室蘭工業大学
学術資源アーカイブ
Muroran Institute of Technology Academic Resources Archive

Generating functions for permutation representations

メタデータ	言語：eng
	出版者：Elsevier
	公開日：2019－05－20
	キーワード（Ja）：
	キーワード（En）：
	作成者：竹ケ原，裕元
	メールアドレス：
	所属：
URL	http：／／hdl．handle．net／10258／00009882

Generating Functions for Permutation Representations

Yugen Takegahara
Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
E-mail: yugen@mmm.muroran-it.ac.jp

We discuss the categorical approach to representations in wreath products, and generalize the Wohlfahrt formula of the exponential generating function for the number of permutation representations.

1. INTRODUCTION

Suppose that a group A contains only a finite number of subgroups of index d for each positive integer d. As an instance, every finitely generated group satisfies such a property. By the hypothesis, $|\operatorname{Hom}(A, H)|:=\sharp \operatorname{Hom}(A, H)<\infty$ for an arbitrary finite group H, where $\operatorname{Hom}(A, H)$ denotes the set of homomorphisms from A to H. Given a sequence $K_{0}, K_{1}, K_{2}, \ldots$ of finite groups K_{n} such that the first term is the group consisting of only the identity ϵ, we call the exponential generating function $\sum_{n=0}^{\infty}\left|\operatorname{Hom}\left(A, K_{n}\right)\right| t^{n} / n!$ the Wohlfahrt series for K_{n}. A typical example of such a formal power series comes from the sequence of the symmetric group S_{n} on $[n]:=\{1,2, \ldots, n\}$. In the paper [9], Wohlfahrt proved that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, S_{n}\right)\right|}{n!} t^{n}=\exp \left(\sum_{B \leq{ }_{f} A} \frac{1}{|A: B|} t^{|A: B|}\right), \tag{1}
\end{equation*}
$$

where the sum $\sum_{B \leq_{f} A}$ is over all subgroups B of A of finite index $|A: B|$.
Throughout the paper, G is a finite group, A_{n} is the alternating group on [n], $W\left(D_{n}\right)$ is the Weyl group of type D_{n}, and $G \imath S_{n}$ and $G \imath A_{n}$ are the wreath products of G with S_{n} and A_{n}, respectively. The exponential formula of the Wohlfahrt series for $G\} S_{n}$ is given in the recent papers $[4,8]$ (cf. Corollary 1). It is also shown in the papers [2,6] when A is a finite cyclic group. If K_{n} is either $G \imath A_{n}$ or $W\left(D_{n}\right)$, the exponential generating function for the number of solutions in K_{n} to the equation $x^{d}=\epsilon$ was found by Chigira [2]; see also [4].

Recently, Yoshida has developed the theory of generating functions from the categorical point of view, and has presented many applications [10]. In this paper, we carry out investigations into applications of the categorical theory.

[^0]We refer to the paper [10] for the notation and terminology on categories. Let \mathscr{E} be a category with any finite coproducts. A connected object J of \mathscr{E} is a noninitial object satisfying the condition that $J=A+B$ implies that A or B is an initial object $[10,5.5]$. The category \mathscr{E} is a KS-category if the following condition holds [10, 5.5]:

KS Property. Any object X is isomorphic to a coproduct of some finite number of connected objects and a coproduct decomposition of X is unique in the following sense : if $X=I_{1}+\cdots+I_{m}=J_{1}+\cdots+J_{n}$ are two coproduct decompositions into connected objects with canonical injections $i_{\alpha}: I_{\alpha} \rightarrow X$ and $j_{\beta}: J_{\beta} \rightarrow X$, then $m=n$ and there exist a permutation $\pi \in S_{n}$ and isomorphisms $f_{\alpha}: I_{\alpha} \rightarrow J_{\pi(\alpha)}$ such that $j_{\pi(\alpha)} f_{\alpha}=i_{\alpha}$ for all $\alpha=1, \ldots, n$.

A category is skeletally small if a full subcategory consisting of complete representatives of the isomorphism classes of objects is equivalent to a small category $[10,2.1]$. Suppose that \mathscr{E} is a skeletally small KS-category. Let $\mathbb{Q}\left[\left[\mathscr{E}^{\circ} \mathrm{op} / \cong\right]\right]$ be the \mathbb{Q}-module of formal power series with exponents in $\mathscr{E}: f(t)=\sum_{X \in \mathscr{E}}^{\prime} a_{X} t^{X}, a_{X} \in \mathbb{Q}$, the summation $\sum_{X \in \mathscr{E}}^{\prime}$ being over all isomorphism classes of objects of \mathscr{E}; the variables t^{X} is considered as the isomorphism class containing X in the dual category $\mathscr{E}^{\circ \mathrm{op}}$, and hence $t^{X}=t^{Y}$ if $X \cong Y[10,4.1]$. By the product operation $t^{X} \cdot t^{Y}=t^{X+Y}$, $t^{\emptyset}=1$, where \emptyset is an initial object of $\mathscr{E}, \mathbb{Q}\left[\left[\mathscr{E}^{\text {op }} / \cong\right]\right]$ becomes an \mathbb{Q}-algebra $[10,5.1$, 5.2]. A category is locally finite if every hom set $\operatorname{Hom}(X, Y)$ is a finite set $[10,2.1]$. If \mathscr{E} is locally finite, then the generating function of \mathscr{E} is

$$
\mathscr{E}(t):=\sum_{X \in \mathscr{E}}^{\prime} \frac{t^{X}}{|\operatorname{Aut}(X)|} \in \mathbb{Q}\left[\left[\mathscr{E}^{\mathrm{op}} / \cong\right]\right]
$$

[10, 4.2]. According to [10, 6.4], the Wohlfahrt formula (1) is verified on the basis of a categorical result, namely,
[10, 5.8. Theorem] Let \mathscr{E} be a skeletally small $K S$ category and let $\mathscr{J}:=\operatorname{Con}(\mathscr{E})$ be the full subcategory of connected objects of \mathscr{E}. If \mathscr{E} is locally finite, then

$$
\mathscr{E}(t)=\exp (\mathscr{J}(t))
$$

Here the power series $\mathscr{J}(t)$ is viewed as an element of $\mathbb{Q}\left[\left[\mathscr{E}{ }^{\circ} / \cong\right]\right]$ through the canonical embedding $\mathscr{J} \subseteq \mathscr{E}$.

In Section 3 , we apply $[10,5.8$. Theorem $]$ to a certain category related to (A, G) bisets, and obtain the principle of enumerating the homomorphisms from A to $G \imath S_{n}$ (cf. Proposition 5). Further, we can find various Wohlfahrt series in Sections 4 and 5 . We give the notation and an outline of the results.

