
Generating functions for permutation
representations

言語: eng

出版者: Elsevier

公開日: 2019-05-20

キーワード (Ja): 

キーワード (En): 

作成者: 竹ケ原, 裕元

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10258/00009882URL



Generating Functions for Permutation

Representations

Yugen Takegahara

Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
E-mail: yugen@mmm.muroran-it.ac.jp

We discuss the categorical approach to representations in wreath products,
and generalize the Wohlfahrt formula of the exponential generating function
for the number of permutation representations.

1. INTRODUCTION

Suppose that a group A contains only a finite number of subgroups of index d for
each positive integer d. As an instance, every finitely generated group satisfies such
a property. By the hypothesis, |Hom(A, H)| := ]Hom(A,H) < ∞ for an arbitrary
finite group H, where Hom(A,H) denotes the set of homomorphisms from A to
H. Given a sequence K0,K1,K2, . . . of finite groups Kn such that the first term
is the group consisting of only the identity ε, we call the exponential generating
function

∑∞
n=0 |Hom(A,Kn)|tn/n! the Wohlfahrt series for Kn. A typical example

of such a formal power series comes from the sequence of the symmetric group Sn

on [n] := {1, 2, . . . , n}. In the paper [9], Wohlfahrt proved that

∞∑

n=0

|Hom(A,Sn)|
n!

tn = exp


 ∑

B≤f A

1
|A : B| t

|A:B|


 , (1)

where the sum
∑

B≤f A is over all subgroups B of A of finite index |A : B|.
Throughout the paper, G is a finite group, An is the alternating group on [n],

W (Dn) is the Weyl group of type Dn, and G oSn and G oAn are the wreath products
of G with Sn and An, respectively. The exponential formula of the Wohlfahrt series
for G oSn is given in the recent papers [4, 8] (cf. Corollary 1). It is also shown in the
papers [2, 6] when A is a finite cyclic group. If Kn is either G o An or W (Dn), the
exponential generating function for the number of solutions in Kn to the equation
xd = ε was found by Chigira [2]; see also [4].

Recently, Yoshida has developed the theory of generating functions from the
categorical point of view, and has presented many applications [10]. In this paper,
we carry out investigations into applications of the categorical theory.
2000Mathematics Subject Classification: 05A15, 20B30, 20B40, 20E22.
Keyword : wreath product, generating function, permutation representation.
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We refer to the paper [10] for the notation and terminology on categories. Let E
be a category with any finite coproducts. A connected object J of E is a noninitial
object satisfying the condition that J = A + B implies that A or B is an initial
object [10, 5.5]. The category E is a KS-category if the following condition holds
[10, 5.5]:

KS Property. Any object X is isomorphic to a coproduct of some finite number
of connected objects and a coproduct decomposition of X is unique in the following
sense : if X = I1 + · · ·+ Im = J1 + · · ·+ Jn are two coproduct decompositions into
connected objects with canonical injections iα : Iα → X and jβ : Jβ → X, then
m = n and there exist a permutation π ∈ Sn and isomorphisms fα : Iα → Jπ(α)

such that jπ(α)fα = iα for all α = 1, . . . , n.

A category is skeletally small if a full subcategory consisting of complete rep-
resentatives of the isomorphism classes of objects is equivalent to a small category
[10, 2.1]. Suppose that E is a skeletally small KS-category. Let Q[[E op/∼=]] be the
Q-module of formal power series with exponents in E : f(t) =

∑′
X∈E aXtX , aX ∈ Q,

the summation
∑′

X∈E being over all isomorphism classes of objects of E ; the vari-
ables tX is considered as the isomorphism class containing X in the dual category
E op, and hence tX = tY if X ∼= Y [10, 4.1]. By the product operation tX ·tY = tX+Y ,
t∅ = 1, where ∅ is an initial object of E , Q[[E op/∼=]] becomes an Q-algebra [10, 5.1,
5.2]. A category is locally finite if every hom set Hom(X,Y ) is a finite set [10, 2.1].
If E is locally finite, then the generating function of E is

E (t) :=
∑′

X∈E

tX

|Aut(X)| ∈ Q[[E op/∼=]]

[10, 4.2]. According to [10, 6.4], the Wohlfahrt formula (1) is verified on the basis
of a categorical result, namely,

[10, 5.8. Theorem] Let E be a skeletally small KS category and let J := Con(E )
be the full subcategory of connected objects of E . If E is locally finite, then

E (t) = exp(J (t)).

Here the power series J (t) is viewed as an element of Q[[E op/∼=]] through the canon-
ical embedding J ⊆ E .

