室蘭工業大学
学術資源アーカイブ
Muroran Institute of Technology Academic Resources Archive

The number of subgroups of a finite group（II）

メタデータ	言語：en
	出版者：Taylor \＆Francis
	公開日：2019－06－27
	キーワード（Ja）：
	キーワード（En）：complement，finite p－group，
	homomorphism，semidirect product，subgroup
	作成者：竹ケ原，裕元 メールアドレス： 所属： URL http：／／hdl．handle．net／10258／00009918

The number of subgroups of a finite group (II)

Yugen Takegahara
Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
E-mail: yugen@mmm.muroran-it.ac.jp

Abstract

Let A be a finite group, and let p be a prime. Suppose that p^{s} is the highest power of p dividing $\left|A / A^{\prime}\right|$, where A^{\prime} is the commutator subgroup of A, and that the type $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots$ of a Sylow p-subgroup of A / A^{\prime} satisfies either $\lambda_{2} \leq 1$ or $\lambda_{2}=2$ and $\lambda_{3}=0$. Let $m_{A}(d)$ denote the number of subgroups of index d in A. If $1 \leq i \leq[(s+1) / 2]$ and q is a positive integer such that $\operatorname{gcd}(p, q)=1$, then $m_{A}\left(q p^{i-1}\right)-m_{A}\left(q p^{i}\right)$ is a multiple of p^{i} and $m_{A}\left(q p^{[(s+1) / 2]}\right)-m_{A}\left(q p^{[(s+1) / 2]+1}\right)$ is a multiple of $p^{[s / 2]}$.

1. Introduction

For a finite group $A, m_{A}(d)$ denotes the number of subgroups of index d in A. For a real number $x,[x]$ denotes the largest integer not exceeding x. Let p be a prime. A finite group A is said to admit $\mathbf{C}\left(p^{s}\right)$, where s is a nonnegative integer, if the following conditions hold for any positive integer q such that $\operatorname{gcd}(p, q)=1$:
(C1) $m_{A}\left(q p^{i-1}\right) \equiv m_{A}\left(q p^{i}\right) \bmod p^{i}$ with $i=1,2, \ldots,[(s+1) / 2]$.
(C2) $m_{A}\left(q p^{[(s+1) / 2]}\right) \equiv m_{A}\left(q p^{[(s+1) / 2]+1}\right) \bmod p^{[s / 2]}$.
A finite group A is said to admit $\mathbf{C P}\left(p^{s}\right)$ if these conditions hold for $q=1$.
Any finite abelian p-group P admits $\mathbf{C P}(|P|)$ (cf. [4, Note], [7, Theorem 2.1]). Hence we obtain the half p-adic property of an arbitrary finite abelian group:

TheOrem 1.1 Any finite abelian group A admits $\mathbf{C}\left(|A|_{p}\right)$, where $|A|_{p}$ is the highest power of p dividing $|A|$.

The following theorem is due to P. Hall [6, Theorem 1.61] and is also a consequence of [8, Lemma 2.2].

ThEOREM 1.2 Let P be a finite p-group such that $p^{s}=|P: \Phi(P)|$, where $\Phi(P)$ denotes the Frattini subgroup of P. Then for any integer i with $0 \leq i \leq s+1$,

$$
m_{P}\left(p^{i}\right) \equiv m_{P / \Phi(P)}\left(p^{i}\right) \bmod p^{s-i+1}
$$

[^0]Combining this theorem with Theorem 1.1, we know that any finite p-group P admits $\mathbf{C P}(|P / \Phi(P)|)$. A generalization of this fact is [8, Theorem 1.1]:

Theorem 1.3 Let A be a finite group. Then A admits $\mathbf{C}\left(\left|A / A^{\prime}: \Phi\left(A / A^{\prime}\right)\right|_{p}\right)$, where A^{\prime} denotes the commutator subgroup of A.

Another generalization of a property of finite abelian groups is [8, Theorem 1.2]:
Theorem 1.4 Let A be a finite group, and let p^{r} be the exponent of a Sylow p subgroup of A / A^{\prime}. If i is a positive integer less than or equal to r, then

$$
m_{A}\left(q p^{i-1}\right) \equiv m_{A}\left(q p^{i}\right) \bmod p^{i}
$$

for any positive integer q such that $\operatorname{gcd}(p, q)=1$.
Corollary 1.5 Under the assumptions of Theorem 1.4, if $r \geq[(s+1) / 2]+1$, then A admits $\mathbf{C}\left(p^{s}\right)$.

A sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ of nonnegative integers in weakly decreasing order which contains only finitely many non-zero terms is called the type of a finite abelian p-group isomorphic to the direct product of cyclic p-groups of order $p^{\lambda_{1}}, p^{\lambda_{2}}, \ldots$

The purpose of this paper is to establish a refinement of Theorem 1.3:
Theorem 1.6 Let A be a finite group, and let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ be the type of a Sylow p-subgroup of A / A^{\prime}. If either $\lambda_{2} \leq 1$ or $\lambda_{2}=2$ and $\lambda_{3}=0$, then A admits $\mathbf{C}\left(\left|A / A^{\prime}\right|_{p}\right)$. If $\lambda_{2}=2, \lambda_{3}=1$, and $\lambda_{1} \geq \lambda_{2}+\lambda_{3}+\cdots$, then A admits $\mathbf{C P}\left(\left|A / A^{\prime}\right|_{p}\right)$.

