

Generating functions for permutation representations

メタデータ	言語: eng
	出版者: Elsevier
	公開日: 2019-05-20
	キーワード (Ja):
	キーワード (En):
	作成者: 竹ケ原, 裕元
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10258/00009882

Generating Functions for Permutation Representations

Yugen Takegahara

Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan E-mail: yugen@mmm.muroran-it.ac.jp

We discuss the categorical approach to representations in wreath products, and generalize the Wohlfahrt formula of the exponential generating function for the number of permutation representations.

1. INTRODUCTION

Suppose that a group A contains only a finite number of subgroups of index d for each positive integer d. As an instance, every finitely generated group satisfies such a property. By the hypothesis, $|\text{Hom}(A, H)| := \#\text{Hom}(A, H) < \infty$ for an arbitrary finite group H, where Hom(A, H) denotes the set of homomorphisms from A to H. Given a sequence K_0, K_1, K_2, \ldots of finite groups K_n such that the first term is the group consisting of only the identity ϵ , we call the exponential generating function $\sum_{n=0}^{\infty} |\text{Hom}(A, K_n)| t^n/n!$ the Wohlfahrt series for K_n . A typical example of such a formal power series comes from the sequence of the symmetric group S_n on $[n] := \{1, 2, \ldots, n\}$. In the paper [9], Wohlfahrt proved that

$$\sum_{n=0}^{\infty} \frac{|\text{Hom}(A, S_n)|}{n!} t^n = \exp\left(\sum_{B \le fA} \frac{1}{|A:B|} t^{|A:B|}\right),\tag{1}$$

where the sum $\sum_{B \leq fA}$ is over all subgroups B of A of finite index |A:B|.

Throughout the paper, G is a finite group, A_n is the alternating group on [n], $W(D_n)$ is the Weyl group of type D_n , and $G \wr S_n$ and $G \wr A_n$ are the wreath products of G with S_n and A_n , respectively. The exponential formula of the Wohlfahrt series for $G \wr S_n$ is given in the recent papers [4, 8] (cf. Corollary 1). It is also shown in the papers [2, 6] when A is a finite cyclic group. If K_n is either $G \wr A_n$ or $W(D_n)$, the exponential generating function for the number of solutions in K_n to the equation $x^d = \epsilon$ was found by Chigira [2]; see also [4].

Recently, Yoshida has developed the theory of generating functions from the categorical point of view, and has presented many applications [10]. In this paper, we carry out investigations into applications of the categorical theory.

2000 Mathematics Subject Classification: 05A15, 20B30, 20B40, 20E22.

Keyword : wreath product, generating function, permutation representation.

We refer to the paper [10] for the notation and terminology on categories. Let \mathscr{E} be a category with any finite coproducts. A connected object J of \mathscr{E} is a noninitial object satisfying the condition that J = A + B implies that A or B is an initial object [10, 5.5]. The category \mathscr{E} is a KS-category if the following condition holds [10, 5.5]:

KS Property. Any object X is isomorphic to a coproduct of some finite number of connected objects and a coproduct decomposition of X is unique in the following sense : if $X = I_1 + \cdots + I_m = J_1 + \cdots + J_n$ are two coproduct decompositions into connected objects with canonical injections $i_{\alpha} : I_{\alpha} \to X$ and $j_{\beta} : J_{\beta} \to X$, then m = n and there exist a permutation $\pi \in S_n$ and isomorphisms $f_{\alpha} : I_{\alpha} \to J_{\pi(\alpha)}$ such that $j_{\pi(\alpha)}f_{\alpha} = i_{\alpha}$ for all $\alpha = 1, \ldots, n$.

A category is skeletally small if a full subcategory consisting of complete representatives of the isomorphism classes of objects is equivalent to a small category [10, 2.1]. Suppose that \mathscr{E} is a skeletally small KS-category. Let $\mathbb{Q}[[\mathscr{E}^{\mathrm{op}}/\cong]]$ be the \mathbb{Q} -module of formal power series with exponents in \mathscr{E} : $f(t) = \sum_{X \in \mathscr{E}} a_X t^X$, $a_X \in \mathbb{Q}$, the summation $\sum_{X \in \mathscr{E}} being \text{ over all isomorphism classes of objects of } \mathscr{E}$; the variables t^X is considered as the isomorphism class containing X in the dual category $\mathscr{E}^{\mathrm{op}}$, and hence $t^X = t^Y$ if $X \cong Y$ [10, 4.1]. By the product operation $t^X \cdot t^Y = t^{X+Y}$, $t^{\emptyset} = 1$, where \emptyset is an initial object of \mathscr{E} , $\mathbb{Q}[[\mathscr{E}^{\mathrm{op}}/\cong]]$ becomes an \mathbb{Q} -algebra [10, 5.1, 5.2]. A category is locally finite if every hom set $\operatorname{Hom}(X, Y)$ is a finite set [10, 2.1]. If \mathscr{E} is locally finite, then the generating function of \mathscr{E} is

$$\mathscr{E}(t) := \sum_{X \in \mathscr{E}}' \frac{t^X}{|\operatorname{Aut}(X)|} \in \mathbb{Q}[[\mathscr{E}^{\operatorname{op}}/\cong]]$$

[10, 4.2]. According to [10, 6.4], the Wohlfahrt formula (1) is verified on the basis of a categorical result, namely,

[10, 5.8. Theorem] Let \mathscr{E} be a skeletally small KS category and let $\mathscr{J} := \operatorname{Con}(\mathscr{E})$ be the full subcategory of connected objects of \mathscr{E} . If \mathscr{E} is locally finite, then

$$\mathscr{E}(t) = \exp(\mathscr{J}(t)).$$

Here the power series $\mathscr{J}(t)$ is viewed as an element of $\mathbb{Q}[[\mathscr{E}^{\mathrm{op}}/\cong]]$ through the canonical embedding $\mathscr{J} \subseteq \mathscr{E}$.

In Section 3, we apply [10, 5.8. Theorem] to a certain category related to (A, G)bisets, and obtain the principle of enumerating the homomorphisms from A to $G \wr S_n$ (cf. Proposition 5). Further, we can find various Wohlfahrt series in Sections 4 and 5. We give the notation and an outline of the results.