Notation

(a) Let B be a subgroup of A. We denote by A / B the left A-set consisting of all left cosets of B in A with the action given by $a \cdot x B=a x B$ for all $a, x \in A$. Define $\operatorname{sgn}_{B}: A \rightarrow\{1,-1\}$ by $\operatorname{sgn}_{B}(a)=1$ if a is an even permutation on A / B, and $\operatorname{sgn}_{B}(a)=-1$ otherwise. It is evident that sgn_{B} is a homomorphism.
(b) The letter p always stands for a prime. Let ω be a primitive p-th root of 1 and $\langle\omega\rangle$ a cyclic group generated by ω. We denote by $\Phi_{p}(A)$ the intersection of all kernels of homomorphisms from A to $\langle\omega\rangle$. Then $\Phi_{p}(A)$ is a normal subgroup of A of finite index, and the factor group $A / \Phi_{p}(A)$ is an elementary abelian p-group. Also, $\Phi_{p}(A)$ is contained in the kernel of any homomorphism from A to an elementary abelian p-group. Let $\mathscr{C}_{p}(A)$ denote the set of minimal subgroups of $A / \Phi_{p}(A)$. Each element of $\mathscr{C}_{p}(A)$ is a cyclic group of order p, and is of the form $\langle\bar{c}\rangle$ for an element $c \in A-\Phi_{p}(A)$ with $c^{p} \in \Phi_{p}(A)$, where \bar{c} denotes the left coset $c \Phi_{p}(A)$ of $\Phi_{p}(A)$ in A.
(c) Let B be a subgroup of A of index n, and let $T_{B}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a left transversal of B. The transfer $V_{B / \Phi_{p}(B)}$ from A to $B / \Phi_{p}(B)$ is defined by

$$
V_{B / \Phi_{p}(B)}(a):=\prod_{j=1}^{n} a_{j^{\prime}}^{-1} a a_{j} \Phi_{p}(B), \quad \text { where } \quad a a_{j} B=a_{j^{\prime}} B
$$

for all $a \in A$. It is well-known that $V_{B / \Phi_{p}(B)}$ is independent of the choice of T_{B} and is a homomorphism.

If a sequence $\chi_{1}, \chi_{2}, \ldots$ of homomorphisms $\chi_{n} \in \operatorname{Hom}\left(G \imath S_{n},\langle\omega\rangle\right), n=1,2, \ldots$, satisfies a certain condition, then the Wohlfahrt series for Ker χ_{n} is described by a summation of exponential formulas to which sgn_{B} and $V_{B / \Phi_{p}(B)}$ are closely related (cf. Theorems 1, 2, and 3). In particular, we can present the Wohlfahrt series for $G \imath A_{n}$ (cf. Corollary 2). As for $W\left(D_{n}\right)$, the result can be considered in a generalized situation (cf. Corollary 3).

2. A CATEGORICAL VIEW OF $\operatorname{Hom}\left(A, G \imath S_{n}\right)$

We start with the definition of the wreath product of two groups (see, e.g., [3, Chapter I, 2.1]). For each finite set X, let G^{X} be the set of mappings from X to G. The wreath product $G \imath H$ of G with a permutation group H on a finite set X is the cartesian product $G^{X} \times H$ with the composition law

$$
(f ; \pi)\left(f_{*} ; \pi_{*}\right):=\left(f \cdot\left(f_{*} \circ \pi^{-1}\right) ; \pi \pi_{*}\right), \quad(f ; \pi),\left(f_{*} ; \pi_{*}\right) \in G^{X} \times H,
$$

where $\left(f \cdot\left(f_{*} \circ \pi^{-1}\right)\right)(x)=f(x) f_{*}\left(\pi^{-1}(x)\right)$ for all $x \in X$. In particular, $G \imath S_{n}$ is the wreath product of G with a symmetric group S_{n} on $[n]$.

For any right G-set Y, let $\operatorname{Aut}_{G}(Y)$ denote the group of automorphisms of Y as a right G-set, and let Y / G denote the set of G-orbits. For any set X, we consider
the cartesian product $G \times X$ of G and X to be the free right G-set with the right action of G given by $(g, x) . h=(g h, x)$ for all $(g, x) \in G \times X$ and $h \in G$. The following proposition, which has been shown in the proof of [1, Proposition 6.11], plays an important role in our theory.

Proposition 1 Let X be a finite set, and let S_{X} be the symmetric group on X. If $\gamma \in \operatorname{Aut}_{G}(G \times X)$, then there exists a unique pair $(\xi, \beta) \in G^{X} \times S_{X}$ such that $\gamma(g, x)=(\xi(x) g, \beta(x))$ for all $(g, x) \in G \times X$. Further, this correspondence from Aut $_{G}(G \times X)$ to $G^{X} \times S_{X}$ is bijective.

Using Proposition 1, we identify $G \geq S_{n}$ with Aut $_{G}(G \times[n])$ so that an element $(f ; \pi) \in G \imath S_{n}$ is regarded as an automorphism $\gamma_{(f ; \pi)} \in \operatorname{Aut}_{G}(G \times[n])$ satisfying $\gamma_{(f ; \pi)}(g, i)=(f(\pi(i)) g, \pi(i))$ for all $(g, i) \in G \times[n]$ (see also [3, 2.11]). Further, if Y is a free right G-set and if $n=|Y / G|$, then $\operatorname{Aut}_{G}(Y) \cong G 2 S_{n}$, because, for a system of representatives Ω of $Y / G, Y \cong G \times \Omega$ as right G-sets [1, Proposition 6.11].

A right G-set Y with the left action of A given by a homomorphism from A to $\operatorname{Aut}_{G}(Y)$ is called an (A, G)-biset. Also, an (A, G)-biset Y is said to be finite G-free if it is finite free as a right G-set. A mapping σ between (A, G)-bisets is called a morphism of (A, G)-bisets if it is a morphism both of left A-sets and of right G-sets.

Definition 1 The category G - $\operatorname{Set}_{\mathrm{f}}^{A}$ is defined as follows :

- The objects are triples (Y, σ, X), where Y is a finite G-free (A, G)-biset, X is a finite left A-set, viewed as an (A, G)-biset with the trivial right action of G, and $\sigma: Y \rightarrow X$ is a morphism of (A, G)-bisets, inducing an isomorphism of left A-sets $\bar{\sigma}: Y / G \rightarrow X$;
- A morphism $(Y, \sigma, X) \rightarrow\left(Y^{\prime}, \sigma^{\prime}, X^{\prime}\right)$ is a pair (γ, β), where $\gamma: Y \rightarrow Y^{\prime}$ and $\beta: X \rightarrow X^{\prime}$ are morphisms of (A, G)-bisets, such that the diagram

is commutative. The composition is given by $(\gamma, \beta) \circ\left(\gamma^{\prime}, \beta^{\prime}\right):=\left(\gamma \circ \gamma^{\prime}, \beta \circ \beta^{\prime}\right)$, and the identity $I d_{(Y, \sigma, X)}$ is the pair $\left(I d_{Y}, I d_{X}\right)$ of the identities $I d_{Y}: Y \rightarrow Y$ and $I d_{X}: X \rightarrow X$.

For any set $X, \operatorname{Pr}: G \times X \rightarrow X$ denotes the projection. If $\varphi \in \operatorname{Hom}\left(A, G \imath S_{n}\right)$, then we denote by $(G \times[n])_{\varphi}$ the object $(G \times[n], \operatorname{Pr},[n])$ of G - $\operatorname{Set}_{\mathrm{f}}^{A} \operatorname{coming}^{\text {from }}$ the left action φ of A on $G \times[n]$.

