室蘭工業大学
学術資源アーカイブ
Muroran Institute of Technology Academic Resources Archive

Hall＇s Relations in Finite Groups

メタデータ	言語：eng
	出版者：Elsevier
	公開日：2019－05－20
	キーワード（Ja）：
	キーワード（En）：
	作成者：村井，正文，竹ケ原，裕元 メールアドレス： 所属：
URL	http：／／hdl．handle．net／10258／00009880

Hall's Relations in Finite Groups

Masafumi Murai
Meiji-machi 2-27, Izumi Toki-shi, Gifu 509-5146, Japan
and
\section*{Yugen Takegahara}
Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
E-mail: yugen@mmm.muroran-it.ac.jp

Let H be a finite group, and let θ be an automorphism of H whose order divides n. Hall proved that the number of elements x of H that satisfy the relation $x \cdot x^{\theta} \cdot x^{\theta^{2}} \cdots x^{\theta^{n-1}}=1$ is a multiple of $\operatorname{gcd}(n,|H|)$. For a prime factor p of $\operatorname{gcd}(n,|H|)$, if such a number is not a multiple of $\operatorname{gcd}(p n,|H|)$, then a Sylow p-subgroup of H is exceptional.

1. INTRODUCTION

Let n be a positive integer. For a finite group H and for an automorphism θ of H whose order divides n, let $L_{n}(H, \theta)$ denote the set consisting of all elements x of H such that

$$
x \cdot x^{\theta} \cdot x^{\theta^{2}} \cdots x^{\theta^{n-1}}=1
$$

where x^{θ} denotes the effect of θ on x. The following theorem is due to Hall [8, Theorem 1.6].

Hall's Theorem. For a finite group H and for an automorphism θ of H whose order divides $n, \sharp L_{n}(H, \theta)$ is a multiple of $\operatorname{gcd}(n,|H|)$.

Under the hypothesis of the Hall's Theorem, consider the semidirect product of the cyclic group generated by θ and H. Then we have

$$
L_{n}(H, \theta)=\left\{x \in H \mid\left(x \theta^{-1}\right)^{n}=1\right\}
$$

and

$$
\sharp L_{n}(H, \theta)=\sharp\left\{x \in H \theta H=\theta H \mid x^{n}=1\right\} .
$$

2000Mathematics Subject Classification : 20D60, 20D15, 20 D 45.

Hence the Hall's Theorem is obtained as a special case of the following theorem, which is also due to Hall.

Theorem 1.1. Let G be a finite group and H a subgroup. For any $y \in G$ and for any $z \in C_{G}(H)$, the number of elements x in the double coset $H y H$ of H such that $x^{n}=z$ is a multiple of $\operatorname{gcd}(n,|H|)$.

Theorem 1.1 is proved in Section 4, though it is a special case of [8, Theorem 1]. For a finite group G, let $a_{n}(G)$ denote the number of elements x of G that satisfy the equation $x^{n}=1$. In the Hall's Theorem, if θ is the identity mapping, then $L_{n}(H, \theta)=a_{n}(H)$ and the assertion is due to Frobenius $[4, \S 2, \mathrm{II}]$:

Frobenius Theorem. For a finite group $G, a_{n}(G)$ is a multiple of $\operatorname{gcd}(n,|G|)$.
Arising out of this theorem, several interesting facts are known (see, e.g., [13]). Our purpose is to investigate the corresponding facts that arise from the Hall's Theorem.

Let p be a prime integer. In connection with the Frobenius Theorem, Kulakoff proved the following theorem [11, Satz 2].

Kulakoff's Theorem. Suppose that $p>2$ and that P is a finite non-cyclic group of order p^{ℓ}. Then, for $0<m<\ell, a_{p^{m}}(P)$ is a multiple of p^{m+1}.

Under the assumption $p>2$, Asai and the second author have proved a generalization of the Kulakoff's Theorem (cf. [1, Theorem 7.1], Theorem 2.9) related to the Hall's Theorem.

We define the exceptional p-groups as follows. If $p>2$, then the exceptional p-groups are the cyclic p-groups. The exceptional 2 -groups are the cyclic, dihedral, generalized quaternion, and quasi-dihedral 2 -groups (see [14, Chap. 4, Theorem 4.1]). By the definition, the four-group is exceptional, which seems to be natural for our assertions.

In this paper, we show that, for a finite p-group P and for an automorphism θ of P whose order divides p^{u}, if $\sharp L_{p^{u}}(P, \theta)$ is not a multiple of $\operatorname{gcd}\left(p^{u+1},|P|\right)$, then P is an exceptional p-group of order greater than p^{u} (cf. Theorem 2.8). Furthermore, in Section 4, we establish the following theorem which concerns Theorem 1.1.

Theorem 1.2. Let G be a finite group and H a subgroup. Suppose that $\operatorname{gcd}(n,|H|)$ is divisible by a prime p. For any $y \in G$ and for any $z \in C_{G}(H)$, if the number of elements x in the double coset $H y H$ of H such that $x^{n}=z$ is not a multiple of $\operatorname{gcd}(p n,|H|)$, then a Sylow p-subgroup of H is an exceptional p-group whose order is greater than the highest power of p dividing n.

The assertion of Theorem 1.2 with $p>2$ is a special case of [8, Theorem 1 (iii)]. With regard to the Hall's Theorem, we get the following special case of Theorem 1.2.

Theorem 1.3. Let H be a finite group, and let θ be an automorphism of H whose order divides n. Suppose that $\operatorname{gcd}(n,|H|)$ is divisible by a prime p. If $\sharp L_{n}(H, \theta)$ is not a multiple of $\operatorname{gcd}(p n,|H|)$, then a Sylow p-subgroup of H is an exceptional p-group whose order is greater than the highest power of p dividing n.

Theorems 1.2 and 1.3 are regarded as generalizations of the following theorem which has been established by the first author [13, Corollary B].

Theorem 1.4. Let G be a finite group. Suppose that $\operatorname{gcd}(n,|G|)$ is divisible by a prime p. Let P be a Sylow p-subgroup of G, and let p^{u} be the highest power of p dividing n. If $a_{n}(G)$ is not a multiple of $\operatorname{gcd}(p n,|G|)$, then P is a cyclic group of order greater than p^{u}, or else $p=2$ and P is a non-cyclic exceptional 2-group of order greater than 2^{u+1}.