In Section 3, we apply [10, 5.8. Theorem] to a certain category related to (A, G)-
bisets, and obtain the principle of enumerating the homomorphisms from A to G oSn

(cf. Proposition 5). Further, we can find various Wohlfahrt series in Sections 4 and
5. We give the notation and an outline of the results.

Notation
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(a) Let B be a subgroup of A. We denote by A/B the left A-set consisting of all left
cosets of B in A with the action given by a.xB = axB for all a, x ∈ A. Define
sgnB : A → {1,−1} by sgnB(a) = 1 if a is an even permutation on A/B, and
sgnB(a) = −1 otherwise. It is evident that sgnB is a homomorphism.

(b) The letter p always stands for a prime. Let ω be a primitive p-th root of 1 and
〈ω〉 a cyclic group generated by ω. We denote by Φp(A) the intersection of all
kernels of homomorphisms from A to 〈ω〉. Then Φp(A) is a normal subgroup
of A of finite index, and the factor group A/Φp(A) is an elementary abelian
p-group. Also, Φp(A) is contained in the kernel of any homomorphism from
A to an elementary abelian p-group. Let Cp(A) denote the set of minimal
subgroups of A/Φp(A). Each element of Cp(A) is a cyclic group of order p,
and is of the form 〈c〉 for an element c ∈ A−Φp(A) with cp ∈ Φp(A), where c
denotes the left coset cΦp(A) of Φp(A) in A.

(c) Let B be a subgroup of A of index n, and let TB = {a1, a2, . . . , an} be a left
transversal of B. The transfer VB/Φp(B) from A to B/Φp(B) is defined by

VB/Φp(B)(a) :=
n∏

j=1

a−1
j′ aajΦp(B), where aajB = aj′B,

for all a ∈ A. It is well-known that VB/Φp(B) is independent of the choice of
TB and is a homomorphism.

If a sequence χ1, χ2, . . . of homomorphisms χn ∈ Hom(G oSn, 〈ω〉), n = 1, 2, . . . ,
satisfies a certain condition, then the Wohlfahrt series for Kerχn is described by a
summation of exponential formulas to which sgnB and VB/Φp(B) are closely related
(cf. Theorems 1, 2, and 3). In particular, we can present the Wohlfahrt series for
G oAn (cf. Corollary 2). As for W (Dn), the result can be considered in a generalized
situation (cf. Corollary 3).

2. A CATEGORICAL VIEW OF Hom(A,G o Sn)

We start with the definition of the wreath product of two groups (see, e.g., [3,
Chapter I, 2.1]). For each finite set X, let GX be the set of mappings from X to
G. The wreath product G oH of G with a permutation group H on a finite set X
is the cartesian product GX ×H with the composition law

(f ;π)(f∗; π∗) := (f · (f∗ ◦ π−1);ππ∗), (f ; π), (f∗; π∗) ∈ GX ×H,

where (f · (f∗ ◦ π−1))(x) = f(x)f∗(π−1(x)) for all x ∈ X. In particular, G oSn is the
wreath product of G with a symmetric group Sn on [n].

For any right G-set Y , let AutG(Y ) denote the group of automorphisms of Y as
a right G-set, and let Y/G denote the set of G-orbits. For any set X, we consider
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the cartesian product G ×X of G and X to be the free right G-set with the right
action of G given by (g, x).h = (gh, x) for all (g, x) ∈ G × X and h ∈ G. The
following proposition, which has been shown in the proof of [1, Proposition 6.11],
plays an important role in our theory.

Proposition 1 Let X be a finite set, and let SX be the symmetric group on X.
If γ ∈ AutG(G × X), then there exists a unique pair (ξ, β) ∈ GX × SX such that
γ(g, x) = (ξ(x)g, β(x)) for all (g, x) ∈ G × X. Further, this correspondence from
AutG(G×X) to GX × SX is bijective.

Using Proposition 1, we identify G o Sn with AutG(G × [n]) so that an element
(f ;π) ∈ G o Sn is regarded as an automorphism γ(f ;π) ∈ AutG(G × [n]) satisfying
γ(f ;π)(g, i) = (f(π(i))g, π(i)) for all (g, i) ∈ G× [n] (see also [3, 2.11]). Further, if Y
is a free right G-set and if n = |Y/G|, then AutG(Y ) ∼= G oSn, because, for a system
of representatives Ω of Y/G, Y ∼= G× Ω as right G-sets [1, Proposition 6.11].

A right G-set Y with the left action of A given by a homomorphism from A to
AutG(Y ) is called an (A,G)-biset. Also, an (A,G)-biset Y is said to be finite G-free
if it is finite free as a right G-set. A mapping σ between (A,G)-bisets is called a
morphism of (A,G)-bisets if it is a morphism both of left A-sets and of right G-sets.