Proposition 2 The following statements hold.
(a) Suppose that (Y, σ, X) is an object of $G-\operatorname{Set}_{\mathrm{f}}^{A}$ and that $n=|X|$. Then there exists a homomorphism $\varphi \in \operatorname{Hom}\left(A, G \imath S_{n}\right)$ such that $(G \times[n])_{\varphi} \cong(Y, \sigma, X)$.
(b) Let $(G \times[n])_{\varphi},(G \times[n])_{\varphi_{*}}$ be a pair of objects in $G-\operatorname{Set}_{\mathrm{f}}^{A}$. Then the set of isomorphisms from $(G \times[n])_{\varphi}$ to $(G \times[n])_{\varphi_{*}}$ consists of all pairs (γ, π) with $\gamma=(f ; \pi) \in G \imath S_{n}$ such that $\varphi_{*}(a)=\gamma \varphi(a) \gamma^{-1}$ for all $a \in A$.

Proof. Let Ω be a system of representatives of Y / G, and let $\gamma: G \times \Omega \rightarrow Y$ be the isomorphism of right G-sets defined by $\gamma(g, x)=x g$ for all $(g, x) \in G \times \Omega$. Let $\tau: Y \rightarrow Y / G$ be the morphism of left A-sets such that, for all $y \in Y, \tau(y)$ is the G-orbit containing y. We now suppose that A acts on Y via a homomorphism $\eta \in \operatorname{Hom}\left(A, \operatorname{Aut}_{G}(Y)\right)$. Then there exists an object $(G \times \Omega, \tau \circ \gamma, Y / G)$ of G-Set $\boldsymbol{S}_{\mathrm{f}}^{A}$ coming from the left action ψ of A on $G \times \Omega$ defined by $\eta(a) \circ \gamma=\gamma \circ \psi(a)$ for all $a \in A$. Further, $(\gamma, \bar{\sigma}):(G \times \Omega, \tau \circ \gamma, Y / G) \rightarrow(Y, \sigma, X)$ is an isomorphism and there exists a homomorphism $\varphi \in \operatorname{Hom}\left(A, G \imath S_{n}\right)$ such that $(G \times[n])_{\varphi} \cong(G \times \Omega, \tau \circ \gamma, Y / G)$, whence (a) follows. The statement (b) is straightforward. This completes the proof of Proposition 2.

3. THE WOHLFAHRT SERIES FOR $G \imath S_{n}$

The goal in this section is to give the exponential formula of the Wohlfahrt series for the wreath product $G \imath S_{n}$.

Given a pair of (A, G)-bisets Y_{1}, Y_{2}, their disjoint union $Y_{1} \dot{\cup} Y_{2}$ is an (A, G)-biset. The sum of a pair of objects $(Y, \sigma, X),\left(Y^{\prime}, \sigma^{\prime}, X^{\prime}\right)$ in G - $\operatorname{Set}_{\mathrm{f}}^{A}$ is

$$
(Y, \sigma, X)+\left(Y^{\prime}, \sigma^{\prime}, X^{\prime}\right):=\left(Y \dot{\cup} Y^{\prime}, \sigma \dot{\cup} \sigma^{\prime}, X \dot{\cup} X^{\prime}\right)
$$

where $\left(\sigma \dot{\cup} \sigma^{\prime}\right)(y)=\sigma(y)$ if $y \in Y$ and $\left(\sigma \dot{\cup} \sigma^{\prime}\right)(y)=\sigma^{\prime}(y)$ if $y \in Y^{\prime}$, which is a coproduct in G - $\operatorname{Set}_{\mathrm{f}}^{A}$. For any object (Y, σ, X) of G - $\operatorname{Set}_{\mathrm{f}}^{A}$, the left A-set X is a disjoint union of the A-orbits, say X_{1}, X_{2}, \ldots, and also Y is a disjoint union of finite G-free (A, G)-bisets, say Y_{1}, Y_{2}, \ldots, such that σ induces morphisms of (A, G)-bisets $\sigma_{i}: Y_{i} \rightarrow X_{i}, i=1,2, \ldots$, which yields $(Y, \sigma, X)=\left(Y_{1}, \sigma_{1}, X_{1}\right)+\left(Y_{2}, \sigma_{2}, X_{2}\right)+\cdots$. Thus an object (Y, σ, X) of G - $\operatorname{Set}_{\mathrm{f}}^{A}$ is connected if and only if X is a non-empty transitive left A-set, or equivalently, there is a subgroup B of A of finite index such that $A / B \cong X$ as left A-sets.

Lemma 1 Let B be a subgroup of A of index n and $T_{B}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ a left transversal of B. Suppose that $\kappa \in \operatorname{Hom}(B, G)$ and that $\theta \in G^{T_{B}}$. Then there exists a mapping $\varphi_{\left(T_{B}, \kappa, \theta\right)}: A \rightarrow \operatorname{Aut}_{G}(G \times(A / B))$ such that

$$
\varphi_{\left(T_{B}, \kappa, \theta\right)}(a)\left(g, a_{j} B\right)=\left(\theta\left(a_{j^{\prime}}\right) \kappa\left(a_{j^{\prime}}^{-1} a a_{j}\right) \theta\left(a_{j}\right)^{-1} g, a_{j^{\prime}} B\right), \quad \text { where } \quad a a_{j} B=a_{j^{\prime}} B,
$$

for all $a \in A, g \in G$, and $j \in[n]$. Further, it is a homomorphism.

Proof. The first assertion follows from Proposition 1. It is easy to see that $\varphi_{\left(T_{B}, \kappa, \theta\right)}$ is a homomorphism.

Definition 2 Under the notation of Lemma 1, we denote by $\left(G \times\left[T_{B}\right]\right)_{(\kappa, \theta)}$ the object $(G \times(A / B), \operatorname{Pr}, A / B)$ coming from the left action $\varphi_{\left(T_{B}, \kappa, \theta\right)}$ of A on $G \times(A / B)$.

Let ϵ_{A} and ϵ_{G} be the identities of A and G, respectively. The following proposition enables us to determine the isomorphism classes of connected objects of G - $\operatorname{Set}_{\mathrm{f}}^{A}$.

Proposition 3 Let B be a subgroup of A of finite index and T_{B} a left transversal of B containing ϵ_{A}. Suppose that $\varphi \in \operatorname{Hom}\left(A, \operatorname{Aut}_{G}(G \times(A / B))\right)$ and that, for each element a of A, there is a mapping $\xi_{a} \in G^{A / B}$ with $\varphi(a)(g, x B)=\left(\xi_{a}(x B) g\right.$, axB) for all $(g, x B) \in G \times(A / B)$. Then there is a unique pair $(\kappa, \theta) \in \operatorname{Hom}(B, G) \times G^{T_{B}}$ with $\theta\left(\epsilon_{A}\right)=\epsilon_{G}$ such that $\left(G \times\left[T_{B}\right]\right)_{(\kappa, \theta)}$ expresses the object $(G \times(A / B), \operatorname{Pr}, A / B)$ of $G-\operatorname{Set}_{\mathrm{f}}^{A}$ coming from the left action φ of A on $G \times(A / B)$.

