用いた一般的な減衰器を適用することが難しい.そこで、高温となるエンジ ンマウント部でも使用可能な全金属性の減衰器として、単結晶形状記憶合金(Single Cristal Shape Memory Alloy, SCSMA)を用いた振動減衰器(以下,SCSMA 減衰器と記す)の試作品を昨年度開 発した.そこで今年度は、試作した減衰器の減衰性能を把握するため、振動試験によってその減 衰性能を計測した.

2. SCSMA 減衰器の構造と振動減衰の原理

SCSMA 減衰器の概要を図1に示す. エンジンスラストピンと結合する円板内(図1(a) 青枠) に、SCSMA 減衰器が取り付けられている. 減衰器内には 24 本の SCSMA ピンが放射状に配置さ れており(図1(b) 黄枠)、エンジンからの加振によって SCSMA ピンに縦ひずみが生じる.

(a) エンジンサポートピンと SCSMA 減衰器の関係

(b) エンジンマウント部・SCSMA 減衰器の実物と SCSMA の配置

図1 単結晶形状記憶合金 (SCSMA) を適用したエンジンマウント振動減衰器の概要

SCSMA ピンに生じた縦ひずみは,SCSMA の超弾 性特性により,図2に示す狭い応力負荷範囲に対し て広いヒステリシスループでひずみが変化する.そ のため,エンジン加振によって SCSMA ピンに生じ る縦ひずみの負荷と除荷が繰り返され,ヒステリシ スループが循環する.ヒステリシスループで囲まれ た面積が減衰性能に対応し,振動によるヒステリシ スループが繰り返されることによって振動減衰が行 われる.

3. SCSMA 減衰器の加振実験

千葉県産業技術支援研究所にて、加振実験を行った. 図3に加振実験装置の概要を示す. SCSMA 減衰器の減衰原理から、振幅に依存した減衰特性が得られると予想した. そのため、加速度一定 の周波数スイープ加振を行い、加速度レベルを変化させて計測を行った. 周波数スイープ範囲は、 10 ~ 1,000 Hz に設定した. 加速度は、0.5, 1.0, 2.0, 4.0 G の4パターンに設定して実験を行った. 加振、水平方向に加振した. そのため、図3(a)において CH1, CH2 と示された部分に取り付けら れている SCSMA 減衰器が今回の実験では減衰に寄与する.

入力加速度を上記の4パターンで変化させ、計8回の加振実験を実施した.得られた周波数応 答曲線を図4に示す.実際には計9回の計測実験を行ったが、試験番号⑦においては計測エラー が発生したため、計測データを掲載していない.

(a) 冶具と計測機器の設置状況

(b) 加振方向と実験装置の取付状況図3 加振試験装置の概要

図4 各入力加速に対する周波数応答曲線の結果

4. 考察とまとめ

図4に示す周波数応答曲線から、半値幅法により損失係数を計算した.得られた結果を表1に 示す.

表1の結果から,入力加速度が大きくなるほど損失係数の値が大きくなっていることが分かる. これは,入力加速度が増加することで SCSMA ピンに生じるひずみ量が増加し,ヒステリシス減 衰効果が増加したためと考えられる.つまり,振幅に依存して減衰性能が変化したと考えられる ため,この結果に関しては当初の想定通りとなった.

しかし、入力加速度が同一の場合でも、試験番号の違いにより得られた損失係数が異なる場合 がある.また同じ計測番号でも、計測位置の違いにより得られた損失係数が異なる場合がある. 上記に関しては、実験結果の再現性を確認し、現象の理解を今後行う予定である.また、更なる 検討課題としては、図4に示された試験番号④のようにピーク値が2つになる力学的検討、実際 の入力加速度から計算されるひずみ値を用いた損失係数の理論値と実験結果との比較、などが挙 げられる.

计段平口		損失係数					
 訊 駅	入力加速度(CH 1	CH 2	СН 3	平均		
1	0.5	0.17	0.16	0.17	0.17		
2	1.0	0.25	0.24	0.27	0.25		
3	4.0	0.49	0.61	0.55	0.55		
4	0.5	0.097	0.18	0.12	0.13		
5	1.0	0.13	0.15	0.15	0.14		
6	2.0	0.38	0.39	0.40	0.39		
8	4.0	0.48	0.46	0.45	0.46		
9	0.5	0.034	0.046	0.041	0.040		

表1 半値幅法により得られた損失係数

○樋口 健(航空宇宙システム工学ユニット 教授)
 勝又 暢久(航空宇宙システム工学ユニット 助教)
 藤井 駿(航空宇宙総合工学コース 博士前期2年)

1. はじめに

本学で開発中の小型無人超音速実験機オオワシ2号機は,超音速での飛行を目標としている. オオワシ2号機の主翼寸法はオオワシ1号機の空力飛行特性データ活用のため,オオワシ1号機 の主翼寸法を相似拡大的に 1.5 倍にしたものであるが,要求される強度・剛性も機体重量も大き く異なるため,主翼構造の再検討を行った.本研究では,空力弾性問題を考慮したオオワシ2号 機主翼の構造開発を目的としている. Nastran を用いてオオワシ2号機で想定される主翼構造モデ ルのフラッター解析を行い,U-g 法を用いてフラッター速度を見つけることとした.

2. オオワシ2号機主翼の解析モデルと解析方法

2-1. 片側主翼の片持ち固定境界条件モデル

本研究のフラッター解析では、図1(a)に示すオオワシ2号機の3次元モデルを使用した.オオ ワシ主翼の内部構造はリブ・桁の厚さが30mm,スキンの厚さが1.3mmである.内部構造を図 1(b)に示す.

解析モデルの物性値は、ヤング率は CFRP のヤング率に近いアルミニウム合金の値で代用し、 密度は主翼付属部品を含む実際のオオワシ2 号機の主翼の重量と一致するように算出した換算密 度を使用した.縦弾性係数:70300 MPa,横弾性係数:26100 MPa,密度:5818.4 kg/m³(実際の オオワシ主翼の質量にするために換算した密度を使用)ポアソン比:0.33,構造要素のメッシュ 要素形状は四面体、メッシュサイズは 10 mm である(図 2 (a)).

空力要素は、オオワシ主翼の外形と内部構造のリブ・桁の位置に合わせて4つの領域のサーフ エスを作成する.本解析では、作成したそれぞれのサーフェスを翼幅方向に10分割,翼弦方向 に10分割する(図2(b)).

(a) 外形

(b) 内部構造

図1 解析モデル

フラッター解析条件は,高度範囲-50000~50000 ft を 10000 ft ごとに分け,さらに各々の高度 において速度範囲 M 0.8~1.6 を M 0.4 ごとに分けて解析を行った.また,フラッター解析で使用 する固有振動数は,固有値解析から得られた Mode 1~5 を使用した.本解析の拘束条件は,翼根 部分の Node を完全固定した(図 2 (c)).

解析で得られたデータから U-g 曲線と U-f 曲線を作成し、U-g 法(図3)を用いてフラッター 速度を求めた.フラッター速度の計算方法(U-g 法)は、まず速度 U と構造減衰係数 g のグラフ を描く.実際の構造減衰が既知(g AVAILABLE)の場合は、横軸と g AVAILABLE との交点のうち最低 値がフラッター速度である.構造減衰が不明な場合は、横軸との交点のうち最低値がフラッター 速度である.

解析結果から g>0 になる点が存在しなかったため、リブ・桁の厚さ 30 mm では、フラッター が発生しないこと確認した.次に、リブ・桁の厚さを 10 mm に変更し、同様な条件で解析を行 ったが、やはりフラッターは発生しなかった.そこで、翼根部分の物性値を変えて弾性固定を模 擬した解析を行った.

2-2. 片側主翼の弾性支持境界条件モデル

図4に示すように黒色部分と灰色部分2つの部分によって構成した.固定端部分(幅30mmの黒色部分)の剛性を1/20に変えることにより弾性固定を表現した.

図4 弾性支持の解析モデル

図5 リブと桁の厚さが10mm,マッハ数0.8,高度-50000ftの場合のU-g曲線とU-f曲線

解析結果から,弾性結合モデルであってもリブと桁の厚さが 30 mm のモデルではフラッター が発生しなかったが,リブと桁の厚さが 10 mm ではマッハ数が 0.8,高度が-50000 ft の場合に 400 m/s(EAS)でフラッターが発生することがわかった(図5).0 ft 以上ではフラッターが発生し ないことが確認できた.

3. まとめ

- 1. Nastran FlightLoad および U-g 法を用いてフラッター速度を示すことができた.
- 2. 現在想定している構造様式(リブ・桁の厚さが 30 mm モデル)ではフラッターが発生しない ことがわかった.
- 3. 翼根が弾性結合モデルの時で,リブ・桁の厚さが10 mm では, M=0.8, 高度-50000 ft におい てフラッター速度 400 m/s となった.0 ft 以上でフラッターが発生しないことが確認できた.
- 4. M=0.4~1.6, 高度 0~50000 ft の範囲では、フラッターが発生しないことが確認できた.

超音速無人航空実験機用テレメトリ・コマンド系無線の電波伝搬の研究

〇北沢 祥一 (航空宇宙システムエ学ユニット 教授)
 木村 恒軌 (航空宇宙システムエ学系コース 学部4年)
 上羽 正純 (航空宇宙システムエ学ユニット 教授)

1. はじめに

超音速無人航空実験機オオワシ2号機用には,飛行状態のモニタリングや,地上からのコマン ド用に無線システムを搭載することを計画しており,1.2 GHz帯テレメトリ用および427 MHz帯 コマンド用の無線機での実験試験局免許を取得している.これまで10 km 程度での伝送実験は実 施されていたが,長距離での伝送実験は未実施であった.オオワシ2号では最大で100 km 先の海 上を飛行することから,海上伝搬も考慮して伝搬距離60 km での伝送実験を行い通信の疎通がで きることを確認した.

2. テレメトリ・コマンド系無線

オオワシには飛行状態を地上側に伝送するテレメトリ無線系として 1.2 GHz 帯の無線機を搭載 し、また地上側からのコマンド用に 427 MHz 帯無線機を搭載することを想定している. この 1.2 GHz 帯テレメトリ用および 427 MHz 帯コマンド用の無線機のイメージを図1に、また無線機の諸 元を表1に示す. これらの設計の詳細については、2015 年度の報告書にて報告済みである. [1-2]

Parameter		Telemetry	Command	
Frequency		1281.5 MHz	427 MHz	
Transmissio	n Power	30 dBm	30 dBm	
Modulation		FSK	FSK	
Data rate		138.24 kbps	1200 bps	
Communication Distance		Max.100km		
	Air Plane	2.1 dBi	2.1 dBi	

16 dBi

2.1 dBi

表1 無線システムの諸元

3. 予備検討

3-1. パケットエラー率

コマンド系無線機で受信電力を変化させ,通信品質を把握するため図 2(a)に示すような構成で パケットエラー率(PER: Packet Error Rate)を評価した.具体的には,無線機間を可変減衰器を介 して接続し,受信側の無線機への入力電力を変化させ,PERの変化を確認した.送信機の最大出 力は5Wであるが,可変減衰器の最大減衰量や許容電力の関係で出力を 1/10 の 0.5 W (17 dBm)で 評価した.結果を図 2 (b)に示す.これから,PER が 10⁻³以下になるには-127 dBm 以上の受信電力

Antenna

Gain

Ground

Station

が必要であることが分かる. 自由空間伝搬で距離 100 km における伝搬損失は 427 MHz で 125 dB であり、今回受信電力-125 dBm で PER が 10⁻⁵ であることから、無線機の最大出力 5 W (37 dBm) で送信した場合にはアンテナの利得が 0 dBi としても 20 dB の余裕がある. よって、100 km での 伝送には問題ないことが確認できた.

図2 PERの評価

3-2. 伝搬シミュレーション

伝搬シミュレーションは、地形情報を含めた伝搬シミュレーションが可能なフリーウェア RadioMobile を使用した.地形情報は、SRTM3(Shuttle Rader Topography Mission 3)と呼ばれるスペ ースシャトルに積み込んだレーダにより3秒メッシュ(約90m)で取得し公開されているデータを 用いた.

実験試験局は移動地を限定しているため,送信場所を室蘭市内で見晴らしの良い,だんパラス キー場を選定した.図3は,だんパラスキー場から送信した場合の427 MHzと1281 MHzでの受 信電力強度分布のシミュレーション結果であり,受信強度を5段階に色分けしている.また受信 場所は,海上伝搬を考慮し内浦湾を挟んだ対岸の場所を選定した.選定した場所の緯度,経度, 標高等を表2に示す.

(a) 427 MHz でのシミュレーション結果 (b) 1281 MHz でのシミュレーション結果
 図 3 伝搬シミュレーション

		緯度			経度			標高	距離
	場所	度	分	秒	度	分	秒	m	km
送信点	だんパラスキー場	42	24	48.9	141	0	8.9	404	0
Ι	鹿部間欠泉駐車場	42	1	44.9	140	49	49	3.9	45
Π	八雲PA上り	42	13	36.6	140	18	47.1	63	60.25
Ш	獅子鼻岬	41	51	52.2	141	7	23.7	14.1	61.82
IV	恵山岬灯台	41	48	55.2	141	10	59.1	4.9	68.11

表2 長距離実験場所と送信点からの距離

4. 伝送実験

長距離の伝送実験は、送信場所を、だんパラスキー場の駐車場とし、シミュレーション結果を 踏まえ、受信場所は室蘭からのアクセス性と伝搬距離を考慮し、道央道の八雲パーキングエリア とした.この場合の伝搬距離は内浦湾をはさんで 60.25 km である.図4(a)が、だんパラスキー場 での 1.2 GHz での伝送実験時の写真、また図4(b)が道央道 八雲パーキングエリアに設置した受 信側の写真である.

図4 実験場所での設置状況

コマンド用の 427 MHz 無線機は出力 5 W で, だんパラスキー場から, 連続 100 パケットの伝送 を 2 回送信し, それぞれ 100 パケットを全て受信した. これより, 伝送距離 60.25 km での PER は 5×10^{-3} 以下となる. テレメトリ用の 1281.5 MHz 無線機は出力 1 W で, 連続 1000 パケットの伝 送を 3 回送信し, それぞれ 1000 パケット全て受信した. これより伝送距離 60.25 km での PER は, 3×10^{-4} 以下となる. ただし, 1.2 GHz 帯側は, 八雲パーキングエリア側が指向性の鋭いアンテナ を使用していることもあり, 方向を合わせることがシビアであったことから, 追尾する際には± 数度の追尾精度が必要である.

これらの実験結果は理論値でのシミュレーション結果や,Radio Mobile による電波伝搬シミュレーション,可変減衰器を用いた PER 評価と比較すると妥当な結果であると言える.

参考文献

[1] 上羽 正純,高久 雄一,石濱 勇樹,小型無人超音速実験機向けテレメトリー用無線通信装置の性能評価,航空宇宙機システム研究センター 年次報告書,(2015),pp.119-127.
[2] 上羽 正純,小型無人超音速実験機向けコマンド用無線装置の開発,航空宇宙機システム研究センター 年次報告書,(2015),pp.128-133.

900MHz帯を用いた無人航空機用遠隔監視用無線システムの研究

〇北沢 祥一(航空宇宙システム工学ユニット 教授)
 嶋田 民生(航空宇宙システム工学系コース 学部4年)
 上羽 正純(航空宇宙システム工学ユニット 教授)

1. はじめに

複数の無人航空機 (UAV: Unmanned Aerial Vehicle)の位置情報を UAV 間で通信するとともに,地上 局に伝送することを目的に 920 MHz 帯を用いたマルチホップ無線システムの検討を行っている.本報 告では無線システムの概要を示し,伝搬シミュレーション結果,さらに開発した 920 MHz 帯マルチホ ップ無線システムを用い端末の位置情報を伝送した実験結果を示す.

本研究は,JKA 補助事業(オートレース補助事業)の「クラスタ無人航空機による長距離位置情報伝送システムの研究」によるものである.

2. 提案システム

複数のUAV を飛行させ、各UAV には慣性航法装置と小型のマイコンボード、自律飛行制御回路と無線通信モジュールを搭載する.この位置情報データ伝送用マルチホップ無線システムの概要を図1に示す.各UAV は、搭載している慣性航法装置より自機の位置情報、姿勢等を取得し、これを基に自律飛行を行う.また、慣性航法装置から得られる情報のうち、GNSS(Global Navigation Satellite System)からしの時刻、緯度、経度、高度情報は、先頭のUAV#1 からUAV #2、UAV #3を中継し基地局に伝送する.UAV #2, UAV #3 は先行のUAV 位置情報と電波強度である RSSI

(Received Signal Strength Indication) に自機の位置情報を追加し, さらに後続の UAV 等に伝送する. これにより基地局は3機の UAV の位置情報を得ると共に,2軸ジンバルの雲台に搭載した指向性アンテナを用いて最後尾を飛行する UAV#3 を追尾することができる. この伝送システムの目標性能は,UAV 3 機を中継して地上局までの総延長距離 1.5 km で伝送遅延が 1.5 秒以内である.

図1 クラスター無人航空機による長距離位置情報伝送システムイメージ

3. 無線システム検討

3-1. 920MHz 帯無線装置

920 MHz 帯無線機には,920 MHz 帯の技術適合基準を取得しているインタープラン社製の IM-920 を用いることとした.この通信モジュールの諸元を表1に示す.この無線モジュールでは 1 パケットあたりのペイロード長が 64 byte であるため,慣性航法装置からのデータ3機分を1パ ケットに収容するにはデータ量を削減する必要がある.データ量の削減を検討の結果,1機あた り 18 byte に圧縮した.

周波数	902.6~923.4 MHz,200 kHzステップ 15チャネル			
通信方式	単信			
送信出力	-10 dBm, 0 dBm, 10 dBm			
アンテナ利得	1.9 dBi			
変調方式	FSK			
伝送速度	高速通信モード:50 kbps,長距離モード:1.25 kbps			
キャリアセンス時 間	高速通信モード: 5.2 ms±3.5% 長距離モード:初回 5.2 ms,連続送信中 500µ s 各± 3.5%			
ペイロード長	64 byte			

表1 無線通信モジュールの諸元

次に、この無線モジュールのパケットエラー率(PER: Packet Error Rate)を図2に示す構成で評価した.これは可変減衰器で送信電力を減衰させ、受信側での受信電力が変化した場合のPERを評価している.この結果、受信電力が-70 dBm以上あればPERは10⁻²以下となることが分る.

以上の検討を踏まえ、マルチホップ無線システムのブロック図は図3に示すように、UAV 搭載 側と地上側と2つの構成とした.

図2 PER 評価系と測定結果

図3 システム構成図

3-2. 電波伝搬シミュレーション

UAV 間の通信は、上空での通信となるため直接波が支配的な通信と考えられるが、UAV #3 と基 地局間の伝搬では、直接波と地面の反射波が存在するため2波モデルで受信電力について検討し た.図4(a)のように送信側はUAV に搭載することを考え、Ht=50m、地上側はHr=4m、送信電 力10dBmとした.以上の条件で、水平距離dを変化させた場合の受信電力変化を図4(b)に示す. 図4(b)において黒線が自由空間伝搬損失で計算した受信電力、赤線が垂直偏波、青線が水平偏波 での受信電力を表しており、直接波と反射波の干渉による受信電力の落ち込みが見られる.これ を抑圧するには地上局で利得の高い指向性アンテナを用い、大地反射波の受信レベルを抑圧する 必要が有る.

図4 2波モデルでの受信電力計算

4. フィールド実験

4-1. 一対向通信実験

無線モジュール IM-920 を高さ 5 m のマストに設置し、2 台の IM-920 を用いた対向通信を距離 100, 200, 300, 450 m と変えて行った. その結果, 100 m では受信電力が-64 dBm, 200 m で-70 dBm, 300 m で-73 dBm, 450 m で-76 dBm であった. PER の評価は 1 回あたり連続で 1000 パケット送 り、これを 2 回測定した. 100 m では PER が 1×10⁻² 以下であるが、距離 200 m 以上では 6~9× 10⁻² 程度と、可変減衰器で評価した PER 特性に比べ劣化している. また距離 300 m では送信場所 を 50 cm 程度変えると PER が改善したことから、これは反射波の影響によるものと考えている.

4-2. マルチホップ伝送実験

マルチホップ伝送の実験は、図6に示すように基地局のAPを滑走路脇に設置し、移動局側の ST3、ST2 は滑走路の南側に5mのマスト上に設置し、ST1 は車の屋根に装着し移動させて通信実 験を行った.このとき最長距離はST1 が滑走路の北東端にある場合で、AP から ST1 までの合計 距離が767mである.

図6 白老実験場での配置図

図 8 各 ST から AP への伝送遅延

次に,車に搭載した ST1 を移動させながら通信実験を行った.図7において赤の小さい点が ST1 の移動軌跡を示す.この時の各 ST から AP までの到達時間を図8に示す.接続が不安定になって いる場合の時間も含めているため ST1 → AP の到達時間の最大値は大きな値になっているが,滑 走路の北東端に ST1 を固定した場合の遅延の最大値は900 ms 程度であった.さらに送信ウェイト やその他のパラメータを最適化すれば到達時間の短縮ができ,目標距離 1.5 km で伝送遅延が 1.5 秒以内は可能であると考えている.

参考文献

[1] 北沢 祥一, 嶋田 民生, 上羽 正純, 無人航空機用の位置情報データ伝送用マルチホップ 無線システムの検討, 電子情報通信学会 宇宙・航行エレクトロニクス研究会, SANE2017-104, pp105-109, 2018 年 1 月 25-26 日, 長崎市.

[2] IM-920 ハードウェア取扱説明書. 及び IM920 ソフトウェア取扱説明書, インタープラン http://www.interplan.co.jp/solution/wireless/im920.php..
VHF 帯を用いた無人航空機用中距離テレメトリ、コマンド無線システムの研究

〇北沢 祥一 (航空宇宙システム工学ユニット 教授)

工藤 怜 (航空宇宙システム工学系コース 学部4年)

上羽 正純 (航空宇宙システム工学ユニット 教授)

1. はじめに

これまで近距離用のテレメトリ・コマンド無線には2.4 GHz帯の無線システムを用いてきたが, 伝送距離が短いことや,無線 LAN やプロポの無線用など様々な無線システムを使用しており,干 渉の問題があった.そこで,1 km 程度での通信が可能,かつ他システムからの干渉の少ない他の 周波数を用いたテレメトリ・コマンド無線システムの検討を進めている.本報告では総務省 SCOPE で研究を実施している「広大な農地の短時間観測を可能とする固定翼自律 UAV を用いた映 像伝送技術の研究開発」[1] で検討した 169 MHz 帯の無線システムについて報告する.

2. システムの概要

提案システムのイメージを図1に示す.これは、カメラや制御機器等の機器搭載状態で総重量 10 kg 以下,定常速度 25 m/s の自律飛行可能な固定翼 UAV を用いて,最大伝送距離 1.5 km におい て,5.7 GHz 帯で伝送速度 10 Mbps の映像伝送と、169 MHz 帯を用いた 200 kbps のテレメトリ・ コマンド系無線によって UAV の飛行を監視,必要に応じてコマンドにより離陸地点に帰還可能な 機能を有するシステムの実現を目指す.

提案システムで用いるテレメトリ・コマンド系無線は、2016年に無人移動体画像伝送用に169 MHz帯、2.4 GHz帯、5.7 GHz帯が開放された[2]ことから、伝搬損失の少ない169 MHz帯を使用 することとし、搭載側の無線システムのブロック図は、図2示すような構成とした.この無線シ ステムでは、慣性航法装置から得られた位置や速度の情報をテレメトリとして地上側に伝送し、 地上側から送られた機体へのコマンドを受信し機体を制御する.