Notation

- (a) Let B be a subgroup of A. We denote by A/B the left A-set consisting of all left cosets of B in A with the action given by a.xB = axB for all $a, x \in A$. Define $\operatorname{sgn}_B : A \to \{1, -1\}$ by $\operatorname{sgn}_B(a) = 1$ if a is an even permutation on A/B, and $\operatorname{sgn}_B(a) = -1$ otherwise. It is evident that sgn_B is a homomorphism.
- (b) The letter p always stands for a prime. Let ω be a primitive p-th root of 1 and ⟨ω⟩ a cyclic group generated by ω. We denote by Φ_p(A) the intersection of all kernels of homomorphisms from A to ⟨ω⟩. Then Φ_p(A) is a normal subgroup of A of finite index, and the factor group A/Φ_p(A) is an elementary abelian p-group. Also, Φ_p(A) is contained in the kernel of any homomorphism from A to an elementary abelian p-group. Let C_p(A) denote the set of minimal subgroups of A/Φ_p(A). Each element of C_p(A) is a cyclic group of order p, and is of the form ⟨c̄⟩ for an element c ∈ A − Φ_p(A) with c^p ∈ Φ_p(A), where c̄ denotes the left coset c Φ_p(A) of Φ_p(A) in A.
- (c) Let B be a subgroup of A of index n, and let $T_B = \{a_1, a_2, \ldots, a_n\}$ be a left transversal of B. The transfer $V_{B/\Phi_n(B)}$ from A to $B/\Phi_p(B)$ is defined by

$$V_{B/\Phi_p(B)}(a) := \prod_{j=1}^n a_{j'}^{-1} a a_j \Phi_p(B), \text{ where } a a_j B = a_{j'} B,$$

for all $a \in A$. It is well-known that $V_{B/\Phi_p(B)}$ is independent of the choice of T_B and is a homomorphism.

If a sequence χ_1, χ_2, \ldots of homomorphisms $\chi_n \in \text{Hom}(G \wr S_n, \langle \omega \rangle)$, $n = 1, 2, \ldots$, satisfies a certain condition, then the Wohlfahrt series for Ker χ_n is described by a summation of exponential formulas to which sgn_B and $V_{B/\Phi_p(B)}$ are closely related (cf. Theorems 1, 2, and 3). In particular, we can present the Wohlfahrt series for $G \wr A_n$ (cf. Corollary 2). As for $W(D_n)$, the result can be considered in a generalized situation (cf. Corollary 3).

2. A CATEGORICAL VIEW OF Hom $(A, G \wr S_n)$

We start with the definition of the wreath product of two groups (see, e.g., [3, Chapter I, 2.1]). For each finite set X, let G^X be the set of mappings from X to G. The wreath product $G \wr H$ of G with a permutation group H on a finite set X is the cartesian product $G^X \times H$ with the composition law

$$(f;\pi)(f_*;\pi_*) := (f \cdot (f_* \circ \pi^{-1});\pi\pi_*), \quad (f;\pi), \ (f_*;\pi_*) \in G^X \times H,$$

where $(f \cdot (f_* \circ \pi^{-1}))(x) = f(x)f_*(\pi^{-1}(x))$ for all $x \in X$. In particular, $G \wr S_n$ is the wreath product of G with a symmetric group S_n on [n].

For any right G-set Y, let $\operatorname{Aut}_G(Y)$ denote the group of automorphisms of Y as a right G-set, and let Y/G denote the set of G-orbits. For any set X, we consider the cartesian product $G \times X$ of G and X to be the free right G-set with the right action of G given by (g, x).h = (gh, x) for all $(g, x) \in G \times X$ and $h \in G$. The following proposition, which has been shown in the proof of [1, Proposition 6.11], plays an important role in our theory.

Proposition 1 Let X be a finite set, and let S_X be the symmetric group on X. If $\gamma \in \operatorname{Aut}_G(G \times X)$, then there exists a unique pair $(\xi, \beta) \in G^X \times S_X$ such that $\gamma(g, x) = (\xi(x)g, \beta(x))$ for all $(g, x) \in G \times X$. Further, this correspondence from $\operatorname{Aut}_G(G \times X)$ to $G^X \times S_X$ is bijective.

Using Proposition 1, we identify $G \wr S_n$ with $\operatorname{Aut}_G(G \times [n])$ so that an element $(f;\pi) \in G \wr S_n$ is regarded as an automorphism $\gamma_{(f;\pi)} \in \operatorname{Aut}_G(G \times [n])$ satisfying $\gamma_{(f;\pi)}(g,i) = (f(\pi(i))g,\pi(i))$ for all $(g,i) \in G \times [n]$ (see also [3, 2.11]). Further, if Y is a free right G-set and if n = |Y/G|, then $\operatorname{Aut}_G(Y) \cong G \wr S_n$, because, for a system of representatives Ω of Y/G, $Y \cong G \times \Omega$ as right G-sets [1, Proposition 6.11].

A right G-set Y with the left action of A given by a homomorphism from A to $\operatorname{Aut}_G(Y)$ is called an (A, G)-biset. Also, an (A, G)-biset Y is said to be finite G-free if it is finite free as a right G-set. A mapping σ between (A, G)-bisets is called a morphism of (A, G)-bisets if it is a morphism both of left A-sets and of right G-sets.

Definition 1 The category G-**Set**^A_f is defined as follows :

- The objects are triples (Y, σ, X) , where Y is a finite G-free (A, G)-biset, X is a finite left A-set, viewed as an (A, G)-biset with the trivial right action of G, and $\sigma : Y \to X$ is a morphism of (A, G)-bisets, inducing an isomorphism of left A-sets $\overline{\sigma} : Y/G \to X$;
- A morphism $(Y, \sigma, X) \to (Y', \sigma', X')$ is a pair (γ, β) , where $\gamma : Y \to Y'$ and $\beta : X \to X'$ are morphisms of (A, G)-bisets, such that the diagram

$$\begin{array}{ccc} Y & \stackrel{\gamma}{\longrightarrow} & Y' \\ \sigma \downarrow & & \downarrow \sigma' \\ X & \stackrel{\beta}{\longrightarrow} & X' \end{array}$$

is commutative. The composition is given by $(\gamma, \beta) \circ (\gamma', \beta') := (\gamma \circ \gamma', \beta \circ \beta')$, and the identity $Id_{(Y,\sigma,X)}$ is the pair (Id_Y, Id_X) of the identities $Id_Y : Y \to Y$ and $Id_X : X \to X$.