Proof. Suppose that A acts on $G \times(A / B)$ via φ and that $T_{B}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ with $a_{1}=\epsilon_{A}$. Define $(\kappa, \theta) \in \operatorname{Hom}(B, G) \times G^{T_{B}}$ by $\kappa(b)=\xi_{b}(B)$ for all $b \in B$ and $\theta\left(a_{j}\right)=\xi_{a_{j}}(B)$ for all $j \in[n]$. Then $b \cdot\left(\epsilon_{G}, B\right)=(\kappa(b), B)$ for all $b \in B$ and $a_{j} \cdot\left(\epsilon_{G}, B\right)=\left(\theta\left(a_{j}\right), a_{j} B\right)$ for all $j \in[n]$. Further, for any $a \in A, g \in G$, and $j \in[n]$, if $a a_{j} B=a_{j^{\prime}} B$, then

$$
\begin{aligned}
a \cdot\left(g, a_{j} B\right) & =\left(a a_{j}\right) \cdot\left(\theta\left(a_{j}\right)^{-1} g, B\right) \\
& =a_{j^{\prime}} \cdot\left(\kappa\left(a_{j^{\prime}}^{-1} a a_{j}\right) \theta\left(a_{j}\right)^{-1} g, B\right) \\
& =\left(\theta\left(a_{j^{\prime}}\right) \kappa\left(a_{j^{\prime}}^{-1} a a_{j}\right) \theta\left(a_{j}\right)^{-1} g, a_{j^{\prime}} B\right) .
\end{aligned}
$$

Thus $\left(G \times\left[T_{B}\right]\right)_{(\kappa, \theta)}=(G \times(A / B), \operatorname{Pr}, A / B)$. Also, $\theta\left(\epsilon_{A}\right)=\epsilon_{G}$ and the uniqueness of (κ, θ) is clear. We have thus proved the proposition.

We require the following proposition.

Proposition 4 For each subgroup B of A of finite index, we fix a left transversal T_{B} of B containing ϵ_{A}. Suppose that B is a subgroup of A of finite index and that $(\kappa, \theta) \in \operatorname{Hom}(B, G) \times G^{T_{B}}$ with $\theta\left(\epsilon_{A}\right)=\epsilon_{G}$. We denote by $\mathscr{I}_{\left(T_{B}, \kappa, \theta\right)}$ the set of all pairs $\left(\left(G \times\left[T_{B_{*}}\right]\right)_{\left(\kappa_{*}, \theta_{*}\right)},(\gamma, \beta)\right)$, where $\left(\kappa_{*}, \theta_{*}\right) \in \operatorname{Hom}\left(B_{*}, G\right) \times G^{T_{B_{*}}}$ with $\theta_{*}\left(\epsilon_{A}\right)=\epsilon_{G}$ and (γ, β) is an isomorphism from $\left(G \times\left[T_{B}\right]\right)_{(\kappa, \theta)}$ to $\left(G \times\left[T_{B_{*}}\right]\right)_{\left(\kappa_{*}, \theta_{*}\right)}$. Then there exists a bijection from $\mathscr{I}_{\left(T_{B}, \kappa, \theta\right)}$ to $G^{A / B} \times T_{B}$.

Proof. Suppose that $T_{B}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Let $\left(\left(G \times\left[T_{B_{*}}\right]\right)_{\left(\kappa_{*}, \theta_{*}\right)},(\gamma, \beta)\right) \in \mathscr{I}_{\left(T_{B}, \kappa, \theta\right)}$. Then $\beta: A / B \rightarrow A / B_{*}$ is an isomorphism of left A-sets. Take an element a of A so that $\beta(B)=a B_{*}$. Then $a B_{*}=\beta(B)=b \beta(B)=b a B_{*}$ for all $b \in B$, and hence B^{a} is a subgroup of B_{*}. Likewise, B_{*} is conjugate to a subgroup of B, and consequently, $B_{*}=B^{a}$. We can now choose a unique element a_{i} of T_{B} so that $\beta(B)=B a_{i}^{-1}$ and
$B_{*}=B^{a_{i}^{-1}}$. Further, since γ is a morphism of free right G-sets, these exists a unique mapping $\xi \in G^{A / B}$ such that $\gamma\left(g, a_{j} B\right)=\left(\xi\left(a_{j} B\right) g, \beta\left(a_{j} B\right)\right)=\left(\xi\left(a_{j} B\right) g, a_{j} a_{i}^{-1} B_{*}\right)$ for all $g \in G$ and $j \in[n]$, which defines an injection from $\mathscr{I}_{\left(T_{B}, \kappa, \theta\right)}$ to $G^{A / B} \times T_{B}$.

Conversely, let $\left(\xi, a_{i}\right) \in G^{A / B} \times T_{B}$. Define $B_{*}=B_{i}^{a_{i}^{-1}}$, and let $\beta: A / B \rightarrow A / B_{*}$ be the morphism of left A-sets defined by $\beta\left(a_{j} B\right)=a_{j} a_{i}^{-1} B_{*}=a_{j} B a_{i}^{-1}$ for all $j \in[n]$. Then there exists an isomorphism $\gamma: G \times(A / B) \rightarrow G \times\left(A / B_{*}\right)$ of right G-sets satisfying $\gamma\left(g, a_{j} B\right)=\left(\xi\left(a_{j} B\right) g, \beta\left(a_{j} B\right)\right)$ for all $g \in G$ and $j \in[n]$. Hence, by Proposition 3, there is a unique pair $\left(\kappa_{*}, \theta_{*}\right) \in \operatorname{Hom}\left(B_{*}, G\right) \times G^{T_{B_{*}}}$ with $\theta_{*}\left(\epsilon_{A}\right)=\epsilon_{G}$ such that $\left(G \times\left[T_{B_{*}}\right]\right)_{\left(\kappa_{*}, \theta_{*}\right)}$ expresses an object $\left(G \times\left(A / B_{*}\right), \operatorname{Pr}, A / B_{*}\right)$ of G-Set ${ }_{\mathrm{f}}^{A}$ coming from the left action φ of A on $G \times\left(A / B_{*}\right)$ defined by $\varphi(a) \circ \gamma=\gamma \circ \varphi_{\left(T_{B}, \kappa, \theta\right)}(a)$ for all $a \in A$, where $\varphi_{\left(T_{B}, \kappa, \theta\right)}$ is defined in Lemma 1. Now (γ, β) is an isomorphism from $\left(G \times\left[T_{B}\right]\right)_{(\kappa, \theta)}$ to $\left(G \times\left[T_{B_{*}}\right]\right)_{\left(\kappa_{*}, \theta_{*}\right)}$, and thereby the injection from $\mathscr{I}_{\left(T_{B}, \kappa, \theta\right)}$ to $G^{A / B} \times T_{B}$ defined in the preceding paragraph is bijective. This completes the proof of Proposition 4.

It is clear that the category G - $\operatorname{Set}_{\mathrm{f}}^{A}$ is a skeletally small and locally finite KS category. We are now in a position to apply $[10,5.8$. Theorem $]$ to G - $\operatorname{Set}_{\mathrm{f}}^{A}$.

Proposition 5 For each subgroup B of A of finite index, we fix a left transversal T_{B} of B containing ϵ_{A}, and define $\mathscr{L}\left(T_{B}, G\right):=\operatorname{Hom}(B, G) \times\left\{\theta \in G^{T_{B}} \mid \theta\left(\epsilon_{A}\right)=\epsilon_{G}\right\}$. Let r be a mapping from the set of objects of G - $\operatorname{Set}_{\mathrm{f}}^{A}$ to $a \mathbb{Q}$-algebra satisfying the following conditions :
(i) $r(Y, \sigma, X)=r\left(Y^{\prime}, \sigma^{\prime}, X^{\prime}\right)$ if $(Y, \sigma, X) \cong\left(Y^{\prime}, \sigma^{\prime}, X^{\prime}\right)$;
(ii) $r(\emptyset)=1, r\left(\left(Y_{1}, \sigma_{1}, X_{1}\right)+\left(Y_{2}, \sigma_{2}, X_{2}\right)\right)=r\left(Y_{1}, \sigma_{1}, X_{1}\right) r\left(Y_{2}, \sigma_{2}, X_{2}\right)$.