Definition 1 The category G-SetA
f is defined as follows :

• The objects are triples (Y, σ,X), where Y is a finite G-free (A,G)-biset, X is
a finite left A-set, viewed as an (A, G)-biset with the trivial right action of G,
and σ : Y → X is a morphism of (A,G)-bisets, inducing an isomorphism of
left A-sets σ : Y/G → X ;

• A morphism (Y, σ,X) → (Y ′, σ′, X ′) is a pair (γ, β), where γ : Y → Y ′ and
β : X → X ′ are morphisms of (A,G)-bisets, such that the diagram

Y
γ−−−−→ Y ′

σ

y
yσ′

X −−−−→
β

X ′

is commutative. The composition is given by (γ, β) ◦ (γ′, β′) := (γ ◦ γ′, β ◦ β′),
and the identity Id(Y,σ,X) is the pair (IdY , IdX) of the identities IdY : Y → Y
and IdX : X → X.

For any set X, Pr : G×X → X denotes the projection. If ϕ ∈ Hom(A,G oSn),
then we denote by (G × [n])ϕ the object (G × [n], P r, [n]) of G-SetA

f coming from
the left action ϕ of A on G× [n].

Proposition 2 The following statements hold.
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(a) Suppose that (Y, σ,X) is an object of G-SetA
f and that n = |X|. Then there

exists a homomorphism ϕ ∈ Hom(A,G o Sn) such that (G× [n])ϕ
∼= (Y, σ,X).

(b) Let (G × [n])ϕ, (G × [n])ϕ∗ be a pair of objects in G-SetA
f . Then the set of

isomorphisms from (G × [n])ϕ to (G × [n])ϕ∗ consists of all pairs (γ, π) with
γ = (f ;π) ∈ G o Sn such that ϕ∗(a) = γϕ(a)γ−1 for all a ∈ A.

Proof. Let Ω be a system of representatives of Y/G, and let γ : G × Ω → Y be
the isomorphism of right G-sets defined by γ(g, x) = xg for all (g, x) ∈ G× Ω. Let
τ : Y → Y/G be the morphism of left A-sets such that, for all y ∈ Y , τ(y) is
the G-orbit containing y. We now suppose that A acts on Y via a homomorphism
η ∈ Hom(A, AutG(Y )). Then there exists an object (G× Ω, τ ◦ γ, Y/G) of G-SetA

f

coming from the left action ψ of A on G×Ω defined by η(a)◦γ = γ◦ψ(a) for all a ∈ A.
Further, (γ, σ) : (G×Ω, τ ◦ γ, Y/G) → (Y, σ,X) is an isomorphism and there exists
a homomorphism ϕ ∈ Hom(A,G o Sn) such that (G × [n])ϕ

∼= (G × Ω, τ ◦ γ, Y/G),
whence (a) follows. The statement (b) is straightforward. This completes the proof
of Proposition 2. 2

3. THE WOHLFAHRT SERIES FOR G o Sn

The goal in this section is to give the exponential formula of the Wohlfahrt series
for the wreath product G o Sn.

Given a pair of (A,G)-bisets Y1, Y2, their disjoint union Y1∪̇Y2 is an (A,G)-biset.
The sum of a pair of objects (Y, σ,X), (Y ′, σ′, X ′) in G-SetA

f is

(Y, σ,X) + (Y ′, σ′, X ′) := (Y ∪̇Y ′, σ∪̇σ′, X∪̇X ′)

where (σ∪̇σ′)(y) = σ(y) if y ∈ Y and (σ∪̇σ′)(y) = σ′(y) if y ∈ Y ′, which is a
coproduct in G-SetA

f . For any object (Y, σ,X) of G-SetA
f , the left A-set X is a

disjoint union of the A-orbits, say X1, X2, . . . , and also Y is a disjoint union of finite
G-free (A,G)-bisets, say Y1, Y2, . . . , such that σ induces morphisms of (A, G)-bisets
σi : Yi → Xi, i = 1, 2, . . . , which yields (Y, σ,X) = (Y1, σ1, X1) + (Y2, σ2, X2) + · · · .
Thus an object (Y, σ,X) of G-SetA

f is connected if and only if X is a non-empty
transitive left A-set, or equivalently, there is a subgroup B of A of finite index such
that A/B ∼= X as left A-sets.

Lemma 1 Let B be a subgroup of A of index n and TB = {a1, a2, . . . , an} a left
transversal of B. Suppose that κ ∈ Hom(B,G) and that θ ∈ GTB . Then there exists
a mapping ϕ(TB ,κ,θ) : A → AutG(G× (A/B)) such that

ϕ(TB ,κ,θ)(a)(g, ajB) = (θ(aj′)κ(a−1
j′ aaj)θ(aj)−1g, aj′B), where aajB = aj′B,

for all a ∈ A, g ∈ G, and j ∈ [n]. Further, it is a homomorphism.