The Kulakoff's Theorem is a special case of Theorem 1.4. It follows from [12, Theorem 6.2 (Thompson)] that, for a finite 2 -group $P, a_{2}(P)$ is not a multiple of 4 if and only if P is either cyclic or non-abelian exceptional (see also [10, pp. 52-53]). This fact, which is considered as a special case of Theorem 1.4 too, and the Kulakoff's Theorem with $m=1$ are used for the proof of an essential result, Theorem 2.8, to Theorem 1.2 (see Section 2).

In Section 5, we have certain results (cf. Theorems 5.1 and 5.2) related to Theorem 1.3 and the Frobenius Conjecture which has been shown to be true by Iiyori and Yamaki [9]:

Theorem If the number of elements x of a finite group G that satisfy the equation $x^{n}=1$ is equal to $\operatorname{gcd}(n,|G|)$, then such elements form a characteristic subgroup of G.

Notation Let G be a group. We denote by $Z(G)$ the center of G, and denote by $\exp G$ the exponent of G. For subgroups H and K of $G,[H, K]$ denotes the commutator subgroup of H and K. For any element x of $G,\langle x\rangle$ denotes the cyclic subgroup generated by x. If G is a finite p-group, then, for each positive integer u, the characteristic subgroup $\Omega_{u}(G)$ of G is defined to be the subgroup generated by the elements of order at most p^{u}.

2. THE CASE OF p-GROUPS

Let $C_{2}(G)$ denote the commutator subgroup of a group G, and, for each integer i with $i \geq 3$, define inductively $C_{i}(G)$ to be the commutator subgroup of $C_{i-1}(G)$ and G. By [14, Chap. 4, Theorem 2.5], the lower central series

$$
G \geq C_{2}(G) \geq C_{3}(G) \geq \cdots
$$

reaches $\{1\}$ after a finite number of terms if and only if G is nilpotent. We use the following result which is due to Hall (see [7, §3] and [14, Chap. 4, §3]).

Theorem 2.1. For elements x and y of a group G and for a positive integer n, there exist $c_{i} \in C_{i}(G), 2 \leq i \leq n$, such that

$$
x^{n} y^{n}=(x y)^{n} c_{2}^{e_{2}} \cdots c_{n}^{e_{n}}
$$

where the exponent e_{i} is the i-th binomial coefficient:

$$
e_{i}=\binom{n}{i}=\frac{n(n-1) \cdots(n-i+1)}{i!} .
$$

The following corollary to Theorem 2.1 is a part of [1, Corollary 2.2].
Corollary 2.2. Let u be a positive integer, and let G be a finite p-group such that $\exp C_{2}(G) \leq p^{u-1}$ and $\left|C_{2}(G)\right| \leq p^{u}$. Then $\exp \Omega_{u}(G) \leq p^{u}$.

Proof. We have that p^{u-1} divides $p^{u}\left(p^{u}-1\right) / 2$ in any case. Also, if $3 \leq i \leq u+2$, then p^{u-i+2} divides

$$
\binom{p^{u}}{i}=\frac{p^{u}}{i}\binom{p^{u}-1}{i-1}
$$

because $i \leq p^{i-2} \leq p^{u}$ except that $p=2$ and $i=3$. Now the corollary follows from Theorem 2.1.

Throughout this section, u is a positive integer, P is a finite p-group, and θ is an automorphism of P whose order divides p^{u}. Let C be an arbitrary cyclic group of order p^{u}. We define the homomorphism ρ from C to the automorphism group of P by $\rho(c)=\theta$ for a generator c of C. Let $C P$ be the semidirect product of C and P with respect to the action $\rho[14$, Chap. 1, (8.3)]. Then we have

$$
\begin{equation*}
L_{p^{u}}(P, \theta)=\left\{x \in P \mid\left(x c^{-1}\right)^{p^{u}}=1\right\} . \tag{1}
\end{equation*}
$$

For calculation of commutators, we often use the following properties.
(F1) Suppose that a finite group G is the product of an abelian subgroup and a normal subgroup H. Then $C_{2}(G)=[H, G]$ ([1, Lemma 2.4]).
(F2) Under the hypothesis of (F1), if G is a p-group and $H \neq\{1\}$, then $C_{2}(G)$ is a proper subgroup of H ([1, Lemma 2.5]).

The fact (F1) is an immediate consequence of [14, Chap. 4, (1.1)], and (F2) is deduced from (F1) and [14, Chap. 4, Theorem $2.9($ iii $)$. In (F2), if G / H is cyclic, then the assertion is a special case of [14, Chap. 4, p. 43, Corollary 2].

Put $C_{1}(C P)=P$. If $C_{1}(C P) \neq\{1\}$, then, by (F2), $C_{2}(C P)$ is a proper subgroup of $C_{1}(C P)$. Hence, for each integer i with $i \geq 1$, if $C_{i}(C P) \neq\{1\}$, then $C_{i+1}(C P)$ is a
proper subgroup of $C_{i}(C P)$. Let j be the least integer such that $\left|C_{j+1}(C P)\right| \leq p^{u-1}$. We define a C-invariant normal subgroup $Q_{u}(C P)$ of P by

$$
Q_{u}(C P)=\Omega_{u}\left(C_{j}(C P)\right)
$$

if $j \geq 1$, and $Q_{u}(C P)=P$ otherwise [1, Definition 2.6]. To simplify the notation, we denote $Q_{u}(C P)$ by $Q(C P)$. By the definition, we have

$$
|Q(C P)| \geq \operatorname{gcd}\left(p^{u},|P|\right) \quad \text { and } \quad|[Q(C P), C P]| \leq p^{u-1}
$$

Furthermore, we have the following.
Lemma 2.3. Under the hypothesis above, the following statements hold.
(a) Let d be any element of $C P$, and let $G=\langle d\rangle Q(C P)$. Then $\left|C_{2}(G)\right| \leq p^{u-1}$.
(b) We have $\exp Q(C P) \leq p^{u}$ and $Q(C P) \subseteq L_{p^{u}}(P, \theta)$.

Proof. (a) Since $\left|C_{2}(G)\right| \leq|[Q(C P), C P]|$ by (F1), it follows that $\left|C_{2}(G)\right| \leq p^{u-1}$, as desired. (b) By the definition of $Q(C P)$ and Corollary 2.2, we have $\exp Q(C P) \leq p^{u}$. Hence, the statement (a), together with Corollary 2.2, implies that $\exp C Q(C P)=$ p^{u}. Thereby, $\left(x c^{-1}\right)^{p^{u}}=1$ for any $x \in Q(C P)$. Now, by Eq. (1), we conclude that $Q(C P) \subseteq L_{p^{u}}(P, \theta)$.