3. テレメトリ・コマンド系無線の検討

3-1.2波モデル

上空と地上間での電波伝搬は、平坦大地での通信時の電波伝搬モデルである図3に示すような 直接波と地面での反射波の2つが存在する2波モデルで検討を行った.シミュレーション諸元は 表1に示すように、伝送時の水平距離は2kmを最大とし、飛行機側の高さを150m、地上側のア ンテナ高を2mと設定した.またアンテナは波長が長いため、飛行機に搭載側は短縮アンテナを 用いることを想定し利得を0dBiとした.この設定条件で送受信間の水平距離dが変化した場合 の受信電力のシミュレーションを行った.その結果を図4に示す.水平距離dが短い領域では高 度差による距離が加わるため、数十mまでは受信電力にあまり変化はなく、それよりも遠い領域 では、直接波と反射波の干渉により、受信電力が大きく変化していることが分かる.また、水平 距離が2kmに近くなると反射波による干渉が減り、変化が緩やかとなっていることが分かる.水 平距離2kmでの受信電力は-72dBm程度となるが、実環境においては地面の状態や植生また、無 線システムでの劣化を考慮し10dBを加え、目標性能を受信電力-82dBmでパケットエラー率 (PER: Packet Error Rate)を10⁻³とした.

図3 2波モデルでの伝搬

表 1 Simulation 設定内容

項目	値
送信周波数f(MHz)	169
伝送距離 d (m)	10~ 2000
送信アンテナ高さHt(m)	150
受信アンテナ高さHrm)	2
送信電力Pt(dBm)	10
送信アンテナ利得 G t(dB i)	0
受信アンテナ利得 G r (dB i)	0
反射面の相対誘電率 <i>ε</i> r	15
反射面の導電率 σ (S/m)	0.005

表 2 回線設計例

項目	単位	値
送信電力	dBm	10
送信アンテナ利得	dB i	0
受信アンテナ利得	dB i	0
受信電力	dBm	-82
受信アンテナNF	dB	7
受信帯域幅	kH z	300
ボルツマン定数	dBm /K-Hz	-198.6
熱雑音電力	dBm	-112
受信P r/N 0	dB	30

3-2. 回線設計

169 MHz 帯での回線設計を行った. 表 2 に示すように,送信電力 10 dBm 送受信のアンテナ利 得 0 dBi とし,受信電力は 3-1 で設定した-82 dBm とした.この結果,ノイズレベルに対する受信 マージンは 30 dB と十分にあることが確認できた.

4. 評価結果

169 MHz 帯用無線の IC には、Texas Instrument 社の CC1120 を選定した. この CC1120 を評価ボ ードに接続し、モジュール間に接続した可変減衰器にて受信電力を変化させ PER の評価を実施し た. PER 評価系のブロック図およびその写真を図 5(a)に示す. 送信出力 -10 dBm, 伝送速度 150 kbps でパケットサイズを 60 Byte と設定し、PER を評価した結果を図 5(b)に示す. 受信電力-96 dBm で PER は 10⁻⁵以下となった. これは 2 波モデルのシミュレーションを踏まえて設定した受信電力 -82 dBm で Packet Error Rate (PER) が 10⁻³以下に対し、十分なマージンがあることが確認できる.

図5 PER 評価系と評価結果

今後, 無線 IC の性能をさらに詳細に評価すると共に, 無線装置製作に向けた詳細設計を行うが, これまでの評価結果を踏まえ, 無線装置としての目標諸元を表 3 とした.

項目	諸元	
種別	実験試験局	
電波の型式	300KF1D	
中心周波数	169.224 MHz	
送信電力	10 dBm	
送信空中線利得	0 dBi, 2.1 dBi	
送信給電線損失	1 dB	
変調信号	2値及び4値のFSK, GFSK	

表3 実験試験局の諸元

参考文献

[1] 総務省, "能動的 3 次元通信エリア制御を用いた複数無人航空機による同時観測技術の研究開発", http://www.soumu.go.jp/main_content/000525476.pdf.

[2] 総務省, "電波法施行規則の一部を改正する省令案等に係る意見募集 -ロボットにおける電 波利用の高度化及び特定小電力無線局の高度化に係る技術基準の導入-", 2016 年 7 月 13 日,

http://www.soumu.go.jp/menu_news/s-news/01kiban14_02000267.html

[3] 北沢祥一,工藤玲,上羽正純,無人航空機用 169MHz 帯制御無線システムの検討,電子情報 通信学会 衛星通信研究会,SAT2017-63, pp34-40 2018 年 2 月 22-23 日,山口市

エンジン模型飛行機搭載慣性航法装置に対する振動対策の検討

上羽 正純(航空宇宙システム工学ユニット 教授)

○鎌田 智寛(航空宇宙総合工学コース 1年)

目谷 葵 (航空宇宙システム工学コース 学部4年)

1. 研究の背景と目的

本学航空宇宙機システム研究センターでは、小型無人航空機オオワシ2号機を用いて離陸から 着陸までを自律的に行う誘導制御技術の研究が進められている.一般的な航空機は機体の姿勢、 位置、速度といった飛行状態を把握するため、慣性航法装置を使用している.本実験機もこの例 にもれず、慣性航法装置から飛行状態を把握し、姿勢制御を行っている.しかしながら、航空機 及び実験機ではエンジン等に振動や電磁ノイズの影響を慣性航法装置が受けると正確な機体姿勢 を把握することができない.本研究では振動による慣性航法装置への影響を確認し、主要周波数帯 での影響を低減することを目的に行った測定結果を報告する.

2. 慣性航法装置と装置の問題点

本測定ではハイブリット慣性航法装置である TinyFeather(図 1)を使用して,機体重心付近に設置している.この一般製品である慣性航法装置は振動を受けると姿勢角にノイズやバイアスがかかる.

図1 慣性航法装置

3. 振動特性の把握及び対策

3-1. 測定構成

本測定では表1の機器を用いて、図2に示すように測定系を構成した.

機器名		注釈
模型機体	カルマートα60	京商
計測機器	AC コンバータ	AIO-160802AY-USB
	計測ソフト	C-LOGGER
	5V レギュレータ	
	3軸加速度センサ	型番 MA-3-50AD

表1 実験機器

図2 測定構成

振動を計測する加速度センサは重心付近に設置する慣性航法装置の場所に設置した(図 3).実験機 を地上でエンジンを3分間最高回転させることにより振動の影響を測定した.

振動対策方法として慣性航法装置を模した木材と板との間に緩衝材を挟み込みマジックテープ により固定した(図 4). 緩衝材の下にある板はねじ止めにより固定した.

図3 加速度センサ固定

図4 軽減策

3-2. 測定手法

測定においては、図5のように主翼前方に水を入れた一斗缶を配置し、機体が前に動かないようにする.サンプリング時間10[msec]で測定を行い、試行回数は対策をしていない状態で3回、 用意した表2に示す3種類の緩衝材を使用して、それぞれ2回ずつ実験を実施した.

表2 緩衝材

試験材名	硬度	厚み
スポンジシート1	$C35\pm5$	18[mm]
スポンジシート2	$ m C7\pm5$	18[mm]
低反発ウレタン		18[mm]

図 5 測定状況

3-3. データ解析方法

サンプルデータは計測時間 3 分のうち 16384(2¹⁴)個のデータ(163.84[s])を参照する. サンプルデ ータはバイナリ値で出力され,式(1)の変換式で電圧値を求め,

電圧値[V] = バイナリ値×(レンジ最大値(10V) – レンジ最小値(-10V))÷分解能(65536)+

レンジ最小値(-10V) (1)

(1)式により得られた電圧値を(2)式を用いて加速度に変換する.

加速度 $\left[\frac{m}{s^2}\right]$ = 電圧値[V] ÷ 0.02 - $\frac{Vcc}{2}$ (オフセット 2.5[V]) (2)

算出された加速度から MATLAB の periodgram 関数を使用してパワースペクトル変換で求める.

3-4. 測定結果

4 種類の測定から算出された各方向スペクトル結果を図 6,7,8,9 に示す. X 軸は青色の線, Y 軸 は赤色の線, Z 軸は黄色の線で示す.

振動対策により 40[Hz]までのパワー/周波数[dB/Hz]が軽減された.

また, 測定したスペクトルについて, 方向及び周波数毎に平均を算出した結果を表 3,4 に示す.

		Х		Y		Z	
[Hz]		0~4	40	0~40		0~40	
		平均值	差分	平均值	差分	平均值	差分
	1	24.32	-	20.12	-	21.11	-
対策なし	2	24.27	-	19.95	-	20.78	-
[dB/Hz}	3	25.15	-	19.43	-	21.23	-
	平均	24.58	-	19.83	-	21.04	-
シート1	1	3.03	21.55	0.97	18.86	7.97	13.07
[dB/Hz}	2	1.94	22.64	-0.96	20.79	4.28	16.76
シート2	1	3.85	20.73	3.87	15.96	8.93	12.11
[dB/Hz}	2	4.03	20.55	3.86	15.97	8.46	12.58
ウレタン	1	7.26	17.32	5.14	14.69	9.00	12.04
[dB/Hz}	2	6.38	18.2	4.88	14.95	8.75	12.29

表 3 振動低減(0~40[Hz])

表 4	振動低減(40~50[Hz])	١
<u> </u>		,

		Х		Y		Z	
[Hz]		40~	50	40~	50	40~50	
	_	平均值	差分	平均值	差分	平均值	差分
	1	21.03	-	18.76	-	17.01	-
対策なし	2	20.95	-	19.38	-	17.29	-
[dB/Hz}	3	20.17	-	18.66	-	16.10	-
	平均	20.72	-	18.93	-	16.8	-
シート1	1	13.22	7.5	5.94	12.99	13.08	3.72
[dB/Hz}	2	10.24	10.48	7.57	11.36	16.08	0.72
シート2	1	16.94	3.78	13.21	5.72	22.44	5.64
[dB/Hz}	2	13.89	6.83	11.09	7.84	17.25	0.45
ウレタン	1	25.50	4.78	18.12	0.81	14.87	1.93
[dB/Hz}	2	21.42	0.7	15.99	2.94	12.90	3.9

黄色で明解した数字は、対策なしとの対策した結果との差分である.また、青色の字で明記し た箇所は改善効果が見られた対策であり、赤字で書かれた箇所は対策前に比して悪化した対策結 果である.全ての緩衝材である程度の振動低減ができているが、高周波数帯では逆に緩衝材によ り悪化している.

4. まとめ

試験結果より,緩衝材を用いることにより 0~40[Hz]帯での 10~20[dB]の低減を確認した. Z軸 方向の振動はどの緩衝材も 10[dB/Hz]強の軽減しているのが確認できる.ウレタンは X 軸, Y 軸 ともに 15[dB/Hz]の軽減であり,2種類のスポンジシートと比べると軽減量は低い.スポンジシー ト2は X 軸ではスポンジシート1と変わらない低減効果を確認できるが,Y 軸,Z 軸ではウレタ ンと同性能であるのがわかる.一番低減効果が高かった硬度の高いスポンジシート1が X 軸,Y 軸に対しても高い軽減量を維持している.しかし,40~50[Hz]帯での軽減量はどの緩衝材も Z 軸に 対しては 0[Hz]~40[Hz]までの低減量と比べると効果が薄いため,改善案を考案する必要がある. また,機体搭載物は可能な限り体積量を減らす必要があり,体積軽減のために緩衝材の枚数を減 らした振動対策試験の実施をし,軽減効果を確認する.

上羽 正純(航空宇宙システム工学ユニット 教授) 〇植村 拓也(航空宇宙システム工学コース 学部4年)

1. 研究の背景と目的

本学航空宇宙機システム研究センターでは、大気中を高速・高高度で飛行するための基盤技術 を実証するフライングテストベットとして小型無人超音速実験機(オオワシ2号機)の研究・開 発が進められている.本実験機は、長距離を高速で着陸するため、その距離並びに速度を低減す ることが重要である.

これまで,航空機の着陸距離短縮の研究は,有人機を対象にSTOL (Short Taking-Off and Landing) 機として国内外問わず進められている.有人の場合,有視界飛行による着陸において,パイロッ トは PAPI (精密進入経路角指示装置)を目視で確認しながら着陸を実行しなければならない.例 えば,国内でのSTOL 機である「飛鳥」用の PAPI は最大で 7[deg.]の設定進入経路角が設定[1]さ れており,視界への影響を与えないようになっている.これに対して,本研究の対象となる固定 翼 UAV (Unmanned Aerial Vehicles) においてはパイロットの視界を考慮する必要はないため,進 入経路角を従来の STOL 機よりも大きくし,着陸距離短縮を図ることが可能である.

本研究では固定翼 UAV の着陸における速度及び距離のうち,距離に着目して低減化を検討した 結果を報告する.

2. 着陸制御開始から接地までの水平距離

一般に,着陸では縦方向の制御として図1に示す経路が設定され,経路に応じてグライドスロープ制御とフレア制御が実行される.フレア制御時の経路を指数関数近似した場合,着陸制御開始から接地までの水平距離L_a + L_fは(1)式で定義される.

図1 着陸経路

$$L_{g} + L_{f} = \frac{(k-1)\tau V_{0} \sin \theta_{G} + H}{\tan \theta_{G}} \qquad \qquad \frac{\partial (L_{g} + L_{f})}{\partial \tau} = (k-1)V_{0} \cos \theta_{G} > 0$$

$$(\because k = \ln \frac{\tau V_{0} \sin \theta_{G}}{h_{TD}} > 1) \qquad \qquad \frac{\partial (L_{g} + L_{f})}{\partial \theta_{G}} = -\frac{(k-1)\tau V_{0} \sin \theta_{G} + H}{\sin^{2} \theta_{G}} < 0$$

$$\subset \mathcal{O} \succeq \And \tau > 0, \ 0^{\circ} < \theta_{G} < 90^{\circ}. \qquad (1) \qquad \qquad (2)$$

(1)式は、着陸制御開始時の速度 V_0 、着陸制御開始時の高度H,接地時の高度 h_{TD} を一定とすれば、 フレア時定数 τ とグライドスロープ角 θ_G の関数である、本式を τ と θ_G で偏微分すると、(2)式のよう になり、k > 1であるため、 θ_G の増大および τ の減少に対して $L_g + L_f$ は減少することがわかる.

3. 揚力の最大化による着陸距離短縮方法

3-1. 応答性の高い機首引き上げと揚力及び降下率

前述のように θ_{G} を大きくすることにより、着陸距離を短くすることが可能であるが、一方、フレア制御開始時の高度 h_{0} における降下率は大きくなる.これを解決するには、着陸進入速度を小さくすること、あるいはフレア制御にて応答性の高い機首引き上げによる上向きの加速度を発生し、下向きの速度を相殺する方法が考えられる.着陸速度を一定とした場合は必然的に後者の手法となる.上向きの加速度を可能な限り大きくすることにより、少なくとも従来と同程度の接地時降下率での自動着陸を実現させる.

3-2. フレア制御の高帯域化

応答性の高い機首引き上げを実行するためには、フレア制御の制御帯域を高くすることが必要 である.

図2に等価変換後のフレア制御系を示す.

図2 等価変換後のフレア制御系

(3)式は図 2 より得られるフレア制御系の一巡伝達関数W(s), (4)式はその一巡伝達関数のゲイン |W(s)|である. τ の減少によって|W(s)|は大きくなり、ゲイン交差周波数 ω_{gc} は大きくなることが わかる. 結果として、フレア制御の帯域を高くし、応答性の高い機首引き上げを可能にする.

4. シミュレーション

4-1. シミュレーション用制御設計

電動模型機(京商カルマートα40)を対象に制御系設計及びシミュレーションを行う. H = 40[m], $V_0 = 20[m/s]$, $\theta_G = 25[deg.]$, $h_{TD} = 0.1[m]$ と設定した着陸経路に対して、フレア制御について τ を 2.0[s], 1.5[s], 1.4[s], 1.3[s], 1.2[s]と小さくしていき、制御帯域(ゲイン交差周波数 ω_{gc})を高くし、同程度の安定余裕を確保する. 具体的には、表1に示す $\tau = 2.0$ のときの安定余裕をノミナル値とし、このノミナル値からゲイン余裕は3[dB]、位相余裕は5[deg.]の偏差内に収まるように PID パラメータにて調整する.

表1はそれぞれのフレア時定数に対応する制御器と安定余裕及びゲイン交差周波数をまとめた ものである. $\tau = 2.5[s]$ に対応する項目は既存の着陸シミュレーションで使用された値であり、ゲ イン余裕は14[dB]程高く、位相余裕はほぼ同じである.

フレア時定数τ [s]	フレア制御器 $C_{flare}(s)$ PID: $K(1 + (\tau_l/s) + \tau_D s)$			Gm[dB]	Pm[deg]	ω [Hz]
/ / / ··· / / L &/ / [5]	比例ゲイン K	積分時間	微分時間	Ծողգեյ	r m[ueg.]	^w gc[112]
2.5(既存)	$\pi/180$	2	0.4	39.7	68.5	0.0507
2.0	3.4π/180		0.75	25.8	75.6	0.0648
1.5		1		25.4	72.5	0.0803
1.4	$3\pi/180$		0.65	24.8	72.1	0.0848
1.3		2	0.65	24.3	74.1	0.109
1.2		2		23.6	72.9	0.117

表1 τとフレア制御器,安定余裕(ゲイン余裕 Gm・位相余裕 Pm)及びゲイン交差周波数ωac

4-2. 失速迎角の設定と目標とする接地時降下率

(a)失速迎角の設定

失速迎角は 10[deg.]と設定した. この失速迎角は電動模型機の機体諸元から推算したものである. 機首引き上げ時,迎角が失速迎角の直前まで上昇したときに揚力は最大となる.

(b)目標とする接地時降下率

本着陸シミュレーションでは, $h_{TD} = 0.1$ [m]のときを接地とみなし,その時の降下率を接地時降下率とし,接地時降下率の上限を1[m/s]とした.

以上の上限を設定した後、それら上限を超えないシミュレーションを採用する.

5. シミュレーション結果

比較基準として既存の着陸シミュレーション結果($\tau = 2.5[s]$, $\theta_G = 10[deg.]$ のとき)を図3に、 本研究の着陸シミュレーション結果の一例($\tau = 1.3[s]$, $\theta_G = 25[deg.]$ のとき)を図4に示す.

シミュレーション結果より、大きな*θ*_{*G*}による降下とフレア制御の高帯域化により、従来と同程 度の接地時降下率を維持しつつ、着陸制御開始から接地までの水平距離は減少するという結果が 得られた.

ただし、 $\tau \ge 1.2[s]$ まで小さくしたとき、 $\theta_G = 25[deg.]$ の着陸において機首引き上げ時の迎角が、 設定した失速迎角 10[deg.]を上回った.一方、接地時降下率は実施したすべてのシミュレーション において1.0[m/s]を上回ることがなかった.そのため、本着陸シミュレーション条件(H = 40[m], $V_0 = 20[m/s]$, $\theta_G = 25[deg.]$, $h_{TD} = 0.1[m]$)に対して τ は 1.3[s]まで小さくしてフレア制御の高 帯域化を図ることが可能である.また、フレア制御の制御帯域を高くしたことにより、機首引き 上げ時の迎角ピーク値が上昇し、失速を起こしやすくなっている.

着陸距離の短縮について,既存 ($\tau = 2.5[s]$, $\theta_G = 10[deg.]$ のとき)の着陸制御開始から接地ま での水平距離は 288[m]である一方,本研究 ($\tau = 1.3[s]$, $\theta_G = 25[deg.]$ のとき)では 153[m]であ った.およそ 130[m]程度の短縮がなされていることを確認した.図5は,着陸制御開始位置を同 じにしたときの,既存の着陸軌跡と本研究で得られた着陸軌跡を比較したものである.

6. まとめ

着陸時,大きな*θ*_Gによる降下に加え,フレア制御時の制御帯域を高くするといった手法は,従 来程度の接地時降下率の維持および着陸距離の短縮に有効であることを確認した.今後は,実機 を使用した実証実験を行う予定である.

参考文献

- [1] 村上義隆,照井祐之,花松武志,斉藤健二,横山晋太郎,稲垣敏治, STOL 実験機用 PAPI の設置と性能試験結果,1988.
- [2] 吉川康夫, 航空の世紀, 技術堂出版, 1996.
- [3] 加藤寬一郎, 大屋昭男, 柄沢研治, 航空機力学入門, 東京大学出版会, 2012.
- [4] 片柳亮二, 航空機の飛行力学と制御, 森北出版, 2007.
- [5] 片柳亮二, 航空機の飛行制御の実際, 森北出版, 2011.
- [6] 横田滋弘,小型無人超音速機の完全自律着陸に向けた制御系構成法の研究, 室蘭工業大学大学院修士学位論文,2016.

上羽 正純(航空宇宙システム工学ユニット 教授) ○真下 滉平(航空宇宙システム工学コース 学部4年)

1. はじめに

本学の航空宇宙機システム研究センターでは、高高度の大気中を超音速で飛行する基盤技術を 研究しており、この実証機として小型無人超音速機"オオワシ 2"の開発を行っている. 超音速 機は燃料消費が大きいため、目標とする超音速を目標とする高度で達成する場合、最小の搭載燃 料で、これら目標を達成するための最適経路で飛行させる必要がある。本研究では数値解析によ る燃料最小で高高度 / 超音速を達成するための最適問題として、経路生成を"オオワシ 2"を対 象に行った結果を示す.

2. 最適問題の解法

2-1. 最適問題の解法の種類

最適問題の解法には大別して間接法と直接法の2種類の方法がある.それぞれ表1に示すよう な長所 / 短所を有す[1]. 本研究は飛行速度が常に変化し、加速度に制限を付加するため扱いが容 易な直接法を使用した.

表1	間接法と直接法の特徴([1]参照)			
	間接法	直接法		
定式化	難しい	簡単		
解析時間	初期値によっては速い	遅い		
収束半径	狭い	広い		
計算量	少ない	多い		
拘束条件	付加しづらい	付加しやすい		

2-2. 直接法の手順

直接法は図1のように時間で変化する状態量を点列として離散化し、各点に状態方程式等の等 式制約条件を付与する方法である.手順は以下の通りである.

- (1) 時刻 $t \in N$ 分割し、 $t = [t_1, ..., t_{N+1}]$ とする. $t_1, ..., t_{N+1}$ に対応する状態量 \mathbf{x} を離散化し、 $\mathbf{x} =$ $[x_1, ..., x_{N+1}]$ とする.
- (2) $t_1, ..., t_{N+1}$ に対応する制御量 $u = [u_1, ..., u_{N+1}]$ をxに加え、未知量Xとする.

(1)

- (3) 微分方程式の差分近似と境界条件から等式制約条件を与える.
- (4) 状態量,制御量に制限を加えるため,任意の不等式制約条件を与える.
- (5) 目的関数を設定する.
- (6) 数値解析を実行する.

3. 最適飛行経路の生成方法

3-1. 解析条件

表2の条件にて数値解析を行った. 推力と比推力はGG-ATR(ガスジェネレータ・エアターボ ラムジェットエンジン)の熱解析データを用いた.

想定機体	オオワシ2			
目標高度[m]	10000			
目標速度[m/s]	299.58			
機体乾燥重量[kg]	270			
推力 / 比推力	GG-ATR 熱解析データ			
高度h[m]での気温T _(h) [K]	$T_{(h)} = T_{ref} - 0.0065h$			
高度h[m]での密度p _(h) [kg/m ³]	$\rho_{(h)} = \rho_o \cdot e^{-\beta h}$			
加速度の制限	6G			
距離の下限[m]	0			
高度の下限[m]	0			
水平速度の下限[m/s]	0			
垂直速度の下限[m/s]	0			
(<i>T_{ref}</i> :地上気温=288.15[K],				

表2 数値解析の解析条件

 ρ_0 :地上大気密度= 1.225[kg/m³], β = 9114)

3-2. 状態方程式

3-2-1. 状態量と運動方程式

解析を簡易に行うため,機体は図2に示すような二次元の質点系とした.機体の重量mを考慮し,状態量xおよび状態量の微分fは式(2)とした. *m*_fは燃料消費率である.