Yugen Takegahara / Generating Functions 6

Proof. The first assertion follows from Proposition 1. It is easy to see that ϕ(TB ,κ,θ)

is a homomorphism. 2

Definition 2 Under the notation of Lemma 1, we denote by (G × [TB])(κ,θ) the
object (G×(A/B), P r,A/B) coming from the left action ϕ(TB ,κ,θ) of A on G×(A/B).

Let εA and εG be the identities of A and G, respectively. The following proposi-
tion enables us to determine the isomorphism classes of connected objects of G-SetA

f .

Proposition 3 Let B be a subgroup of A of finite index and TB a left transversal
of B containing εA. Suppose that ϕ ∈ Hom(A,AutG(G× (A/B))) and that, for each
element a of A, there is a mapping ξa ∈ GA/B with ϕ(a)(g, xB) = (ξa(xB)g, axB)
for all (g, xB) ∈ G× (A/B). Then there is a unique pair (κ, θ) ∈ Hom(B, G)×GTB

with θ(εA) = εG such that (G× [TB])(κ,θ) expresses the object (G× (A/B), P r,A/B)
of G-SetA

f coming from the left action ϕ of A on G× (A/B).

Proof. Suppose that A acts on G × (A/B) via ϕ and that TB = {a1, a2, . . . , an}
with a1 = εA. Define (κ, θ) ∈ Hom(B, G) × GTB by κ(b) = ξb(B) for all b ∈ B
and θ(aj) = ξaj (B) for all j ∈ [n]. Then b.(εG, B) = (κ(b), B) for all b ∈ B and
aj .(εG, B) = (θ(aj), ajB) for all j ∈ [n]. Further, for any a ∈ A, g ∈ G, and j ∈ [n],
if aajB = aj′B, then

a.(g, ajB) = (aaj).(θ(aj)−1g, B)
= aj′ .(κ(a−1

j′ aaj)θ(aj)−1g, B)

= (θ(aj′)κ(a−1
j′ aaj)θ(aj)−1g, aj′B).

Thus (G× [TB])(κ,θ) = (G× (A/B), P r,A/B). Also, θ(εA) = εG and the uniqueness
of (κ, θ) is clear. We have thus proved the proposition. 2

We require the following proposition.

Proposition 4 For each subgroup B of A of finite index, we fix a left transversal
TB of B containing εA. Suppose that B is a subgroup of A of finite index and
that (κ, θ) ∈ Hom(B,G) × GTB with θ(εA) = εG. We denote by I(TB ,κ,θ) the set
of all pairs ((G × [TB∗ ])(κ∗,θ∗), (γ, β)), where (κ∗, θ∗) ∈ Hom(B∗, G) × GTB∗ with
θ∗(εA) = εG and (γ, β) is an isomorphism from (G× [TB])(κ,θ) to (G× [TB∗ ])(κ∗,θ∗).
Then there exists a bijection from I(TB ,κ,θ) to GA/B × TB.

Proof. Suppose that TB = {a1, a2, . . . , an}. Let ((G×[TB∗ ])(κ∗,θ∗), (γ, β)) ∈ I(TB ,κ,θ).
Then β : A/B → A/B∗ is an isomorphism of left A-sets. Take an element a of A so
that β(B) = aB∗. Then aB∗ = β(B) = bβ(B) = baB∗ for all b ∈ B, and hence Ba is
a subgroup of B∗. Likewise, B∗ is conjugate to a subgroup of B, and consequently,
B∗ = Ba. We can now choose a unique element ai of TB so that β(B) = Ba−1

i and
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B∗ = Ba−1
i . Further, since γ is a morphism of free right G-sets, these exists a unique

mapping ξ ∈ GA/B such that γ(g, ajB) = (ξ(ajB)g, β(ajB)) = (ξ(ajB)g, aja
−1
i B∗)

for all g ∈ G and j ∈ [n], which defines an injection from I(TB ,κ,θ) to GA/B × TB.
Conversely, let (ξ, ai) ∈ GA/B×TB. Define B∗ = Ba−1

i , and let β : A/B → A/B∗
be the morphism of left A-sets defined by β(ajB) = aja