For any set X, $Pr : G \times X \to X$ denotes the projection. If $\varphi \in \text{Hom}(A, G \wr S_n)$, then we denote by $(G \times [n])_{\varphi}$ the object $(G \times [n], Pr, [n])$ of G-**Set**^A_f coming from the left action φ of A on $G \times [n]$.

Proposition 2 The following statements hold.

- (a) Suppose that (Y, σ, X) is an object of G-Set^A_f and that n = |X|. Then there exists a homomorphism $\varphi \in \text{Hom}(A, G \wr S_n)$ such that $(G \times [n])_{\varphi} \cong (Y, \sigma, X)$.
- (b) Let (G × [n])_φ, (G × [n])_{φ*} be a pair of objects in G-Set^A_f. Then the set of isomorphisms from (G × [n])_φ to (G × [n])_{φ*} consists of all pairs (γ, π) with γ = (f; π) ∈ G ≥ S_n such that φ*(a) = γφ(a)γ⁻¹ for all a ∈ A.

Proof. Let Ω be a system of representatives of Y/G, and let $\gamma : G \times \Omega \to Y$ be the isomorphism of right G-sets defined by $\gamma(g, x) = xg$ for all $(g, x) \in G \times \Omega$. Let $\tau : Y \to Y/G$ be the morphism of left A-sets such that, for all $y \in Y$, $\tau(y)$ is the G-orbit containing y. We now suppose that A acts on Y via a homomorphism $\eta \in \operatorname{Hom}(A, \operatorname{Aut}_G(Y))$. Then there exists an object $(G \times \Omega, \tau \circ \gamma, Y/G)$ of G-Set^A_f coming from the left action ψ of A on $G \times \Omega$ defined by $\eta(a) \circ \gamma = \gamma \circ \psi(a)$ for all $a \in A$. Further, $(\gamma, \overline{\sigma}) : (G \times \Omega, \tau \circ \gamma, Y/G) \to (Y, \sigma, X)$ is an isomorphism and there exists a homomorphism $\varphi \in \operatorname{Hom}(A, G \wr S_n)$ such that $(G \times [n])_{\varphi} \cong (G \times \Omega, \tau \circ \gamma, Y/G)$, whence (a) follows. The statement (b) is straightforward. This completes the proof of Proposition 2. \Box

3. THE WOHLFAHRT SERIES FOR $G \wr S_n$

The goal in this section is to give the exponential formula of the Wohlfahrt series for the wreath product $G \wr S_n$.

Given a pair of (A, G)-bisets Y_1, Y_2 , their disjoint union $Y_1 \cup Y_2$ is an (A, G)-biset. The sum of a pair of objects (Y, σ, X) , (Y', σ', X') in G-Set^A_f is

$$(Y,\sigma,X) + (Y',\sigma',X') := (Y \dot{\cup} Y',\sigma \dot{\cup} \sigma',X \dot{\cup} X')$$

where $(\sigma \dot{\cup} \sigma')(y) = \sigma(y)$ if $y \in Y$ and $(\sigma \dot{\cup} \sigma')(y) = \sigma'(y)$ if $y \in Y'$, which is a coproduct in G-**Set**_f^A. For any object (Y, σ, X) of G-**Set**_f^A, the left A-set X is a disjoint union of the A-orbits, say X_1, X_2, \ldots , and also Y is a disjoint union of finite G-free (A, G)-bisets, say Y_1, Y_2, \ldots , such that σ induces morphisms of (A, G)-bisets $\sigma_i : Y_i \to X_i, i = 1, 2, \ldots$, which yields $(Y, \sigma, X) = (Y_1, \sigma_1, X_1) + (Y_2, \sigma_2, X_2) + \cdots$. Thus an object (Y, σ, X) of G-**Set**_f^A is connected if and only if X is a non-empty transitive left A-set, or equivalently, there is a subgroup B of A of finite index such that $A/B \cong X$ as left A-sets.

Lemma 1 Let B be a subgroup of A of index n and $T_B = \{a_1, a_2, \ldots, a_n\}$ a left transversal of B. Suppose that $\kappa \in \text{Hom}(B, G)$ and that $\theta \in G^{T_B}$. Then there exists a mapping $\varphi_{(T_B,\kappa,\theta)} : A \to \text{Aut}_G(G \times (A/B))$ such that

$$\varphi_{(T_B,\kappa,\theta)}(a)(g,a_jB) = (\theta(a_{j'})\kappa(a_{j'}^{-1}aa_j)\theta(a_j)^{-1}g,a_{j'}B), \quad where \quad aa_jB = a_{j'}B,$$

for all $a \in A$, $g \in G$, and $j \in [n]$. Further, it is a homomorphism.

Proof. The first assertion follows from Proposition 1. It is easy to see that $\varphi_{(T_B,\kappa,\theta)}$ is a homomorphism. \Box

Definition 2 Under the notation of Lemma 1, we denote by $(G \times [T_B])_{(\kappa,\theta)}$ the object $(G \times (A/B), Pr, A/B)$ coming from the left action $\varphi_{(T_B,\kappa,\theta)}$ of A on $G \times (A/B)$.

Let ϵ_A and ϵ_G be the identities of A and G, respectively. The following proposition enables us to determine the isomorphism classes of connected objects of G-**Set**^A_f.

Proposition 3 Let B be a subgroup of A of finite index and T_B a left transversal of B containing ϵ_A . Suppose that $\varphi \in \text{Hom}(A, \text{Aut}_G(G \times (A/B)))$ and that, for each element a of A, there is a mapping $\xi_a \in G^{A/B}$ with $\varphi(a)(g, xB) = (\xi_a(xB)g, axB)$ for all $(g, xB) \in G \times (A/B)$. Then there is a unique pair $(\kappa, \theta) \in \text{Hom}(B, G) \times G^{T_B}$ with $\theta(\epsilon_A) = \epsilon_G$ such that $(G \times [T_B])_{(\kappa,\theta)}$ expresses the object $(G \times (A/B), Pr, A/B)$ of G-Set^A coming from the left action φ of A on $G \times (A/B)$.