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ u \\ v \\ m \end{bmatrix}, \qquad \mathbf{f} = \begin{bmatrix} u \\ v \\ a_x \\ a_y \\ -\dot{m}_f \end{bmatrix}$$
(2)

機体にかかる加速度は式(3)より式(4)となる.

$$\boldsymbol{F} = \frac{d(m\boldsymbol{v})}{dt} = m\dot{\boldsymbol{v}} + \dot{m}\boldsymbol{v}, \qquad \dot{\boldsymbol{v}} = \frac{\boldsymbol{F}}{m} - \frac{\dot{m}}{m}\boldsymbol{v}$$
(3)

$$\begin{cases} a_x = \frac{F\cos\theta - L\sin\gamma - D\sin\gamma}{m} - \frac{\dot{m}}{m}u \\ a_y = \frac{F\sin\theta + L\cos\gamma - D\sin\gamma}{m} - \frac{\dot{m}}{m}v - g \end{cases} = \begin{cases} \frac{F\cos\theta - L\sin\gamma - D\sin\gamma}{m} + \frac{\dot{m}_f}{m}u \\ \frac{F\sin\theta + L\cos\gamma - D\sin\gamma}{m} + \frac{\dot{m}_f}{m}v - g \end{cases}$$
(4)

3-2-2. 無次元化

数値解析では値が過大または過小である場合、丸め誤差や桁落ちによって解析不能になる、ま たは異常な解が発生する恐れがある。そこで状態量および運動方程式を無次元化することでこの 問題を防いでいる.本研究では終端高度yfと終端時間tfによって無次元化した.無次元化した状 態量と状態量の微分は式(5)、加速度は式(6)のようになる.

$$\mathbf{x} = \begin{bmatrix} x & y \\ y_f & y_f \end{bmatrix}^T \frac{t_f}{y_f} u \frac{t_f}{y_f} v m \end{bmatrix}^T, \qquad \mathbf{f} = \begin{bmatrix} t_f \\ y_f u \frac{t_f}{y_f} v \frac{t_f^2}{y_f} a_x & \frac{t_f^2}{y_f} a_y - \dot{m}_f \end{bmatrix}^T$$
(5)
$$\begin{cases} \frac{t_f^2}{y_f} \frac{F}{m} - y_f \frac{C}{m} (C_L \sin \gamma + C_D \cos \gamma) + t_f \frac{\dot{m}_f}{m} \hat{u} \\ \frac{t_f^2}{y_f} \frac{F}{m} + y_f \frac{C}{m} (C_L \cos \gamma - C_D \sin \gamma) + t_f \frac{\dot{m}_f}{m} \hat{v} - \frac{t_f^2}{y_f} g \\ (\dot{\tau}_c \dot{\tau}_c^* \cup C = \frac{1}{2} \rho \hat{V}^2 S, \ \hat{V} = \sqrt{\hat{u}^2 + \hat{v}^2}) \end{cases}$$

なお、解析前は終端時間tfが不明であるため、未知パラメータとして式(1)のXに加え、式(7)と して解析を行っている.

$$\mathbf{X} = {}^{\mathbf{t}} \left[x_1, \dots, x_n, y_1, \dots, y_n, u_1, \dots, u_n, v_1, \dots, v_n, \alpha_1, \dots, \alpha_n, t_f \right]$$
(7)

3-3.等式制約条件

状態量xの微分方程式の前進一次差分近似,状態量の微分fの平均は式(8)となり,式(9)のような 等式制約条件ができる.

$$\dot{\mathbf{x}} \approx \frac{-\mathbf{x}_i + \mathbf{x}_{i+1}}{dt}, \qquad \hat{\mathbf{f}} \approx \frac{\mathbf{f}_i + \mathbf{f}_{i+1}}{2} \tag{8}$$
$$\hat{\mathbf{f}} - \dot{\mathbf{x}} = 0 \tag{9}$$

(9)

また、各状態量の境界条件より式(10)のような等式制約条件が成り立つ.これも解析条件に加え る. m_o は初期機体重量, V_2 は m_o 時の離陸安全速度, x_f は終端距離であり, m_o と x_f は値を固定せ ずに解析を行う.

$$\mathbf{x_1} - \begin{bmatrix} 0\\0\\V_2\\0\\m_o \end{bmatrix} = \mathbf{0}, \qquad \mathbf{x_n} - \begin{bmatrix} x_f\\10000\\299.58\\0\\270 \end{bmatrix} = \mathbf{0}$$
(10)

3-4. 目的関数

目的関数は初期重量 m_o と重み係数Aをかけた終端時間 t_f とした.

目的関数:
$$m_o + At_f$$
 (11)

4. 解析結果

4-1. 分割数および目的関数による経路の変化

本解析においては、分割数を大きくすると計算時間が増大することは明白である.よって、分 割数を増大させても,飛行経路があまり変化しない分割数で解析を進めることとした.このため, 目的関数を初期重量のみ(A = 0)とし、分割数を 20~100 で変化させ、飛行経路の変化が少なくな った N=100 で,引き続き目的関数の重み係数 A を変化させて,搭載燃料最小となる目的関数を 選定した.

この結果,係数Aを変化させた場合の飛行経路は図3に、計算時間と燃料搭載重量は図4のようになった.重み係数Aが増加すると解析時間は増加する一方, *A* = 16で燃料搭載重量は最小の約46kgが得られた.

図3 重み係数Aの変化による飛行経路

4-2. 動圧 / 経路角一定の経路との相違

4-1で燃料搭載量が最小となったA = 16での経路と、動圧一定時および経路角一定時の経路の比較を図 5 に示す.また、それぞれの燃料搭載量を表 3 に示す.目的関数が初期重量のみ(A = 0)の経路も比較対象に加えている.目的関数が $m_o + 16t_f$ の場合の経路では、燃料搭載量が動圧一定または経路角一定の経路よりも $6\sim11 \text{ kg}$ 少ないことが分かる.

5. まとめと今後の課題

5-1. まとめ

- 直接法を用いて初期重量および終端時間の最小化を目的とする経路の生成を行った.
- 動圧一定または経路角一定の経路よりも少ない燃料搭載量で超音速を達成した.

5-2. 今後の課題

- 分割数を増加させると解析時間が超大になった.より詳細な解析には間接法や DCNLP 法, BDH 法といった異なる手法または高度な計算ソフトが必要になる.
- 目的関数に終端時間を追加しないと燃料の低減ができなかった.終端距離等,目的関数 になり得る他のパラメータについても検討が必要と考える.

参考文献

[1] 直接法による最適計算手法と宇宙機への応用について,宇宙開発事業団技術報告, ISSN 1345-7888, NASDA-TMR-010010, 2001.12

[2] 福島雅夫, 数理計画法入門, 朝倉書店, 2011.2.15

上羽 正純(航空宇宙システム工学ユニット 教授) 北沢 祥一(航空宇宙システム工学ユニット 教授) 〇前田 庸佑(航空宇宙総合工学コース 修士1年) 中島 桜子(航空宇宙総合工学コース 修士1年) 鎌田 智寛(航空宇宙総合工学コース 修士1年) 植村 拓也(航空宇宙システム工学コース 学部4年) 目谷 葵葉(航空宇宙システム工学コース 学部4年)

1. はじめに

本学航空宇宙機システム研究センターでは大気中を高速・高高度で飛行するための基盤技術の 研究が行われており、そのテストベットとして小型無人超音速機(以下オオワシ2号機)の開発 が進められている.基盤技術の一つである誘導制御技術は、離陸から着陸まで機体を安定的に自 律飛行させるための重要技術である.本技術をフルサイズの実験機に適用する前に、先行して小 型無人超音速機の3分の1スケール機を用いて実証することはリスク低減の観点から非常に有用 である.すなわち、オオワシ2号機で要求されている誘導制御技術は、3分の1スケールのオオ ワシ2号機において超音速飛行の部分を除いて実証可能である.本報告では、その目的のため製 作した3分の1スケールのオオワシ2号機について、前段階として、離陸フェーズの一部である 滑走試験を2018年3月16日に手動操縦で実施した結果を述べる.

2. 実証試験

2-1. 機体

機体は、図1に使用する3分の1オオワシ2号機を示す. 滑走段階においては、自重を支える とともに、ステアリング操作性をよくして、必要な速度を達成することが重要である. 主脚は、 図2に示すように板形式,前脚は直径4 mmのピアノ線をコイル状にして衝撃を吸収する方式を 採用した.

図1 使用機体

図2 主脚

図3 前脚

2-2.実験機器の構成

図1に示した機体をまずは手動飛行させるためには,滑走時の走行及び飛行のための推力なら びに姿勢角等を変化させる舵面駆動用サーボモーター,さらには各種電源が必要である.さらに, 滑走飛行状態を測定するために,計測装置を搭載する.市販の無線通信モジュールを使用した無 線通信装置により,慣性航法装置で取得した位置,速度,姿勢角情報を地上設置のノート PC へ 送信する (図4).計測装置,推力及び舵面駆動装置は,表1のようになっており,総重量4.5 kg である.

実験は北海道白老郡白老町にある白老滑空場全長 800 m・幅 30 m の滑走路にて実施する.手動 操縦にてフルスロットルで滑走させ、速度を記録する.

2-3. 目標性能

ステアリング操作性の確認を行い、本機体が理論上の離陸可能速度 20[m/s] を達成可能かどうか検証する.

2-4. 結果

2回の滑走によりデータを取得,最大到達速度は,1回目17.4[m/s],2回目18.4[m/s]となった. 目標である20[m/s]には,不足していること,また,ステアリング操作性に関しては,低速時にや や難があることが判明した.図5に1本目の対地速度,滑走路中心線方向速度,滑走路中心線に 対して横方向の速度,図6に滑走軌跡を示す.図7に2本目の対地速度,滑走路中心線方向,滑 走路中心線に対して横方向の速度,図8に滑走軌跡を示す.

図6 速度タイムヒストリ(1本目)

図6 滑走軌跡(1本目)

図7 速度タイムヒストリ(2本目)

図8 滑走軌跡(2本目)

3. まとめ

本年度は誘導制御技術の飛行実証試験の前段階として,手動操縦で滑走試験を実施した.結果, 目標速度である 20[m/s]に到達することはできなかった.本滑走試験の目的の一つであるステアリ ング操作性の確認においては,低速時にやや難があることを確認した.このステアリング操作性 を改善することが,目標速度到達に繋がると考えている.今後は,ステアリング操作性を改善し, 再度滑走試験を実施する.その後,各種飛行モード毎に飛行実証を実施する. 1.研究の目的

オオワシ2号機 M2011C 形状にお ける2つの空力微係数C_{ma},C_{mõe}は重 心位置誤差x_{cg}(空力中心と機体重心 との誤差)に依存して変化する(図 1).しかしながら,制御系設計では, 基本的に空力微係数を単一の値とみ なす必要があり,このような変動に 対応する為には、ロバスト化に対応 した設計手法を適用し,性能評価を 行う必要がある.

本研究では、従来オオワシ向けの 制御系設計手法として使用してきた PID 制御による設計と、今回新たに適用する MDM/MDP 法による設計を高度制御器 の設計其々について、両者の制御性能を 比較した. MDM/MDP 法では、最適計算 によるノミナル性能の最適化、不確実要 素に対するロバスト化の両方が可能であ る.

2. 設計手法

(ア) PID 制御器

図 2 に示す制御系のうち、ピッチ角制 御(上)と高度制御(下)の PID ゲイン *K_p,K_i,K_dをボード線*図,インパルス及び ステップ応答の結果に応じて調整する.

(イ) MDM/MDP 制御器

PID 制御器と形は同じまま, PID ゲインを最適計算[1]により算出する.

3. 要求性能

評価対象であるピッチ角制御器及び高度制御器のうち、ピッチ角制御器に関しては、表1に示 す4項目について要求性能を設定した.

上羽 正純(航空宇宙システム工学ユニット 教授) 〇中島 桜子(航空宇宙総合工学コース 博士前期 1 年)

表1 要求性能

項目	ゲイン余裕	位相余裕	オーバーシュート	整定時間
内容	6 dB 以上	45 deg 以上	25 %以内	3秒以内(±5%)

4. 設計結果

PID 制御器及び MDM/MDP 制御器の性能を比較するために,技術計算言語 Matlab の極ゼロプロット機能を用い,両設計の支配的な極の配置を比較した結果を図3に示す.この図から以下の二点を確認した.

(1) MDM/MDP 設計の高度制御器について,極が全体的に実軸の-方向に移動したことから,目標値への収束速さが向上していることがわかる.(最適計算によるノミナル性能の向上)

(2) MDM/MDP 設計の高度制御器, ピッチ角制御器について, 極が虚軸に近づいていることから, PID 設計より制御帯域が低く設定されたことが分かる(不確実要素に対するロバスト化).

図3 設計制御器の極配置

5. シミュレーション結果

Matlab simulink にて6自由度運動方程式を解く運動シミュレータを作成し、設計した制御器に よる飛行制御シミュレーションを行った.運動方程式の解法にはクオータニオンを用い、重心位 置誤差が機体の静力学上の釣り合いに及ぼす影響と重心位置変動に依存する無次元空力微係数 $C_{ma}, C_{m\delta e}$ の変化を考慮してモデルを作成した. [2]

本シミュレーションでは,初期高度 500 m から高度を 600 m (+100 m の上昇から高度維持), 500 m (初期高度維持),400 m (-100 m の降下から高度維持)へと制御する場合を想定した. 図4に設計による飛行状態を示す.

図4 シミュレーション結果(飛行状態)

6. 結論

シミュレーション結果より, PID 設計制御器及び MDM/MDP 設計制御器の制御性能について, 以下の 2 点が明らかとなった.

(1) PID 設計制御器は、オーバーシュートが少なく比較的穏やかな高度変化を促すという良い面がある一方で、ノミナル状態での目標値への収束の速さと重心位置変動に対するロバスト性において MDM/MDP 制御器に劣る.

(2) 設計手法を PID 設計から MDM/MDP 設計に変えることで、重心位置が後方へ下がったときの不安定飛行に入る限界領域をおよそ 10 cm 多く許容できるようになることが期待できる.

7. 今後の課題

今回の制御設計では、高度制御器についての制御性能検討を行ったが、重心位置変動について、 安定飛行のための条件がより厳しくなるのは短時間での機体の引き起こし動作(マヌーバ飛行、 着陸時のフレアなど)を要求される飛行である.今後は高度制御器以外の縦系制御器についても 同様の検討を行い、オオワシ2号機を用いた飛行ミッションから逆算し、安定性を確保できる領 域を広げるような制御系の設計手法を適切に選択していく必要がある.

参考文献

[1] 航空・宇宙における制御/畑剛,泉達司,川口淳一郎/コロナ社
[2] DYNAMICS of FLIGHT stability and control / Bernard Etkin, Lloyd Duff Reid / JOHN WILEY&SONS.INC

上羽 正純(航空宇宙システム工学ユニット 教授) 〇目谷 葵葉(航空宇宙システム工学コース 学部4年)

1. 研究の背景と目的

本学の航空宇宙機システム研究センターでは、離陸から超音速飛行を経て着陸までを完全自律 で行う小型無人超音速実験機をテストベッドとした基盤技術の研究開発が進められている.これ までの離陸制御の研究[1]では有人機の離陸を参考に離陸プロファイルを3つに分け、それぞれに ついて誘導制御系を構成し、電動ラジコン機を用いた実証実験に成功している.しかし、超音速 機と電動ラジコン機では大きな差異があるので既存の成果をそのまま適用するには不十分である.

本離陸における上昇フェーズにおいては、機首上げにより機体が滑走路から離れた時点から所 定の高度に到達するまでスロットルを一定のまま、つり合い状態を速度、姿勢角、位置について 目標を決め、制御している.目標速度は推力一定の釣り合い状態であるためエレベーターによる ピッチ角制御で行われている.然るに、離陸上昇時の航空機の離陸上昇パスは不明である.また、 離陸にあたっての評価基準も決定されていない.そのため本研究では、離陸上昇時の評価基準と して上昇率を最大とすることとし、それを実現する経路とともに解析的に導出することを目的と する.

2. 最適化問題による上昇経路の算出

上昇率が最大となる上昇経路を離陸上昇時の航空機の運動をつり合い式として定式化し,最適 化問題として解く.

2-1. 上昇経路の適用区間

離陸では図1に示すように3つのフェーズに分けて,それぞれについて制御系を構成している. まず静止状態から滑走を始め機首上げ速度まで加速する地上滑走フェーズ,次に機首上げを行い, 姿勢を維持したまま離陸安全速度まで加速する機首上げフェーズ.最後に離陸安全速度を保ちな がら地上高 400[ft]まで上昇する離陸上昇フェーズである.このうち離陸上昇フェーズにおいて上 昇率最大となる経路を検討する.

図1 離陸プロファイル

2-2. 離陸上昇時の機体の運動の定式化

離陸上昇中は一般に主翼は水平に保ち,方位角も概ね滑走路に並行であるので,離陸上昇中の 航空機の運動はx, z軸の並進運動とy軸まわりの回転運動のみの,かつ,つり合い状態にある 定常運動として扱う.図2に基づき,進行方向と進行方向に垂直な方向のつり合い状態を考える と,それぞれ(1),(2)のようになる.

図2 航空機に作用する力

機体重心の速度方向のつり合い:
$$f_H(V, \alpha, \gamma) = T \cos(\alpha + \varepsilon) - D - W \sin \gamma = 0$$
 … (1)

機体重心の速度に垂直な方向のつり合い: $f_V(V, \alpha, \gamma) = T \sin(\alpha + \varepsilon) + L - W \cos \gamma = 0$ …(2)

※ここでL, D, W, α, γ, θ, εはそれぞれ揚力, 抗力, 重量, 迎角, 経路角, ピッチ角及びエンジンの取 り付け角である.また, 揚力, 抗力, 推力については迎角と飛行速度の関数とした.

$$L = L(V, \alpha) \cdots (3), D = D(V, \alpha) \cdots (4), T = T(V) \cdots (5)$$

2-3. 最適化問題による解法

変分法による最適化問題を用いて上昇率が最大となる経路を求める.このため,評価関数をL = V sin γとし,前節で定義したつり合い式(1),(2)を制約条件にハミルトニアンHを以下のように定義する.

 $H = V \sin \gamma + \lambda_1 \{T \cos(\alpha + \varepsilon) - D - W \sin \gamma\} + \lambda_2 \{T \sin(\alpha + \varepsilon) + L - W \cos \gamma\} \cdots (6)$

このハミルトニアンが最適解をもつための条件は以下である.

$$\frac{\partial H}{\partial \alpha} = \lambda_1 \left[-T \sin(\alpha + \varepsilon) - \frac{\partial D}{\partial \alpha} \right] + \lambda_2 \left[T \cos(\alpha + \varepsilon) + \frac{\partial L}{\partial \alpha} \right] = 0 \qquad \cdots (7)$$

$$\frac{\partial H}{\partial \gamma} = V \cos \gamma - \lambda_1 mg \cos \gamma + \lambda_2 mg \sin \gamma = 0 \qquad \cdots (8)$$

$$\frac{\partial H}{\partial V} = \sin \gamma + \lambda_1 \left[\frac{\partial T}{\partial V} \cos(\alpha + \varepsilon) - \frac{\partial D}{\partial V} \right] + \lambda_2 \left[\frac{\partial T}{\partial V} \sin(\alpha + \varepsilon) + \frac{\partial L}{\partial V} \right] = 0 \qquad \cdots (9)$$

$$\frac{\partial H}{\partial \lambda_1} = T\cos(\alpha + \varepsilon) - D - W\sin\gamma = 0 \qquad \cdots (10)$$

$$\frac{\partial H}{\partial \lambda_2} = T \sin(\alpha + \varepsilon) + L - W \cos \gamma = 0 \qquad \cdots (11)$$

これら5つの式からなる非線形連立方程式を数値計算により解き,同時に上昇率が最大となる 迎角,経路角,飛行速度の条件を求める.

2-4. 推力の推算

推力は速度の関数と置いたが、電動ラジコン機、オオワシIIともに安全高度までの離陸上昇時の対気速度や大気密度の変化が推力に与える影響は誤差として許容できる範囲なので一定とし、 各々の場合について解を求める.ここで、基準となる推力はそれぞれ電動機の推力は搭載してい るモーターのカタログスペックの推力を参考にし、オオワシIIについては搭載予定のGG-ATRエ ンジンは現在開発中であり、その推力を適切に定式化することができていないので、推進器の効 率を表す比推力(Isp)の式(12)からGG-ATRの仕様性能として決定している値を用いて推力の推算 をした.

$$\operatorname{Isp} = \frac{1}{g} \left\{ \left(1 + \frac{1}{f} \right) V_{exit} - \frac{1}{f} V \right\} \cdots (12)$$

比推力は推力を重力加速度と燃料の質量流体で除した値であるので、それらを両辺にかけるこ とで式(13)に示す推進器の推力の式を得る.この式について、仕様性能として与えられている排気 速度、コア流量、燃空比を用いて推力を推算した.

$$T = \dot{m}_{cor} \{ (1+f) V_{exit} - V \} \cdots (13)$$

※コア流量: m_{cor} = 3.47 [kg/s], 燃空比: f = 0.2, 排気速度: V_{exit} = 1450[m/s], 対気速度:
 V = 76.09 [m/s]. 対気速度は既存の離陸制御での浮揚速度とし,この浮揚速度での推力を推力の基準とした.

3. 計算結果

Excel ソルバーを用いて上記(7)式~(11)式からなる非線形連立方程式を数値計算により求解を 行い,電動ラジコン機とオオワシIIについて離陸上昇時の最適な迎角,経路角,飛行速度を求め る.実際の推力の正確な値は不明なので,電動ラジコン機では基準となる推力に対して±15%,オ オワシIIでは-30%までの変動時の範囲で解を求めた.

以下図3, 図4及び表1, 表2にそれらの結果を示す.

± 1	(長手) ニ	22-	い地の目上	一日々仙
衣丨	電動フ	シユ	/ 熾り取り	、上升禾件

推力	推力の亦と変	迎角	経路角	対気速度	上昇率
[kgf]	推力の変化学	[deg.]	[deg.]	[m /s]	[m /s]
3.91	+ 15%	6.45	1.83	13.49	0.431
3.74	+ 10%	6.62	1.52	13.31	0.354
3.57	+ 5%	6.81	1.21	13.13	0.278
3.4	±0%	7.00	0.90	12.95	0.203
3.23	-5%	7.20	0.58	12.77	0.129
3.06	-10%	7.41	0.25	12.59	0.056
2.89	-15%	7.64	-0.07	12.41	-0.016

表2 オオワシⅡの最大上昇条件

推力		迎角	経路角	対気速度	上昇率
[kgf]	推力の変化率	[deg.]	[deg.]	[m /s]	[m /s]
588.5	±0%	4.63	5.01	93.03	8.116
529.7	-10%	5.00	4.02	89.57	6.275
470.8	-20%	5.43	3.00	86.06	4.508
412.0	-30%	5.94	1.95	82.49	2.812

図4 オオワシⅡの最大上昇経路

表1, 表2より最大上昇率となる迎角,経路角,対気速度の値は推力の増加とともに経路角,対気速度は増加し,迎角は減少した.求めた迎角,経路角,対気速度をもとに,有人機の離陸安全高度である高度120[m]までの到達時間を算出した.図3,図4より離陸安全高度までの到達時間は電動ラジコン機では推力3.91[kgf]で62秒程度,オオワシⅡでは推力588.5[kgf]で8秒程度となった.

4. まとめ

航空機の離陸上昇時の運動を定常上昇として扱い,最適化問題として上昇率が最大となる迎角, 経路角,対気速度を求めることができた.今後はこの経路に追従できる誘導制御系の構成及びシ ミュレーションや実証実験を通して最適解の妥当性を確かめる.