−1
i B∗ = ajBa−1

i for all
j ∈ [n]. Then there exists an isomorphism γ : G × (A/B) → G × (A/B∗) of right
G-sets satisfying γ(g, ajB) = (ξ(ajB)g, β(ajB)) for all g ∈ G and j ∈ [n]. Hence, by
Proposition 3, there is a unique pair (κ∗, θ∗) ∈ Hom(B∗, G)×GTB∗ with θ∗(εA) = εG

such that (G× [TB∗ ])(κ∗,θ∗) expresses an object (G× (A/B∗), P r,A/B∗) of G-SetA
f

coming from the left action ϕ of A on G×(A/B∗) defined by ϕ(a)◦γ = γ◦ϕ(TB ,κ,θ)(a)
for all a ∈ A, where ϕ(TB ,κ,θ) is defined in Lemma 1. Now (γ, β) is an isomorphism
from (G × [TB])(κ,θ) to (G × [TB∗ ])(κ∗,θ∗), and thereby the injection from I(TB ,κ,θ)

to GA/B × TB defined in the preceding paragraph is bijective. This completes the
proof of Proposition 4. 2

It is clear that the category G-SetA
f is a skeletally small and locally finite KS

category. We are now in a position to apply [10, 5.8. Theorem] to G-SetA
f .

Proposition 5 For each subgroup B of A of finite index, we fix a left transversal TB

of B containing εA, and define L (TB, G) := Hom(B,G)× {θ ∈ GTB | θ(εA) = εG}.
Let r be a mapping from the set of objects of G-SetA

f to a Q-algebra satisfying the
following conditions :

(i) r(Y, σ,X) = r(Y ′, σ′, X ′) if (Y, σ,X) ∼= (Y ′, σ′, X ′);

(ii) r(∅) = 1, r((Y1, σ1, X1) + (Y2, σ2, X2)) = r(Y1, σ1, X1)r(Y2, σ2, X2).

Then

∞∑

n=0

∑

ϕ∈Hom(A,GoSn)

rϕ

|G|nn!
tn = exp


 ∑

B≤f A

∑

(κ,θ)∈L (TB ,G)

r(TB ,κ,θ)

|G||A:B||A : B| t
|A:B|


 ,

where rϕ = r((G× [n])ϕ) and r(TB ,κ,θ) = r((G× [TB])(κ,θ)).

Proof. Let Con(G-SetA
f ) be the full subcategory of connected objects of G-SetA

f .
By [10, 5.3], we can substitute t(Y,σ,X) for r(Y, σ,X)t|X| on both sides of the equation
in [10, 5.8. Theorem] with E = G-SetA

f . Hence

∑′

Z=(Y,σ,X)∈G-SetA
f

r(Z)
|Aut(Z)| t

|X| = exp


 ∑′

Z=(Y,σ,X)∈Con(G-SetA
f )

r(Z)
|Aut(Z)| t

|X|


 .

The proposition now follows from Lemma 1 and Propositions 2, 3, and 4. 2
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Corollary 1 ([4, 8]) We have

∞∑

n=0

|Hom(A,G o Sn)|
|G|nn!

tn = exp


 ∑

B≤f A

|Hom(B, G)|
|G| |A : B| t|A:B|


 .

Proof. The assertion follows from Proposition 5 with the mapping r defined by
r(Y, σ,X) = 1 for all objects (Y, σ,X) of G-SetA

f . 2

4. EVEN PERMUTATION REPRESENTATIONS

A Wohlfahrt series is expressed in the form
∑∞

n=0 |Hom(A,Kn)|tn/|G|nn!; by
substituting the variable t of this series for |G|t, we obtain the original series. In
this section we establish a fundamental theorem for enumerating homomorphisms
from A to G o Sn, and present the exponential formula of the Wohlfahrt series for
G oAn. Recall that Cp(A) is the set of minimal subgroups of A/Φp(A) and that each
element of Cp(A) is denoted by 〈c〉 for an element c ∈ A− Φp(A) with cp ∈ Φp(A),
where c = cΦp(A). The following theorem relates to [5, Theorem 3.1].

Theorem 1. Suppose that homomorphisms ζn ∈ Hom(Sn, 〈ω〉), n = 1, 2, . . . , sat-
isfy the condition that either Kerζn = Sn for any n, or p = 2 and Kerζn = An for
any n. Let χ be a homomorphism form G to 〈ω〉, and let χ1, χ2, . . . be the sequence
of homomorphisms χn ∈ Hom(G o Sn, 〈ω〉), n = 1, 2, . . . , defined by

χn(f ; π) = χ(f(1))χ(f(2)) · · ·χ(f(n))ζn(π)

for all (f ; π) ∈ G o Sn. Set Kn = Kerχn. Then

|A : Φp(A)|
∞∑

n=0

|Hom(A,Kn)|
|G|nn!

tn = exp


 ∑

B≤f A

|Hom(B, G)|
|G| |A : B| t|A:B|




+
∑

〈c〉∈Cp(A)

p−1∑

i=1

exp


 ∑

B≤f A

∑

κ∈Hom(B,G)