Proof. Suppose that A acts on $G \times (A/B)$ via φ and that $T_B = \{a_1, a_2, \ldots, a_n\}$ with $a_1 = \epsilon_A$. Define $(\kappa, \theta) \in \text{Hom}(B, G) \times G^{T_B}$ by $\kappa(b) = \xi_b(B)$ for all $b \in B$ and $\theta(a_j) = \xi_{a_j}(B)$ for all $j \in [n]$. Then $b.(\epsilon_G, B) = (\kappa(b), B)$ for all $b \in B$ and $a_j.(\epsilon_G, B) = (\theta(a_j), a_j B)$ for all $j \in [n]$. Further, for any $a \in A, g \in G$, and $j \in [n]$, if $aa_j B = a_{j'} B$, then

$$a.(g, a_j B) = (aa_j).(\theta(a_j)^{-1}g, B) = a_{j'}.(\kappa(a_{j'}^{-1}aa_j)\theta(a_j)^{-1}g, B) = (\theta(a_{j'})\kappa(a_{j'}^{-1}aa_j)\theta(a_j)^{-1}g, a_{j'}B)$$

Thus $(G \times [T_B])_{(\kappa,\theta)} = (G \times (A/B), Pr, A/B)$. Also, $\theta(\epsilon_A) = \epsilon_G$ and the uniqueness of (κ, θ) is clear. We have thus proved the proposition. \Box

We require the following proposition.

Proposition 4 For each subgroup B of A of finite index, we fix a left transversal T_B of B containing ϵ_A . Suppose that B is a subgroup of A of finite index and that $(\kappa, \theta) \in \operatorname{Hom}(B, G) \times G^{T_B}$ with $\theta(\epsilon_A) = \epsilon_G$. We denote by $\mathscr{I}_{(T_B,\kappa,\theta)}$ the set of all pairs $((G \times [T_{B_*}])_{(\kappa_*,\theta_*)}, (\gamma, \beta))$, where $(\kappa_*, \theta_*) \in \operatorname{Hom}(B_*, G) \times G^{T_{B_*}}$ with $\theta_*(\epsilon_A) = \epsilon_G$ and (γ, β) is an isomorphism from $(G \times [T_B])_{(\kappa,\theta)}$ to $(G \times [T_{B_*}])_{(\kappa_*,\theta_*)}$. Then there exists a bijection from $\mathscr{I}_{(T_B,\kappa,\theta)}$ to $G^{A/B} \times T_B$.

Proof. Suppose that $T_B = \{a_1, a_2, \ldots, a_n\}$. Let $((G \times [T_{B_*}])_{(\kappa_*, \theta_*)}, (\gamma, \beta)) \in \mathscr{I}_{(T_B, \kappa, \theta)}$. Then $\beta : A/B \to A/B_*$ is an isomorphism of left A-sets. Take an element a of A so that $\beta(B) = aB_*$. Then $aB_* = \beta(B) = b\beta(B) = baB_*$ for all $b \in B$, and hence B^a is a subgroup of B_* . Likewise, B_* is conjugate to a subgroup of B, and consequently, $B_* = B^a$. We can now choose a unique element a_i of T_B so that $\beta(B) = Ba_i^{-1}$ and $B_* = B^{a_i^{-1}}$. Further, since γ is a morphism of free right *G*-sets, these exists a unique mapping $\xi \in G^{A/B}$ such that $\gamma(g, a_j B) = (\xi(a_j B)g, \beta(a_j B)) = (\xi(a_j B)g, a_j a_i^{-1} B_*)$ for all $g \in G$ and $j \in [n]$, which defines an injection from $\mathscr{I}_{(T_B,\kappa,\theta)}$ to $G^{A/B} \times T_B$.

Conversely, let $(\xi, a_i) \in G^{A/B} \times T_B$. Define $B_* = B^{a_i^{-1}}$, and let $\beta : A/B \to A/B_*$ be the morphism of left A-sets defined by $\beta(a_jB) = a_ja_i^{-1}B_* = a_jBa_i^{-1}$ for all $j \in [n]$. Then there exists an isomorphism $\gamma : G \times (A/B) \to G \times (A/B_*)$ of right G-sets satisfying $\gamma(g, a_jB) = (\xi(a_jB)g, \beta(a_jB))$ for all $g \in G$ and $j \in [n]$. Hence, by Proposition 3, there is a unique pair $(\kappa_*, \theta_*) \in \text{Hom}(B_*, G) \times G^{T_{B_*}}$ with $\theta_*(\epsilon_A) = \epsilon_G$ such that $(G \times [T_{B_*}])_{(\kappa_*, \theta_*)}$ expresses an object $(G \times (A/B_*), Pr, A/B_*)$ of G-Set^A_f coming from the left action φ of A on $G \times (A/B_*)$ defined by $\varphi(a) \circ \gamma = \gamma \circ \varphi_{(T_B, \kappa, \theta)}(a)$ for all $a \in A$, where $\varphi_{(T_B, \kappa, \theta)}$ is defined in Lemma 1. Now (γ, β) is an isomorphism from $(G \times [T_B])_{(\kappa, \theta)}$ to $(G \times [T_{B_*}])_{(\kappa_*, \theta_*)}$, and thereby the injection from $\mathscr{I}_{(T_B, \kappa, \theta)}$ to $G^{A/B} \times T_B$ defined in the preceding paragraph is bijective. This completes the proof of Proposition 4. \Box

It is clear that the category G-**Set**^A_f is a skeletally small and locally finite KS category. We are now in a position to apply [10, 5.8. Theorem] to G-**Set**^A_f.

Proposition 5 For each subgroup B of A of finite index, we fix a left transversal T_B of B containing ϵ_A , and define $\mathscr{L}(T_B, G) := \operatorname{Hom}(B, G) \times \{\theta \in G^{T_B} \mid \theta(\epsilon_A) = \epsilon_G\}$. Let r be a mapping from the set of objects of G-Set^A_f to a Q-algebra satisfying the following conditions :

(i) $r(Y, \sigma, X) = r(Y', \sigma', X')$ if $(Y, \sigma, X) \cong (Y', \sigma', X')$;

(ii)
$$r(\emptyset) = 1, r((Y_1, \sigma_1, X_1) + (Y_2, \sigma_2, X_2)) = r(Y_1, \sigma_1, X_1)r(Y_2, \sigma_2, X_2).$$

Then

$$\sum_{n=0}^{\infty} \sum_{\varphi \in \operatorname{Hom}(A,G \wr S_n)} \frac{r_{\varphi}}{|G|^n n!} t^n = \exp\left(\sum_{B \le_f A} \sum_{(\kappa,\theta) \in \mathscr{L}(T_B,G)} \frac{r_{(T_B,\kappa,\theta)}}{|G|^{|A:B|} |A:B|} t^{|A:B|}\right),$$

where $r_{\varphi} = r((G \times [n])_{\varphi})$ and $r_{(T_B,\kappa,\theta)} = r((G \times [T_B])_{(\kappa,\theta)}).$