参考文献

[1] 高橋, 上羽, "小型無人超音速機向け離陸制御系の飛行検証"第54回飛行機シンポジウム 2016-10-25

[2] 加藤 寬一郎,「工学的最適制御」,東京大学出版

[3] 山浦 弘夫,「最適制御入門」, コロナ社

[4] 山名 正夫・中口 博,「飛行機設計論」, 養賢堂

風向きを考慮した無人航空機のための最適帰還経路の生成及び誘導技術の研究

上羽 正純(航空宇宙システム工学ユニット 教授)

〇弥生 陸斗(航空宇宙システム工学コース 学部4年)

1. はじめに

近年,無人航空機(UAV: Unmanned Aerial Vehicle)の産業利用が期待されミッションに関する 研究が盛んに行われている.しかし、ミッション機器及び無人航空機の飛行制御機器が飛行中に 不具合が発生した場合,安全のため、かつ、機器の損失を避けるためにも機体を迅速に戻す必要 がある.既存技術には有人機において最適帰還経路の生成と誘導が報告[1]されているが、有人機 とUAV では制約条件が異なるため、UAV において最適経路の生成については検討する必要があ る.また、使用している制御系を最小限の変更で利用できるような経路を生成することも重要で ある.

ここでは、有人機としての制約が全くない状態で UAV における最適帰還経路の生成結果、及び 構成した誘導制御系についてシミュレーションにより評価した結果を報告する.

2. 経路の生成と誘導

2-1. 機体モデル

本研究で経路の生成及び,誘導シミュレーションにおいて実証実験を行っている電動模型飛行 機「京商株式会社 カルマート a40」の機体諸言,及び算出されている空力微係数を利用した.

2-2.想定飛行ルート

経路を求めるにあたり,初期状態と終端状態(位置や姿勢)を決定する必要があるため,本研 究においては次のような想定を行う.

ミッションとして広大な農地の観測[2]とする.北 海道の1戸あたりの平均耕地面積が約25haより,図 1のような500m×500mの観測区域を考える.

本観測区域に対して UAV は開始地点(滑走路)か ら終点までジグザグに飛行するものとする.このルー トでは,UAV はほとんど一定の方位角を向いている と想定できる.飛行位置については,帰還地点は滑走 路であるから固定となるが,飛行中の不具合は任意の 位置で発生する可能性がある.本研究では,観測終点 を帰還開始地点とする.これより,ミッションの終点 から始点へ帰還する経路について方位角を複数のパ ターンに分類して解析を行う.

図1 想定飛行ルート

2-3. 最適経路の生成

最適経路は動的な最適化問題として条件付き変分法で定式化し、二点境界値問題として数値計算で解くことで求まる.数値計算には汎用ツールである MATLAB の bvp4c ソルバーを利用する.

最適化とするための評価関数は重み係数をBとして次のように定義する.

$$J = \int_{t_0}^{t_f} (1 + B\phi^2) dt$$
 (1)

この評価関数を最小にすることが最適条件となる.この評価関数は時間積分を最小及びバンク角 を最小にすることを意味するため、計算により最短時間かつ運動最小の経路を得る.

2-4. 誘導制御

生成した経路への追従制御は,完成している滑走路中心 制御を応用し作成した.滑走路中心制御は機体中心と滑走 路中心との偏差を零にする制御である.経路追従制御(図 2)は滑走路中心を経路中心と置き換え,経路上の点を目 標とし偏差を埋めるように方位角を制御する.経路の目標 点を時々刻々と更新することで経路への追従を行う.また, 機体位置と目標点との偏差から経路への追従制御を行うだ けでは追従性が弱かったため,経路生成時に同時に求まる 方位角も目標値として方位角制御に考慮することで追従性 向上を行っている.

図2 経路追従制御

3. 経路の生成結果

3-1. 方位角と経路

表1 境界条件

始端位	置	終端位	置	重み	風外刮	[m/s]	飛行速度	初期方位角	終端方位	直線距離
(x[m]	y[m])	(x[m]	y[m])	B[-]	<i>(W_x</i>	W_y)	[m/s]	[deg]	角[deg]	[m]
(550	550)	(50	50)	1.0	(0.0	0.0)	20	0~ - 180	-180	707.1

境界条件は2-2より,表1の通りに設定した.図3には方位角変化による経路の概形の変化 を示す.初期方位角が異なる場合でも,それぞれの方位角に対応して経路が生成されていること が確認できる.図4に示した初期方位角の違いによる経路長の変化より,終点の方向(-145 deg) を向いている場合が短いことが確認できる.また,全体的に直線距離に近い値をとっており最短

経路であると考えられる.

3-2. 風を考慮した経路

始端条件	(x[m] y[m]	$\psi[deg])$			
	(500 500	-180)			
紋體冬供	(x[m] y[m]	$\psi[deg])$			
小3 四四 不 []	(50 50 -180)				
飛行速度[^m /s]	20				
直線距離[m]	707.1				
風外乱 $[m/s]$	奴败Ē[m]	最大バン			
$\begin{pmatrix} W_x & W_y \end{pmatrix}$	₩的¥[m]	ク角[deg]			
(0.0 0.0)	713.0	66.4			
(0.0 5.0)	709.6	104.0			
(0.0 -5.0)	800.9	18.55			

表2に示す境界条件のもと, y軸方向に±5m/sの風を考慮した経路の生成結果を図5に示した. 風によって大きく経路に影響が出ていることが確認できる.

4. シミュレーション結果

始端条件	終端条件	風外乱 $[m/s]$	飛行速度[^m /s]	
(500 500 -180)	(50 50 -180)	(0.0 0.0)	20	

表3 シミュレーション条件

図6にノミナル経路(黒)に対して追従シミュレーションによる機体軌跡(赤)を示した.この結果から、ノミナル経路に対して追従制御が出来ていることが確認できる.図7には追従目標 点と機体位置との偏差を示した.終端において、目標地点と機体位置の偏差が5m以内になって いることが確認できる.追従途中に偏差が大きくなっているが、これはノミナル経路に完全に一

表2 境界条件と生成経路

致して飛行できないことによるものである.

5. まとめ

本研究の目的である UAV における最適帰還経路の生成についてその手法を明確にし,検討する ことができた.誘導制御系についてもシミュレーションによりノミナル経路への追従を確認した. 経路の生成において機体の運動が過大になる,座標によっては特異解となることなど,誘導制御 においてはノミナル経路によっては位置偏差が大きくなる等の課題が見られるため,まだ改善の 必要がある.

参考文献

[1]Miwa,M., Tsuchiya,T., Yonezawa,S., Yokoyama,N. and Suzuki,S.:Real-Time Flight Trajectory Generation Applicable to Emergency Landing Approach,Trans.Japan Soc.Aero.Space Sci.Vol.52, No.175,pp.21-28,2009

[2]上羽正純,前田庸佑,弥生陸斗,北沢祥一,「広大な農地の短時間観測を可能とする固定翼 UAV の性能に関する検討」,電子情報通信学会,SAT2017-56,2018-02

[3]上野誠也,渡辺竜一,「航空機の着陸進入時における最適経路設計手法」,自動制御連合講演会 講演論文集,50(0),200-200,2007

[4]加藤寛一郎,「工学的最適制御―非線形へのアプローチー」,東京大学出版会,1998

発表論文

2017 年度

査読付き学術誌

- [1] 塚野 徹,前田大輔,笹山容資(室蘭工業大学大学院),中田大将,杉岡正敏,棚次亘弘, 東野和幸(室蘭工業大学)「再生冷却システムに用いる熱分解吸熱性燃料に対するニッケ ルおよびプラチナ触媒の効果」.日本航空宇宙学会論文.第65巻2号, pp.41-49, (2017)
- [2] Masazumi Ueba, Akihiro Miyasaka, Yoshinori Suzuki, Fumihiro Yamashita, Progress in and prospects of on-board communication equipment technologies for communications satellites in Japan, IEICE Transactions on Communications Vol.E100-B,No.9, pp.1633-1643, 2017. IF:0.314 Q4
- [3] Ryoji IMAI and Mori MICHIHARA, Study on Dynamic Wetting Behavior in Microgravity Condition Targeted for Propellant Tank, International Journal of Microgravity Science and Application, Vol.34, No.3, pp. 340306-1- 340306-11, (2017) DOI: 10.15011//jasma.34.340306.
- [4] Kawasaki, S., Shimura, T., Uchiumi, M., and Iga, Y., "One-dimensional Analysis Method for Cavitation Instabilities of a Rotating Machinery", 021113, Vol. 140, No. 2, J. Fluid Engineering, ASME. February 2018. IF:1.437 Q2
- [5] Ryoji Imai, Takuya Imamura, Masatoshi Sugioka, Kazuyuki Higashino, Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction, Microgravity Science and Technology, online first, (2017) https://doi.org/10.1007/s12217-017-9566-5. IF:1.188 Q2
- [6] Daisuke Nakata, Kazuki, Yasuda, Kugo Okada, Kazuyuki Higashino and Rikio Watanabe, "N2O Flow History Prediction in an Oxidizer Feed Line of Hybrid Rockets," Transaction of JSASS, Aerospace Technology Japan, Volume 16 (2018) Issue 1 Pages 81-87, DOI: 10.2322/tastj.16.81
- [7] Nagao, N., Nagaura, K., Tamura, T., Hasegawa, S., and Uchiumi, M., "Rotordynamic Forces Acting on a Two-Stage Inducer", J. Fluid Engineering, FE-16-1588, 021112, Vol. 140, No. 2, J. Fluid Engineering, ASME, February 2018. IF:1.437 Q2
- [8] Deployment behavior control using cables and bi-shape memory alloy convex tape booms
 Katsumata Nobuhisa, Kume Masaru, Higuchi Ken
 ADVANCES IN MECHANICAL ENGINEERING, 9 巻, 7 号, Article Number:1687814017707909,
 2017 年 07 月 Q3, IF 0.827
- [9] Kobayashi, H., Hagiwara, R., Kawasaki, S., Uchiumi, M., Yada, K., and Iga, Y., "Numerical Analysis of Suppression Effect of Asymmetric Slit on Cavitation Instabilities in Cascade", J. Fluid Engineering, FE-16-1670, 021302, Vol. 140, No. 2, J. Fluid Engineering, ASME, February 2018. IF:1.437 Q2
- [10] Imamura, T., Sugioka, M., Higashino, K., Imai, R., "Study on Liquid Management Technology in Water Tank for Propulsion System Utilizing Aluminum and Water Reaction (Improvement of Liquid Acquisition Performance by Hydrophilic Coating in Metallic Tank) Int. J. Microgravity Sci. Appl. Vol. 35, No. 1, p350103-1-6 (2018) DOI:10.15011//jasma.35.350103.

国際会議発表論文

- [1] Ryoji Imai, Sho Goto, Takuya Imamura, Masayuki Saito, Masatoshi Sugioka, Kazuyuki Higashino, Basic research for liquid acquisition device and reactor in thrust system utilizing hydrogen production by aluminum and water reaction, AIAA Paper, AIAA 2017-4762, Propulsion and Energy Forum and Exposition 2017 July 10-12, Atlanta USA.
- [2] Daisuke Nakata, Kazuki, Yasuda, Kugo Okada, Kazuyuki Higashino and Rikio Watanabe, "N2O Flow History Prediction in an Oxidizer Feed Line of Hybrid Rockets", 31st International Symposium on Space Technology and Science, June 3-9, 2017, Matsuyama, Japan.
- [3] Suwa, N., Kimura, T., Kawasaki, S., Goto, K., and Uchiumi, M., "Effect of Axial Oscillation Amplitude on Unsteady on Fluid Forces Acting on an Open Impeller", 31st International Symposium on Space Technology and Science, 2017-a-12, June 3-9, 2017, Matsuyama, Japan.
- [4] Yamada, K., Ikemoto, A., Uchiumi, M., and Inoue, T., "Nonlinear Theoretical Analysis of RD Fluid Force of the Annular Plain Seal" 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, December 16-21, 2017, Maui, USA.
- [5] Ryojiro Minato, Ryoji Imai, Kazuyuki Higashino, Daisuke Nakata, and Mayu Ishihara "Analytical and Experimental Study of Compressor Performance for Gas Generator Cycle Air Turbo Ramjet Engine", , ISABE 2017 Conference, ISABE-2017-22624, 2017
- [6] Kazuyuki Higashino, Daisuke Nakata, Ryojiro Minato, Ryoji Imai, Nobuhiro Tanatsugu, Yuta Yashima, and Hiroto Mukae "Sea Level Static Tests of Gas Generator Cycle Air Turbo Ramjet Engine for Supersonic UAV", ISABE 2017 Conference, ISABE-2017-22623, 2017
- [7] Goto et. al., "Preliminary Experiments on Rotating Detonation Rocket Engine for Flight Demonstration Using Sounding Rocket," AIAA Scitech 2018
- [8] Kasahara et. al, Research and Development of Rotating Detonation Engines for the Sounding Rocket Flight ExperimentIWDP 2017
- [9] Ryojiro Akiba, Ken Higuchi, Ryuichi Mitsuhashi, Riho Hiramoto and Jun'ya Sasaki, "Weightless Construction of High Tower to the Stratosphere," 31st International Symposium on Space Technology and Science (ISTS2017),2017-c-20, (2017.6.3-9), Matsuyama.
- [10] Naoko KISHIMOTO, Takashi IWASA, and Ken Higuchi, "Surface Shape Measuring Method for Space Structures based on Images in Ultra Violet Range," 31st International Symposium on Space Technology and Science (ISTS2017), 2017-c-59, (2017.6.3-9), Matsuyama.
- [11] Kazuhide Mizobata, Yukiya Ishigami, Masaaki Miura, Kazuyuki Higashino, and Takakage Arai, "Aerodynamics Caused by Rolling Rates of a Small-scale Supersonic Flight Experiment Vehicle Being Developed at Muroran Institute of Technology," 2017-g-01, 31st International Symposium on Space Technology and Science, June 3-9, Matsuyama, Japan.
- [12] Yuki Yamazaki, Kazuhide Mizobata, and Kazuyuki Higashino, "Drag Reduction on the Basis of the Area Rule of the Small-scale Supersonic Flight Experiment Vehicle Being Developed at Muroran Institute of Technology," 2017-g-02, 31st International Symposium on Space Technology and Science, June 3-9, Matsuyama, Japan.
- [13] Keisuke Shiono, Koji Shirakata, Yukiya Ishigami, Masaaki Miura, Kazuhide Mizobata, Kazuyuki Higashino, and Takakage Arai, "Aerodynamic Derivatives with Respect to Pitching and Yawing Rates of a Small-scale Supersonic Flight Experiment Vehicle," 2017-g-03, 31st International
Symposium on Space Technology and Science, June 3-9, Matsuyama, Japan.

 Kanenori Kato, Kohichi Takasaki, Kouichiro Tani, Susumu Hasegawa, Kazuhide Mizobata, and Takeshi Kanda, "Coupled Aerodynamic Characteristics of Airframe and Engine of Space Plane," 31st International Symposium on Space Technology and Science, 2017-a-41, June 3-9, Matsuyama, Japan.

国内学会発表論文

- [1] 溝端 一秀,石上 幸哉,三浦 壮晃,塩野 経介,山崎優樹,白方 洸次,市川 陸,田井 翔 一郎,東野 和幸,新井 隆景,「室蘭工大の小型超音速飛行実験機(オオワシ)の空力設 計および空力評価」,1A12,第49回流体力学講演会,2017年6月28-29日,東京.
- [2] 山田航也,池本篤史,井上剛志,内海政春,円軌道振れ回り時の平行環状シールの動特性 に関するバルクフローモデルによる非線形解析,日本機械学会 Dynamics and Design Conference, 107, 2017 年 8 月,豊橋
- [3] 池本篤史,井上剛志,三宅建次郎,内海政春,平行環状シールにおける流体力の差分解析 と軸振動の連成解析,日本機械学会 Dynamics and Design Conference, 106, 2017 年 8 月,豊 橋
- [4] 今井良二,天野 裕司,道原 孟里,推進薬タンクを対象とした微小重力下容器内スロッシング挙動に関する研究,日本混相流学会 混相流シンポジウム 2017,2017 年 8 月 19 日,調布市
- [5] 稲葉 克典, 今井 良二, LNG 貯槽ロールオーバー現象の数値解析技術に関する研究, 日本 混相流学会 混相流シンポジウム 2017, 2017 年 8 月 19 日, 調布市
- [6] 今井 良二, 稲葉 克典, 容器内ロールオーバー現象予測技術に関する研究, 日本機械学会 2017 年度年次大会講演論文集, 2017 年9月5日, さいたま市
- [7] 香川修作,渡邊裕輔,渡邉啓悦,後藤彰,内海政春,島垣満,川崎聡,産業用立軸多段ポ ンプにおける形態最適化設計の適用とその有用性評価,ターボ機械協会第78回富山講演会, 2017年9月,富山
- [8] 須和直人,木村俊哉,川崎聡,後藤公成,内海政春,オープンインペラ前面に作用する軸 方向流体力に関する研究,ターボ機械協会第78回富山講演会,2017年9月,富山
- [9] 三宅建次郎,池本篤史,内海政春,井上剛志,軸振動と平行環状シールの流体力の連成解 析,ターボ機械協会第78回富山講演会,2017年9月,富山
- [10] 石原眞優,向江洋人,湊亮二郎,中田大将,東野和幸,内海政春,小型超音速機エンジンの高速回転試験,ターボ機械協会第78回富山講演会,2017年9月,富山
- [11] 向江洋人,石原眞優,湊亮二郎,中田大将,東野和幸,内海政春,小型超音速機エンジン 用玉軸受の発熱/冷却特性評価,ターボ機械協会第78回富山講演会,2017年9月,富山
- [12] 安田 一貴,中田 大将,岡田 空悟,東野 和幸,内海 政春 (室蘭工業大学), 亜酸化窒 素のタンク排出特性解析モデルの実験的検証,第61回宇宙科学技術連合講演会, P29, 2017 年10月,新潟
- [13] 岡田 空悟,中田 大将,安田 一貴,東野 和幸,内海 政春,ロケットスレッドの騒音 に関する実験的研究,第61回宇宙科学技術連合講演会,P30,2017年10月,新潟

- [14] 棚次 亘弘 (JAXA 名誉教授), 西村 純 (東大名誉教授), 中田 大将(室蘭工大), 使用済み 小型衛星の簡便な軌道減衰装置について, 第 61 回宇宙科学技術連合講演会, 2K18, 2017 年 10 月, 新潟
- [15] 森下 海怜,吉川 稲穂,八木橋 央光,中田 大将,湊 亮二郎,内海 政春,東野 和幸 (室 蘭工業大学),分岐管を用いたフィルムクリーング型水素点火器の性能評価,第61回宇宙 科学技術連合講演会,3H11,2017年10月,新潟
- [16] 中田 大将(室蘭工業大学), 杵淵 紀世志(JAXA), 3D プリンター造形レジストジェットの熱 設計と推力測定実験, 第61回宇宙科学技術連合講演会, 2E03, 2017 年 10 月, 新潟
- [17] 竹内 三洋,廣田 光智,中田 大将 (室蘭工業大学),ハイブリッドロケットの始動過程の促進を狙った可燃性固体上の溝の効果,第61回宇宙科学技術連合講演会,P25,2017年10月, 新潟
- [18] 森下 海怜,小川 大輔,東野 和幸,中田 大将 (室蘭工業大学),東 伸幸 (JAXA),バイオ エタノール燃料のサルファアタック・コーキングにおける冷却性能評価,第61回宇宙科学 技術連合講演会, P28, 2017年10月,新潟
- [19] 今村卓哉,今井良二,Al/水反応推進システムにおける,水タンク及び反応器の基本システム構成の開発,日本マイクログラビティ応用学会第29回学術講演会,2017年10月,習志野市.
- [20] 道原孟里,田村健一郎,今井良二,推進薬タンクを対象とした微小重力下動的濡れ及びス ロッシング挙動解析技術の向上,日本マイクログラビティ応用学会第29回学術講演会,2017 年10月,習志野市.
- [21] 中田 大将,安田 一貴,森下 海怜,岡田 空悟,吉川 稲穂,八木橋 央光,内海 政春,東 野 和幸,ロケット燃焼器サーマルイメージの活用,可視化情報学会全国講演会,2017年11 月 3-4 日,室蘭工業大学,室蘭市
- [22] 今村卓哉,今井良二,杉岡正敏,東野和幸,Al/水反応推進システムにおける,水タンク及び反応器内の微小重力下での液体挙動の観察,可視化情報学会全国講演会,2017年11月 3-4日,室蘭工業大学,室蘭市.
- [23] 道原孟里,田村健一郎,今井良二,推進薬タンクを対象とした微小重力下動的濡れ及びス ロッシング挙動の観察,可視化情報学会全国講演会,2017年11月3-4日,室蘭工業大学, 室蘭市.
- [24] 湊 亮二郎, 溝端一秀, "吸い込み式超音速風洞における小型超音速機関連の空力試験, 可 視化情報学会全国講演会, 2017年11月3-4日, 室蘭工業大学, 室蘭市.
- [25] 山崎健次,伊藤良磨,先崎美由紀,樋口健,勝又暢久,"計測対象への二次元格子貼付による簡易型表面形状計測法",第59回 構造強度に関する講演会,pp.16-18, 20170803
- [26] 橋本真之介,勝又暢久,樋口健,"平面構造の板厚を考慮した折りたたみ方法の定式化",第 59回 構造強度に関する講演会, pp.19-21, 20170803
- [27] 岸本直子,岩佐貴史,樋口健,勝又暢久,黒瀬豊敏,渡邊秋人,上土井大助, "CFRP 製パ ネル構造物の3次元形状計測",第59回 構造強度に関する講演会,pp.25-27, 20170803
- [28] 勝又暢久,後藤良太,片倉寛史,樋口健,"組紐被覆伸展梁の構造モデル化と曲げ座屈解析", 第 59 回 構造強度に関する講演会, pp.1-3, 20170803

- [29] 岸本 直子,藤垣 元治,岩佐 貴史,樋口 健,勝又 暢久,"画像による複合材料板の変形・ ひずみ計測",第61回宇宙科学技術連合講演会,3815,20171025
- [30] 樋口 健, 勝又 暢久, 山崎 健次, 岸本 直子, 岩佐 貴史, 藤垣 元治, "物体表面の二次元 格子を利用した相対変位の光学的計測法", 第61回宇宙科学技術連合講演会, 3816, 20171025
- [31] 勝又 暢久, Muhammad Hafizuddin, 橋本 真之介, 樋口 健, "平面板構造の折りたたみ方法 と構造剛性", 第61回宇宙科学技術連合講演会, 2F15, 20171025
- [32] 上羽正純,高橋康平,鎌田智寛,固定翼 UAV の離陸から着陸までの完全自律制御飛行実験, 第60回自動制御連合講演会,Sul2-4, 東京,2017.11.10-12
- [33] 塩野経介,白方洸次,溝端一秀,新井隆景,東野和幸,「室蘭工大小型超音速飛行実験機のピッチ及びヨー運動による動的空力特性」,2D11,第55回飛行機シンポジウム,2017年11月20-22日,松江.
- [34] 山崎優樹, 溝端一秀, 東野和幸, 「室蘭工大小型超音速飛行実験機のエリアルールに基づく抗力低減」, 2D12, 第55回飛行機シンポジウム, 2017年11月20-22日, 松江.
- [35] 白方洸次,塩野経介,溝端一秀,「室蘭工大小型超音速飛行実験機のロール運動による動 的空力特性」,3E13,第55回飛行機シンポジウム,2017年11月20-22日,松江.
- [36] 上羽正純,高橋康平,小型無人超音速機向け縦・横方向離陸制御系の飛行検証,第55回飛 行機シンポジウム,3E04,島根,2017.11.20-22
- [37] 前田庸佑,鎌田智寛,上羽正純,小型無人超音速機向け飛行経路生成法の検討,第55回飛 行機シンポジウム,3E06,島根,2017.11.20-22
- [38] 中島桜子,上羽正純,飛行条件変動を考慮した小型無人超音速機向けロバスト着陸制御法の検討,第55回飛行機シンポジウム,3E07,島根,2017.11.20-22
- [39] 鎌田智寛,高橋康平,上羽正純,小型無人超音速機向け完全自律制御用飛行経路設定手法の提案と飛行検証,第55回飛行機シンポジウム,3E08, 島根,2017.11.20-22
- [40] 山﨑健次,樋口健,勝又暢久,岸本直子,岩佐貴史,藤垣元治,"アンテナ反射鏡の変形計 測手法と装置設計",第33回宇宙構造・材料シンポウジウム,B11,20171208
- [41] 溝端一秀,山﨑優樹,三尾太一,東野和幸,「室蘭工大の小型超音速飛行実験機における エリアルールに基づく遷音速抗力低減の試み」,STCP-2017-032,平成29年度宇宙輸送シ ンポジウム,2018年1月18-19日,相模原.
- [42] 松岡健,瀧春菜,鵜飼貴斗,後藤啓介,西村純平,東純一,速水雄規,川崎央,笠原次郎, 安田一貴,森謙太,八木橋央光,中田大将,内海政春,東野和幸,松尾亜紀子,船木一幸, パルスデトネーションスラスタによるロール制御,平成29年度 宇宙輸送シンポジウム, 2018年1月18-19日,相模原市.
- [43] 後藤啓介,西村純平,東純一,瀧春菜,鵜飼貴斗,速水雄規,川崎央,松岡健,笠原次郎, 安田一貴,森謙太,八木橋央光,中田大将,内海政春,東野和幸,松尾亜紀子,船木一幸, 三噴流異種衝突型噴射器を有する回転デトネーションエンジンの推進システム実証研究, 平成 29 年度 宇宙輸送シンポジウム,2018 年1月18-19 日,相模原市.
- [44] 安田一貴,中田大将,岡田空悟,内海政春,東野和幸,亜酸化窒素のタンク排出特性解析 モデル構築に関する実験的研究,平成29年度宇宙輸送シンポジウム,2018年1月18-19 日,相模原市.