Then

$$
\sum_{n=0}^{\infty} \sum_{\varphi \in \operatorname{Hom}\left(A, G 2 S_{n}\right)} \frac{r_{\varphi}}{|G|^{n} n!} t^{n}=\exp \left(\sum_{B \leq_{f} A} \sum_{(\kappa, \theta) \in \mathscr{L}\left(T_{B}, G\right)} \frac{r_{\left(T_{B}, \kappa, \theta\right)}}{|G|^{|A: B|}|A: B|} t^{|A: B|}\right)
$$

where $r_{\varphi}=r\left((G \times[n])_{\varphi}\right)$ and $r_{\left(T_{B}, \kappa, \theta\right)}=r\left(\left(G \times\left[T_{B}\right]\right)_{(\kappa, \theta)}\right)$.
Proof. Let $\operatorname{Con}\left(G-\operatorname{Set}_{\mathrm{f}}^{A}\right)$ be the full subcategory of connected objects of G - $\operatorname{Set}_{\mathrm{f}}^{A}$. By $[10,5.3]$, we can substitute $t^{(Y, \sigma, X)}$ for $r(Y, \sigma, X) t^{|X|}$ on both sides of the equation in $[10,5.8$. Theorem $]$ with $\mathscr{E}=G$ - $\operatorname{Set}_{\mathrm{f}}{ }^{A}$. Hence

$$
\sum_{Z=(Y, \sigma, X) \in G-\text { Set }_{\mathrm{f}}^{A}}^{\prime} \frac{r(Z)}{|\operatorname{Aut}(Z)|} t^{|X|}=\exp \left(\sum_{Z=(Y, \sigma, X) \in \operatorname{Con}\left(G-\text { Set }_{\mathrm{f}}^{A}\right)}^{\prime} \frac{r(Z)}{|\operatorname{Aut}(Z)|} t^{|X|}\right)
$$

The proposition now follows from Lemma 1 and Propositions 2, 3, and 4 .

Corollary $1([4,8])$ We have

$$
\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, G \imath S_{n}\right)\right|}{|G|^{n} n!} t^{n}=\exp \left(\sum_{B \leq_{f} A} \frac{|\operatorname{Hom}(B, G)|}{|G||A: B|} t^{|A: B|}\right)
$$

Proof. The assertion follows from Proposition 5 with the mapping r defined by $r(Y, \sigma, X)=1$ for all objects (Y, σ, X) of G-Set $\mathbf{t}_{\mathrm{f}}^{A}$.

4. EVEN PERMUTATION REPRESENTATIONS

A Wohlfahrt series is expressed in the form $\sum_{n=0}^{\infty}\left|\operatorname{Hom}\left(A, K_{n}\right)\right| t^{n} /|G|^{n} n!$; by substituting the variable t of this series for $|G| t$, we obtain the original series. In this section we establish a fundamental theorem for enumerating homomorphisms from A to $G \imath S_{n}$, and present the exponential formula of the Wohlfahrt series for $G \imath A_{n}$. Recall that $\mathscr{C}_{p}(A)$ is the set of minimal subgroups of $A / \Phi_{p}(A)$ and that each element of $\mathscr{C}_{p}(A)$ is denoted by $\langle\bar{c}\rangle$ for an element $c \in A-\Phi_{p}(A)$ with $c^{p} \in \Phi_{p}(A)$, where $\bar{c}=c \Phi_{p}(A)$. The following theorem relates to [5, Theorem 3.1].

Theorem 1. Suppose that homomorphisms $\zeta_{n} \in \operatorname{Hom}\left(S_{n},\langle\omega\rangle\right), n=1,2, \ldots$, satisfy the condition that either $\operatorname{Ker} \zeta_{n}=S_{n}$ for any n, or $p=2$ and $\operatorname{Ker} \zeta_{n}=A_{n}$ for any n. Let χ be a homomorphism form G to $\langle\omega\rangle$, and let $\chi_{1}, \chi_{2}, \ldots$ be the sequence of homomorphisms $\chi_{n} \in \operatorname{Hom}\left(G \imath S_{n},\langle\omega\rangle\right), n=1,2, \ldots$, defined by

$$
\chi_{n}(f ; \pi)=\chi(f(1)) \chi(f(2)) \cdots \chi(f(n)) \zeta_{n}(\pi)
$$

for $\operatorname{all}(f ; \pi) \in G \imath S_{n}$. Set $K_{n}=\operatorname{Ker} \chi_{n}$. Then

$$
\begin{aligned}
\left|A: \Phi_{p}(A)\right| & \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, K_{n}\right)\right|}{|G|^{n} n!} t^{n}=\exp \left(\sum_{B \leq_{f} A} \frac{|\operatorname{Hom}(B, G)|}{|G||A: B|} t^{|A: B|}\right) \\
& +\sum_{\langle\bar{c}\rangle \in \mathscr{C}_{p}(A)} \sum_{i=1}^{p-1} \exp \left(\sum_{B \leq{ }_{f} A} \sum_{\kappa \in \operatorname{Hom}(B, G)} \frac{\zeta_{B}(c) \cdot \overline{\chi \circ \kappa}\left(V_{B / \Phi_{p}(B)}(c)\right)^{i}}{|G||A: B|} t^{|A: B|}\right),
\end{aligned}
$$

where $\overline{\chi \circ \kappa} \in \operatorname{Hom}\left(B / \Phi_{p}(B),\langle\omega\rangle\right)$ is the homomorphism defined by

$$
\overline{\chi \circ \kappa}\left(b \Phi_{p}(B)\right)=\chi(\kappa(b))
$$

for all $b \in B$, and $\zeta_{B}(c)=1$ if $\operatorname{Ker} \zeta_{n}=S_{n}$ for any n and $\zeta_{B}(c)=\operatorname{sgn}_{B}(c)$ if $p=2$ and $\operatorname{Ker} \zeta_{n}=A_{n}$ for any n. Here $\zeta_{B}(c)$ and $V_{B / \Phi_{p}(B)}(c)$ are independent of the choice of an element c in a coset $\langle\bar{c}\rangle \in \mathscr{C}_{p}(A)$.