Proof. Let $\mathbf{Con}(G\operatorname{-}\mathbf{Set}_{\mathrm{f}}^{A})$ be the full subcategory of connected objects of $G\operatorname{-}\mathbf{Set}_{\mathrm{f}}^{A}$. By [10, 5.3], we can substitute $t^{(Y,\sigma,X)}$ for $r(Y,\sigma,X)t^{|X|}$ on both sides of the equation in [10, 5.8. Theorem] with $\mathscr{E} = G\operatorname{-}\mathbf{Set}_{\mathrm{f}}^{A}$. Hence

$$\sum_{Z=(Y,\sigma,X)\in G\text{-}\mathbf{Set}_{\mathrm{f}}^{A}} \frac{r(Z)}{|\mathrm{Aut}(Z)|} t^{|X|} = \exp\left(\sum_{Z=(Y,\sigma,X)\in\mathbf{Con}(G\text{-}\mathbf{Set}_{\mathrm{f}}^{A})} \frac{r(Z)}{|\mathrm{Aut}(Z)|} t^{|X|}\right)$$

The proposition now follows from Lemma 1 and Propositions 2, 3, and 4. \Box

Corollary 1 ([4, 8]) We have

$$\sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A, G \wr S_n)|}{|G|^n n!} t^n = \exp\left(\sum_{B \le fA} \frac{|\operatorname{Hom}(B, G)|}{|G| |A : B|} t^{|A:B|}\right)$$

Proof. The assertion follows from Proposition 5 with the mapping r defined by $r(Y, \sigma, X) = 1$ for all objects (Y, σ, X) of G-Set^A_f. \Box

4. EVEN PERMUTATION REPRESENTATIONS

A Wohlfahrt series is expressed in the form $\sum_{n=0}^{\infty} |\text{Hom}(A, K_n)|t^n/|G|^n n!$; by substituting the variable t of this series for |G|t, we obtain the original series. In this section we establish a fundamental theorem for enumerating homomorphisms from A to $G \wr S_n$, and present the exponential formula of the Wohlfahrt series for $G \wr A_n$. Recall that $\mathscr{C}_p(A)$ is the set of minimal subgroups of $A/\Phi_p(A)$ and that each element of $\mathscr{C}_p(A)$ is denoted by $\langle \overline{c} \rangle$ for an element $c \in A - \Phi_p(A)$ with $c^p \in \Phi_p(A)$, where $\overline{c} = c\Phi_p(A)$. The following theorem relates to [5, Theorem 3.1].

Theorem 1. Suppose that homomorphisms $\zeta_n \in \text{Hom}(S_n, \langle \omega \rangle)$, n = 1, 2, ..., satisfy the condition that either $\text{Ker} \zeta_n = S_n$ for any n, or p = 2 and $\text{Ker} \zeta_n = A_n$ for any n. Let χ be a homomorphism form G to $\langle \omega \rangle$, and let $\chi_1, \chi_2, ...$ be the sequence of homomorphisms $\chi_n \in \text{Hom}(G \wr S_n, \langle \omega \rangle)$, n = 1, 2, ..., defined by

$$\chi_n(f;\pi) = \chi(f(1))\chi(f(2))\cdots\chi(f(n))\zeta_n(\pi)$$

for all $(f;\pi) \in G \wr S_n$. Set $K_n = \text{Ker} \chi_n$. Then

$$\begin{split} |A:\Phi_p(A)| \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A,K_n)|}{|G|^n n!} t^n &= \exp\left(\sum_{B \le fA} \frac{|\operatorname{Hom}(B,G)|}{|G| |A:B|} t^{|A:B|}\right) \\ &+ \sum_{\langle \overline{c} \rangle \in \mathscr{C}_p(A)} \sum_{i=1}^{p-1} \exp\left(\sum_{B \le fA} \sum_{\kappa \in \operatorname{Hom}(B,G)} \frac{\zeta_B(c) \cdot \overline{\chi \circ \kappa} (V_{B/\Phi_p(B)}(c))^i}{|G| |A:B|} t^{|A:B|}\right), \end{split}$$

where $\overline{\chi \circ \kappa} \in \operatorname{Hom}(B/\Phi_p(B), \langle \omega \rangle)$ is the homomorphism defined by

$$\overline{\chi \circ \kappa}(b\Phi_p(B)) = \chi(\kappa(b))$$

for all $b \in B$, and $\zeta_B(c) = 1$ if $\operatorname{Ker} \zeta_n = S_n$ for any n and $\zeta_B(c) = \operatorname{sgn}_B(c)$ if p = 2and $\operatorname{Ker} \zeta_n = A_n$ for any n. Here $\zeta_B(c)$ and $V_{B/\Phi_p(B)}(c)$ are independent of the choice of an element c in a coset $\langle \overline{c} \rangle \in \mathscr{C}_p(A)$. *Proof.* Suppose that $\varphi \in \text{Hom}(A, G \wr S_n)$. Then either $|A : \text{Ker}(\chi_n \circ \varphi)| = p$ or $A = \text{Ker}(\chi_n \circ \varphi)$, and further, $\text{Ker}(\chi_n \circ \varphi)$ contains $\Phi_p(A)$. If $|A : \text{Ker}(\chi_n \circ \varphi)| = p$, then

$$\sum_{\langle \overline{c} \rangle \in \mathscr{C}_p(A)} \sum_{i=1}^{p-1} \chi_n(\varphi(c))^i = (p-1) \sharp \{ \langle \overline{c} \rangle \in \mathscr{C}_p(A) \mid c \in \operatorname{Ker}(\chi_n \circ \varphi) \} \\ - \sharp \{ \langle \overline{c} \rangle \in \mathscr{C}_p(A) \mid c \notin \operatorname{Ker}(\chi_n \circ \varphi) \} \\ = -1,$$

because $\sum_{i=1}^{p-1} \omega^i = -1$ and $A/\Phi_p(A)$ is an elementary abelian *p*-group. Note that the number of subgroups of order *p* in an elementary abelian *p*-group of order p^s is equal to $(p^s - 1)/(p - 1)$. Hence we obtain

$$1 + \sum_{\langle \overline{c} \rangle \in \mathscr{C}_p(A)} \sum_{i=1}^{p-1} \chi_n(\varphi(c))^i = \begin{cases} |A : \Phi_p(A)| & \text{if } A = \operatorname{Ker}(\chi_n \circ \varphi), \\ 0 & \text{otherwise.} \end{cases}$$