- [45] 中田大将,安田一貴,岡田空悟,東野和幸,内海政春,棚次亘弘,3km 高速軌道試験設備 の設計検討,平成29年度 宇宙輸送シンポジウム,2018年1月18-19日,相模原市.
- [46] 北沢祥一,嶋田民生,上羽正純, "無人航空機用の位置情報データ伝送用マルチホップ無線 システムの検討",電子情報通信学会 宇宙・航行エレクトロニクス研究会, SANE2017-104, pp.105-109, 20180126
- [47] 上羽正純,前田庸佑,弥生陸斗,北沢祥一,"広大な農地の短時間観測を可能とする固定翼 UAVの性能に関する検討",電子情報通信学会 衛星通信研究会,SAT2017-56, pp.1-6, 20180222
- [48] 北沢祥一,工藤怜,上羽正純, "無人航空機用 169MHz 帯制御無線システムの検討", 電子 情報通信学会 衛星通信研究会,SAT2017-63, pp.37-40, 20180223
- [49] 森謙太,中田大将,内海政春,東野和幸,後藤啓介,川崎央,松岡健,笠原次郎,無冷却回転デトネーションエンジン燃焼試験における熱流東評価,日本航空宇宙学会北部支部2018年講演会ならびに第19回再使用型宇宙推進系シンポジウム,2018年3月5-6日,東北大学,仙台市.
- [50] 湊亮二郎,中田大将,内海政春,東野和幸,向江洋人,石原眞優,ヘリウムガスを用いた GG-ATR エンジン冷走試験について,日本航空宇宙学会北部支部 2018 年講演会ならびに第 19 回再使用型宇宙推進系シンポジウム, 2018 年 3 月 5-6 日,東北大学,仙台市.
- [51] 中田大将,森下海怜,八木橋央光,吉川稲穂,湊亮二郎,内海政春,東野和幸,分岐管を 用いた酸素/水素点火器の火炎分配,日本航空宇宙学会北部支部 2018 年講演会ならびに第 19 回再使用型宇宙推進系シンポジウム, 2018 年 3 月 5-6 日,東北大学,仙台市.
- [52] 岡田空悟,安田一貴,中田大将,東野和幸,内海政春,ロケットスレッド用クラスタード ハイブリッドロケットの騒音特性,日本航空宇宙学会北部支部 2018 年講演会ならびに第 19 回再使用型宇宙推進系シンポジウム, 2018 年 3 月 5-6 日,東北大学,仙台市.
- [53] 溝端一秀,山崎優樹,三尾太一,久保田穏,東野和幸,「室蘭工大・小型超音速飛行実験 機(オオワシ)の空力に関する最近の取り組み」,HATIC 学術技術講演会,2018 年 3 月 7 日,札幌.
- [54] 今井良二,今村卓哉,貝瀬柚子,杉岡正敏,東野和幸,アルミ水高圧水素製造反応の宇宙 推進システムおよび CO2 フリー水素製造プラントへの適用に関する研究,「第15回 HASTIC 学術技術講演会」兼「第27回短時間無重力利用に関する講演会」,2018年3月7日,北海 道大学,札幌市.
- [55] 鎌田智寛,中島桜子,前田庸佑,上羽正純,小型無人超音速機に向けた電動模型飛行機に よる完全自律制御飛行実証実験,第15回 HASTIC 学術技術講演会,2018年3月7日,北海 道大学,札幌市.
- [56] 植村拓也,上羽正純,高グライドスロープ角及び高帯域フレア制御による固定翼 UAV の着陸距離短縮の検討,第15回 HASTIC 学術技術講演会,2018年3月7日,北海道大学,札幌市.
- [57] 安田一貴,中田大将,岡田空悟,内海政春,東野和幸,亜酸化窒素の自己加圧タンク排出 特性に関する基礎研究,第15回 HASTIC 学術技術講演会,2018年3月7日,北海道大学, 札幌市.

- [58] 吉川稲穂,八木橋央光,中田大将,湊亮二郎,内海政春,東野和幸,LOX/エタノールガス ジェネレータ燃焼試験設備の供給特性,第15回HASTIC学術技術講演会,2018年3月7日, 北海道大学,札幌市.
- [59] 笠原次郎,松岡健,川崎央,松尾亜紀子,船木一幸,中田大将,内海政春,東野和幸,観 測ロケットによるデトネーションエンジン推進飛行実証実験,平成29年度衝撃波シンポジ ウム,2018年3月7-9日,東北大学,仙台市.
- [60] 鵜飼貴斗, 瀧春菜, 後藤啓介, 西村純平, 速水雄規, 東純一, 松岡健, 川崎央, 笠原次郎, 安田一貴, 森謙太, 八木橋央光, 中田大将, 内海政春, 東野和幸, 松尾亜紀子, 船木一幸, 宇宙機ロール制御用 S 型パルスデトネーションスラスタの低背圧推進性能評価, 平成 29 年 度衝撃波シンポジウム, 2018 年 3 月 7-9 日, 東北大学, 仙台市.

2013~2016 年度

査読付き学術誌

- [1] 高木正平,山谷直広,伊藤信毅:人工音響ループによる二次元噴流不安定波周波数の制御, 日本航空宇宙学会論文集,第61巻,3号,pp.57-63, (2013)
- [2] 石川温士,今井良二,田中貴博,SF6-水を用いた水平管群まわりの気液二相流計測:高温 高圧のPWR/SG二次冷却水側の気液二相流を常圧で模擬,配管技術,56(1), P.28-34, 2014.
- [3] Jun KOYANAGI, Akihito WATANABE, Nobuyoshi KAWABATA, Tsuyoshi OZAKI, Ken HIGUCHI, Kosei ISHIMURA and Yasumasa KASABA, "Long-term durability of tri-axial woven CFRP tube structure extended along the spin axis of spinning platforms for the SCOPE mission, " Advanced Composite Materials, Vol.23, No.2, pp.115–128, 2014.
- [4] Ken HIGUCHI, Yasuyuki MIYAZAKI, Kosei ISHIMURA, Hiroshi FURUYA, Hiroaki TSUNODA, Kei SENDA, Akihito WATANABE, Nobuyoshi KAWABATA, Takeshi KURATOMI, and SIMPLE Project Team, "Initial Operation and Deployment Experiment of Inflatable Extension Mast in SIMPLE on JEM Exposure Platform in ISS, "Trans. JSASS Aerospace Tech. Japan, Vol.12, No.ists29, pp.Pc_1-Pc_7, 2014.
- [5] Daisuke Nakata, Kenji Nishine, Kaoru Tateoke, Kazuyuki Higashino, Nobuhiro Tanatsugu, "Aerodynamic Measurement on the High Speed Test Track,", Transactions of the Japan Society for Aeronautics and Space Sciences Aerospace Technology Japan, Vol.12, No.ists29, pp. Tg 5-Tg 10, 2014.
- [6] Kazuyuki Higashino, Masatoshi Sugioka, Shuntaro Izumi, Toshiyuki Terada, Noboyuki Azuma, Teiu Kobayashi, "Study on Material Compatibility for Bioethanol Fueled Rocket Engine," Aerospace Technology Japan, Vol.12, No.ists29, pp. Pa 41-Pa 46, 2014.
- [7] Kazuhide MIZOBATA, Ryojiro MINATO, Ken HIGUCHI, Masazumi UEBA, Syohei TAKAGI, Daisuke NAKATA, Kazuyuki HIGASHINO, and Nobuhiro TANATSUGU, "Development of a Small-scale Supersonic Flight Experiment Vehicle as a Flying Test Bed for Future Space Transportation Research, "Transactions of JSASS, Aerospace Technology Japan, Vol.12, No.ists29, pp. Po 3 1-Po3 10, 2014.
- [8] 塚野 徹,棚次亘弘,杉岡正敏,東野和幸「白金触媒を用いた熱分解吸熱性燃料の吸熱量の測定と評価」.日本航空宇宙学会論文.第62巻5号,pp.149-156, 2014.
- [9] 高木正平,上村卓也,平田裕,高田晃輔「超音速流特性に及ぼす湿度効果について」,.日本航空宇宙学会論文集.第62巻,4号,pp.136-142, 2014.
- [10] Daisuke Nakata, Kiyoshi Kinefuchi, Satoshi Hosoda, Masahiro Kinoshitaa and Hitoshi Kuninaka "Technical Challengers for Advanced Arcjets,", Transactions of the Japan Society for Aeronautics and Space Sciences Aerospace Technology Japan, Vol.12, No.ists29, pp.To_1_1-To_1_5, Nov. 2014
- [11] 高木正平,「Kutta の条件を満たした翼周りの流線の可視化 –電界場の等電位線とポテンシャル流の流線とのアナロジを利用して-」,可視化情報学会論文集. 第 34 巻, 9 号, pp29-34, 2014.
- [12] Takagi, S., Yamaya, N. and Itoh, N.: Frequency control of unstable disturbances in two-dimensional jet by artificial acoustic loop, Transactions of the Japan Society for Aeronautics and Space Sciences. Vol.57, No.5, 2014, pp.255-262.

- [13] Nobuhisa Katsumata, Kaimori Masaaki, Masanobu Yamasaki, Ken Higuchi, Michihiro Natori, Hiroshi Yamakawa: Deployment Characteristics of Braid Coated Bi-Convex Tape and Bi-SMA Convex Tape Booms for Deployable Membrane Structures, Journal of Mechanics Engineering and Automation, Vol.4, No.1, 52-62, 2014.
- [14] Nobuhisa Katsumata, M.C. Natori, Hiroshi Yamakawa: Analysis of dynamic behaviour of inflatable booms in zigzag and modified zigzag folding patterns, Acta Astronautica, 93, 45-54, 2014.
- [15] Takagi, S., Sakaue, Y., Uemura, T. and Takada, K., "Observation of cross-flow instability mode in yawed cylinder boundary layer at Mach 2, "AIAA Journal, Vol. 53, No. 1 (2015), pp. 260-265.
- [16] M. C. NATORI, Hiraku SAKAMOTO, Nobuhisa KATSUMATA, Hiroshi YAMAKAWA and Naoko KISHIMOTO: Conceptual model study using origami for membrane space structures – a perspective of origami-based engineering, Mechanical Engineering Reviews, Vol.2, No.1 (2015)
- [17] S. YODA, W. CHO, R. IMAI: Aerodynamic levitator for large-sized glassy material production, Review of Scientific Instruments, Vol.86, No.9 (2015), pp. 093906-1 - 093906-5, http://dx.doi.org/10.1063/1.4930008.
- [18] 岩佐貴史,岸本直子,樋口健,藤垣元治,小木曽望:面計測と点計測を統合した大型宇宙 構造物の高精度形状計測法の提案,航空宇宙技術(AEROSPACE TECHNOLOGY JAPAN, THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES), Vol.14, pp.95-103, (2015.4.22). [http://doi.org/10.2322/astj.14.95]
- [19] R. IMAI, K. SUZUKI, H. KAWASAKI, H. OHTA, Y. SHINMOTO, H. ASANO, O. KAWANAMI, S. MATSUMOTO, T. KURIMOTO, H. TAKAOKA, M. SAKAMOTO, K. USUKU, K. SAWADA, Development of Boiling and Two-phase Flow Experiments on board ISS (Condensation Section), Int.J. Microgravity Sci. Appl., 2016p330103, (2016.1.31)DOI:10.15011/ijmsa.33.330103
- [20] H. OHTA, H. ASANO, O. KAWANAMI, K. SUZUKI, R. IMAI, Y. SHINMOTO, S. MATSUMOTO, T. KURIMOTO, H. TAKAOKA, K. FUJII, M. SAKAMOTO, K. SAWADA, H. KAWASAKI, A. OKAMOTO, K. KOGURE, T. OKA, K. USUKU, T. TOMOBE and M. TAKAYANAGI, Development of Boiling and Two-Phase Flow Experiments on Board ISS (Research Objectives and Concept of Experimental Setup), Int. J. Microgravity Sci. Appl. 2016p330102, (2016.1.31), DOI:10.15011/ijmsa.33.330102
- [21] T. GOMYO, H. ASANO, H. OHTA, Y. SHINMOTO, O. KAWANAMI, K. SUZUKI, R. IMAI, T. OKA, T. TOMOBE, K. USUKU, M. SHIMADA, S. MATSUMOTO, T. KURIMOTO, H. TAKAOKA, M. SAKAMOTO, H. KAWASAKI and K. SAWADA, Development of Boiling and Two-Phase Flow Experiments on Board ISS (Void Fraction Characteristics in the Observation Section just at the Downstream of the Heating Section), Int. J. Microgravity Sci. Appl. 2016p330104 (2016.1.31), DOI:10.15011/ijmsa.33.330104.
- [22] T. HIROKAWA, D. YAMAMOTO, D. YAMAMOTO, Y. SHINMOTO, H. OHTA, H. ASANO, O. KAWANAMI, K. SUZUKI, R. IMAI, M. TAKAYANAGI, S. MATSUMOTO, Takashi KURIMOTO, H. TAKAOKA, M. SAKAMOTO, K. SAWADA, H. KAWASAKI, K. FUJII, A. OKAMOTO, K. KOGURE, T OKA, T. TOMOBE and K. USUSKU, Development of Boiling and Two-Phase Flow Experiments on Board ISS (Investigation on Performance of Ground Model), Int. J. Microgravity Sci. Appl. 2016p330105, (2016.1.31), DOI:10.15011/ijmsa.33.330105
- [23] K. SAWADA, T. KURIMOTO, A. OKAMOTO, S. MATSUMOTO, H. TAKAOKA, H.

KAWASAKI, M. TAKAYANAGI, Y. SHINMOTO, H. ASANO, O. KAWANAMI, K. SUZUKI, R. IMAI and H. OHTA, Development of Boiling and Two-Phase Flow Experiments on Board ISS (Dissolved Air Effects on Subcooled Flow Boiling Characteristics), Int. J. Microgravity Sci. Appl. 2016p330106, (20116.1.31), DOI:10.15011/jasma.33.330106

- [24] O. KAWANAMI, M. OKUBO, K. NAKAMOTO, H. ASANO, H. OHTA, Y. SHINMOTO, K. SUZUKI, R. IMAI, S. MATSUMOTO, T. KURIMOTO, H. TAKAOKA, K. SAWADA, A. OKAMOTO, H. KAWASAKI, M. TAKAYANAGI and K. FUJII, Development of Boiling and Two-Phase Flow Experiments on Board ISS (Temperature Data Derivation and Image Analysis of a Transparent Heated Short Tubein the Glass Heated Section), Int. J. Microgravity Sci. Appl. 2016p330107, (2016.1.31), DOI:10.15011/jasma.33.330107
- [25] Minato, R., "Advantage of Ethanol Fuels for Gas Generator Cycle Air Turbo Ramjet Engine" Aerospace Science and Technology Vol.50, (2016) pp.161-172.
- [26] M. C. NATORI, Hiraku SAKAMOTO, Nobuhisa KATSUMATA, Hiroshi YAMAKAWA and Naoko KISHIMOTO, "Conceptual model study using origami for membrane spacestructures – a perspective of origami-based engineering", Mechanical Engineering Reviews (JSME), Vol.2, No.1, 1-15, 2015.
- [27] Asuka Iijima, Daisuke Nakata, Masatoshi Sugioka, Nobuyuki Tanatsugu, Kazuyuki Higashino, Shinji Ishimoto, and Nobuyuki Azuma, "Rocket Engine Feasibility Study for the JAXA Future Transportation Reference System," Transactions of JSASS, Aerospace Technology Japan, Vol.14, No. ists30, pp. Po_1_17-Po_1_23, 2016.
- [28] Masazumi UEBA, Kouhei SUZAKI, and Takatoshi SUGIYAMA, "Study on Hybrid Satellite-tracking Antenna Control System Using Torque Compensation Methods for Small Vessels", Trans. JSASS Aerospace Tech. Japan, Vol. 14, No. ists30, pp. Pj 7-Pj 12, 2016.
- [29] Kazuhide MIZOBATA, Yoshihiro SUZUKI, Sakae OOISHI, Satoshi KONDOH, Takakage ARAI, and Kazuyuki HIGASHINO, "Aerodynamics and Flight Capability of a Supersonic Flight Experiment Vehicle," Trans. JSASS Aerospace Tech. Japan, Vol.14, No. ists30, pp. Pg_1-Pg_8, 2016.
- [30] Ken HIGUCHI, Hiroshi FURUYA, Yasuyuki MIYAZAKI, Takahira AOKI, Choji YOSHIDA, Akihito WATANABE, Kazuki WATANABE and SIMPLE Project Team, "Achievement of Long-term On-orbit Operation of the SIMPLE Inflatable Extension Mast," Trans. JSASS, Aerospace Tech. Japan, Vol.14, No. ists30, pp. Pc_13-Pc_17, (2016).
- [31] 大竹 伸英, 井上 剛志, 坂口 智也, 内海 政春, ロケットエンジン用液体水素ターボポンプ の玉軸受の非線形モデリングと軸振動解析による回転非同期成分の考察, 航空宇宙技術, 15 巻, pp.1-8, 日本航空宇宙学会, 2016 年1月.
- [32] 平木 博道,内海 政春,川崎 聡,井上 剛志,動特性を考慮したターボポンプのバランスピ ストン設計についての考察,ターボ機械,44巻,4号,pp.231-241.2016年4月.
- [33] Yuichiro Tokunaga, Hideyuki Inoue, Jun Hiromatsu, Tetsuya Iguchi, Yasuhiro Kuroki, Masaharu Uchiumi, Rotordynamic Characteristics of Floating Ring Seals in Rocket Turbopump, International Journal of Fluid Machinery and Systems, Vol. 9, No. 3, pp.194-204, July 2016.
- [34] Hiroyuki Ohta, Yomoya Sakaguchi, Masaharu Uchiumi, Load–Displacement Relationship of a Ball Bearing With Axial, Radial, and Angular Displacements for Both the Inner and Outer Rings, J. Tribology, Vol. 139, No. 1, 011103, July 2016.

- [35] 川崎聡,島垣満,内海政春,安達和彦,要素の配置配列をパラメータとしたロケット用ター ボポンプの形態設計,日本機械学会論文集,82巻,842号,16-00134,2016年8月.
- [36] 香川修作,渡邊裕輔,渡邉啓悦,後藤彰,内海政春,島垣満,川崎聡,産業用立軸ポンプの 形態最適化設計に関する研究,ターボ機械,第45巻,第3号,pp.165-173,2017年3月.