The following result includes an essential part of the Hall's Theorem.
Proposition 2.4. Let N be a C-invariant normal subgroup of P such that $\exp N \leq$ p^{u}. Suppose that, for an arbitrary element d of $C P$, $\exp C_{2}(\langle d\rangle N) \leq p^{u-1}$ and $\left|C_{2}(\langle d\rangle N)\right| \leq p^{u}$. Then

$$
\sharp L_{p^{u}}(P, \theta) \equiv 0 \quad \bmod |N| .
$$

In particular, $\sharp L_{p^{u}}(P, \theta) \equiv 0 \bmod |Q(C P)|$ and $\sharp L_{p^{u}}(P, \theta) \equiv 0 \bmod \operatorname{gcd}\left(p^{u},|P|\right)$.
Proof. For any $a \in L_{p^{u}}(P, \theta)$, the cyclic group $D=\left\langle c a^{-1}\right\rangle$ generated by $c a^{-1}$ is of order p^{u} by Eq. (1) and Remark after the proof, and hence the hypothesis and Corollary 2.2 imply that $\exp D N \leq p^{u}$. Therefore, for any $a \in L_{p^{u}}(P, \theta)$ and for any $x \in N$, we have $\left(c a^{-1} x^{-1}\right)^{p^{u}}=1$, which, together with Eq. (1), means that $x a \in L_{p^{u}}(P, \theta)$. Thus N acts on $L_{p^{u}}(P, \theta)$ by the left multiplication, and therefore $\sharp L_{p^{u}}(P, \theta)$ is a multiple of $|N|$, as desired. Hence the last assertions follow from Lemma 2.3 and the fact that $|Q(C P)| \geq \operatorname{gcd}\left(p^{u},|P|\right)$. This completes the proof.

Remark. For any $x \in P$ such that $(c x)^{p^{u}}=1$, the order of $c x$ is p^{u}, because $(c x)^{p^{u-1}} \in c^{p^{u-1}} P \neq P$.

Let $\mathrm{Z}(C, P)$ be the set of complements of P in $C P$, i.e.,

$$
\mathrm{Z}(C, P)=\{D \leq C P \mid D P=C P, D \cap P=\{1\}\}
$$

and let $z(C, P)=\sharp \mathrm{Z}(C, P)$. By the remark above and [1, Lemma 3.1],

$$
z(C, P)=\sharp\left\{x \in P \mid(c x)^{p^{u}}=1\right\}
$$

Thus $z(C, P)=\sharp L_{p^{u}}(P, \theta)$ (see Eq. (1)) and Proposition 2.4 is equivalent to the following proposition.

Proposition 2.5. Under the hypothesis of Proposition 2.4, $z(C, P) \equiv 0 \bmod |N|$. In particular, $z(C, P) \equiv 0 \bmod |Q(C P)|$ and $z(C, P) \equiv 0 \bmod \operatorname{gcd}(|C|,|P|)$.

The last congruence of Proposition 2.5 is the statement of [2, Proposition 3.3].
The following theorem is a consequence of the Kulakoff's Theorem and [12, Theorem 6.2(Thompson)], and is also a part of [13, Theorem A].

Theorem 2.6. The number $a_{p}(P)$ is not a multiple of p^{2} if and only if P is either cyclic or non-abelian exceptional.

To get a generalization, Theorem 2.8, of the "only if" part in this theorem, we prepare the following lemma, which is just [1, Theorem 7.2] provided $p=2$.

Lemma 2.7. Suppose that $u>1$. If $z(C, P)$ is not a multiple of $\operatorname{gcd}\left(p^{u+1},|P|\right)$, then $|P| \geq p^{u+1}$ and every C-invariant abelian normal subgroup of P is cyclic.

Proof. Although a proof is completely analogous to that of [1, Theorem 7.2], we give another proof of the lemma.

We choose a counter-example to the lemma such that $|P|$ is minimal. It follows from Proposition 2.5 that $|P| \geq p^{u+1}$ and $|Q(C P)|=p^{u}$. Also, we emphasize that $P \neq Q(C P)$. Let $p^{w}=\exp Q(C P)$. We define the C-invariant normal subgroup N of P containing $Q(C P)$ by

$$
N / Q(C P)=\Omega_{1}(P / Q(C P) \cap Z(C P / Q(C P)))
$$

Then $\exp N \leq p^{w+1}$, and $|N| \geq p^{u+1}$ because $P \neq Q(C P)$. Take any $d \in C P$. Then, by (F1) and the definition of N,

$$
C_{2}(\langle d\rangle N) \leq[N, C P] \leq Q(C P)
$$

So we have $\exp C_{2}(\langle d\rangle N) \leq p^{w}$ and $\left|C_{2}(\langle d\rangle N)\right| \leq p^{u}$.
If $w<u$, then $\exp N \leq p^{w+1} \leq p^{u}$ and $\exp C_{2}(\langle d\rangle N) \leq p^{w} \leq p^{u-1}$ for any $d \in$ $C P$, and hence $z(C, P) \equiv 0 \bmod |N|$ by Proposition 2.5 , which is a contradiction. Therefore $u=w$, and thus $Q(C P)$ is a cyclic group of order p^{u}. Now, to get a contradiction, we will show that $\exp N \leq p^{u}$ and $\exp C_{2}(C P) \leq p^{u-1}$.

By our choice of P, there exists a C-invariant non-cyclic abelian normal subgroup of P. Take a C-invariant elementary abelian normal subgroup T of P of order greater than p, and put $R=Q(C P) T$. Then $|R| \geq p^{u+1}$. We have that $\mathrm{Z}(C, P)$ is a disjoint union of subsets of the form $\mathrm{Z}(D, R)$ for $D \in \mathrm{Z}(C, P)$. So, by the hypothesis, there is a $D \in \mathrm{Z}(C, P)$ such that $z(D, R)$ is not a multiple of p^{u+1}. If $|R|<|P|$, then, by the hypothesis, either $|R| \leq p^{u}$ or T is cyclic, which a contradiction. Thus $P=R=Q(C P) T$. By (F2), we have $C_{2}(P) \leq \Omega_{u-1}(Q(C P)$), and hence $\left|C_{2}(P)\right| \leq p^{u-1}$. Now Corollary 2.2 yields $\exp P=p^{u}$. In particular, $\exp N \leq p^{u}$.