Consequently, since $\operatorname{Hom}(A, K_n) = \{\varphi \in \operatorname{Hom}(A, G \wr S_n) \mid A = \operatorname{Ker}(\chi_n \circ \varphi)\}$, it follows that

$$|A:\Phi_p(A)| \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A,K_n)|}{|G|^n n!} t^n = \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A,G\wr S_n)|}{|G|^n n!} t^n + \sum_{\langle \overline{c} \rangle \in \mathscr{C}_p(A)} \sum_{i=1}^{p-1} \sum_{n=0}^{\infty} \sum_{\varphi \in \operatorname{Hom}(A,G\wr S_n)} \frac{\chi_n(\varphi(c))^i}{|G|^n n!} t^n.$$

$$(2)$$

Suppose that $c \in A$. Using Proposition 2, we define a mapping r from the set of objects of G-**Set**^A_f to the complex numbers by setting $r(Y, \sigma, X) = \chi_n(\varphi(c))$ if $(Y, \sigma, X) \cong (G \times [n])_{\varphi}$, and $r(\emptyset) = 1$. Note that, if objects $(G \times [n])_{\varphi}$ and $(G \times [n])_{\varphi_*}$ are isomorphic in G-**Set**^A_f, then $\chi_n(\varphi(c)) = \chi_n(\varphi_*(c))$ by Proposition 2(b). Further, given a pair of objects $(G \times [n_1])_{\varphi_1}$, $(G \times [n_2])_{\varphi_2}$ in G-**Set**^A_f with $n = n_1 + n_2$, there exists a homomorphism $\varphi \in \text{Hom}(A, G \wr S_n)$ such that

$$(G \times [n])_{\varphi} \cong (G \times [n_1])_{\varphi_1} + (G \times [n_2])_{\varphi_2}$$

and

$$\chi_n(\varphi(c)) = \chi_{n_1}(\varphi_1(c))\chi_{n_2}(\varphi_2(c)).$$

Thus the mapping r satisfies the conditions (i) and (ii) in Proposition 5. Also, under the notation of Proposition 5, if B is a subgroup of A of finite index and if $(\kappa, \theta) \in \mathscr{L}(T_B, G)$, then $r((G \times [T_B])_{(\kappa, \theta)}) = \zeta_B(c) \cdot \overline{\chi \circ \kappa}(V_{B/\Phi_p(B)}(c))$, which is independent of the choice of θ . It now follows from Proposition 5 that

$$\sum_{n=0}^{\infty} \sum_{\varphi \in \operatorname{Hom}(A,G\wr S_n)} \frac{\chi_n(\varphi(c))}{|G|^n n!} t^n$$

= $\exp\left(\sum_{B \leq_f A} \sum_{\kappa \in \operatorname{Hom}(B,G)} \frac{\zeta_B(c) \cdot \overline{\chi \circ \kappa}(V_{B/\Phi_p(B)}(c))}{|G| |A:B|} t^{|A:B|}\right)$

This formula, together with Corollary 1, enables us to obtain the desired result as a consequence of Eq. (2). We have thus proved the theorem. \Box

We classify the group K_n in Theorem 1, according as $\operatorname{Ker} \zeta_n = S_n$ for any n or p = 2 and $\operatorname{Ker} \zeta_n = A_n$ for any n, and $\operatorname{Ker} \chi = G$ or $\operatorname{Ker} \chi \neq G$. **Case 1.** $\operatorname{Ker} \zeta_n = S_n$, $\operatorname{Ker} \chi = G$, and $K_n = G \wr S_n$. **Case 2.** p = 2, $\operatorname{Ker} \zeta_n = A_n$, $\operatorname{Ker} \chi = G$, and $K_n = G \wr A_n$. **Case 3.** $\operatorname{Ker} \zeta_n = S_n$, $\operatorname{Ker} \chi \neq G$, and

$$K_n = \{ (f; \pi) \in G \wr S_n \mid \chi(f(1)f(2)\cdots f(n)) = 1 \}.$$

Case 4. p = 2, Ker $\zeta_n = A_n$, Ker $\chi \neq G$, and

$$K_n = \{ (f; \pi) \in G \wr S_n \mid \chi(f(1)f(2) \cdots f(n)) \operatorname{sgn}(\pi) = 1 \},\$$

where sgn is the usual sign.

The assertion of Theorem 1 in Case 1 is Corollary 1, and the one in Case 2 is the following corollary to Theorem 1.

Corollary 2 We have

$$\begin{aligned} |A:\Phi_2(A)| \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A,G\wr A_n)|}{|G|^n n!} t^n &= \exp\left(\sum_{B\leq_f A} \frac{|\operatorname{Hom}(B,G)|}{|G||A:B|} t^{|A:B|}\right) \\ &+ \sum_{\langle \overline{c} \rangle \in \mathscr{C}_2(A)} \exp\left(\sum_{B\leq_f A} \frac{\operatorname{sgn}_B(c) \cdot |\operatorname{Hom}(B,G)|}{|G||A:B|} t^{|A:B|}\right). \end{aligned}$$

In particular,

$$\begin{aligned} |A:\Phi_2(A)| \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A,A_n)|}{n!} t^n &= \exp\left(\sum_{B \le fA} \frac{1}{|A:B|} t^{|A:B|}\right) \\ &+ \sum_{\langle \overline{c} \rangle \in \mathscr{C}_2(A)} \exp\left(\sum_{B \le fA} \frac{\operatorname{sgn}_B(c)}{|A:B|} t^{|A:B|}\right). \end{aligned}$$

Proof. The corollary is an immediate consequence of Theorem 1. \Box

Remark If A is abelian and if B is a subgroup of A of finite index, then, for each $a \in A$, $\operatorname{sgn}_B(a) = 1$ if and only if either $\langle aB \rangle$ does not include any non-identity Sylow 2-subgroup of A/B or else A/B is of odd order [8, Lemmas 2.1]. (The first statement of [8, Lemma 4.1] is missing in the case where A/B is of odd order.) The second assertion of the theorem is now equivalent to [8, Theorem 1.1] if A is abelian, and is equivalent to the fact in [7, Chap. 4, Problem 22] if A is a finite cyclic group. (The formula [10, (6.5.d)] is not correct. However, the idea in [10, 6.5] is useful for the proof of Theorem 1.)