国際会議発表論文

- [1] Masatoshi Sugioka, Kazuyuki Higashino, Kohki Satoh and Yasuharu Kanda, "Development of Green Hydrogen Production by Reaction of Aluminum and Water" International Symposium on Chemical and Bioprocess Engineering 2013
- [2] Atsushi Ishikawa, Ryoji Imai, Takahiro Tanaka, Measurement of Two-Phase Cross-Flow of SF6 Gas-Water in Horizontal Tube Bundle, The 15th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Pisa, Italy, May 2013.
- [3] Kazuyuki Higashino, Masatoshi Sugioka, Shuntaro Izumi, Toshiyuki Terada, Noboyuki Azuma, Teiu Kobayashi, "Study on Material Compatibility for Bioethanol Fueled Rocket Engine" a30 The 29th International Symposium on Space Technology and Science, Nagoya, Aichi, Japan, 2013
- [4] Kazuhide Mizobata, Ryojiro Minato, Ken Higuchi, Masazumi Ueba, Syohei Takagi, Daisuke Nakata, Kazuyuki Higashino, Nobohiro Tanatsugu, "Development of a Small-scale Supersonic Flight Experiment Vehicle as a Flying Test Bed for Future Space Transportation Research," 2013-o-3-02, The 29th International Symposium on Space Technology and Science, Nagoya, Aichi, Japan, June 2013
- [5] Masazumi Ueba and Kazuhide Mizobata, "Study on landing control for a small-scale unmanned supersonic airplane," 2013-g-01, The 29th International Symposium on Space Technology and Science, Nagoya, Aichi, Japan, June 2013
- [6] Nobukatsu Okuizumi, Yuki Ito, M.C.Natori, Nobuhisa Katsumata and Hiroshi Yamakawa, "Numerical Simulation of Stepwise Deployment of Membrane Structure with Booms using Multi-Particle Approximation Method" The 29th International Symposium on Space Technology and Science, Nagoya, Aichi, Japan, 2013
- [7] Takahira AOKI, Ken HIGUCHI, Kazuki WATANABE, and SIMPLE Project Team, "Progress Report of SIMPLE Space Experiment Project on ISS Japan Experiment Module, "2013-c-07, The 29th International Symposium on Space Technology and Science, Nagoya, Aichi, Japan, June 2013.
- [8] Ken HIGUCHI, Yasuyuki MIYAZAKI, Kosei ISHIMURA, Hiroshi FURUYA, Hiroaki TSUNODA, Kei SENDA, Akihito WATANABE, Nobuyoshi KAWABATA, Takeshi KURATOMI, and SIMPLE Project Team, "Initial Operation and Deployment Experiment of Inflatable Extension Mast in SIMPLE on JEM Exposure Platform in ISS, " 2013-c-09, The 29th International Symposium on Space Technology and Science, Nagoya, Aichi, Japan, June 2013.
- [9] Daisuke NAKATA, Nobuhiro TANATSUGU, Kazuyuki HIGASHINO, Ken HIGUCHI, Takeshi TSUCHIYA and Takehiro HIMENO" Rocket Sled Track Facility as a Test Platform and Launch Assist of Space Planes", Ground Based Space Facility conference, Paris, 2013
- [10] Ryojiro Minato, Kazuhide Mizobata, Kazuyuki Higashino, Nobuhiro Tanatsugu, "Characteristics

of Bio-Ethanol Fueled GG-cycle Air Turbo Ramjet Engine for Supersonic UAV along Flight Trajectory", 49th Joint Propulsion Conference, San Jose, 2013

- [11] Ryojiro Minato, Kazuyuki Higashino, Nobuhiro Tanatsugu, "Design and Development of Bio-Ethanol Fueled GG-cycle Air Turbo Ramjet Engine for Supersonic UAV" 21 st International Society for Air Breathing Engines, Busan, Korea, 2013.
- [12] Takagi, S., and Ueda, Y.: Active control of flow separation on an airfoil wing with the use of a row of vortex generators, The 14th Asian Congress of Fluid Mechanics (14ACFM), Hanoi and Halong, Vietnam, (10/15-19, 2013)
- [13] Nobuhisa Katsumata, Masaaki Kaimori, Ken Higuchi, M.C. Natori, Hiroshi Yamakawa, "Deployment Characteristics of Braided Coated Bi-Convex tape Booms partly used SMA for Deployable Membrane Structures, " 24th International Conference on Adaptive Structures and Technologies (ICAST2013), October 7-9, 2013, Aruba.
- [14] Kazuhide MIZOBATA, Ryojiro MINATO, Kazuyuki HIGASHINO, and Nobuhiro TANATSUGU, "Aerodynamic Characterization of a Small-scale Supersonic Flight Experiment Vehicle with a Cranked-arrow Main Wing and Tails by Wind-tunnel and Flight Tests," The 2013 Asia-Pacific International Symposium on Aerospace Technology, Nov. 20-22, 2013, Takamatsu, JAPAN.
- [15] Ohtateme, Y. and Takagi, S.: On frequency-selection mechanism of vortex street behind 2-D airfoil, Joint Symposium on Mechanical - Industrial Engineering, and Robotics 2013(MIER2013), (Chiang Mai, 11/15-16).
- [16] Kazuhide Mizobata, Ryojiro Minato, Ken Higuchi, Masazumi Ueba, Syohei Takagi, Daisuke Nakata, Nobuhisa Katsumata, Kazuyuki Higashino, and Nobuhiro Tanatsugu, "DEVELOPMENT OF A SMALL-SCALE SUPERSONIC FLIGHT EXPERIMENT VEHICLE AS A FLYING TEST BED, "29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, September 2014.
- [17] Satoshi Kondo, Yoshihiro Suzuki, Muhammad Hanan, Kazuhide Mizobata, Ryojiro Minato, Kazuyuki Higashino, and Nobuhiro Tanatsugu, "Aerodynamic Characteristics and Flight Capability Prediction of the Small-scale Flight Experiment Vehicle Being Developed at Muroran Institute of Technology, Japan, "2014 Asia-Pacific International Symposium on Aerospace Technology, Shanghai, China, September 2014.
- [18] Yoshiro Suzuki, Sakae Oishi, Kazuhide Mizobata, Nobuhiro Tanatsugu and Takakage Arai, "Control surface characteristics of the small-scale supersonic flight experiment vehicle (OWASHI) of Murotan-IT, "2014 Asia-Pacific International Symposium on Aerospace Technology, Shanghai, China, September 2014.
- [19] Takashi Kurimoto, Satoshi Matsumoto, Haruo Kawasaki, Kenichiro Sawada, Hitoshi Asano, Osamu Kawanami, Koichi Suzuki, Ryoji Imai, Yasuhisa Shinmoto, Haruhiko Ohta, Introduction and Status of Hardware and Development for Boiling and Two Phase Experiment onboard ISS/Kibo, The 9th International Conference on TWO-PHASE SYSTEMS FOR GROUND AND SPACE APPLICATIONS, Baltimore, MD, USA September 22-26, 2014.
- [20] Shohei Takagi, Yusuke Fushikida, Tsutomu Saito, Shigeru Obayashi, Yasufumi Konishi, Manipulation of 3-D boundary-layer transition on a swept NLF wing, The 11th International Conference on Flow Dynamics (ICFD 2014), Oct. 8-10, Sendai, 2014.

- [21] Natori, M.C., Nagasawa, M., Yamada, J., Okuno, A., Yamakawa, H., Higuchi, K. and Kishimoto, N., "A Basic Construction Concept for Space Structure Systems Using Active Connecting Elements, " AIAA-2015-0683, 2nd AIAA Spacecraft Structures Conf., (SciTech2015), Kissimmee, FL., USA, (2015.1).
- [22] Kazuhide MIZOBATA, Yoshihiro Suzuki, Sakae Ooishi, Satoshi Kondoh, Tsubasa Toguchi, Yukiya Ishigami, Masaaki Miura, Takakage Arai, and Kazuyuki Higashino, "Aerodynamics and Flight Capability of a Supersonic Flight Experiment Vehicle", 2015-g-31, 30th International Symposium on Space Technology and Science, Kobe, Japan, July 4-10, 2015.
- [23] Koichi Suzuki, Kazuhisa Yuki, Shinichi Satake, Ryoji Imai, Yasuhisa Shinmoto, Haruhiko Ohta, "Subcooled Boiling of Fluorochemical Liquid with Poor Wetting Heating Surface", 17IT-PB-5, The Joint Conference of 6th International Symposium on Physical Sciences in Space and 10th International Conference on Two-Phase Systems for Space and Ground Applications, Kyoto, Japan, Sep. 15-18, 2015.
- [24] Asuka Iijima, Daisuke Nakata, Kazuyuki Higashino, Nobuhiro Tanatsugu, Shinji Ishimoto, and Nobuyuki Azuma, "Rocket Engine Feasibility Study for the JAXA Future Transportation Reference System", 2015-o-1-02, 30th International Symposium on Space Technology and Science, Kobe, Japan, July 4-10, 2015.
- [25] Daisuke Nakata, Shuhei Horio, Kazuyuki Higashino, Nobuhiro Tanatsugu "Fundamental Study on Clustered Hybrid Rockets for Rocket Sled Propulsion System", 2015-a-18, 30th International Symposium on Space Technology and Science, Kobe, Japan, July 4-10, 2015.
- [26] Ryota Goto, Ren Fuchizawa, Nobuhisa Katsumata, and Ken HIGUCHI, "Coating Pressure Effects on Bending and Torsional Stiffness for Braid Coated Bi-Convex Tape Boom, " 30th International Symposium on Space Technology and Science (ISTS2015), 2015-c-14, (2015.7.4-10), Kobe.
- [27] Yasutaka Satou, Akihiro Doi, Kosei Ishimura, Hiroaki Tanaka, Yoshiro Ogi, Ken Higuchi, Yusuke Kono, Kimihiro Kimura, "Development of High Precision Reflector for Balloon-Borne Radio Telescope, " 30th International Symposium on Space Technology and Science (ISTS2015), 2015-c-47, (2015.7.4-10), Kobe.
- [28] Ken Higuchi, Hiroshi Furuya, Yasuyuki Miyazaki, Takahira Aoki, Choji Yoshida, Akihito Watanabe, Kazuki Watanabe, SIMPLE Project Team, "Achievement of Long-Term On-Orbit Operation of SIMPLE Inflatable Extension Mast, " 30th International Symposium on Space Technology and Science (ISTS2015), 2015-c-31, (2015.7.4-10), Kobe.
- [29] Nobuhisa Katsumata, Masaaeu Kume, Ken Higuchi, "Deployment Behavior Control using Cables and Bi-SMA-Convex Tape Booms, "26th International Conference on Adaptive Structures and Technologies (ICAST2015), P-14, (2015.10.14-16), Kobe.
- [30] Daisuke Nakata, Development of a Small-scale Supersonic Flight Experiment Vehicle and its Prototype, The 3rd Symposium on Flight Tests for the Innovative Aerospace Transportation Systems, Muroran, 9.18, Japan.
- [31] Masazumi Ueba, Tomoya.Yamashita, "Study on real-time dynamics identification for a small-scale unmanned supersonic airplane during its flight", 30th International Symposium on Space Technology and Science, 2015-d-12, 2015 July 4-10, Kobe
- [32] Shoichi Kitazawa, Masazumi Ueba, "Study on Beam Switched Telemetry Communication Antenna

for Small-Scale Unmanned Supersonic Airplane ", 30th International Symposium on Space Technology and Science, 2015-t-21, 2015 July 4-10, Kobe

- [33] Masazumi Ueba, Kouhei Suzaki, Takatoshi Sugiyama, "Study on hybrid satellite tracking antenna control system using torque compensation methods for small-vessels" 30th International Symposium on Space Technology and Science, 2015- j -09, 2015 July 4-10, Kobe
- [34] Koichi Suzuki, Kazuhisa Yuki, Shinichi Satake, Ryoji Imai, Yasuhisa Shinmoto, Haruhiko Ohta, "Subcooled Boiling of Fluorochemical Liquid with Poor Wetting Heating Surface", The Joint Conference of 6th International Symposium on Physical Sciences in Space and 10th International Conference on Two-Phase Systems for Space and Ground Applications, 2015 September 15-17, Kyoto.
- [35] Ryoji Imai, Yuji Amanom and Sho Goto, "Study for numerical calculation of dynamic wetting in spacecraft propellant tank", proceeding of AJCPP2016, 2016 March 16-19, Takamatsu, 2016.
- [36] R. Goto, R. Fuchizawa, N. Katsumata and K. Higuchi, "Coating Pressure Effects on Bending and Torsional Stiffness for Braid Coated Bi-Convex Tape Boom", 30th International Symposium on Space Technology and Science (ISTS2015), July, 2015.
- [37] H. Asahara, M. Ueda, A. Todoroki, Y. Hirano, R. Matsuzaki and N. Katsumata, "Fused deposition modeling of unidirectional carbon fiber reinforced thermoplastic polymer using in-nozzle impregnation technique", 2nd Turkey-Japan Workshop on Polymeric Composite Materials, Turky, May, 2015.
- [38] Nobuhisa Katsumata, Masaru Kume, and Ken Higuchi, "Deployment Behavior Control using Cables and Bi-SMA-Convex Tape Booms", 26th International Conference on Adaptive Structures and Technologies (ICAST2015), Oct. 2015.
- [39] Ryoji Imai, "Numerical calculation and reduced gravity experiment for dynamic wetting behavior in liquid container", AIAA-2016-4588, Propulsion and Energy Forum and Exposition 2016 July 25-27, Salt Lake City USA.
- [40] Daisuke Nakada, Kazuki Yasuda, Shuhei Horio, Kazuyuki Higashino., "A Fundamental Study on the Hybrid Clustering for the Rocket Sled Propulsion System", AIAA-2016-4868, Propulsion Energy 2016, July 25-27, Salt Lake City, Utah.
- [41] Nobuyuki Azuma, Tetsuo Hiraiwa, Asuka Iijima, Kazuyuki Higashino.Mitsuharu Ogawa, M.Oguma, "Material Compatibility of Bio-Ethanol Fuel with Rocket Engine Combustion Chamber Cooling Channels", AIAA-2016-5088, Propulsion Energy 2016, July 25-27, Salt Lake City, Utah.
- [42] Asuka Iijima, Daisuke Nakada, Kazuyuki Higashino., Study on the Thermal Deomposition of Bioetanol as a High-Pressure Rocket Propellant", AIAA-2016-5093, Propulsion Energy 2016 July 25-27, Salt Lake City, Utah.
- [43] Yukiya Ishigami, Masaaki Miura, Kazuhide Mizobata, Kazuyuki Higashino, and Takakage Arai, "Aerodynamics Caused by Rolling Motion of a Small-scale Supersonic Flight Experiment Vehicle," The 2016 Asia-Pacific International Symposium on Aerospace Technology, Oct. 25-27, 2016, Toyama, Japan.
- [44] Kazuhide MIZOBATA, Yukiya ISHIGAMI, Masaaki MIURA, Keisuke SHIONO, Yuki YAMAZAKI, Kazuyuki HIGASHINO, and Takakage ARAI, "Some Recent Aerodynamic Treatments for a Supersonic Flight Experiment Vehicle with a Cranked-arrow Main Wing Being

Developed at Muroran Institute of Technology", The 2016 Asia-Pacific International Symposium on Aerospace Technology, Oct. 25-27, 2016, Toyama, Japan.

- [45] Satoshi Matsumoto, Ohta Haruhiko, Hitoshi Asano, Osamu Kawanami, Koichi Suzuki, Ryoji Imai, Yasuhisa Shinmoto, "Significance of Boiling Two-Phase Flow Experiment onboard International Space Station", 28HF-1K, 11th Asian Microgravity Symposium, October 25 to 29, 2016, Sapporo.
- [46] Ryoji Imai, Sho Goto, Takuya Imamura, Masayuki Saito, Hideyuki Onodera, Masatoshi Sugioka, Kazuyuki Higashino, Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction, 28HF-4, 11th Asian Microgravity Symposium, October 25 to 29, 2016, Sapporo.
- [47] Ryoji Imai, Yuji Amano, Shuhei Yuze, Study on Dynamic Wetting Behavior in Microgravity Condition Targeted for Propellant Tank, 28HF-6, 11th Asian Microgravity Symposium, October 25 to 29, 2016, Sapporo.
- [48] Kotaro Nakamoto, Mizuki Semba, Osamu Kawanami, Haruhiko Ohta, Hitoshi Asano, Yasuhisa Shinmoto, Ryoji Imai, Koichi Suzuki, Satoshi Matsumoto, Takashi Kurimoto, Michito Sakamoto, Hidemitsu Takaoka, Kenichiro Sawada, Atsushi Okamoto, Masahiro Takayanagi, Results of Performance Test of a Glass Heated Section Installed in the Pre-Flight Model on Board ISS, 26SP-B-5, 11th Asian Microgravity Symposium, October 25 to 29, 2016, Sapporo.
- [49] Ryosuke Ukena, Taisaku Gomyo, Hitoshi Asano, Haruhiko Ohta, Yasuhisa Shinmoto, Osamu Kawanami, Koichi Suzuki, Ryoji Imai, Satoshi Matsumoto, Takashi Kurimoto, Kenichiro Sawada, Haruo Kawasaki, "Evaluation of Flow Development of Vertically Upward One-Component Gas-Liquid Two-Phase Flow based on Void Fraction Characteristics (Preliminary Experiment for Boiling and Two-Phase Flow Experiments on Board ISS)", 26SP-B-5, 11th Asian Microgravity Symposium, October 25 to 29, 2016, Sapporo.
- [50] Kazuhiro Ishihara, Junpei Nishimura, Keisuke Goto, Soma Nakagami, Ken Matsuoka, and Jiro Kasahara(Nagoya University), Akiko Matsuo(Keio University), Ikkoh Funaki(JAXA), Hideki Moriai(MHI), Hiroto Mukae, Kazuki Yasuda, Daisuke Nakata, and Kazuyuki Higashino(Muroran Institute of Technology), "Study on a Long-time Towards Operation Rotating Detonation Rocket Engine Flight Demonstration", AIAIA Scitech Forum 2017, 9-13, January 2017, Gayload Texan, Grapevine, Texas.

国内学会発表論文

- [1] 江上郁雄(HASTIC),棚次亘弘,秋葉鐐二郎(HASTIC), Ez-SpaceVI,第10回 HASTIC 学術 講演会,北海道大学-JAXA 連携宇宙環境利用分科会,北海道大学学術交流会館,2013年2 月22日
- [2] 塚野 徹,東野和幸,杉岡正敏(室蘭工業大学)「白金触媒を用いたメチルシクロヘキサンの熱分解吸熱反応特性」,第10回HASTI学術講演会,北大,2013年2月22日.
- [3] 西根賢治,立桶 薫,中田大将,棚次亘弘,東野和幸(室蘭工業大学)「ロケットスレッドを用いた飛翔体の空力測定」,第10回 HASTI 学術講演会,北大,2013 年 2 月 22 日.
- [4] 近藤光輝,杉岡正敏,東野和幸(室蘭工大),宇宙機推進システムとしての Al/水反応を利 用した常圧および高圧水素製造に関する研究,日本航空宇宙学会 第53回航空原動機・宇

宙推進講演会, 倉敷市, 2013年3月4-5日.

- [5] 山本庸平,湊 亮二郎,杉岡正敏,東野和幸(室蘭工業大学)「白金アルミナ触媒を使用 したバイオエタノールの熱分解吸熱反応に関する研究」,日本航空宇宙学会北部支部 2013 年講演会ならびに第14回再使用型推進系シンポジウム,東北大,2013年3月14-15日.
- [6] 泉俊太郎,杉岡正敏,東野和幸(室蘭工業大学),東伸幸,小林悌宇「液体ロケットエンジンにおけるバイオエタノールの材料適合性に関する実験的研究」,日本航空宇宙学会北部支部 2013 年講演会ならびに第14回再使用型推進系シンポジウム,東北大,2013 年 3 月 14-15 日.
- [7] 高木正平,上田祐士(室蘭工業大学)「小翼列を用いた翼剥離流のActive 制御」,日本航空 宇宙学会北部支部 2013 年講演会ならびに第 14 回再使用型推進系シンポジウム,東北大, 2013 年 3 月 14-15 日.
- [8] 高木正平,宮森康臣,大立目浩幸(室蘭工業大学)「低レイノルズ数における二次元物体後流の渦構造の可視化」,日本航空宇宙学会北部支部 2013 年講演会ならびに第14回再使用型 推進系シンポジウム,東北大,2013 年 3 月 14-15 日.
- [9] 上羽 正純, 樋口 健, 東野 和幸 (室蘭工業大学), 「B-3-5 緊急時リアルタイム画像伝送 高速小型無人航空機システムの提案」, 電子情報通信学会 2013 年総合大会, 岐阜大, 2013 年3月19日~22日
- [10] 竹内僚太朗,上羽 正純(室蘭工業大学),矢野一人,小林聖(ATR)「B-5-77 複数無人航 空機及び追尾アンテナ付地上局間 MIMO 空間相関行列特性の検討」,電子情報通信学会 2013 年総合大会,岐阜大,2013 年 3 月 19 日~22 日
- [11] 棚次亘弘,東野和幸,樋口健,中田大将(室工大),姫野武洋(東大),渡邊力夫(都市大),「P05 高速走行軌道試験設備」,日本航空宇宙学会 第 44 期年会講演会,東京大学 山上会館, 2013年4月18日-19日.
- [12] 高木 正平, 横山慶輔:後流不安定と超音速縮流胴境界層の再遷移, 第 53 回乱流遷移研究 会, (東京, 9/24-25, 2013).
- [13] 山本康平,塚野 徹(室蘭工業大学大学院),湊 亮二郎,杉岡正敏,東野和幸(室蘭工業 大学)「2A10 バイオエタノールの熱分解吸熱反応に関する研究〜特に準静的環境における 熱分解特性〜」,第57回宇宙科学技術連合講演会,鳥取県,2013年10月09-10月11日.
- [14] 宮森康臣, 畠中和明, 高木正平: 石鹸膜に形成される柱体後流渦列のシュリーレン法による可視化, 高速度イメージングとフォトニクスに関する総合シンポジウム 2013 (JCHSIP2013), (室蘭, 10/17-19, 2013).
- [15] 高木正平,上田祐士:小翼列を用いた翼剥離流のActive 制御,第51回飛行機シンポジウム, (高松,11/20-11/22).
- [16] 中田大将,樋口健,棚次亘弘,東野和幸:ロケットスレッドの構造設計について,日本航空宇宙学会・日本機械学会共催,第55回構造強度に関する講演会,1A09, JSASS-2013-3012, pp.25-27, (2013.8.7-9), 室蘭.
- [17] 相原弘匡,岩井達也,似鳥 透,樋口 健,岩佐貴史,岸本直子,藤垣元治:格子投影法 2 カメラ計測法による大型構造物の面形状計測と精度評価,日本航空宇宙学会・日本機械学 会共催,第 55 回構造強度に関する講演会,2A06, JSASS-2013-3050, pp.136-138, (2013.8.7-9), 室蘭.
- [18] 岩佐貴史,小野静之,後垣雄太,岸本直子,相原弘匡,似鳥 透,樋口 健,小木曽望,藤

垣元治, ISAS/JAXA 戦略開発費高精度計測チーム:点計測と面計測を統合した大型宇宙構造システムの表面形状計測法に関する検討実験,日本航空宇宙学会・日本機械学会共催,第55回構造強度に関する講演会,2A07,JSASS-2013-3051, pp.139-141, (2013.8.7-9),室蘭.

- [19] 近江信耶,蒔田愛道,樋口健,宮崎康行,古谷寛,青木隆平,川端信義,渡邊秋人,坂本信臣,SIMPLE-IEM実験チーム:宇宙インフレータブル伸展マストの軌道上初期運用,日本航空宇宙学会・日本機械学会共催,第55回構造強度に関する講演会,3A10,JSASS-2013-3080, pp.225-227, (2013.8.7-9),室蘭.
- [20] 浅野 等, 五明 泰作, 河南 治, 廣川 智己, 新本 康久, 大田 治彦, 鈴木 康 一, 今井 良二, 川崎 春夫, 藤井 清澄, 栗本 卓, 駒崎 雅人, 二相流体ループ ISS 実験装置のシステム特性, 日本混相流学会混相流シンポジウム 2013, 2013 年 8 月 9 日, 長野市 (信州大学).
- [21] 和田大輔,今井良二,三原礼, 極低温流体による予冷時の沸騰熱伝達特性の計測, 日本 混相流学会混相流シンポジウム 2013, 2013 年 8 月 9 日,長野市(信州大学).
- [22] 岸本直子,小野静之,後垣雄太,岩佐貴史,樋口 健,藤垣元治:格子投影法による大型 構造物の面形状計測と精度評価,日本機械学会,2013年度年次大会,岡山,(2013.9.8-11).
- [23] 岸本直子,岩佐貴史,樋口 健:格子投影法を用いた 3 次元形状計測の高精度化実証実験 について,第 57 回宇宙科学技術連合講演会,1K14, JSASS-2013-4191,米子(米子コンベ ンションセンターBigShip),(2013.10.9-11).
- [24] 樋口 健,青木隆平,宮崎康行,渡邊秋人,川端信義,堀 利行,伊藤裕明:SIMPLE 宇宙実験に供されたインフレータブル伸展マストの開発試験,第 57 回宇宙科学技術連合講演会, 3M12, JSASS-2013-4676,米子,(2013.10.9-11).
- [25] 栗本 卓, 松本 聡, 駒崎 雅人, 澤田 健一郎, 川崎 春夫, 大田 治彦, 新本 康久, 鈴木 康一, 浅野 等, 河南 治, 今井 良二,「きぼう」における沸騰二相流実験装置の 開発状況, 日本マイクログラビティ応用学会第 27 回学術講演会(JASMAC-27), 2013 年 11 月 29 日.
- [26] 樋口健,相原弘匡,似鳥透,松尾剣都,岩佐貴史,岸本直子:格子投影法2カメラ法における繰り返し計測精度,第29回宇宙構造・材料シンポジウム,A11,(2013.12.3), ISAS/JAXA 相模原.
- [27] 貝森政明,勝又暢久,樋口 健:形状記憶合金を用いた組紐被服ブームの展開挙動評価,日本機械学会宇宙工学部門,第22回スペース・エンジニアリング・コンファレンス(SEC'13), (2013.12.20-21),東京.
- [28] 藤原直也, 勝又暢久, 樋口 健: 大型宇宙構造物の実現に向けた自動構築メカニズムの開発, 日本機械学会宇宙工学部門, 第22回スペース・エンジニアリング・コンファレンス(SEC'13), (2013.12.20-21), 東京.
- [29] 岩佐貴史,牧恒男,原田卓,岸本直子,亀井宏貴,樋口健,相原弘匡,藤垣元治,吉川 隆章,小木曽望,田中宏明,石村康生,河野太郎,神谷友裕,古谷寛,坂本啓,佐藤泰 貴,中篠恭一,荻芳郎,泉田啓,仙場敦彦:高精度大型宇宙構造システムの開発研究 – 高精度形状計測技術の開発研究–,ISAS/JAXA 第 14 回宇宙科学シンポジウム,相模原, (2014.1.9-10).
- [30] 溝端—秀,湊亮二郎,樋口健,勝又暢久,上羽正純,中田大将,高木正平,東野和幸,棚 次亘弘(室蘭工大),室蘭工大の小型超音速飛行実験機(オオワシ)の研究開発の現状,宇宙輸

送シンポジウム, 2014年1月16-17日, 相模原市, STCP-2013-026.