Set $S=\Omega_{u-1}(Q(C P)) T$. Then $C_{2}(S) \leq \Omega_{u-2}(Q(C P))$ by (F2), and therefore $\left|C_{2}(S)\right| \leq p^{u-2}$. Hence Corollary 2.2 implies that $\exp S=p^{u-1}$. Use the notation $\overline{C P}=C P / T$, and the like. Then, by using (F2), we obtain $C_{2}(\overline{C P}) \leq \bar{P}$. Therefore $C_{2}(\overline{C P}) \leq \bar{S}$, which forces $C_{2}(C P) \leq S$. Thus $\exp C_{2}(C P) \leq p^{u-1}$, as desired.

By the preceding paragraphs, $\left|C_{2}(\langle d\rangle N)\right| \leq p^{u}$ and $\exp C_{2}(\langle d\rangle N) \leq p^{u-1}$ for any $d \in C P$, and $\exp N \leq p^{u}$. Hence Proposition 2.5 yields $z(C, P) \equiv 0 \bmod |N|$, which is a contradiction. Consequently, there is no counter-example. We have thus completed the proof.

Now Theorem 2.6, together with Lemma 2.7, yields the following essential result to Theorem 1.2.

Theorem 2.8. Suppose that $\sharp L_{p^{u}}(P, \theta)$ is not a multiple of $\operatorname{gcd}\left(p^{u+1},|P|\right)$. Then P is an exceptional p-group of order greater than p^{u}. Furthermore, if P is the four-group, then θ is an involution.

Proof. By the hypothesis, $z(C, P)$ is not a multiple of $\operatorname{gcd}\left(p^{u+1},|P|\right)$. Then it follows from Proposition 2.5 that $|P| \geq p^{u+1}$.

Case (1) First, we assume that $u>1$. Let
\mathscr{X}_{1} be the set of abelian subgroups of P of order p^{2},
\mathscr{X}_{2} the set of abelian normal subgroups of P of order p^{2},
\mathscr{X}_{3} the set of C-invariant abelian normal subgroups of P of order p^{2},
\mathscr{X}_{4} the set of C-invariant cyclic normal subgroups of P of order p^{2},
\mathscr{X}_{5} the set of cyclic normal subgroups of P of order p^{2}, and
\mathscr{X}_{6} the set of cyclic subgroups of P of order p^{2}.
By Lemma 2.7, we have $\mathscr{X}_{3}=\mathscr{X}_{4}$. Hence

$$
\sharp \mathscr{X}_{1} \equiv \sharp \mathscr{X}_{2} \equiv \sharp \mathscr{X}_{3}=\sharp \mathscr{X}_{4} \equiv \sharp \mathscr{X}_{5} \equiv \sharp \mathscr{X}_{6} \quad \bmod p .
$$

Since $\sharp \mathscr{X}_{1} \equiv 1 \bmod p$ by $[4, \S 4, \mathrm{I}]$ (or $[3, \S 121]$), it follows that $\sharp \mathscr{X}_{6} \equiv 1 \bmod p$. Enumerating the elements of P of order p^{2}, we obtain $\left(p^{2}-p\right) \sharp \mathscr{X}_{6}=a_{p^{2}}(P)-a_{p}(P)$. Now, by the Frobenius Theorem and the preceding facts,

$$
\frac{a_{p}(P)}{p} \equiv \sharp \mathscr{X}_{6} \equiv 1 \quad \bmod p .
$$

Hence Theorem 2.6 implies that P is exceptional (see also [13, Theorem $\mathrm{A}(\mathrm{ii})]$).
Case (2) We now assume that $u=1$. By the hypothesis,

$$
z(C, P)=\frac{a_{p}(C P)-a_{p}(P)}{p-1} \not \equiv 0 \quad \bmod p^{2}
$$

and so the Frobenius Theorem yields

$$
\begin{array}{ll}
\text { either } \quad \frac{a_{p}(P)}{p} \not \equiv 0 \bmod p \\
\text { or else } \quad & \frac{a_{p}(P)}{p} \equiv 0 \bmod p \quad \text { and } \quad \frac{a_{p}(C P)}{p} \not \equiv 0 \bmod p .
\end{array}
$$

Now, in the former case, P is cyclic or non-abelian exceptional by Theorem 2.6. Also, in the latter case, $C P$ is exceptional, but P is neither cyclic nor non-abelian exceptional by Theorem 2.6. Then $p=2$ and $C P$ is a dihedral group of order 8 and P is an elementary abelian group of order 4 (see [14, Chap. 4, (4.2)]). Thus the theorem follows.

Theorem 2.8 is a generalization of the "only if" part of [13, Theorem A (i)] too. Also, Theorem 2.8 with $p>2$ is the following paraphrase of [1, Theorem 7.1] of which we give another alternative proof.

Theorem 2.9. Suppose that $p>2$, that $|P| \geq p^{u+1}$, and that $\sharp L_{p^{u}}(P, \theta)$ is not a multiple of p^{u+1}. Then P is cyclic.

Proof. We use induction on $|P|$. We define a C-invariant cyclic maximal subgroup R of P. If $|P| \geq p^{u+2}$, then let R be a C-invariant maximal subgroup of P. (Note that the number of maximal subgroups of a finite p-group is congruent to 1 modulo p.) In this case, $|R| \geq p^{u+1}$ and, by the hypothesis, there exists a $D \leq C P$ such that $z(D, R)$ is not multiple of p^{u+1}, whence the inductive assumption implies that R is cyclic. If $|P|=p^{u+1}$, then, by an argument similar to the proof of Lemma 2.7, $Q(C P)$ is a C-invariant cyclic maximal subgroup of P, and let $R=Q(C P)$. Thus R is defined in every case. Then $C P / R$ is abelian, because $P / R \leq Z(C P / R)$. So $C_{2}(C P)$ is cyclic, and, since $p>2, C P$ is regular (see, e.g., [14, Chap. 4 (3.13)(iii)]). Thus $L_{p^{u}}(P, \theta)=\left\{x \in P \mid x^{p^{u}}=1\right\}=\Omega_{u}(P)$ (see, e.g., [14, Chap. 4 Theorem $3.14(\mathrm{i})(\mathrm{ii})])$. Now, by the Frobenius Theorem and the hypothesis, $\Omega_{u}(P)$ is the only subgroup of P of order p^{u}. Consequently, by $[3, \S 104], P$ is cyclic. This completes the proof.

3. PRELIMINARIES FOR GENERAL CASES

In this section, we provide the lemmas for the proofs of Theorems 1.1 and 1.2. Let G be a finite group and H a subgroup. Take elements y and z of G. We denote
by $X_{n}(H y H, z)$ the set of elements x in the double coset $H y H$ of H that satisfy the equation $x^{n}=z$. Let p^{u} be the highest power of a prime p dividing n, and let Λ be the set of elements t of G that satisfy the equation $t^{n / p^{u}}=z$.