5. VARIOUS WOHLFAHRT SERIES

We devote the rest of this paper to the applications of Theorem 1 to Cases 3 and 4. The formulas of Theorem 1 in the case where $\text{Ker } \chi \neq G$ seems to be so implicit that we try to give slightly explicit formulas under a certain additional condition.

Lemma 2 Suppose that $\chi \in \text{Hom}(G, \langle \omega \rangle)$ and that $c \in A$. If either A or G is abelian, then the number of homomorphisms $\psi \in \text{Hom}(A, G)$ satisfying $\chi(\psi(c)) = \omega^j$ is independent of the choice of an integer j with $1 \leq j \leq p-1$.

Proof. If G is abelian, then we can identify $\operatorname{Hom}(A, G)$ with $\operatorname{Hom}(A/A', G)$, where A' is the commutator subgroup of A. Hence we may assume that A is abelian. Let K be the intersection of all kernels of homomorphisms $\psi \in \operatorname{Hom}(A, G)$. Then K is a normal subgroup of A of finite index, and hence A/K is a finite abelian group. Now, since $\operatorname{Hom}(A, G)$ is identified with $\operatorname{Hom}(A/K, G)$, we may assume that A is a finite abelian p-group. For each integer i, we define

$$\operatorname{Hom}(A,G;c,\omega^{i}) = \{\psi \in \operatorname{Hom}(A,G) \mid \chi(\psi(c)) = \omega^{i}\}.$$

Let *i* and *j* be arbitrary positive integers less than *p*, and let ℓ be a positive integer satisfying $i\ell \equiv j \mod p$. If $\psi \in \operatorname{Hom}(A, G; c, \omega^i)$, then a homomorphism $\psi^{(\ell)} \in \operatorname{Hom}(A, G)$ is defined by setting $\psi^{(\ell)}(a) = \psi(a)^{\ell}$ for all $a \in A$, because *A* is abelian. Here we get $\chi(\psi^{(\ell)}(c)) = \chi(\psi(c))^{\ell} = \omega^{i\ell} = \omega^j$. Hence there is a correspondence

$$\lambda_{i,j}$$
: Hom $(A,G;c,\omega^i) \ni \psi \longrightarrow \psi^{(\ell)} \in \text{Hom}(A,G;c,\omega^j).$

Let s be a positive integer satisfying $\ell s \equiv 1 \mod |A|$. Suppose that $\psi_1^{(\ell)} = \psi_2^{(\ell)}$ with $\psi_1, \psi_2 \in \operatorname{Hom}(A, G; c, \omega^i)$. Then we obtain

$$\psi_1(a) = \psi_1(a)^{\ell s} = \psi_2(a)^{\ell s} = \psi_2(a)$$

for all $a \in A$, whence $\psi_1 = \psi_2$. Thus the correspondence $\lambda_{i,j}$ is one-to-one. Since i and j are arbitrary, we now conclude that $\#\text{Hom}(A, G; c, \omega^i) = \#\text{Hom}(A, G; c, \omega^j)$. This completes the proof of Lemma 2. \Box

Definition 3 Suppose that $\chi \in \text{Hom}(G, \langle \omega \rangle)$ and that *B* is a subgroup of *A* of finite index. For each element *c* of *A*, define

$$\ell_{c}(B;\chi) := \sharp\{\kappa \in \operatorname{Hom}(B,G) \mid V_{B/\Phi_{p}(B)}(c) \in \operatorname{Ker} \overline{\chi \circ \kappa}\} - \frac{1}{p-1} \sharp\{\kappa \in \operatorname{Hom}(B,G) \mid V_{B/\Phi_{p}(B)}(c) \notin \operatorname{Ker} \overline{\chi \circ \kappa}\}.$$

Here $\overline{\chi \circ \kappa}$ is defined in Theorem 1.

We can now show a formula of the Wohlfahrt series in Case 3.

Theorem 2. Suppose that $\chi \in \text{Hom}(G, \langle \omega \rangle)$. Let K_n be the subgroup of $G \wr S_n$ consisting of all elements $(f; \pi)$ satisfying $\chi(f(1)f(2)\cdots f(n)) = 1$. If either A or G is abelian, then

$$\begin{aligned} |A:\Phi_p(A)| \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A,K_n)|}{|G|^n n!} t^n &= \exp\left(\sum_{B \le fA} \frac{|\operatorname{Hom}(B,G)|}{|G| |A:B|} t^{|A:B|}\right) \\ &+ (p-1) \sum_{\langle \overline{c} \rangle \in \mathscr{C}_p(A)} \exp\left(\sum_{B \le fA} \frac{\ell_c(B;\chi)}{|G| |A:B|} t^{|A:B|}\right). \end{aligned}$$

Here $\ell_c(B;\chi)$ is independent of the choice of an element c in a coset $\langle \overline{c} \rangle \in \mathscr{C}_p(A)$.

Proof. If B is a subgroup of A of finite index and if $\langle \overline{c} \rangle \in \mathscr{C}_p(A)$, then the number of homomorphisms $\kappa \in \operatorname{Hom}(B,G)$ satisfying $\overline{\chi \circ \kappa}(V_{B/\Phi_p(B)}(c)) = \omega^j$ is independent of the choice of an integer j with $1 \leq j \leq p-1$ by Lemma 2, and hence

$$\ell_c(B;\chi) = \sum_{\kappa \in \operatorname{Hom}(B,G)} \overline{\chi \circ \kappa}(V_{B/\Phi_p(B)}(c))^i$$

for any integer i with $1 \le i \le p-1$. The assertion now follows from Theorem 1. \Box

The second assertion of the following corollary is equivalent to [8, Theorem 1.2] if A is abelian.