ζB(c) · χ ◦ κ(VB/Φp(B)(c))i

|G| |A : B| t|A:B|


 ,

where χ ◦ κ ∈ Hom(B/Φp(B), 〈ω〉) is the homomorphism defined by

χ ◦ κ(bΦp(B)) = χ(κ(b))

for all b ∈ B, and ζB(c) = 1 if Kerζn = Sn for any n and ζB(c) = sgnB(c) if p = 2
and Kerζn = An for any n. Here ζB(c) and VB/Φp(B)(c) are independent of the
choice of an element c in a coset 〈c〉 ∈ Cp(A).
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Proof. Suppose that ϕ ∈ Hom(A,G o Sn). Then either |A : Ker (χn ◦ ϕ)| = p or
A = Ker(χn ◦ϕ), and further, Ker (χn ◦ϕ) contains Φp(A). If |A : Ker (χn ◦ϕ)| = p,
then

∑

〈c〉∈Cp(A)

p−1∑

i=1

χn(ϕ(c))i = (p− 1)]{〈c〉 ∈ Cp(A) | c ∈ Ker(χn ◦ ϕ)}
−]{〈c〉 ∈ Cp(A) | c 6∈ Ker(χn ◦ ϕ)}

= −1,

because
∑p−1

i=1 ωi = −1 and A/Φp(A) is an elementary abelian p-group. Note that
the number of subgroups of order p in an elementary abelian p-group of order ps is
equal to (ps − 1)/(p− 1). Hence we obtain

1 +
∑

〈c〉∈Cp(A)

p−1∑

i=1

χn(ϕ(c))i =
{ |A : Φp(A)| if A = Ker(χn ◦ ϕ),

0 otherwise.

Consequently, since Hom(A, Kn) = {ϕ ∈ Hom(A,G o Sn) | A = Ker(χn ◦ ϕ)}, it
follows that

|A : Φp(A)|
∞∑

n=0

|Hom(A, Kn)|
|G|nn!

tn =
∞∑

n=0

|Hom(A,G o Sn)|
|G|nn!

tn

+
∑

〈c〉∈Cp(A)

p−1∑

i=1

∞∑

n=0

∑

ϕ∈Hom(A,GoSn)

χn(ϕ(c))i

|G|nn!
tn.

(2)

Suppose that c ∈ A. Using Proposition 2, we define a mapping r from the set
of objects of G-SetA

f to the complex numbers by setting r(Y, σ,X) = χn(ϕ(c)) if
(Y, σ,X) ∼= (G× [n])ϕ, and r(∅) = 1. Note that, if objects (G× [n])ϕ and (G× [n])ϕ∗
are isomorphic in G-SetA

f , then χn(ϕ(c)) = χn(ϕ∗(c)) by Proposition 2(b). Further,
given a pair of objects (G× [n1])ϕ1 , (G× [n2])ϕ2 in G-SetA

f with n = n1 + n2, there
exists a homomorphism ϕ ∈ Hom(A,G o Sn) such that

(G× [n])ϕ
∼= (G× [n1])ϕ1 + (G× [n2])ϕ2

and
χn(ϕ(c)) = χn1(ϕ1(c))χn2(ϕ2(c)).

Thus the mapping r satisfies the conditions (i) and (ii) in Proposition 5. Also,
under the notation of Proposition 5, if B is a subgroup of A of finite index and
if (κ, θ) ∈ L (TB, G), then r((G × [TB])(κ,θ)) = ζB(c) · χ ◦ κ(VB/Φp(B)(c)), which is
independent of the choice of θ. It now follows from Proposition 5 that

∞∑

n=0

∑

ϕ∈Hom(A,GoSn)

χn(ϕ(c))
|G|nn!

tn

= exp


 ∑

B≤f A

∑

κ∈Hom(B,G)

ζB(c) · χ ◦ κ(VB/Φp(B)(c))
|G| |A : B| t|A:B|


 .
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This formula, together with Corollary 1, enables us to obtain the desired result as
a consequence of Eq. (2). We have thus proved the theorem. 2

We classify the group Kn in Theorem 1, according as Kerζn = Sn for any n or
p = 2 and Kerζn = An for any n, and Kerχ = G or Kerχ 6= G.
Case 1. Kerζn = Sn, Kerχ = G, and Kn = G o Sn.
Case 2. p = 2, Kerζn = An, Kerχ = G, and Kn = G oAn.
Case 3. Kerζn = Sn, Kerχ 6= G, and

Kn = {(f ; π) ∈ G o Sn | χ(f(1)f(2) · · · f(n)) = 1}.
Case 4. p = 2, Kerζn = An, Kerχ 6= G, and

Kn = {(f ;π) ∈ G o Sn | χ(f(1)f(2) · · · f(n))sgn(π) = 1},
where sgn is the usual sign.