From now, we suppose that $z \in C_{G}(H)$. Then H acts on Λ by the conjugation action; let $O_{1}, O_{2}, \ldots, O_{r}$ be the orbits with respect to this action.

Lemma 3.1. Let $t_{i} \in O_{i}$ for each i. Then

$$
\sharp X_{n}(H y H, z)=\sum_{i=1}^{r}\left|H: C_{H}\left(t_{i}\right)\right| \sharp X_{p^{u}}\left(H y H, t_{i}\right) .
$$

Proof. By the definition of $O_{1}, O_{2}, \ldots, O_{r}$, we have

$$
X_{n}(H y H, z)=\bigcup_{i=1}^{r} \bigcup_{C_{H}\left(t_{i}\right) h \in C_{H}\left(t_{i}\right) \backslash H} X_{p^{u}}\left(H y H, t_{i}^{h}\right)
$$

Furthermore,

$$
\sharp X_{p^{u}}(H y H, t)=\sharp X_{p^{u}}\left(H y H, t^{h}\right)
$$

for all $t \in \Lambda$ and $h \in H$. Thus the lemma follows.

For each subgroup K of H, let $X_{n}(H y H, z ; K)$ denote the set consisting of all elements x of $X_{n}(H y H, z)$ with $H \cap H^{x}=K$, and let $\mathscr{Y}(H, K)$ denote the set of all double cosets $K w K$ of K in G with $K w K \cap X_{n}(H y H, z ; K) \neq \emptyset$. Note that $z \in C_{G}(H)$ and that the set $X_{n}(H y H, z ; K)$ may be an empty set.

Lemma 3.2. Let K be a subgroup of H. Suppose that, for each $K w K \in \mathscr{Y}(H, K)$, $\sharp X_{n}(K w K, z) \equiv 0 \bmod \operatorname{gcd}(n,|K|)$. Then

$$
\sum_{N_{H}(K) h \in N_{H}(K) \backslash H} \sharp X_{n}\left(H y H, z ; K^{h}\right) \equiv 0 \quad \bmod \operatorname{gcd}(|H: K| n,|H|) .
$$

Proof. If $K w K \in \mathscr{Y}(H, K)$, then $H \cap H^{x}=K$ for any $x \in K w K$. Hence we have

$$
\begin{equation*}
X_{n}(H y H, z ; K)=\bigcup_{K w K \in \mathscr{Y}(H, K)} X_{n}(K w K, z) \tag{2}
\end{equation*}
$$

The conjugation action of $N_{H}(K)$ on $\mathscr{Y}(H, K)$ is the homomorphism φ from $N_{H}(K)$ to the symmetric group $\Sigma(\mathscr{Y}(H, K))$ on the set $\mathscr{Y}(H, K)$ such that

$$
(K w K)^{\varphi(h)}=K w^{h} K
$$

for all $h \in N_{H}(K)$ and $K w K \in \mathscr{Y}(H, K)$. We have $\sharp X_{n}(K w K, z)=\sharp X_{n}\left(K w^{h} K, z\right)$ for all $h \in N_{H}(K)$ and $w \in G$, because $z \in C_{G}(H)$. Take $h \in N_{H}(K)$ and $K w K \in \mathscr{Y}(H, K)$ such that $K w K=K w^{h} K$. Then $k_{1} w k_{2}=h^{-1} w h$ for some
$k_{1}, k_{2} \in K$, and hence $w^{-1}\left(h k_{1}\right) w=h k_{2}^{-1} \in H \cap H^{w}=K$, which forces $h \in K$. Thus $\operatorname{Ker} \varphi=K$ and $N_{H}(K) / K$ acts semi-regularly on $\mathscr{Y}(H, K)$. Also, by the hypothesis, $\sharp X_{n}(K w K, z) \equiv 0 \bmod \operatorname{gcd}(n,|K|)$ for each $K w K \in \mathscr{Y}(H, K)$. Combining these facts with Eq. (2), we have

$$
\sharp X_{n}(H y H, z ; K) \equiv 0 \quad \bmod \left|N_{H}(K): K\right| \operatorname{gcd}(n,|K|) .
$$

Since $z \in C_{G}(H)$, it follows that

$$
\sharp X_{n}(H y H, z ; K)=\sharp X_{n}\left(H y H, z ; K^{h}\right)
$$

for any $h \in H$. Thus the number of elements x in $H y H$ such that $x^{n}=z$ and that $H \cap H^{x}$ is conjugate to K is a multiple of

$$
\left|H: N_{H}(K)\right|\left|N_{H}(K): K\right| \operatorname{gcd}(n,|K|)=\operatorname{gcd}(|H: K| n,|H|)
$$

This completes the proof of Lemma 3.2.

4. THE PROOFS OF THEOREMS

First, we prove Theorem 1.1. The proof goes in line with that of [8, Theorem 1].
Proof of Theorem 1.1. We use induction on $|H|$. The theorem clearly holds if $H=\{1\}$. So we may assume that $|H|>1$. Let p be a prime dividing $\operatorname{gcd}(n,|H|)$. Take $y \in G$ and suppose that $z \in C_{G}(H)$.
Step 1. Let P be a Sylow p-subgroup of H. Then $H y H$ is a disjoint union of double cosets, say $P y_{1} P, P y_{2} P, \ldots$, of P in G. If H is not a p-group, then, by the inductive assumption,

$$
\sharp X_{n}\left(P y_{i} P, z\right) \equiv 0 \quad \bmod \operatorname{gcd}(n,|P|)
$$

for each i, which yields

$$
\sharp X_{n}(H y H, z) \equiv 0 \quad \bmod \operatorname{gcd}(n,|P|) .
$$

Thereby, we may assume that H is a p-group.
Step 2. Let p^{u} be the highest power of p dividing n. For any element t of G such that $C_{H}(t)$ is a proper subgroup of $H, H y H$ is a disjoint union of double cosets of $C_{H}(t)$ in G, and, by the inductive assumption,

$$
\sharp X_{p^{u}}(H y H, t) \equiv 0 \quad \bmod \operatorname{gcd}\left(p^{u},\left|C_{H}(t)\right|\right)
$$