Proof. Suppose that $\varphi \in \operatorname{Hom}\left(A, G \imath S_{n}\right)$. Then either $\left|A: \operatorname{Ker}\left(\chi_{n} \circ \varphi\right)\right|=p$ or $A=\operatorname{Ker}\left(\chi_{n} \circ \varphi\right)$, and further, $\operatorname{Ker}\left(\chi_{n} \circ \varphi\right)$ contains $\Phi_{p}(A)$. If $\left|A: \operatorname{Ker}\left(\chi_{n} \circ \varphi\right)\right|=p$, then

$$
\begin{aligned}
\sum_{\langle\bar{c}\rangle \in \mathscr{C}_{p}(A)} \sum_{i=1}^{p-1} \chi_{n}(\varphi(c))^{i} & =(p-1) \sharp\left\{\langle\bar{c}\rangle \in \mathscr{C}_{p}(A) \mid c \in \operatorname{Ker}\left(\chi_{n} \circ \varphi\right)\right\} \\
& =-\sharp,
\end{aligned}
$$

because $\sum_{i=1}^{p-1} \omega^{i}=-1$ and $A / \Phi_{p}(A)$ is an elementary abelian p-group. Note that the number of subgroups of order p in an elementary abelian p-group of order p^{s} is equal to $\left(p^{s}-1\right) /(p-1)$. Hence we obtain

$$
1+\sum_{\langle\bar{c}\rangle \in \mathscr{C}_{p}(A)} \sum_{i=1}^{p-1} \chi_{n}(\varphi(c))^{i}=\left\{\begin{array}{cl}
\left|A: \Phi_{p}(A)\right| & \text { if } A=\operatorname{Ker}\left(\chi_{n} \circ \varphi\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

Consequently, since $\operatorname{Hom}\left(A, K_{n}\right)=\left\{\varphi \in \operatorname{Hom}\left(A, G \imath S_{n}\right) \mid A=\operatorname{Ker}\left(\chi_{n} \circ \varphi\right)\right\}$, it follows that

$$
\begin{align*}
\left|A: \Phi_{p}(A)\right| \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, K_{n}\right)\right|}{|G|^{n} n!} t^{n} & =\sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, G \imath S_{n}\right)\right|}{|G|^{n} n!} t^{n} \\
& +\sum_{\langle\bar{c}\rangle \in \mathscr{C}_{p}(A)} \sum_{i=1}^{p-1} \sum_{n=0}^{\infty} \sum_{\varphi \in \operatorname{Hom}\left(A, G l S_{n}\right)} \frac{\chi_{n}(\varphi(c))^{i}}{|G|^{n} n!} t^{n} \tag{2}
\end{align*}
$$

Suppose that $c \in A$. Using Proposition 2, we define a mapping r from the set of objects of G - $\operatorname{Set}_{\mathrm{f}}^{A}$ to the complex numbers by setting $r(Y, \sigma, X)=\chi_{n}(\varphi(c))$ if $(Y, \sigma, X) \cong(G \times[n])_{\varphi}$, and $r(\emptyset)=1$. Note that, if objects $(G \times[n])_{\varphi}$ and $(G \times[n])_{\varphi_{*}}$ are isomorphic in G - $\operatorname{Set}_{\mathrm{f}}^{A}$, then $\chi_{n}(\varphi(c))=\chi_{n}\left(\varphi_{*}(c)\right)$ by Proposition 2(b). Further, given a pair of objects $\left(G \times\left[n_{1}\right]\right)_{\varphi_{1}},\left(G \times\left[n_{2}\right]\right)_{\varphi_{2}}$ in G-Set fre $_{f}^{A}$ with $n=n_{1}+n_{2}$, there exists a homomorphism $\varphi \in \operatorname{Hom}\left(A, G \backslash S_{n}\right)$ such that

$$
(G \times[n])_{\varphi} \cong\left(G \times\left[n_{1}\right]\right)_{\varphi_{1}}+\left(G \times\left[n_{2}\right]\right)_{\varphi_{2}}
$$

and

$$
\chi_{n}(\varphi(c))=\chi_{n_{1}}\left(\varphi_{1}(c)\right) \chi_{n_{2}}\left(\varphi_{2}(c)\right) .
$$

Thus the mapping r satisfies the conditions (i) and (ii) in Proposition 5. Also, under the notation of Proposition 5 , if B is a subgroup of A of finite index and
 independent of the choice of θ. It now follows from Proposition 5 that

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sum_{\varphi \in \operatorname{Hom}\left(A, G l S_{n}\right)} & \frac{\chi_{n}(\varphi(c))}{|G|^{n} n!} t^{n} \\
& =\exp \left(\sum_{B \leq_{f} A} \sum_{\kappa \in \operatorname{Hom}(B, G)} \frac{\zeta_{B}(c) \cdot \overline{\chi \circ \kappa}\left(V_{B / \Phi_{p}(B)}(c)\right)}{|G||A: B|} t^{|A: B|}\right)
\end{aligned}
$$

This formula, together with Corollary 1, enables us to obtain the desired result as a consequence of Eq. (2). We have thus proved the theorem.

We classify the group K_{n} in Theorem 1, according as $\operatorname{Ker} \zeta_{n}=S_{n}$ for any n or $p=2$ and $\operatorname{Ker} \zeta_{n}=A_{n}$ for any n, and $\operatorname{Ker} \chi=G$ or $\operatorname{Ker} \chi \neq G$.
Case 1. $\operatorname{Ker} \zeta_{n}=S_{n}$, $\operatorname{Ker} \chi=G$, and $K_{n}=G \imath S_{n}$.
Case 2. $p=2$, $\operatorname{Ker} \zeta_{n}=A_{n}$, $\operatorname{Ker} \chi=G$, and $K_{n}=G \imath A_{n}$.
Case 3. $\operatorname{Ker} \zeta_{n}=S_{n}$, $\operatorname{Ker} \chi \neq G$, and

$$
K_{n}=\left\{(f ; \pi) \in G \imath S_{n} \mid \chi(f(1) f(2) \cdots f(n))=1\right\}
$$

Case 4. $p=2, \operatorname{Ker} \zeta_{n}=A_{n}$, $\operatorname{Ker} \chi \neq G$, and

$$
K_{n}=\left\{(f ; \pi) \in G \imath S_{n} \mid \chi(f(1) f(2) \cdots f(n)) \operatorname{sgn}(\pi)=1\right\},
$$

where sgn is the usual sign.
The assertion of Theorem 1 in Case 1 is Corollary 1, and the one in Case 2 is the following corollary to Theorem 1.

Corollary 2 We have

$$
\begin{aligned}
&\left|A: \Phi_{2}(A)\right| \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, G \imath A_{n}\right)\right|}{|G|^{n} n!} t^{n}=\exp \left(\sum_{B \leq{ }_{f} A} \frac{|\operatorname{Hom}(B, G)|}{|G||A: B|} t^{|A: B|}\right) \\
&+\sum_{\langle\bar{c}\rangle \in \mathscr{C}_{2}(A)} \exp \left(\sum_{B \leq{ }_{f} A} \frac{\operatorname{sgn}_{B}(c) \cdot|\operatorname{Hom}(B, G)|}{|G||A: B|} t^{|A: B|}\right) .
\end{aligned}
$$

In particular,

$$
\begin{aligned}
\left|A: \Phi_{2}(A)\right| \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, A_{n}\right)\right|}{n!} t^{n}= & \exp \left(\sum_{B \leq{ }_{f} A} \frac{1}{|A: B|} t^{|A: B|}\right) \\
& +\sum_{\langle\bar{c}\rangle \in \mathscr{C}_{2}(A)} \exp \left(\sum_{B \leq_{f} A} \frac{\operatorname{sgn}_{B}(c)}{|A: B|} t^{|A: B|}\right) .
\end{aligned}
$$

Proof. The corollary is an immediate consequence of Theorem 1.
Remark If A is abelian and if B is a subgroup of A of finite index, then, for each $a \in A, \operatorname{sgn}_{B}(a)=1$ if and only if either $\langle a B\rangle$ does not include any non-identity Sylow 2-subgroup of A / B or else A / B is of odd order [8, Lemmas 2.1]. (The first statement of [8, Lemma 4.1] is missing in the case where A / B is of odd order.) The second assertion of the theorem is now equivalent to [8, Theorem 1.1] if A is abelian, and is equivalent to the fact in [7, Chap. 4, Problem 22] if A is a finite cyclic group. (The formula $[10,(6.5 . d)$] is not correct. However, the idea in $[10,6.5]$ is useful for the proof of Theorem 1.)