- [31] 鈴木祥弘,大石栄(室蘭工大院),上村隆太,塩田光平,行澤陽,溝端—秀,棚次亘弘(室蘭 工大),新井隆景(阪府大), 室蘭工大の小型超音速飛行実験機(オオワシ)の操舵空力特性, 宇宙輸送シンポジウム,2014年1月16-17日,相模原市,STCP-2013-027.
- [32] 側原圭太(筑波大院),加藤優—(名大工院),松岡健(名大),笠原次郎(名大),松尾亜紀子(慶 大),船木—幸(ISAS/)AXA),中田大将(室工大),東野和幸(室工大),棚次亘弘(室工大),高速 走行軌道装置における回転デトネーションエンジン滑走試験に関する研究,宇宙輸送シン ポジウム,2014年1月16-17日,相模原市,STCP-2013-033.
- [33] 中田大将(室工大),棚次亘弘,湊亮二郎,軸流反転ファンの基礎実験, 宇宙輸送シンポジ ウム,2014年1月16-17日,相模原市,STCP-2013-036.
- [34] 高木正平(室工大),上田祐士,伏木田裕介,平田裕, 低速から超音速境界層の空力制御に ついて, 宇宙輸送シンポジウム,2014年1月16-17日,相模原市,STCP-2013-041.
- [35] 正木陽(室工大・院),高木正平,棚次亘弘(室工大), ISAS 高速風洞の気流特性, 宇宙輸送 シンポジウム, 2014 年 1 月 16-17 日,相模原市, STCP-2013-042.
- [36] 中田大将, ムハマド ハフィズ, 棚次亘弘, 東野和幸, 廣田光智(室工大), ハイブリッド ロケットの着火遅れに関する基礎実験, 宇宙輸送シンポジウム, 2014年1月16-17日, 相 模原市, STCP-2013-044.
- [37] 杉岡正敏,東野和幸,神田康晴,板倉賢一(室蘭工業大学)UGC ガスの脱硫と水素製造に おける触媒開発,第14回北海道資源環境研究発表会,北大,2014年1月28日.
- [38] 塚野 徹,山本康平,杉岡正敏,棚次亘弘,東野和幸(室蘭工業大学)「炭化水素燃料に おける熱分解吸熱反応」,第11回 HASTIC 学術講演会,北大,2014年2月24日.
- [39] モハメドハフィズ,中田大将,棚次亘弘,東野和幸,廣田光智(室蘭工業大学)「ハイブリ ッドロケットの着火遅れ」,第11回 HASTIC 学術講演会,北大,2014年2月24日.
- [40] 飯島 明日香,笹木 康平,山本 康平,塚野 徹(室蘭工業大学大学院),湊 亮二郎,杉岡 正 敏,棚次 亘弘,東野 和幸(室蘭工業大学 航空宇宙機システム研究センター):バイオエ タノールの吸熱特性に関する研究~特に白金アルミナ触媒を用いた場合,日本航空宇宙学 会北部支部 2014 年講演会ならびに第 15 回再使用型推進系シンポジウム,東北大,2014 年 3月 10-11 日.
- [41] 近藤賢,鈴木祥弘,ムハマッドハナン,溝端一秀,湊亮二郎,東野和幸,棚次亘弘,「室蘭 工大の小型超音速飛行実験機の空力特性と飛行性能予測」,日本航空宇宙学会北部支部 2014 年講演会ならびに第15回再使用型推進系シンポジウム,東北大,2014年3月10-11日.
- [42] 渡口 翼,小野正貴,溝端一秀,湊亮二郎,東野和幸,棚次亘弘,福士誠,山中大樹,梅村 諒磨,「室蘭工大の小型超音速飛行実験機の予備的飛行試験」,日本航空宇宙学会北部支部 2014 年講演会ならびに第15回再使用型推進系シンポジウム,東北大,2014年3月10-11 日.
- [43] 上羽 正純, 溝端一秀(室蘭工業大学大学院)「1C10 小型無人超音速実験機の着陸制御の 一検討」, 第51回飛行機シンポジウム, 香川県, 2013年11月20-11月22日.
- [44] 山下 智也、上羽 正純(室蘭工業大学大学院)「1C12 小型無人超音速実験機のリアルタ イムダイナミクス同定法」、第 51 回飛行機シンポジウム、香川県、2013 年 11 月 20-11 月 22 日.

- [45] 石川温士,今井良二,「水平管群まわりの鉛直上昇気液二相流に関する研究」,混相流シン ポジウム 2014,札幌市,2014 年7月 28-30 日.
- [46] 河南治,今井智敬,大久保正基,浅野等,新本康久,大田治彦,今井良二,栗本卓,松本 聡,「加熱部が短い円管での沸騰熱伝達と気液挙動について」,混相流シンポジウム 2014, 札幌市,2014年7月28-30日.
- [47] 溝端一秀,大石栄,鈴木祥弘,近藤賢,渡口翼,東野和幸,棚次亘弘,湊亮二郎,「室蘭工 大の小型超音速飛行実験機の空力設計および空力特性評価」,第52回飛行機シンポジウム, 長崎,2014年10月.
- [48] 勝又暢久,貝森政明,樋口健:形状記憶合金を用いた組紐被覆コンベックステープブーム の展開実証,第56回構造強度に関する講演会,JSASS-2014-3020, pp.51-53, (2014), 浜 松.
- [49] 大加瀬容平,阿部尚大,樋口健,勝又暢久,渡邊秋人:二重薄肉開断面伸展梁(Bi-STEM)の接触解析による形状取得と力学特性,第 56 回構造強度に関する講演会,2A01, JSASS-2014-3038, pp.105-107, (2014.8),浜松.
- [50] 土居明広,河野裕介,木村公洋,佐藤泰貴,小山友明,山下一芳,松本尚子,金口政弘, 鈴木駿策,岡田 望,本間希樹,秋山和徳,上原顕太,中原聡美,福家英之,坂東信尚,莊 司泰弘,石村康生,田中宏明,坂本 啓,樋口 健,荻 芳郎,岸本直子,岩佐貴史,村田泰 宏,小川英夫:Balloon-borne VLBI,第14回大気球シンポジウム,相模原,(2014.11).
- [51] 樋口 健,古谷 寛,宮崎康行,青木隆平,吉田長治,渡邊秋人,渡辺和樹,蒔田愛道:SIMPLE インフレータブル伸展マストの軌道上長期運用実験経過,JSASS-2014-4133, 第 58 回宇宙 科学技術連合講演会,1G04, 長崎, (2014.11).
- [52] 岸本直子, 樋口 健, 藤垣元治, 岩佐貴史: 格子投影法を用いた可搬型計測装置による 3 次 元形状計測, JSASS-2014-4145, 第 58 回宇宙科学技術連合講演会, 1G16, 長崎, (2014.11).
- [53] 岩佐貴史,岸本直子,樋口健,藤垣元治,小木曽望:レーザートラッカーと格子投影法を 利用した全視野形状計測について,JSASS-2014-4591, 第 58 回宇宙科学技術連合講演会, 3B07, 長崎, (2014.11).
- [54] 笹木 康平, 飯島 明日香, 中田大将, 湊 亮二郎, 杉岡 正敏, 棚次 亘弘, 東野 和幸, 石本真二, 東 伸幸: JAXA リファレンスシステムの推進系に関する基礎検討, 第58回宇宙 科学技術連合講演会, 1J01, 長崎, (2014.11.12-14).
- [55] 小野寺英之, 杉岡 正敏, 今井良二, 東野 和幸, 増田井出夫:アルミ-水反応の衛星推進 系への適用, 第 58 回宇宙科学技術連合講演会, 1J11, 長崎, (2014.11.12-14).
- [56] 中田大将, 堀尾宗平, 東野 和幸, 棚次亘弘, 廣田光智: ハイブリッドロケットの着火時間 に関する実験的研究, 第58回宇宙科学技術連合講演会, 2J06, 長崎, (2014.11.12-14).
- [57] 樋口 健(室蘭工業大学),古谷 寛(東工大),宮崎康行(日大),青木降平(東大),吉田 長治(JAXA),渡邊秋人(サカセ・アドテック),渡辺和樹(ウェルリサーチ),蒔田愛道 (室工大大学院): SIMPLE インフレータブル伸展マストの軌道上長期運用実験経過,第 58回宇宙科学技術連合講演会,1G04,長崎,(2014.11.12-14).
- [58] 今井良二(室工大), 容器内動的濡れ挙の CFD 解析, 日本マイクログラビティ応用学会第 28 回学術講演会, 26A04, 姫路, (2014.11.28-28)).
- [59] 今井良二 (室蘭工大), 鈴木康一 (山口東理大), 川崎春夫 (JAXA), 大田治彦, 新本康久 (九大), 浅野等 (神戸大), 河南治 (兵庫県大), 岡利春, 友部俊之, 宇宿功史郎, 島田雅

喜(IHI エアロスペース),松本聡,栗本卓,高岡秀充,坂本道人,澤田健一郎(JAXA), ISS 利用 TPF 沸騰二相流実験 その5. 凝縮器の開発,日本マイクログラビティ応用学会第 28 回学術講演会,27A05,姫路,(2014.11.28-28)).

- [60] 大田治彦,新本康久,廣川智己(九大),浅野等(神戸大),河南治(兵庫県大),鈴木康一(山口東理大),今井良二(室蘭工大),岡利春,友部俊之,宇宿功史郎,島田雅喜(IHIエアロスペース),松本聡,栗本卓,高岡秀充,坂本道人,川崎春夫,澤田健一郎(JAXA), ISS 利用 TPF 沸騰二相流実験その1. 概要,日本マイクログラビティ応用学会第28回学術講演会,27A01,姫路,(2014.11.28-28)).
- [61] 高岡秀充,松本聡,栗本卓,坂本道人,澤田健一郎,川崎春夫(JAXA)大田治彦,新本康 久,(九大),鈴木康一(山口東理大),浅野等(神戸大),河南治(兵庫県大),今井良二(室 蘭工大),岡利春,友部俊之,宇宿功史郎,島田雅喜(IHIエアロスペース), ISS利用 TPF 沸騰二相流実験その 2. 実験装置の開発,日本マイクログラビティ応用学会第 28 回学術 講演会,27A02,姫路,(2014.11.28-28)).
- [62] 河南治,今井智敬,大久保 正基(兵庫県大),大田治彦,新本康久,廣川智己(九大),浅 野等(神戸大),鈴木康一(山口東理大),今井良二(室蘭工大),岡利春,友部俊之,宇宿 功史郎,島田雅喜(IHI エアロスペース),松本聡,栗本卓,高岡秀充,坂本道人,川崎春 夫,澤田健一郎,(JAXA) ISS 利用 TPF 沸騰二相流実験その 3. 蒸発部の開発,日本マイ クログラビティ応用学会第 28 回学術講演会, 27A03, 姫路, (2014.11.28-28)).
- [63] 浅野等,五明泰作(神戸大),大田治彦,新本康久(九大),河南治(兵庫県大),鈴木康一 (山口東理大),今井良二(室蘭工大),岡利春,友部俊之,宇宿功史郎,島田雅喜(IHIエ アロスペース),松本聡,栗本卓,高岡秀充,坂本道人,川崎春夫,澤田健一郎,(JAXA) ISS利用 TPF 沸騰二相流実験その4. 観察部での気液界面構造の計測,日本マイクログラビ ティ応用学会第 28 回学術講演会,27A03,姫路,(2014.11.28-28)).
- [64] 今井智敬,大久保 正基,河南治(兵庫県大),大田治彦,新本康久(九大),浅野等(神戸 大),今井良二(室蘭工大),松本聡,栗本卓,高岡秀充,坂本道人,(JAXA)沸騰・二相 流体ループの加熱円管壁面における気液挙動と熱伝達,日本マイクログラビティ応用学会 第 28 回学術講演会,P32,姫路,(2014.11.28-28)).
- [65] 山下 智也, 上羽 正純, 「小型無人超音速実験機の飛行時リアルタイムダイナミクス同定 手法の検討」, 第52回飛行機シンポジウム, 2G08, 2014年10月8日~10日, 長崎市
- [66] 横田 滋弘, 上羽 正純, 「小型無人超音速機の縦系着陸制御系設計と外乱に対する性能評価」, 第52回飛行機シンポジウム, 2G09, 2014年10月8日~10日, 長崎市
- [67] 竹内 僚太郎,上羽 正純,「ワイヤレス通信による飛行情報を用いた無人航空機向け追尾 アンテナ制御技術の研究」,第57回自動制御連合講演会,1B05-1,2014年11月10日~12 日,群馬県伊香保町
- [68] 北沢 祥一(ATR),上羽 正純(室蘭工大),「小型無人超音速実験機テレメトリー用指向 性切り替えアンテナに対する考察」,第 58 回宇宙科学技術連合講演会,JSASS-2014-4641 _3E10,2014年11月12日~14日
- [69] 佐藤泰貴, 土居明広, 石村康生, 田中宏明, 荻芳郎, 樋口 健, 河野裕介, 木村公洋: 気球 VLBIのための高精度大型リフレクタ鏡面の開発, 第30回宇宙構造材料シンポジウム, A02, 相模原, (2014.12).
- [70] 伊藤良磨,相原弘匡,樋口 健:格子投影法による相対変位計測,第 30 回宇宙構造材料シンポジウム, A09, 相模原, (2014.12).

- [71] 田中宏明,樋口健,石村康生,土居明広,佐藤泰貴,坂本 啓,稲垣章弥,池田忠繁,小 木曽望,岩佐貴史,荻芳郎,高精度スマート形状可変鏡開発チーム,"大型高精度光学架台: スマート構造システム,"第15回宇宙科学シンポジウム, P-294, 相模原, (2015.1).
- [72] 矢野 一人,北沢 祥一,阿野 進,有吉 正行,熊谷 智明 (ATR),伏水博樹 (日本遠 隔制御),上羽 正純,樋口 健,「複数無人航空機による大型建造物監視のためのアンテ ナ追尾方式」,電子情報通信学会衛星通信研究会,SAT-2014-51,那覇市,2015
- [73] 上羽 正純,竹内 僚太郎,樋口 健,「複数無人航空機による同時観測を可能とする高精 度・高応答追尾アンテナ制御技術の検討」,SAT-2014-52,電子情報通信学会衛星通信研究会, 那覇市,2015年2月18-19日
- [74] 北沢 祥一,上羽 正純,「小型無人超音速実験機に搭載する 1.2GHz 帯テレメトリ用アン テナ」,SAT-2014-53,電子情報通信学会衛星通信研究会,那覇市,2015 年 2 月 18-19 日
- [75] 上羽 正純(室蘭工業大学),須崎 晧平,杉山 隆利(NTT未来ねっと研究所),「アンテ ナ指向方向高精度化に向けた小型船舶搭載衛星追尾アンテナに作用する外乱トルク補償法 の検討」,電子情報通信学会衛星通信研究会,SAT-2014-57,那覇市,2015年2月18-19日
- [76] 上羽 正純(室蘭工業大学),須崎 晧平,杉山 隆利(NTT未来ねっと研究所),「小型船 舶用衛星追尾アンテナにおける指向方向高精度化に向けた外乱トルク補償法の検討」,電子 情報通信学会総合大会, B-3-9, 草津市, 2015 年 3 月 10-13 日
- [77] 東野和幸,小野寺英之,今井良二,杉岡正敏(室蘭工業大学),増田井出夫,畑井啓吾,「A l/水系反応における水素製造制御法の開発」,第15回北海道エネルギー資源環境研究発表 会,北大,2015年1月27日.
- [78] 東野和幸,大堀英雄,小野寺英之,杉岡正敏(室蘭工業大学)「Al/水系反応における水素 製造循環に関する開発」,第15回北海道エネルギー資源環境研究発表会,北大,2015年1 月27日.
- [79] 飯島 明日香,笹木 康平,湊 亮二郎,中田大将,杉岡 正敏,棚次 亘弘,東野 和幸(室蘭 工業大学 航空宇宙機システム研究センター):バイオエタノールの熱吸熱吸熱燃料として の特性に関する研究,日本航空宇宙学会北部支部 2015 年講演会ならびに第 16 回再使用型 宇宙推進系シンポジウム,能代,2015 年 3 月 16-17 日.
- [80] 笹木 康平, 飯島 明日香, 湊 亮二郎, 中田大将, 杉岡 正敏, 棚次 亘弘, 東野 和幸(室蘭 工業大学) ,東 伸幸 (JAXA): バイオエタノールロケットエンジンの冷却特性に関する 研究, 日本航空宇宙学会北部支部 2015 年講演会ならびに第 16 回再使用型宇宙推進系シン ポジウム, 能代, 2015 年 3 月 16-17 日.
- [81] 湊 亮二郎, 今井良二, 東野 和幸(室蘭工業大学): ガスジェネレータサイクルエアターボラ ムジェットの要素性能に関する研究, 日本航空宇宙学会北部支部 2015 年講演会ならびに第 16 回再使用型宇宙推進系シンポジウム, 能代, 2015 年 3 月 16-17 日.
- [82] 立桶 薫,中田大将,棚次 亘弘,東野 和幸(室蘭工業大学):10KWバッテリー駆動反転フ アンの基礎実験,日本航空宇宙学会北部支部 2015 年講演会ならびに第 16 回再使用型宇宙 推進系シンポジウム,能代,2015 年 3 月 16-17 日.
- [83] 今井良二(室工大),微小重力環境における容器内動的濡れ挙動解析技術に関する研究,第 12回 HASTIC 学術講演会,札幌,2015年2月24日
- [84] 大田治彦,新本康久,松本聡,浅野等,今井良二,河南治,鈴木康一,藤井清澄,非共溶 性混合媒体の強制流動沸騰を用いた宇宙用排熱システムの極限性能の追及,第29回宇宙環

境利用シンポジウム,相模原市,2015年1月25日

- [85] 川口 秀樹, 上羽 正純(室蘭工業大学), 松岡 茂登(大阪大学), "サーバラック電磁シ ールドメッシュによるミリ波反射・信号ひずみの FDTD 法解析", 電子情報通信学会 アン テナ・伝搬研究会, A・P 2014-164 松山市, 2015 年1月 22-23 日
- [86] 川口 秀樹, 上羽 正純(室蘭工業大学), 松岡 茂登(大阪大学), "データサーバラック 内でのサーバー間ミリ波通信における反射・干渉伝搬特性の FDTD 法解析", 電気学会電磁 界理論研究会, EMT-15-018, 豊中市, 2015 年 1 月 29~30 日
- [87] 川口 秀樹, 上羽 正純(室蘭工業大学), 松岡 茂登(大阪大学), "データセンターにお けるミリ波無線通信化のためのサーバラック背面ドア電磁シールドメッシュの仕様検討", 電子情報通信学会総合大会, A-B-1-8, 草津市, 2015 年 3 月 10-13 日
- [88] 中田大将,東野和幸,棚次亘弘,ロケットスレッド推進系の展開,H26年度宇宙輸送シンポジウム,2015年1月15日~16日,相模原市
- [89] 鈴木祥弘,大石栄,及川隼登,石上幸哉,三浦壮晃,溝端一秀,東野和幸,新井隆景,「室 蘭工大の小型超音速飛行実験機(オオワシ)の空力特性評価」,平成 26 年度宇宙輸送シン ポジウム,相模原,2015年1月,STCP-2014-053.
- [90] 堀尾宗平,安田一貴,中田大将,東野 和幸(室蘭工業大学):ハイブリッドロケットエンジンのクラスタ化に関する実験的研究,第59回宇宙科学技術連合講演会,1A04,鹿児島,(2015.10.7-9).
- [91] 林祐一郎, 今井良二, 中田大将, 東野 和幸(室蘭工業大学):小型無人超音速機の推進剤安 定供給に関する検討, 第59回宇宙科学技術連合講演会, 1B05, 鹿児島, (2015.10.7-9).
- [92] 飯島明日香,中田大将,湊亮二郎,杉岡正敏,棚次亘弘,東野 和幸(室蘭工業大学):高圧 でのバイオエタノールの熱分解吸熱特性に関する研究,第59回宇宙科学技術連合講演会, 1B13,鹿児島,(2015.10.7-9).
- [93] 小野寺英之, 今井良二, 杉岡正敏, 東野 和幸(室蘭工業大学), 増田井出夫, 畑井啓吾 (JAXA): Al-水高圧水素製造と制御および衛星推進系への適用, 2B03, 第59回宇宙科学技術連合講演 会, 1A04, 鹿児島, (2015.10.7-9).
- [94] 吉田航己,中田大将,國中均:15kW級DCアークジェツトの長寿命化に関する実験的研究, 2C03,第59回宇宙科学技術連合講演会,1A04,鹿児島,(2015)
- [95] 渡邊義昭,渡辺翔平,中田大将,湊亮二郎,東野 和幸(室蘭工業大学):超音速エンジン燃 焼器系の高温環境における基礎研究,第59回宇宙科学技術連合講演会,P02,鹿児島, (2015.10.7-9).
- [96] 今井良二,天野裕二,後藤翔, 宇宙機用推薬タンク内における動的濡れ挙動に関する数値 解析技術に関する研究, 日本混相流学会混相流シンポジウム2015, 2015年8月3日~5日, 高知市
- [97] 五明泰作,浅野等(神戸大),大田治彦,新本康弘(九州大),河南治(兵庫県立大), 鈴木康一(山口東京理科大),今井良二(室工大),松本聡,栗本卓(JAXA),一成分気 液二相流のボイド率に及ぼす重力の影響に関する研究,日本混相流学会混相流シンポジウ ム2015, 2015年8月3日~5日,高知市
- [98] 伊藤良磨, 樋口 健, 相原弘匡: 格子投影法2カメラ法による相対変位計測, JSASS-2015-3046, 第57回構造強度に関する講演会, 2A11, pp.125-127, (2015.8.5-7), 岡山.