For a finite group C and for a finite group H on which C acts, let $\mathrm{Z}(C, H)$ be the set of complements of H in the semidirect product $C H$ of H by C.

While the following theorem is of little use in our argument, certain methods for its proof adapt successfully to the proof of Theorem 1.6.

TheOrem $1.7([1,2,3])$ Let C be a finite abelian p-group of type $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, and suppose that either $\lambda_{2} \leq 1$ or $p>2, \lambda_{2}=2$, and $\lambda_{3}=0$. Then for any finite p-group H on which C acts, $\sharp \mathrm{Z}(C, H)$ is a multiple of $\operatorname{gcd}(|C|,|H|)$.

For a finite group A, let $\operatorname{Hom}(A, G)$ be the set of homomorphisms from A to a group G, and set $h_{n}(A)=\sharp \operatorname{Hom}\left(A, S_{n}\right)$, where S_{n} is the symmetric group of degree n. If a finite group A admits $\mathbf{C}\left(p^{s}\right)$, then by [7, Theorem 1.2], $h_{n}(A)$ is a multiple of $\operatorname{gcd}\left(p^{s}, n!\right)$. This fact, together with Theorem 1.1, means that, if A is a finite abelian group, then $h_{n}(A)$ is a multiple of $\operatorname{gcd}(|A|, n!)$. In general, Yoshida [9] proved that, if A is a finite abelian group, then for any finite group $G, \sharp \operatorname{Hom}(A, G)$ is a multiple of $\operatorname{gcd}(|A|,|G|)$. If A is cyclic, then this fact is due to Frobenius [5]. By an argument analogous to the proof of [2, Theorem D], Theorem 1.7 implies that, if a Sylow p-subgroup of the abelianization A / A^{\prime} of a finite group A is isomorphic to C given in Theorem 1.7, then for any finite group G, $\sharp \operatorname{Hom}(A, G)$ is a multiple of $\operatorname{gcd}\left(\left|A / A^{\prime}\right|_{p},|G|\right)$. In this context, we state a corollary to Theorem 1.6:

Corollary 1.8 Let A be a finite group such that the type of a Sylow p-subgroup of A / A^{\prime} is $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$. If either $\lambda_{2} \leq 1$ or $\lambda_{2}=2$ and $\lambda_{3}=0$, then $h_{n}(A)$ is a multiple of $\operatorname{gcd}\left(\left|A / A^{\prime}\right|_{p}, n!\right)$.

Notation The notation is standard. Let G be a finite group. We denote by $|G|$ the order of G, and denote by $\exp G$ the exponent of G, that is, the least common multiple of the orders of the elements of G. The center of G is denoted by $Z(G)$. For $x_{1}, \ldots, x_{n} \in G,\left\langle x_{1}, \ldots, x_{n}\right\rangle$ denotes the subgroup generated by x_{1}, \ldots, x_{n}. Given $x, y \in G$, we set $x^{y}=y^{-1} x y$ and $[x, y]=x^{-1} y^{-1} x y$. Let H and K be subgroups of G. We denote by $H \times K$ the direct product of H and K. The commutator subgroup of H and K is denoted by $[H, K]$. We denote by $N_{G}(K)$ and $C_{G}(K)$ the normalizer and the centralizer of K in G, respectively, and set $N_{H}(K)=N_{G}(K) \cap H$ and $C_{H}(K)=C_{G}(K) \cap H$. Suppose that $K \subseteq H$. We write $K \leq H$, and denote by H / K the set of left cosets. The index of K in H is denoted by $|H: K|$.

2. Preliminaries

Let A be a finite group and B a normal subgroup such that A / B is a finite abelian p-group of order p^{s}. We denote by M a normal subgroup of A containing B such that $A / B=\langle\sigma\rangle B / B \times M / B$ with $\sigma \in A$. Let i be a positive integer.

Definition 2.1 For any $R \leq N \leq A$, we define $\mathcal{M}_{A}\left(N, R ; p^{i}\right)$ to be the set of all subgroups C of index p^{i} in A such that $C \cap N=R$.