5. VARIOUS WOHLFAHRT SERIES

We devote the rest of this paper to the applications of Theorem 1 to Cases 3 and 4. The formulas of Theorem 1 in the case where $\operatorname{Ker} \chi \neq G$ seems to be so implicit that we try to give slightly explicit formulas under a certain additional condition.

Lemma 2 Suppose that $\chi \in \operatorname{Hom}(G,\langle\omega\rangle)$ and that $c \in A$. If either A or G is abelian, then the number of homomorphisms $\psi \in \operatorname{Hom}(A, G)$ satisfying $\chi(\psi(c))=\omega^{j}$ is independent of the choice of an integer j with $1 \leq j \leq p-1$.

Proof. If G is abelian, then we can identify $\operatorname{Hom}(A, G)$ with $\operatorname{Hom}\left(A / A^{\prime}, G\right)$, where A^{\prime} is the commutator subgroup of A. Hence we may assume that A is abelian. Let K be the intersection of all kernels of homomorphisms $\psi \in \operatorname{Hom}(A, G)$. Then K is a normal subgroup of A of finite index, and hence A / K is a finite abelian group. Now, since $\operatorname{Hom}(A, G)$ is identified with $\operatorname{Hom}(A / K, G)$, we may assume that A is a finite abelian p-group. For each integer i, we define

$$
\operatorname{Hom}\left(A, G ; c, \omega^{i}\right)=\left\{\psi \in \operatorname{Hom}(A, G) \mid \chi(\psi(c))=\omega^{i}\right\}
$$

Let i and j be arbitrary positive integers less than p, and let ℓ be a positive integer satisfying $i \ell \equiv j \bmod p$. If $\psi \in \operatorname{Hom}\left(A, G ; c, \omega^{i}\right)$, then a homomorphism $\psi^{(\ell)} \in \operatorname{Hom}(A, G)$ is defined by setting $\psi^{(\ell)}(a)=\psi(a)^{\ell}$ for all $a \in A$, because A is abelian. Here we get $\chi\left(\psi^{(\ell)}(c)\right)=\chi(\psi(c))^{\ell}=\omega^{i \ell}=\omega^{j}$. Hence there is a correspondence

$$
\lambda_{i, j}: \operatorname{Hom}\left(A, G ; c, \omega^{i}\right) \ni \psi \longrightarrow \psi^{(\ell)} \in \operatorname{Hom}\left(A, G ; c, \omega^{j}\right)
$$

Let s be a positive integer satisfying $\ell s \equiv 1 \bmod |A|$. Suppose that $\psi_{1}^{(\ell)}=\psi_{2}^{(\ell)}$ with $\psi_{1}, \psi_{2} \in \operatorname{Hom}\left(A, G ; c, \omega^{i}\right)$. Then we obtain

$$
\psi_{1}(a)=\psi_{1}(a)^{\ell s}=\psi_{2}(a)^{\ell s}=\psi_{2}(a)
$$

for all $a \in A$, whence $\psi_{1}=\psi_{2}$. Thus the correspondence $\lambda_{i, j}$ is one-to-one. Since i and j are arbitrary, we now conclude that $\sharp \operatorname{Hom}\left(A, G ; c, \omega^{i}\right)=\sharp \operatorname{Hom}\left(A, G ; c, \omega^{j}\right)$. This completes the proof of Lemma 2.

Definition 3 Suppose that $\chi \in \operatorname{Hom}(G,\langle\omega\rangle)$ and that B is a subgroup of A of finite index. For each element c of A, define

$$
\begin{aligned}
\ell_{c}(B ; \chi):=\sharp\{\kappa \in & \left.\operatorname{Hom}(B, G) \mid V_{B / \Phi_{p}(B)}(c) \in \operatorname{Ker} \overline{\chi \circ \kappa}\right\} \\
& -\frac{1}{p-1} \sharp\left\{\kappa \in \operatorname{Hom}(B, G) \mid V_{B / \Phi_{p}(B)}(c) \notin \operatorname{Ker} \overline{\chi \circ \kappa}\right\} .
\end{aligned}
$$

Here $\overline{\chi \circ \kappa}$ is defined in Theorem 1.
We can now show a formula of the Wohlfahrt series in Case 3 .

Theorem 2. Suppose that $\chi \in \operatorname{Hom}(G,\langle\omega\rangle)$. Let K_{n} be the subgroup of G 亿 S_{n} consisting of all elements $(f ; \pi)$ satisfying $\chi(f(1) f(2) \cdots f(n))=1$. If either A or G is abelian, then

$$
\begin{aligned}
\left|A: \Phi_{p}(A)\right| & \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, K_{n}\right)\right|}{|G|^{n} n!} t^{n}=\exp \left(\sum_{B \leq f} A \frac{|\operatorname{Hom}(B, G)|}{|G||A: B|} t^{|A: B|}\right) \\
& +(p-1) \sum_{\langle\bar{c}\rangle \in \mathscr{C}_{p}(A)} \exp \left(\sum_{B \leq f} \frac{\ell_{c}(B ; \chi)}{|G||A: B|} t^{|A: B|}\right) .
\end{aligned}
$$

Here $\ell_{c}(B ; \chi)$ is independent of the choice of an element c in a coset $\langle\bar{c}\rangle \in \mathscr{C}_{p}(A)$.
Proof. If B is a subgroup of A of finite index and if $\langle\bar{c}\rangle \in \mathscr{C}_{p}(A)$, then the number of homomorphisms $\kappa \in \operatorname{Hom}(B, G)$ satisfying $\overline{\chi \circ \kappa}\left(V_{B / \Phi_{p}(B)}(c)\right)=\omega^{j}$ is independent of the choice of an integer j with $1 \leq j \leq p-1$ by Lemma 2 , and hence

$$
\ell_{c}(B ; \chi)=\sum_{\kappa \in \operatorname{Hom}(B, G)} \overline{\chi \circ \kappa}\left(V_{B / \Phi_{p}(B)}(c)\right)^{i}
$$

for any integer i with $1 \leq i \leq p-1$. The assertion now follows from Theorem 1 .
The second assertion of the following corollary is equivalent to [8, Theorem 1.2] if A is abelian.