The assertion of Theorem 1 in Case 1 is Corollary 1, and the one in Case 2 is
the following corollary to Theorem 1.

Corollary 2 We have

|A : Φ2(A)|
∞∑

n=0

|Hom(A,G oAn)|
|G|nn!

tn = exp


 ∑

B≤f A

|Hom(B,G)|
|G| |A : B| t|A:B|




+
∑

〈c〉∈C2(A)

exp


 ∑

B≤f A

sgnB(c) · |Hom(B, G)|
|G| |A : B| t|A:B|


 .

In particular,

|A : Φ2(A)|
∞∑

n=0

|Hom(A,An)|
n!

tn = exp


 ∑

B≤f A

1
|A : B| t

|A:B|




+
∑

〈c〉∈C2(A)

exp


 ∑

B≤f A

sgnB(c)
|A : B| t|A:B|


 .

Proof. The corollary is an immediate consequence of Theorem 1. 2

Remark If A is abelian and if B is a subgroup of A of finite index, then, for each
a ∈ A, sgnB(a) = 1 if and only if either 〈aB〉 does not include any non-identity
Sylow 2-subgroup of A/B or else A/B is of odd order [8, Lemmas 2.1]. (The first
statement of [8, Lemma 4.1] is missing in the case where A/B is of odd order.) The
second assertion of the theorem is now equivalent to [8, Theorem 1.1] if A is abelian,
and is equivalent to the fact in [7, Chap. 4, Problem 22] if A is a finite cyclic group.
(The formula [10, (6.5.d)] is not correct. However, the idea in [10, 6.5] is useful for
the proof of Theorem 1.)
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5. VARIOUS WOHLFAHRT SERIES

We devote the rest of this paper to the applications of Theorem 1 to Cases 3 and
4. The formulas of Theorem 1 in the case where Kerχ 6= G seems to be so implicit
that we try to give slightly explicit formulas under a certain additional condition.

Lemma 2 Suppose that χ ∈ Hom(G, 〈ω〉) and that c ∈ A. If either A or G is
abelian, then the number of homomorphisms ψ ∈ Hom(A,G) satisfying χ(ψ(c)) = ωj

is independent of the choice of an integer j with 1 ≤ j ≤ p− 1.

Proof. If G is abelian, then we can identify Hom(A,G) with Hom(A/A′, G), where
A′ is the commutator subgroup of A. Hence we may assume that A is abelian. Let
K be the intersection of all kernels of homomorphisms ψ ∈ Hom(A, G). Then K is
a normal subgroup of A of finite index, and hence A/K is a finite abelian group.
Now, since Hom(A, G) is identified with Hom(A/K, G), we may assume that A is a
finite abelian p-group. For each integer i, we define

Hom(A, G; c, ωi) = {ψ ∈ Hom(A,G) | χ(ψ(c)) = ωi}.

Let i and j be arbitrary positive integers less than p, and let ` be a positive
integer satisfying i` ≡ j mod p. If ψ ∈ Hom(A,G; c, ωi), then a homomorphism
ψ(`) ∈ Hom(A,G) is defined by setting ψ(`)(a) = ψ(a)` for all a ∈ A, because
A is abelian. Here we get χ(ψ(`)(c)) = χ(ψ(c))` = ωi` = ωj . Hence there is a
correspondence

λi,j : Hom(A,G; c, ωi) 3 ψ −→ ψ(`) ∈ Hom(A,G; c, ωj).

Let s be a positive integer satisfying `s ≡ 1 mod |A|. Suppose that ψ
(`)
1 = ψ

(`)
2 with

ψ1, ψ2 ∈ Hom(A,G; c, ωi). Then we obtain

ψ1(a) = ψ1(a)`s = ψ2(a)`s = ψ2(a)

for all a ∈ A, whence ψ1 = ψ2. Thus the correspondence λi,j is one-to-one. Since
i and j are arbitrary, we now conclude that ]Hom(A,G; c, ωi) = ]Hom(A,G; c, ωj).
This completes the proof of Lemma 2. 2

Definition 3 Suppose that χ ∈ Hom(G, 〈ω〉) and that B is a subgroup of A of
finite index. For each element c of A, define

`c(B; χ) := ]{κ ∈ Hom(B, G) | VB/Φp(B)(c) ∈ Kerχ ◦ κ}
− 1

p− 1
]{κ ∈ Hom(B, G) | VB/Φp(B)(c) 6∈ Kerχ ◦ κ}.

Here χ ◦ κ is defined in Theorem 1.