Corollary 3 Let K_n be the subgroup of $\langle \omega \rangle \wr S_n$ consisting of all elements $(f; \pi)$ satisfying $f(1)f(2)\cdots f(n) = 1$. Then

$$\begin{split} |A:\Phi_p(A)| \sum_{n=0}^{\infty} \frac{|\operatorname{Hom}(A,K_n)|}{p^n n!} t^n &= \exp\left(\sum_{B \le fA} \frac{|B:\Phi_p(B)|}{p|A:B|} t^{|A:B|}\right) \\ &+ (p-1) \sum_{\langle \overline{c} \rangle \in \mathscr{C}_p(A)} \exp\left(\sum_{B \le fA \atop c \in \operatorname{Ker} V_B/\Phi_p(B)} \frac{|B:\Phi_p(B)|}{p|A:B|} t^{|A:B|}\right), \end{split}$$

where the summation $\sum_{B \leq fA, c \in \operatorname{Ker} V_{B/\Phi_p(B)}}$ is over all subgroups B of A of finite index such that $c \in \operatorname{Ker} V_{B/\Phi_p(B)}$. In particular,

$$\begin{split} |A:\Phi_{2}(A)| \sum_{n=0}^{\infty} \frac{|\mathrm{Hom}(A,W(D_{n}))|}{2^{n}n!} t^{n} &= \exp\left(\sum_{B \leq fA} \frac{|B:\Phi_{2}(B)|}{2|A:B|} t^{|A:B|}\right) \\ &+ \sum_{\langle \overline{c} \rangle \in \mathscr{C}_{2}(A)} \exp\left(\sum_{B \leq fA \atop c \in \mathrm{Ker} \, V_{B}/\Phi_{2}(B)} \frac{|B:\Phi_{2}(B)|}{2|A:B|} t^{|A:B|}\right). \end{split}$$

Proof. The assertion is a consequence of Theorem 2 and Lemma 3 below. \Box

Lemma 3 Let B be a subgroup of A of finite index. Then

$$|\operatorname{Hom}(B,\langle\omega\rangle)| = |B:\Phi_p(B)|.$$

Further, for any automorphism χ of $\langle \omega \rangle$ and for any coset $\langle \overline{c} \rangle \in \mathscr{C}_p(A)$,

$$\ell_c(B;\chi) = \begin{cases} |B:\Phi_p(B)| & \text{if } c \in \operatorname{Ker} V_{B/\Phi_p(B)}, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. It is easy to see that $|\operatorname{Hom}(B/\Phi_p(B), \langle \omega \rangle)| = |B : \Phi_p(B)|$. Also, there is a natural bijection between $\operatorname{Hom}(B, \langle \omega \rangle)$ and $\operatorname{Hom}(B/\Phi_p(B), \langle \omega \rangle)$. Hence we have $|\operatorname{Hom}(B, \langle \omega \rangle)| = |B : \Phi_p(B)|$. If $c \in \operatorname{Ker} V_{B/\Phi_p(B)}$, then $\ell_c(B; \chi) = |B : \Phi_p(B)|$. So we assume that $c \notin \operatorname{Ker} V_{B/\Phi_p(B)}$. Then, since $\Phi_p(A) \leq \operatorname{Ker} V_{B/\Phi_p(B)}$, we have $|\langle V_{B/\Phi_p(B)}(c) \rangle| = |\langle \overline{c} \rangle| = p$. The assumption that $\operatorname{Ker} \chi = \{1\}$ now yields

$$\begin{aligned} \sharp\{\kappa \in \operatorname{Hom}(B, \langle \omega \rangle) \mid V_{B/\Phi_p(B)}(c) \in \operatorname{Ker} \overline{\chi \circ \kappa} \} \\ &= \sharp\{\overline{\kappa} \in \operatorname{Hom}(B/\Phi_p(B), \langle \omega \rangle) \mid \langle V_{B/\Phi_p(B)}(c) \rangle \leq \operatorname{Ker} \overline{\kappa} \} \\ &= |B/\Phi_p(B) : \langle V_{B/\Phi_p(B)}(c) \rangle| \\ &= |B : \Phi_p(B)|/p. \end{aligned}$$

Consequently, we obtain $\ell_c(B;\chi) = 0$. This completes the proof of Lemma 3. \Box

We finish by stating a result in Case 4.

Theorem 3. Let K_n be a subgroup of $\langle -1 \rangle \wr S_n$ consisting of all elements $(f; \pi)$ satisfying $f(1)f(2)\cdots f(n) = \operatorname{sgn}(\pi)$. Then

$$|A:\Phi_{2}(A)|\sum_{n=0}^{\infty}\frac{|\operatorname{Hom}(A,K_{n})|}{2^{n}n!}t^{n} = \exp\left(\sum_{\substack{B\leq fA\\ c\in\operatorname{Ker}V_{B}/\Phi_{2}(B)}}\frac{|B:\Phi_{2}(B)|}{2|A:B|}t^{|A:B|}\right) + \sum_{\langle\overline{c}\rangle\in\mathscr{C}_{2}(A)}\exp\left(\sum_{\substack{B\leq fA\\ c\in\operatorname{Ker}V_{B}/\Phi_{2}(B)}}\frac{\operatorname{sgn}_{B}(c)\cdot|B:\Phi_{2}(B)|}{2|A:B|}t^{|A:B|}\right).$$

Proof. The theorem follows from Theorem 1 and Lemma 3. \Box

ACKNOWLEDGMENTS

The author is grateful to a referee for his presentation of the category G-Set^A_f. The author also thanks Naoki Chigira and Tomoyuki Yoshida for helpful comments.

REFERENCES

- S. Bouc, "Non-additive Exact Functors and Tensor Induction for Mackey Functors," Mem. Amer. Math. Soc. 144 (2000), no. 683.
- 2. N. Chigira, The solutions of $x^d = 1$ in finite groups, J. Algebra **180** (1996), 653–661.
- A. Kerber, "Representations of Permutation Groups I," Lecture Notes in Math., Vol 240, Springer-Verlag, Berlin, 1971
- T. Müller, Enumerating representations in finite wreath products, Adv. in Math. 153 (2000), 118–154.
- 5. T. Müller, Enumerating representations in finite wreath products II: Explicit Formulae Adv. in Math. 171 (2002), 276–331.
- S. Okada, Wreath products by the symmetric groups and product posets of Young's lattices, J. Combin. Theory Ser. A 55 (1990), 14–32
- J. Riordan, "An Introduction to Combinatorial Analysis," John Wiley & Sons, New York, 1958.
- Y. Takegahara, A generating function for the number of homomorphisms from a finitely generated abelian group to an alternating group, J. Algebra, 248 (2002), 554–574
- K. Wohlfahrt, Über einen Satz von Dey und die Modulgruppe, Arch. Math. (Basel) 29 (1977), 455–457.
- 10. T. Yoshida, Categorical aspects of generating functions (I): exponential formulas and Krull-Schmidt categories, J. Algebra **240** (2001), 40–82.