Corollary 3 Let K_{n} be the subgroup of $\langle\omega\rangle$ \ S_{n} consisting of all elements $(f ; \pi)$ satisfying $f(1) f(2) \cdots f(n)=1$. Then

$$
\begin{aligned}
& \left|A: \Phi_{p}(A)\right| \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, K_{n}\right)\right|}{p^{n} n!} t^{n}=\exp \left(\sum_{B \leq_{f} A} \frac{\left|B: \Phi_{p}(B)\right|}{p|A: B|} t^{|A: B|}\right) \\
& +(p-1) \sum_{\langle\bar{c}\rangle \in \mathscr{C}_{p}(A)} \exp \left(\sum_{\substack{B \leq f A \\
c \in \operatorname{Ker} V_{B / \Phi}(B)}} \frac{\left|B: \Phi_{p}(B)\right|}{p|A: B|} t^{|A: B|}\right),
\end{aligned}
$$

where the summation $\sum_{B \leq_{f} A, c \in \operatorname{Ker} V_{B / \Phi_{p}(B)}}$ is over all subgroups B of A of finite index such that $c \in \operatorname{Ker} V_{B / \Phi_{p}(B)}$. In particular,

$$
\begin{aligned}
\left|A: \Phi_{2}(A)\right| & \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, W\left(D_{n}\right)\right)\right|}{2^{n} n!} t^{n}=\exp \left(\sum_{B \leq f} A \frac{\left|B: \Phi_{2}(B)\right|}{2|A: B|} t^{|A: B|}\right) \\
& +\sum_{\langle\bar{c}\rangle \in \mathscr{C}_{2}(A)} \exp \left(\sum_{\substack{B \leq f A \\
c \in \operatorname{Ker} V_{B / \Phi_{2}(B)}}} \frac{\left|B: \Phi_{2}(B)\right|}{2|A: B|} t^{|A: B|}\right) .
\end{aligned}
$$

Proof. The assertion is a consequence of Theorem 2 and Lemma 3 below.
Lemma 3 Let B be a subgroup of A of finite index. Then

$$
|\operatorname{Hom}(B,\langle\omega\rangle)|=\left|B: \Phi_{p}(B)\right|
$$

Further, for any automorphism χ of $\langle\omega\rangle$ and for any $\operatorname{coset}\langle\bar{c}\rangle \in \mathscr{C}_{p}(A)$,

$$
\ell_{c}(B ; \chi)=\left\{\begin{array}{cl}
\left|B: \Phi_{p}(B)\right| & \text { if } c \in \operatorname{Ker} V_{B / \Phi_{p}(B)} \\
0 & \text { otherwise }
\end{array}\right.
$$

Proof. It is easy to see that $\left|\operatorname{Hom}\left(B / \Phi_{p}(B),\langle\omega\rangle\right)\right|=\left|B: \Phi_{p}(B)\right|$. Also, there is a natural bijection between $\operatorname{Hom}(B,\langle\omega\rangle)$ and $\operatorname{Hom}\left(B / \Phi_{p}(B),\langle\omega\rangle\right)$. Hence we have $|\operatorname{Hom}(B,\langle\omega\rangle)|=\left|B: \Phi_{p}(B)\right|$. If $c \in \operatorname{Ker} V_{B / \Phi_{p}(B)}$, then $\ell_{c}(B ; \chi)=\left|B: \Phi_{p}(B)\right|$. So we assume that $c \notin \operatorname{Ker} V_{B / \Phi_{p}(B)}$. Then, since $\Phi_{p}(A) \leq \operatorname{Ker} V_{B / \Phi_{p}(B)}$, we have $\left|\left\langle V_{B / \Phi_{p}(B)}(c)\right\rangle\right|=|\langle\bar{c}\rangle|=p$. The assumption that $\operatorname{Ker} \chi=\{1\}$ now yields

$$
\begin{aligned}
\sharp\{\kappa \in \operatorname{Hom}(B,\langle\omega\rangle) & \left.\mid V_{B / \Phi_{p}(B)}(c) \in \operatorname{Ker} \overline{\chi \circ \kappa}\right\} \\
& =\sharp\left\{\bar{\kappa} \in \operatorname{Hom}\left(B / \Phi_{p}(B),\langle\omega\rangle\right) \mid\left\langle V_{B / \Phi_{p}(B)}(c)\right\rangle \leq \operatorname{Ker} \bar{\kappa}\right\} \\
& =\left|B / \Phi_{p}(B):\left\langle V_{B / \Phi_{p}(B)}(c)\right\rangle\right| \\
& =\left|B: \Phi_{p}(B)\right| / p .
\end{aligned}
$$

Consequently, we obtain $\ell_{c}(B ; \chi)=0$. This completes the proof of Lemma 3.
We finish by stating a result in Case 4 .
Theorem 3. Let K_{n} be a subgroup of $\langle-1\rangle \backslash S_{n}$ consisting of all elements $(f ; \pi)$ satisfying $f(1) f(2) \cdots f(n)=\operatorname{sgn}(\pi)$. Then

$$
\begin{aligned}
\left|A: \Phi_{2}(A)\right| \sum_{n=0}^{\infty} \frac{\left|\operatorname{Hom}\left(A, K_{n}\right)\right|}{2^{n} n!} t^{n} & =\exp \left(\sum_{B \leq{ }_{f} A} \frac{\left|B: \Phi_{2}(B)\right|}{2|A: B|} t^{|A: B|}\right) \\
& +\sum_{\langle\bar{c}\rangle \in \mathscr{C}_{2}(A)} \exp \left(\sum_{\substack{B \leq{ }_{f} A \\
c \in \operatorname{Ker}_{B / \Phi_{2}(B)}}} \frac{\operatorname{sgn}_{B}(c) \cdot\left|B: \Phi_{2}(B)\right|}{2|A: B|} t^{|A: B|}\right) .
\end{aligned}
$$

Proof. The theorem follows from Theorem 1 and Lemma 3.

ACKNOWLEDGMENTS

The author is grateful to a referee for his presentation of the category G - $\operatorname{Set}_{\mathrm{f}}^{A}$. The author also thanks Naoki Chigira and Tomoyuki Yoshida for helpful comments.

REFERENCES

1. S. Bouc, "Non-additive Exact Functors and Tensor Induction for Mackey Functors," Mem. Amer. Math. Soc. 144 (2000), no. 683.
2. N. Chigira, The solutions of $x^{d}=1$ in finite groups, J. Algebra 180 (1996), 653-661.
3. A. Kerber, "Representations of Permutation Groups I," Lecture Notes in Math., Vol 240, Springer-Verlag, Berlin, 1971
4. T. Müller, Enumerating representations in finite wreath products, Adv. in Math. 153 (2000), 118-154.
5. T. Müller, Enumerating representations in finite wreath products II: Explicit Formulae Adv. in Math. 171 (2002), 276-331.
6. S. Okada, Wreath products by the symmetric groups and product posets of Young's lattices, J. Combin. Theory Ser. A 55 (1990), 14-32
7. J. Riordan, "An Introduction to Combinatorial Analysis," John Wiley \& Sons, New York, 1958.
8. Y. Takegahara, A generating function for the number of homomorphisms from a finitely generated abelian group to an alternating group, J. Algebra, 248 (2002), 554-574
9. K. Wohlfahrt, Über einen Satz von Dey und die Modulgruppe, Arch. Math. (Basel) 29 (1977), 455-457.
10. T. Yoshida, Categorical aspects of generating functions (I): exponential formulas and Krull-Schmidt categories, J. Algebra 240 (2001), 40-82.

[^0]: 2000Mathematics Subject Classification: 05A15, 20B30, 20B40, 20 E 22.
 Keyword : wreath product, generating function, permutation representation.