- [99] 樋口 健,小山拓人,勝又暢久:厚さのある平板の2次元収納方法,JSASS-2015-3064, 第57 回構造強度に関する講演会, 3A05, pp.178-180, (2015.8.5-7), 岡山.
- [100] 大加瀬容平, 樋口 健, 勝又暢久:二重薄肉開断面伸展梁(Bi-STEM)の動特性, JSASS-2015-4581, 第59回宇宙科学技術連合講演会, 3K14, (2015.10.7-9), 鹿児島.
- [101] Shoichi Kitazawa (ATR) · Masazumi Ueba (MuroranIT) · Tomoaki Kumagai ,「Effect of vehicle body on beam switched telemetry slot antenna for UAV」電子情報通信学会衛星通信研究会, SAT2015-31, 2015年10月7日~10日.
- [102] 土居明広,河野裕介,木村公洋,馬場満久,松本尚子,中原聡美,村田泰宏,芝井広,石 村康生,田中宏明,坂本 啓,樋口 健,小木曽望,児玉 崚,鳥阪綾子,仙場淳彦,上原顕 太,本間希樹,鈴木駿策,小山友明,秋山和徳,小山翔子,坂東信尚,福家英之,莊司泰 弘,小川英夫,本間愛彩,高田勝太,長谷川豊,井上将徳,藤澤健太,中村拡,今村俊哉: 気球VLBI ミッション,大気球シンポジウム,(2015.11.5-6), 相模原.
- [103] 河野裕介,土居明広,木村公洋,馬場満久,松本尚子,中原聡美,村田泰宏,芝井 広,石 村康生,田中宏明,坂本 啓,樋口 健,小木曽望,児玉 崚,鳥阪綾子,仙場淳彦,上原顕 太,本間希樹,鈴木駿策,小山友明,秋山和徳,小山翔子,坂東信尚,福家英之,莊司泰 弘,小川英夫,本間愛彩,高田勝太,長谷川豊,井上将徳,藤澤健太,中村 拡,今村俊哉, 小山翔子,坂東信尚,福家英之,莊司泰弘,小川英夫,本間愛彩,高田勝太,長谷川豊, 井上将徳,藤澤健太,中村 拡,今村俊哉:気球VLBI 地上試験,大気球シンポジウム, (2015.11.5-6), 相模原.
- [104] 上羽 正純、山下 智也、「小型無人超音速実験機向けリアルタイムダイナミクス同定手 法の飛行試験評価",第53回飛行機シンポジウム、2E01、2015.年11月11日~13日、松山市
- [105] 横田滋弘, 上羽 正純, "小型無人超音速実験機の自律飛行に向けた着陸制御系の飛行評価", 第53回飛行機シンポジウム, 2E04, 2015.年11月11日~13日, 松山市
- [106] 高橋 康平, 上羽 正純, "小型無人超音速実験機向け離陸滑走制御系と性能評価", 第53 回飛行機シンポジウム2E05, 2015.年11月11日~13日, 松山市
- [107] 高久 雄一, 上羽 正純, 樋口 健, 「屋外を飛行する無人航空機の画像処理による高精 度指向方向検出法の検討」, 第58回自動制御連合講演会, 2015年11月14日~15日, 神戸市
- [108] 樋口 健, 岸本直子, 岩佐貴史, 勝又暢久: 格子投影法による曲面変位計測 ~格子を投影 しない格子投影法~, 第31回宇宙構造材料シンポジウム, A10, 相模原, (2015.12.8).
- [109] 土居明広,河野裕介,馬場満久,木村公洋,松本尚子,小山友明,鈴木駿策,中原聡美, 坂東信尚,福家英之,村田泰宏,本間希樹,上原顕太,秋山和徳,石村康生,田中宏明, 坂本 啓,荻 芳郎,小木曽望,児玉 崚,莊司 泰弘,亀谷 収,樋口 健,萱場綾子 他 : 気球VLBIゴンドラシステムの開発の進捗報告,第16回宇宙科学シンポジウム,P-105, (2016.1.5-6),相模原.
- [110] 後藤 健,石村康生,土居明広,村田泰宏,田中宏明,樋口 健,池田忠繁,小木曽望,坂本 啓,上田政人,横関智弘,米山 聡,小林訓史,小山昌志,向後保雄,有川秀一,仲井朝美,大谷章夫,岩田 稔,長 秀雄:大型高精度光学架台の研究,第16回宇宙科学シンポジウム, P-203, (2016.1.5-6),相模原.
- [111] 田中宏明,樋口健,勝又暢久,石村康生,土居明広,河野太郎,馬場満久,松本康司,坪 井昌人,村田泰宏,松永三郎,荻芳郎,川口健一,岡部洋二,横関智弘,斉藤一哉,池田 忠繁,仙場淳彦,坂本 啓,古谷 寛,岩佐貴史,小木曽望,南部陽介,木村公洋,岩田 稔, 岸本直子,波多英寛,秋田 剛,鳥阪綾子,泉田 啓,篠原主勲,小柳 潤,河野裕介,小山

友明:大型高精度光学架台に関する研究 ~スマートリフレクタの開発~, 第16回宇宙科 学シンポジウム, P-204, (2016.1.5-6), 相模原.

- [112] 土居明広,馬場満久,田中宏明,小木曽望,児玉 崚,石村康生,樋口 健,鳥阪 綾子,仙 場淳彦,荻芳郎,佐藤泰貴,坂本 啓,岸本 直子,河野太郎,坪井昌人,村田泰宏,松永 三郎,川口健一,木村公洋,宮崎康行,篠原主勲,小柳 潤,河野裕介,小山友明,中原 聡美:大型高精度光学架台に関する研究 ~高精度支持構造構築法~,第16回宇宙科学シン ポジウム, P-206, (2016.1.5-6),相模原.
- [113] 小野寺英之,今井良二,杉岡正敏,東野和幸(室蘭工業大学)「Al/水 系反応における 水素製造制御法の開発」,第16回北海道エネルギー資源環境研究発表会,北大,2016年1月 19日.
- [114] 大堀英雄,小野寺英之,杉岡正敏,今井良二,東野和幸(室蘭工業大学)「Al/水 系反応を利用した水素製造循環に関する開発(その2)」,第16回北海道エネルギー資源環境研究発表会,北大,2016年1月19日.
- [115] 後藤翔, 今村卓哉, 今井良二, 杉岡正敏, 東野和幸, Al/水反応推進系における水タンク内 液体マネジメント技術に関する研究, 日本航空宇宙学会北部支部2016年講演会ならびに第 17回再使用型宇宙推進系シンポジウム, 北大, 2016年3月9日~10日.
- [116] 天野祐司, 湯瀬秀平, 今井良二, 微小重力下における推進薬タンク内動的濡れ挙動の研究, 日本航空宇宙学会北部支部2016年講演会ならびに第17回再使用型宇宙推進系シンポジウム, 北大, 2016年3月9日~10日.
- [117] 林祐一郎,佐々木アスカ,中田大将,今井良二,東野和幸,大河内誠,石橋利幸,小型無 人超音速機の推進剤安定供給に関する実験及び検討,日本航空宇宙学会北部支部2016年講 演会ならびに第17回再使用型宇宙推進系シンポジウム,北大,2016年3月9日~10日.
- [118] 小野寺英之,中田大将,今井良二,杉岡正敏,東野和幸,Al-水系における高圧水素製业の 制御法の確立および宇宙機推進系への適用,日本航空宇宙学会北部支部2016年講演会なら びに第17回再使用型宇宙推進系シンポジウム,北大,2016年3月9日~10日.
- [119] 斎藤真之,小野寺英之,今井良二,杉岡正敏,東野和幸,微小重力環境でのAl-水反応にお ける反応器内気液分離に関する研究,第13回HASTIC学術講演会,北大,2016年3月9日.
- [120] 上羽正純,高久雄一,樋口健,複数無人航空機による同時観測を可能とする高応答追尾ア ンテナ制御システムの性能評価,電子情報通信学会衛星通信研究会,2016年2月16日~17日, 広島国際大学
- [121] 高久雄一,上羽正純,樋口健,複数背景パターンに基づく画像処理による屋外飛行無人航 空機検出方法の検討,計測自動制御学会北部支部講演会,2016年2月29日~3月1日,北海道 大学
- [122] 上羽正純, 無人航空機(UAV)飛行における無線通信の課題, 電子情報通信学会総合大会企画 セッション, 2016年3月15日, 九州大学
- [123] 中田大将, ロケットのクラスタリングに関する一考察, 平成27年度宇宙輸送シンポジウム, STCP-2015-060, 2016年1月14-15日, 相模原市
- [124] 渡辺翔平,渡邉義昭,早坂大輔,中里直史,朴峻秀,中田大将,香山晃,東野和幸,GG-ATR ラム燃焼器における冷却システムの構築と耐熱材料評価に関する基礎研究,日本航空宇宙 学会北部支部2016年講演会ならびに第17回再使用型宇宙推進系シンポジウム,北大,2016 年3月9日~10日.

- [125] 小川大輔, 飯島明日香, 森下美怜, 中田大将, 東野和幸, 東伸幸, バイオエタノールロケ ットエンジンにおけるサルファアタック・コーキングの冷却特性に関する影響評価, 日本 航空宇宙学会北部支部2016年講演会ならびに第17回再使用型宇宙推進系シンポジウム, 北 大, 2016年3月9日~10日.
- [126] 安田一貴, 堀尾宗平, 中田大将, 東野和幸, 渡邉力夫, クラスタ・ハイブリッドロケット における亜酸化窒素の分岐管流動特性, 日本航空宇宙学会北部支部2016年講演会ならびに 第17回再使用型宇宙推進系シンポジウム, 北大, 2016年3月9日~10日.
- [127] 渡邉義昭,渡辺翔平,中田大将,東野和幸,バイオエタノール/LOXガスジェネレータのタ ビン駆動ガス均一化に関する検討,日本航空宇宙学会北部支部2016年講演会ならびに第17 回再使用型宇宙推進系シンポジウム,北大,2016年3月9日~10日.
- [128] 石上幸哉, 溝端一秀, 東野和幸(室工大), 新井隆景(阪府大), 小型超音速飛行実験機 のロール運動による空力特性, 日本航空宇宙学会北部支部2016年講演会ならびに第17回再 使用型宇宙推進系シンポジウム, 北大, 2016年3月9日~10日.
- [129] 今井良二,天野裕二,湯瀬秀平,推進薬タンクを対象とした微小重力下容器内動的濡れ挙動に関する研究,日本混相流学会混相流シンポジウム2016,2016年8月8日~10日,京都市
- [130] 今井良二,後藤翔,今村卓哉, 齋藤真之,小野寺英之,杉岡正敏,東野和幸, Al-水反応を 利用した推進系における水タンク液体マネジメントおよび反応槽気液分離技術に関する研 究, 日本混相流学会混相流シンポジウム2016, 2016年8月8日~10日,京都市
- [131] 五明 泰作, 浮穴 涼介, 浅野 等,大田 治彦,新本 康久,河南 治,鈴木 康一,今井 良 二,栗本 卓,松本 聡,澤田 健一郎,一成分二相流の流れの発達に関する研究,日本混相 流学会混相流シンポジウム2016,2016年8月8日~10日,京都市.
- [132] 東野和幸,中田大将,今井良二,湊亮二郎,杉岡正敏,高久雄一,溝端一秀,樋口 健, 勝又暢久,棚次亘弘(室蘭工業大学):航空宇宙機システム研究センターにおける小型超音速 機【オオワシ】の研究開発状況と推進系について,第60回宇宙科学技術連合講演会,3H18, 函館,(2016.09.6-9).
- [133] 岸本直子,樋口 健,岩佐貴史,藤垣元治,勝又暢久:大型宇宙構造物の高速かつ高精度 な軌道上形状計測を可能にする画像計測法の研究開発,第60回宇宙科学技術連合講演会,3 H14,函館,(2016.09.6-9)
- [134] 秋葉鐐二郎, 平元利峰, 三橋龍一, 樋口 健: 大型LTAへの接着剤応用の可能性, 第60回宇 宙科学技術連合講演会, 2B04, 函館, (2016.09.6-9).
- [135] 樋口 健,勝又暢久,植地 矩:厚みのある平板による宇宙大型展開構造物,JSASS-2016-4122, 第60回宇宙科学技術連合講演会,1H09,(2016.9.6-9),函館(函館アリーナ).
- [136] 笠原 次郎, 松岡 健, 石原 一輝, 後藤 啓介, 西村 純平(名大), 松尾 亜紀子(慶応大), 船 木 一幸(JAXA), 中田 大将, 東野 和幸, 棚次 亘弘(室蘭工大), 回転デトネーションエンジ ンの飛行実証に向けた実験研究, 第60回宇宙科学技術連合講演会, 3A13, 函館, (2016.9.6-9).
- [137] 安田 一貴,中田 大将,岡田 空悟,東野 和幸,廣田 光智,渡邉 力夫,ハイブリッドロ ケットのクラスタリングに関する基礎研究,第60回宇宙科学技術連合講演会,4A01,函館, (2016.9.6-9)
- [138] 後藤翔, 今村卓哉, 齋藤 真之, 今井良二, 杉岡正敏, 東野和幸, Al-水反応を利用した推進 系における水タンク液体マネジメ ントおよび反応槽気液分離技術に関する研究, 第60回宇 宙科学技術連合講演会, P09, 函館, (2016.9.6-9).

- [139] 天野 裕司, 湯瀬 秀平, 今井 良二, 宇宙機推進薬タンクを対象とした微小重力下動的濡れ 挙動の解析技術に関する研究, P13, 函館, (2016.9.6-9).
- [140] 上羽正純, 横田滋弘, 小型無人超音速実験機の自律飛行に向けた着陸制御系飛行検証, 第 54回飛行機シンポジウム, 2M06, 富山, 2016.10.24-26
- [141] 高橋康平, 上羽正純, 小型無人超音速実験機向け離陸制御系の飛行検証, 第54回飛行機シンポジウム, 2M06, 富山, 2016.10.24-26
- [142] 塩野経介,石上幸哉,溝端一秀,東野和幸,新井隆景,室蘭工大小型超音速飛行実験機の ピッチおよびヨー運動による動的空力特性,第54回飛行機シンポジウム,1F06,富山, 2016.10.24-26
- [143] 山﨑優樹, 溝端一秀, 東野和幸, 室蘭工大小型超音速飛行実験機のエリアルールに基づく 抗力低減, 第54回飛行機シンポジウム, 3107, 富山, 2016.10.24-26
- [144] 三浦壮晃,石上幸哉,塩野経介,溝端一秀,東野和幸,小型超音速飛行実験機のCFD解析に よる空力評価,第54回飛行機シンポジウム,3108,富山,2016.10.24-26
- [145] 岸本直子, 樋口 健, 岩佐貴史, 勝又暢久: SfMを使った構造物の形状計測, JSASS-2016-3022, 第58回構造強度に関する講演会, 1B06, pp.54-56, (2016.8.3-5), 札幌(北海道大学).
- [146] 勝又暢久,片倉寛史,後藤良太,樋口健:組紐被覆伸展梁の非線形曲げ座屈に関する基礎 的検討,JSASS-2016-3056,第58回構造強度に関する講演会,2B08,pp.156-158,(2016.8.3-5), 札幌(北海道大学).
- [147] 丹治 陸, 樋口 健, 勝又暢久:小型無人超音速飛行実験機の着陸ダイナミクス解析に基づく主脚構造検討, JSASS-2016-3095, 第58回構造強度に関する講演会, 3B17, pp.268-270, (2016.8.3-5), 札幌(北海道大学).
- [148] 伊藤良磨, 樋口健, 勝又暢久, 岩佐貴史, 岸本直子, 藤垣元春:計測対象表面に2次元格子 を貼り付けた表面形状相対変位計測, 第32回宇宙構造・材料シンポジウム, A02, (2016.12.9), 相模原
- [149] 大堀英雄,中田大将,杉岡正敏,今井良二,東野和幸,Al/水系反応を利用した水素製造循 環に関する研究(その3),第17回北海道エネルギー資源環境研究発表会,(2017.1.17), 札幌(北海道大学).
- [150] 西村 純平, 石原 一輝, 後藤 啓介, 中神 壮馬, 松岡 健, 笠原 次郎, 松尾 亜紀子, 船木 一幸, 向江 洋人, 安田 一貴, 中田 大将, 東野 和幸, 耐熱複合材回転デトネーションエ ンジン内の燃焼および伝熱特性評価, 第54回燃焼シンポジウム, 2016年11月23-25, E32, 仙 台
- [151] 溝端一秀,石上幸哉,三浦壮晃,塩野経介,山崎優樹,東野和幸,新井隆景,「室蘭工大の小型超音速飛行実験機(オオワシ)の空力に関する最近の取り組みについて」, STCP-2016-032,平成28年度宇宙輸送シンポジウム,2017年1月16日,相模原.
- [152] 笠原次郎,石原一輝,西村純平,中神壮馬,松岡建,松尾亜紀子,船木一幸,向江洋人, 安田一貴,中田大将,東野和幸,C/C複合材回転デトネーションエンジンの伝熱特性及び長 秒時地上燃焼実験,平成28年度宇宙輸送シンポジウム,2017年1月,相模原
- [153] 仲野直哉,高久雄一,上羽正純,樋口健,画像処理による屋外飛行無人航空機における誤 検出抑制法の実験的検討,第49回計測自動制御学会北海道支部講演会,札幌,2017年2月22 日

- [154] 高久雄一,阿部祐太郎,上羽正純,北沢祥一,樋口健,複数無人航空機による同時観測を 可能とする高精度・高応答追尾アンテナ制御システムの追尾・切替性能評価実験,電子情 報通信学会衛星通信研究会,SAT2016-66,勝浦,2017年2月23日~24日
- [155] 大堀英雄,中田大将,杉岡正敏,今井良二,東野和幸,Al/水反応における水素製造循環シ ステムに関する研究,日本航空宇宙学会北部支部創立30周年記念2017年講演会ならびに第 18回再使用型宇宙推進系シンポジウム,仙台(東北大学),2017.3.16-17.
- [156] 溝端一秀,石上幸哉,三浦壮晃,塩野経介,山崎優樹,市川陸,白方洸次,田井翔一郎, 東野和幸(室蘭工大),新井隆景(大阪府立大)室蘭工大の小型超音速飛行実験機(オオ ワシ)の空力設計および空力評価,北大-JAXA連携企画講演会・第14回HASTIC学術講演会, 北大,2017年3月7日.
- [157] 白方洸次, 溝端一秀, 石上幸哉, 三浦壮晃, 塩野経介(室蘭工大), 新井隆景(大阪府立 大)室蘭工大の小型超音速飛行実験機(オオワシ)の姿勢変化レートによる空力特性, 北 大-JAXA連携企画講演会・第14回HASTIC学術講演会, 北大, 2017年3月7日.
- [158] 勝又暢久,樋口 健,藤井駿,佐藤伸平,中尾拓治,藤田智之,小野寛王,田宮俊(室蘭 工大),小型超音速飛行実験機(オオワシ)の構造設計,北大-JAXA連携企画講演会・第14 回HASTIC学術講演会,北大,2017年3月7日.
- [159] 上羽正純,高橋康平,鎌田智寛,高久雄一(室蘭工大),小型超音速飛行実験機に向けた 自律飛行用誘導制御システムと飛行実証,北大-JAXA連携企画講演会・第14回HASTIC学術 講演会,北大,2017年3月7日.
- [160] 石原眞優, 湊亮二郎, 中田大将, 今井良二, 東野和幸(室蘭工大) GG-ATRエンジンの性能 特性について, 北大-JAXA連携企画講演会・第14回HASTIC学術講演会, 北大, 2017年3月7 日.
- [161] 岡田空悟,中田大将,安田一貴,東野和幸(室蘭工大)高速走行軌道実権設備の最近の取り組み,北大-JAXA連携企画講演会・第14回HASTIC学術講演会,北大,2017年3月7日.
- [162] 湊亮二郎,中田大将,東野和幸,今井良二,八島優太,石原眞優,向江洋人,森下海怜(室 工大),GG-ATRエンジンGN2冷走試験について,日本航空宇宙学会北部支部創立30周年 記念2017年講演会ならびに第18回再使用型宇宙推進系シンポジウム,仙台(東北大学), 2017.3.16-17.
- [163] 森下海怜,吉川稲穂,中田大将,湊亮二郎,東野和幸,フィルムクーリング型水素点火器の作動特性,日本航空宇宙学会北部支部創立30周年記念2017年講演会ならびに第18回再使 用型宇宙推進系シンポジウム,仙台(東北大学),2017.3.16-17.
- [164] 安田一貴,岡田空悟,中田大将,東野和幸,亜酸化窒素のタンク排出特性に関する実験的 研究,日本航空宇宙学会北部支部創立30周年記念2017年講演会ならびに第18回再使用型宇 宙推進系シンポジウム,仙台(東北大学),2017.3.16-17.
- [165] 向江洋人, 湊亮二郎, 中田大将, 東野和幸, GG-ATRエンジン用軸受の発熱・冷却特性に関 する研究, 日本航空宇宙学会北部支部創立30周年記念2017年講演会ならびに第18回再使用 型宇宙推進系シンポジウム, 仙台(東北大学), 2017.3.16-17.
- [166] 今村卓哉,後藤翔,劉思博,今井良二,杉岡正敏,東野和幸, Al/水反応推進系における水 タンク内液体マネジメント技術に関する研究,日本航空宇宙学会北部支部創立30周年記念 2017年講演会ならびに第18回再使用型宇宙推進系シンポジウム,仙台(東北大学), 2017.3.16-17.

- [167] 道原孟里,天野裕司,今井良二,宇宙機推進薬タンクを対象とした微小重力下動的濡れ挙動とスロッシング挙動に関する研究,日本航空宇宙学会北部支部創立30周年記念2017年講演会ならびに第18回再使用型宇宙推進系シンポジウム,仙台(東北大学),2017.3.16-17.
- [168] 東野和幸,今井良二,湊亮二郎,中田大将,小型無人超音速機オオワシの推進系システムの研究開発状況と課題,日本航空宇宙学会第48期年会講演会,東京(東京大学),2017.4.13-14
- [169] 西村 純平,石原 一輝,後藤 啓介,中神 壮馬,松岡 健,笠原 次郎,松尾 亜紀子, 船木 一幸,向江 洋人,安田 一貴,中田 大将,東野 和幸,森合 秀樹,耐熱複合材 回転デトネーションエンジン内の熱流束測定及び熱伝達特性評価,航空原動機講演会,2B06, 2017年3月,沖縄

著書

- [1] Minato, R., Higashino, H, Sugioka, M. and Sasayama, Y. "Control of LNG pyrolysis and Application to Regenerative Cooling Rocket Engine", Heat Exchanger InTech (2011)
- [2] Kasahara, J,Kato,Y, Ishihara, K, Goto,K., Matuoka, K., Matuo,A, Funaki,I, Moriai,H, <u>Nakata,</u> <u>D, Higashino,K, Tanatsugu,N</u>, "Detonation Control for Propulsion" Shock Wave and High Pressure Phenomena(Springer)2016
- [3] Toru Shimada, Saburo Yuasa, Harunori Nagata, Shigeru Aso, Ichiro Nakagawa, Keisuke Sawada, Keiichi Hori, Masahiro Kanazaki, Kazuhisa Chiba, Takashi Sakurai, Takakazu Morita, Koki Kitagawa, Yutaka Wada, <u>Daisuke Nakata</u>, Mikiro Motoe, Yuki Funami, Kohei Ozawa, and Tomoaki Usuki, *Chemical Rocket Propulsion*, Springer, 2017 Part VI "Hybrid Rocket Propulsion"
- [4] 東野和之,上羽正純,溝端一秀,今井良二,廣田光智,畠中和明,湊亮二郎,中田大将,樋 口健,境昌宏,勝又暢久,「きちんと知りたい!飛行機メカニズムの基礎知識」,日刊工業新 聞社,2018年1月刊,ISBN-10:4526077852, ISBN-13:978-4526077852.

室蘭工業大学紀要

- [1] 室蘭工業大学紀要第63号
 高木正平:流体運動と電磁気学のアナロジーを用いて理解促進を目指した学生実験.室蘭工 業大学紀要,第63号, March 2014, pp. 145-150.
- [2] 室蘭工業大学紀要第64号 航空宇宙機システム研究センター特集号 (平成27年3月 ISSN 1344-2708)
- 1.オオワシⅡ飛行にむけて並びに関連技術の研究開発(推進系)

 - (3) アルミー水系水素製造の衛星推進系への応用 ……………………東野 和幸,小野寺 英之,杉岡 正敏,今井 良二,増田 井出夫

- 2.オオワシII飛行にむけて並びに関連技術の研究開発(誘導制御系)
 - (5) 無人航空機自律飛行のための誘導制御システム技術 ーおおわし2号機用誘導制御システム実現に向けて ……………………………………………………上羽 正純, 竹内 僚太郎, 山下 智也, 横田 滋弘
- 3.オオワシⅡ飛行にむけて並びに関連技術の研究開発(機体,構造系)
- 4.オオワシⅡ飛行にむけて並びに関連技術の研究開発(試験設備系)
- 5.オオワシII 飛行にむけて並びに関連技術の研究開発(関連研究開発分野) (10) 展開宇宙構造物に関する研究 …………勝又 暢久, 樋口 健, 大加瀬 容平, 貝森 政明

室蘭工業大学航空宇宙機システム研究センター 年次報告書 2017

2018年9月発行

編集:国立大学法人室蘭工業大学 航空宇宙機システム研究センター 発行:国立大学法人室蘭工業大学 航空宇宙機システム研究センター

> 〒050-8585 室蘭市水元町 27番1号 TEL/FAX: 0143-46-5315 E-mail: uchiumi@mmm.muroran-it.ac.jp URL: http://www.muroran-it.ac.jp/aprec/