We can now show a formula of the Wohlfahrt series in Case 3.
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Theorem 2. Suppose that χ ∈ Hom(G, 〈ω〉). Let Kn be the subgroup of G o Sn

consisting of all elements (f ; π) satisfying χ(f(1)f(2) · · · f(n)) = 1. If either A or
G is abelian, then

|A : Φp(A)|
∞∑

n=0

|Hom(A,Kn)|
|G|nn!

tn = exp


 ∑

B≤f A

|Hom(B,G)|
|G| |A : B| t|A:B|




+(p− 1)
∑

〈c〉∈Cp(A)

exp


 ∑

B≤f A

`c(B; χ)
|G| |A : B| t

|A:B|


 .

Here `c(B;χ) is independent of the choice of an element c in a coset 〈c〉 ∈ Cp(A).

Proof. If B is a subgroup of A of finite index and if 〈c〉 ∈ Cp(A), then the number of
homomorphisms κ ∈ Hom(B, G) satisfying χ ◦ κ(VB/Φp(B)(c)) = ωj is independent
of the choice of an integer j with 1 ≤ j ≤ p− 1 by Lemma 2, and hence

`c(B;χ) =
∑

κ∈Hom(B,G)

χ ◦ κ(VB/Φp(B)(c))
i

for any integer i with 1 ≤ i ≤ p− 1. The assertion now follows from Theorem 1. 2

The second assertion of the following corollary is equivalent to [8, Theorem 1.2]
if A is abelian.

Corollary 3 Let Kn be the subgroup of 〈ω〉 o Sn consisting of all elements (f ;π)
satisfying f(1)f(2) · · · f(n) = 1. Then

|A : Φp(A)|
∞∑

n=0

|Hom(A,Kn)|
pnn!

tn = exp


 ∑

B≤f A

|B : Φp(B)|
p|A : B| t|A:B|




+(p− 1)
∑

〈c〉∈Cp(A)

exp




∑
B≤f A

c∈Ker VB/Φp(B)

|B : Φp(B)|
p|A : B| t|A:B|


 ,

where the summation
∑

B≤f A,c∈Ker VB/Φp(B)
is over all subgroups B of A of finite

index such that c ∈ KerVB/Φp(B). In particular,

|A : Φ2(A)|
∞∑

n=0

|Hom(A,W (Dn))|
2nn!

tn = exp


 ∑

B≤f A

|B : Φ2(B)|
2|A : B| t|A:B|




+
∑

〈c〉∈C2(A)

exp




∑
B≤f A

c∈Ker VB/Φ2(B)

|B : Φ2(B)|
2|A : B| t|A:B|


 .
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Proof. The assertion is a consequence of Theorem 2 and Lemma 3 below. 2

Lemma 3 Let B be a subgroup of A of finite index. Then

|Hom(B, 〈ω〉)| = |B : Φp(B)|.

Further, for any automorphism χ of 〈ω〉 and for any coset 〈c〉 ∈ Cp(A),

`c(B; χ) =

{
|B : Φp(B)| if c ∈ KerVB/Φp(B),

0 otherwise.

Proof. It is easy to see that |Hom(B/Φp(B), 〈ω〉)| = |B : Φp(B)|. Also, there is
a natural bijection between Hom(B, 〈ω〉) and Hom(B/Φp(B), 〈ω〉). Hence we have
|Hom(B, 〈ω〉)| = |B : Φp(B)|. If c ∈ KerVB/Φp(B), then `c(B;χ) = |B : Φp(B)|.
So we assume that c 6∈ KerVB/Φp(B). Then, since Φp(A) ≤ KerVB/Φp(B), we have
|〈VB/Φp(B)(c)〉| = |〈c〉| = p. The assumption that Kerχ = {1} now yields

]{κ ∈ Hom(B, 〈ω〉) | VB/Φp(B)(c) ∈ Kerχ ◦ κ}
= ]{κ ∈ Hom(B/Φp(B), 〈ω〉) | 〈VB/Φp(B)(c)〉 ≤ Kerκ}
= |B/Φp(B) : 〈VB/Φp(B)(c)〉|
= |B : Φp(B)|/p.

Consequently, we obtain `c(B;χ) = 0. This completes the proof of Lemma 3. 2

We finish by stating a result in Case 4.

Theorem 3. Let Kn be a subgroup of 〈−1〉 o Sn consisting of all elements (f ;π)
satisfying f(1)f(2) · · · f(n) = sgn(π). Then

|A : Φ2(A)|
∞∑

n=0

|Hom(A,Kn)|
2nn!

tn = exp


 ∑

B≤f A

|B : Φ2(B)|
2|A : B| t|A:B|




+
∑

〈c〉∈C2(A)

exp




∑
B≤f A

c∈Ker VB/Φ2(B)

sgnB(c) · |B : Φ2(B)|
2|A : B| t|A:B|


 .

Proof. The theorem follows from Theorem 1 and Lemma 3. 2
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