So, if

$$
\sharp X_{p^{u}}(H y H, t) \equiv 0 \quad \bmod \operatorname{gcd}\left(p^{u},|H|\right)
$$

for each $t \in G$ such that $t^{n / p^{u}}=z$ and $C_{H}(t)=H$, then, by Lemma 3.1,

$$
\sharp X_{n}(H y H, z) \equiv 0 \quad \bmod \operatorname{gcd}\left(p^{u},|H|\right) .
$$

Thus we may assume that $n=p^{u}$.
Step 3. For each proper subgroup K of H and for each $w \in G$, the inductive assumption yields

$$
\sharp X_{n}(K w K, z) \equiv 0 \quad \bmod \operatorname{gcd}(n,|K|),
$$

and hence Lemma 3.2 implies that

$$
\sum_{N_{H}(K) h \in N_{H}(K) \backslash H} \sharp X_{n}\left(H y H, z ; K^{h}\right) \equiv 0 \quad \bmod \operatorname{gcd}(|H: K| n,|H|) .
$$

Now, if $H^{y} \neq H$, then, for any element x in $H y H, H^{x} \neq H$, and therefore $H \cap H^{x}$ is a proper subgroup of H. Hence, by the preceding argument, we may assume that $H^{y}=H$.
Step 4. By the preceding steps, H is a p-group, $n=p^{u}$, and $H^{y}=H$. Then

$$
\sharp X_{n}(H y H, z)=\sharp\left\{h \in H \mid(y h)^{n}=z\right\} .
$$

We may assume that $y^{n}=z$. Let θ be the automorphism of H such that $h^{\theta}=h^{y^{-1}}$ for all $h \in H$. Then $\theta^{n}=1$, because $h^{\theta^{n}}=h^{y^{-n}}=h^{z^{-1}}=h$. For each $h \in H$, $(y h)^{n}=z$ if and only if

$$
z=z^{h^{-1}}=(h y)^{n}=h \cdot h^{\theta} \cdot h^{\theta^{2}} \cdots h^{\theta^{n-1}} z
$$

Hence $\sharp X_{n}(H y H, z)=\sharp L_{n}(H, \theta)$. Now, by Proposition $2.4, \sharp L_{n}(H, \theta)$ is a multiple of $\operatorname{gcd}(n,|H|)$, and so is $\sharp X_{n}(H y H, z)$. This completes the proof.

The proof of Theorem 1.2 runs closely parallel to that of Theorem 1.1.
Proof of Theorem 1.2. Take $y \in G$ and suppose that $z \in C_{G}(H)$.
Step 1. Let P be a Sylow p-subgroup of H. By Theorem 1.1, $\sharp X_{n}(H y H, z)$ is a multiple of $\operatorname{gcd}(n,|H|)$. Also, $H y H$ is a disjoint union of double cosets, say $P y_{1} P, P y_{2} P, \ldots$, of P in G. Hence, if

$$
\sharp X_{n}\left(P y_{i} P, z\right) \equiv 0 \quad \bmod \operatorname{gcd}(p n,|P|)
$$

for each i, then

$$
\sharp X_{n}(H y H, z) \equiv 0 \quad \bmod \operatorname{gcd}(p n,|H|) .
$$

Thereby, we may assume that H is a p-group.
Step 2. Let p^{u} be the highest power of p dividing n. For any element t of $G, H y H$ is a disjoint union of double cosets of $C_{H}(t)$ in G, and so Theorem 1.1 yields

$$
\left|H: C_{H}(t)\right| \sharp X_{p^{u}}(H y H, t) \equiv 0 \quad \bmod \operatorname{gcd}\left(\left|H: C_{H}(t)\right| p^{u},|H|\right)
$$

Here, since H is a p-group, $\left|H: C_{H}(t)\right|$ is a power of p. Hence, if

$$
\sharp X_{p^{u}}(H y H, t) \equiv 0 \quad \bmod \operatorname{gcd}\left(p^{u+1},|H|\right)
$$

for each $t \in G$ such that $t^{n / p^{u}}=z$ and $C_{H}(t)=H$, then, by Lemma 3.1,

$$
\sharp X_{n}(H y H, z) \equiv 0 \quad \bmod \operatorname{gcd}\left(p^{u+1},|H|\right) .
$$

Thus we may assume that $n=p^{u}$.
Step 3. For each subgroup K of H and for each $w \in G$, Theorem 1.1 yields

$$
\sharp X_{n}(K w K, z) \equiv 0 \quad \bmod \operatorname{gcd}(n,|K|),
$$

whence, by Lemma 3.2,

$$
\sum_{N_{H}(K) h \in N_{H}(K) \backslash H} \sharp X_{n}\left(H y H, z ; K^{h}\right) \equiv 0 \quad \bmod \operatorname{gcd}(|H: K| n,|H|) .
$$

Here, since H is a p-group, $|H: K|$ is a power of p. Now, if $H^{y} \neq H$, then $\sharp X_{n}(H y H, z)$ is a multiple of $\operatorname{gcd}(p n,|H|)$, because, for any $x \in H y H, H \cap H^{x}$ is a proper subgroup of H and $\left|H: H \cap H^{x}\right|$ is divisible by p. Hence $H^{y}=H$.
Step 4. By the preceding steps, H is a p-group, $n=p^{u}$, and $H^{y}=H$. Further, we may assume that $y^{n}=z$. Then, by an argument similar to Step 4 of the proof of Theorem 1.1,

$$
\sharp X_{n}(H y H, z)=\sharp L_{n}(H, \theta),
$$

where θ is the automorphism of H such that $h^{\theta}=h^{y^{-1}}$ for all $h \in H$. Hence, if $\sharp X_{n}(H y H, z)$ is not a multiple of $\operatorname{gcd}(p n,|H|)$, then neither is $\sharp L_{n}(H, \theta)$, and so, by Theorem $2.8, H$ is an exceptional p-group of order greater than p^{u}. This completes the proof.

5. FURTHER RESULTS

The following theorem is a consequence of Sylow's theorem.
Theorem 5.1. Let H be a finite group, and let θ be an automorphism of H whose order divides p^{u}. Assume that $\sharp L_{p^{u}}(H, \theta)=\operatorname{gcd}\left(p^{u},|H|\right)$. Then $L_{p^{u}}(H, \theta)$ is a subgroup of H.

Proof. We may assume that $u \geq 1$. Let C be a cyclic group generated by θ. Then C is a p-subgroup of the semidirect product $C H$ of C and H. For a Sylow p-subgroup J of $C H$ containing C, put $P=J \cap H$. Then P is a C-invariant Sylow p-subgroup of H, because both J and H are C-invariant. Now, by Lemma 2.3, $Q(C P) \subseteq L_{p^{u}}(H, \theta)$. Therefore, since $|Q(C P)| \geq \operatorname{gcd}\left(p^{u},|P|\right)=\operatorname{gcd}\left(p^{u},|H|\right), L_{p^{u}}(H, \theta)$ is equal to the subgroup $Q(C P)$ of P. This completes the proof.

Example. The quaternion group Q_{8} is defined by the relations

$$
a^{2}=b^{2}, \quad b a b^{-1}=a^{-1}, \quad a^{4}=1
$$

with generators a and b. Then

$$
Q_{8}=\left\{1, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\} .
$$

It is well known that the group $\operatorname{Aut} Q_{8}$ of automorphisms of Q_{8} is isomorphic to the symmetric group of degree 4 . For every $\theta \in$ Aut Q_{8} that corresponds to a cycle of length 4 , we have that $L_{4}\left(Q_{8}, \theta\right)$ is a cyclic subgroup of Q_{8} of order 4. As an example, take $\theta \in$ Aut Q_{8} such that $a^{\theta}=b$ and $b^{\theta}=a^{3}$. Then θ fixes each element of $\langle a b\rangle$, and $|\langle\theta\rangle|=4$. In this case, we get $L_{4}\left(Q_{8}, \theta\right)=\langle a b\rangle$. Also, for the semidirect product G of $\langle\theta\rangle$ and $Q_{8}, Q(G)=C_{2}(G)=\langle a b\rangle$.

Let $C_{\infty}(H)$ be the last term of the lower central series of a group H, i.e., $C_{\infty}(H)=C_{k}(H)$ for the least integer k such that $C_{k}(H)=C_{k+1}(H)$. In particular, $C_{\infty}(H)=\{1\}$ if and only if H is nilpotent. We get the following generalization of [5, Theorem 9.4.1].

Theorem 5.2. Let H be a finite solvable group, and let θ be an automorphism of H whose order divides $n / \operatorname{gcd}\left(n,\left|C_{\infty}(H)\right|\right)$. Assume that $\sharp L_{n}(H, \theta)=\operatorname{gcd}(n,|H|)$. Then $L_{n}(H, \theta)$ is a subgroup of H.

Proof. We argue by induction on $|H|$ and prove the theorem by two steps.
Step 1. We first consider the case where H is nilpotent. So H is a direct product of Sylow subgroups (see, e.g., [14, Chap. 4, Theorem 2.12]). We may assume that H is a p-group for a prime p. Put $|H|=p^{a}$ and $n=p^{b} c$, where c is prime to p. If $b \geq a$, then $L_{n}(H, \theta)=H$ and the result follows. Suppose that $a>b$. If $b=0$, then $L_{n}(H, \theta)=\{1\}$ and the result follows. So we may assume that $b>0$. Then, by Theorem 1.3, H is an exceptional p-group. Also, if H is abelian, then the theorem clearly holds. So we suppose that $p=2$ and that H is a non-abelian exceptional 2 -group. Put $|\langle\theta\rangle|=2^{d} e$ for an odd integer e.

Case (1a) Assume that $b>d$ and put $n=2 m$ for an integer m. Then we have that the order of θ divides m. Let F be a minimal normal subgroup of $\langle\theta\rangle H$ contained in H, and let $\bar{\theta}$ be the automorphism of H / F induced by θ. By the Hall's Theorem, $\sharp L_{m}(H / F, \bar{\theta}) \geq \operatorname{gcd}(m,|H / F|)$. For the natural mapping $\phi: H \longrightarrow H / F$, if the image $\phi(x)$ of $x \in H$ is an element of $L_{m}(H / F, \bar{\theta})$, then $\left(x \theta^{-1}\right)^{m} \in F$ and hence $\left(x \theta^{-1}\right)^{n}=\left(x \theta^{-1}\right)^{2 m}=1$, because F is elementary abelian. This fact means that

$$
\phi^{-1}\left(L_{m}(H / F, \bar{\theta})\right)=\left\{x \in H \mid \phi(x) \in L_{m}(H / F, \bar{\theta})\right\} \subseteq L_{n}(H, \theta) .
$$

Now

$$
\sharp L_{n}(H, \theta) \geq \sharp \phi^{-1}\left(L_{m}(H / F, \bar{\theta})\right) \geq \operatorname{gcd}(m,|H / F|)|F| \geq \operatorname{gcd}(n,|H|)
$$

and equality holds throughout. Therefore $\sharp L_{m}(H / F, \bar{\theta})=\operatorname{gcd}(m,|H / F|)$ and, by the inductive hypothesis, $L_{m}(H / F, \bar{\theta})$ is a subgroup of H / F. Furthermore, we have $L_{n}(H, \theta)=\phi^{-1}\left(L_{m}(H / F, \bar{\theta})\right)$. Thus $L_{n}(H, \theta)$ is a subgroup of H.

Case (1b) Assume that $b=d$. Then $|\langle\theta\rangle|=2^{b}$ by the structure of the group Aut H of automorphisms of H. (Indeed, since H is a non-abelian exceptional 2-group, Aut H is a 2-group unless H is a quaternion group of order 8 , in which case Aut H is isomorphic to the symmetric group of degree 4 [14].) Now $\langle\theta\rangle H$ is a 2-group, and, for any $x \in H,\left(x \theta^{-1}\right)^{n}=1$ if and only if $\left(x \theta^{-1}\right)^{2^{b}}=1$. Hence $L_{n}(H, \theta)=L_{2^{b}}(H, \theta)$ and $L_{n}(H, \theta)$ is a subgroup of H by Theorem 5.1. Thus the proof is complete in the case where H is nilpotent.

Step 2. By Step 1, we may suppose that H is solvable but not nilpotent. In particular, $C_{\infty}(H) \neq\{1\}$. Let F be a minimal normal subgroup of $\langle\theta\rangle H$ contained in $C_{\infty}(H)$, and let $\bar{\theta}$ be the automorphism of H / F induced by θ. So F is an elementary abelian p-group for a prime p.

Case (2a) Assume that n is divisible by p and put $n=p m$ for an integer m. Then the order of $\bar{\theta}$ divides $m / \operatorname{gcd}\left(m,\left|C_{\infty}(H / F)\right|\right)$, and so $\sharp L_{m}(H / F, \bar{\theta}) \geq \operatorname{gcd}(m,|H / F|)$ by the Hall's Theorem. Now, by an argument similar to Case (1a) in Step 1, we conclude that $L_{n}(H, \theta)$ is a subgroup of H.

Case (2b) Assume that n is not divisible by p. Then there exist integers a and b such that $a n+b p=1$. For any $y \in H$, let \bar{y} denote the coset $y F$ of F in H. We claim that $L_{n}(H / F, \bar{\theta})$ is a subgroup of H / F of order $\operatorname{gcd}(n,|H|)$. Take $y \in H$ such that $\bar{y} \in L_{n}(H / F, \bar{\theta})$. Then $\left(\bar{y}^{-1}\right)^{n}=\overline{1}$, and so $\left(y \theta^{-1}\right)^{n b p}=1$. Also, $\left(y \theta^{-1}\right)^{b p} \theta \in H$ because $\theta^{a n}=1 \in\langle\theta\rangle H$, and therefore

$$
\left(y \theta^{-1}\right)^{b p} \theta \in L_{n}(H, \theta)=\left\{x \in H \mid\left(x \theta^{-1}\right)^{n}=1\right\}
$$

If $\overline{y^{\prime}} \in L_{n}(H / F, \bar{\theta})$ for $y^{\prime} \in H$ and if $\left(y \theta^{-1}\right)^{b p} \theta=\left(y^{\prime} \theta^{-1}\right)^{b p} \theta \in L_{n}(H, \theta)$, then $\left(\overline{y^{\prime}} \bar{\theta}^{-1}\right)^{n}=\overline{1}$ and

$$
\overline{y^{\prime}} \bar{\theta}^{-1}=\left(\overline{y^{\prime}} \bar{\theta}^{-1}\right)^{b p}=\left(\bar{y} \bar{\theta}^{-1}\right)^{b p}=\bar{y} \bar{\theta}^{-1}
$$

which yields $\overline{y^{\prime}}=\bar{y}$. So we have $\sharp L_{n}(H / F, \bar{\theta}) \leq \sharp L_{n}(H, \theta)$. Further, the Hall's Theorem implies that $\sharp L_{n}(H / F, \bar{\theta}) \geq \operatorname{gcd}(n,|H / F|)$, and therefore

$$
\operatorname{gcd}(n,|H / F|)=\operatorname{gcd}(n,|H|)=\sharp L_{n}(H, \theta) \geq \sharp L_{n}(H / F, \bar{\theta}) \geq \operatorname{gcd}(n,|H / F|) .
$$

From this we have

$$
\sharp L_{n}(H / F, \bar{\theta})=\operatorname{gcd}(n,|H / F|)=\operatorname{gcd}(n,|H|) .
$$

Since the order of $\bar{\theta}$ divides $n / \operatorname{gcd}\left(n,\left|C_{\infty}(H / F)\right|\right)$, by the inductive assumption, $L_{n}(H / F, \bar{\theta})$ is a subgroup of H / F of order $\operatorname{gcd}(n,|H|)$, as claimed.

Let K be a subgroup of H containing F such that $K / F=L_{n}(H / F, \bar{\theta})$, and put $C=\langle\theta\rangle$. Since the semidirect product $C K$ of C and K is solvable, it follows from [6, Theorem] that $C K$ possesses a p-complement E containing C (see also [5, Sect. 9.3]). Then $|E|=|C| \operatorname{gcd}(n,|H|)$ and $E=C S$ where $S=E \cap K$. For any $x \in S$, we have $\left(x \theta^{-1}\right)^{n} \in E \cap F=\{1\}$. Thus $S \subseteq L_{n}(H, \theta)$. On the other hand, we have $|S|=\operatorname{gcd}(n,|H|)$. Hence $S=L_{n}(H, \theta)$ by the hypothesis, and thus $L_{n}(H, \theta)$ is a subgroup of H. This completes the proof.

Remark. If A_{4} is the alternating group on 4 letters $\{1,2,3,4\}$ and if θ is the automorphism of A_{4} induced by the conjugation of the transposition (12), then

$$
L_{6}\left(A_{4}, \theta\right)=\left\{x \in A_{4} \mid\left(x \cdot x^{\theta}\right)^{3}=1\right\}=\left\{x \in A_{4} \mid x \cdot x^{\theta}=1\right\}
$$

and $\sharp L_{6}\left(A_{4}, \theta\right)=6=\operatorname{gcd}\left(6,\left|A_{4}\right|\right)$, though $L_{6}\left(A_{4}, \theta\right)$ is not a subgroup of A_{4}. Thus, in general, for an automorphism θ of a finite solvable group H such that $\theta^{n}=1$ and $\sharp L_{n}(H, \theta)=\operatorname{gcd}(n,|H|), L_{n}(H, \theta)$ is not necessarily a subgroup of H unless the order of θ divides $n / \operatorname{gcd}\left(n,\left|C_{\infty}(H)\right|\right)$.

REFERENCES

1. T. Asai and Y. Takegahara, $|\operatorname{Hom}(A, G)|$, IV, J. Algebra 246 (2001), 543-563.
2. T. Asai and T. Yoshida, $|\operatorname{Hom}(A, G)|$, II, J. Algebra 160 (1993), 273-285.
3. W. Burnside, "Theory of Groups of Finite Order," Dover, New York, 1955.
4. G. Frobenius, Verallgemeinerung des Sylowschen Satzes, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin (1895), 981993; In :"Gesammelte Abhandlungen," Bd. II, pp. 664-676, Springer-Verlag Berlin/New York, 1968.
5. M. Hall, Jr., "The Theory of Groups," 2nd ed., Chelsea, New York, 1976.
6. P. Hall, A note on soluble groups, J. London Math. Soc. 3 (1928), 98-105.
7. P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. (2) 36 (1933), 29-95.
8. P. Hall, On a theorem of Frobenius, Proc. London Math. Soc. (2) 40 (1936), 468-501.
9. N. Iiyori and H. Yamaki, On a conjecture of Frobenius, Bull. Amer. Math. Soc. 25 (1991), 413-416.
10. I. M. Isaacs, "Character Theory of Finite Groups," Dover, New York, 1994.
11. A. Kulakoff, Über die Anzahl der eigentlichen Untergruppen und der Elemente von gegebener Ordnung in p-Gruppen, Math. Ann. 104 (1931), 778-793.
12. T. Y. Lam, Artin exponent of finite groups, J. Algebra 9 (1968), 94-119.
13. M. Murai, On the number of p-subgroups of a finite group, J. Math. Kyoto Univ., 42 (2002), 161-174.
14. M. Suzuki, "Group Theory I, II," Springer-Verlag, New York, 1982, 1986.