Lemma 2.2 Let R be a subgroup of index p in B. Assume that $A=N_{A}(R)$ and M / R is abelian. If $|A / M|=p^{[(s+1) / 2]}$, then

$$
\sharp \mathcal{M}_{A}\left(B, R ; p^{[(s+1) / 2]}\right) \equiv \sharp \mathcal{M}_{A}\left(B, R ; p^{[(s+1) / 2]+1}\right) \bmod p^{[s / 2]} .
$$

Proof. Suppose that $|A / M|=p^{[(s+1) / 2]}$. By the assumption, A / M is cyclic. Hence it follows from [3, Proposition 3.3] that for any subgroup C of A with $A=C M$ and $C \cap B=R$, $\not \mathrm{Z}(C /(C \cap M), M /(C \cap M))$ is a multiple of $\operatorname{gcd}\left(p^{[(s+1) / 2]},|A / C|\right)$, where $C /(C \cap M)$ acts on $M /(C \cap M)$ by conjugation. In particular, the number of subgroups C of index $p^{[(s+1) / 2]}$ or $p^{[(s+1) / 2]+1}$ in A with $A=C M$ and $C \cap B=R$ is a multiple of $p^{[(s+1) / 2]}$. Given a proper subgroup C of index p^{i} in $A, A \neq C M$ if and only if $C M \leq\left\langle\sigma^{p}\right\rangle M$ and $\left|\left\langle\sigma^{p}\right\rangle M: C\right|=p^{i-1}$, because $A / B=\langle\sigma\rangle B / B \times M / B$. Hence it suffices to verify that

$$
\begin{equation*}
\sharp \mathcal{M}_{\left\langle\sigma^{p}\right\rangle M}\left(B, R ; p^{[(s+1) / 2]-1}\right) \equiv \sharp \mathcal{M}_{\left\langle\sigma^{p}\right\rangle M}\left(B, R ; p^{[(s+1) / 2]}\right) \bmod p^{[s / 2]} . \tag{1}
\end{equation*}
$$

Clearly, for any nonnegative integer i,

$$
\sharp \mathcal{M}_{\left\langle\sigma^{p}\right\rangle M}\left(B, R ; p^{i}\right)=m_{\left\langle\sigma^{p}\right\rangle M / R}\left(p^{i}\right)-m_{\left\langle\sigma^{p}\right\rangle M / B}\left(p^{i}\right) .
$$

By the assumption, $\left\langle\sigma^{p}\right\rangle M / B$ is a finite abelian group of order p^{s-1}. Obviously, $[(s+1) / 2]=[s / 2]$ if s is even, and $[(s+1) / 2]=[s / 2]+1$ if s is odd. This, combined with Theorem 1.1, yields

$$
m_{\left\langle\sigma^{p}\right\rangle M / B}\left(p^{[(s+1) / 2]-1}\right) \equiv m_{\left\langle\sigma^{p}\right\rangle M / B}\left(p^{[(s+1) / 2]}\right) \bmod p^{[s / 2]}
$$

Since $[A / R, A / R] \leq B / R \leq Z(A / R)$ and $|B / R|=p$, it follows that for any $x \in M$,

$$
\left[\sigma^{p}, x\right] R=\left[\sigma^{p-1}, x\right]^{\sigma} \cdot[\sigma, x] R=\left[\sigma^{p-1}, x\right] \cdot[\sigma, x] R=\cdots=[\sigma, x]^{p} R=R .
$$

Thus $\sigma^{p} R \in Z(A / R)$, and hence $\left\langle\sigma^{p}\right\rangle M / R$ is a finite abelian group of order p^{s}. From Theorem 1.1, we know that

$$
m_{\left\langle\sigma^{p}\right\rangle M / R}\left(p^{[(s+1) / 2]-1}\right) \equiv m_{\left\langle\sigma^{p}\right\rangle M / R}\left(p^{[(s+1) / 2]}\right) \bmod p^{[(s+1) / 2]}
$$

Consequently, Eq. (1) holds. This completes the proof.
Let $I^{p}(M)$ denote the set of all subgroups of M whose indices are powers of p.
Lemma 2.3 Let $K_{0} \in I^{p}(M)$, and suppose that the following conditions are satisfied.
(i) $p^{i+1} \leq p^{i} \cdot\left|N_{B}\left(K_{0}\right): K_{0} \cap B\right| \leq\left|A: K_{0}\right|$.
(ii) Either $p^{i} \cdot\left|N_{M}\left(K_{0}\right): K_{0}\right| \leq\left|A: K_{0}\right|$ or $p^{i} \exp N_{B}\left(K_{0}\right) /\left(K_{0} \cap B\right)<\left|A: K_{0}\right|$.
(iii) $p^{i} \exp N_{M}\left(K_{0}\right) / K_{0} \leq\left|A: K_{0}\right|$.

Then

$$
\begin{equation*}
\sum_{K \sim_{A} K_{0}}\left\{\sharp \mathcal{M}_{A}\left(M, K ; p^{i-1}\right)-\sharp \mathcal{M}_{A}\left(M, K ; p^{i}\right)\right\} \equiv 0 \bmod p^{i}, \tag{2}
\end{equation*}
$$

where the summation runs over all conjugates K of K_{0} in A.
Proof. We may assume that $\mathcal{M}_{A}\left(M, K_{0} ; p^{i}\right) \neq \emptyset$. Let $C \in \mathcal{M}_{A}\left(M, K_{0} ; p^{i}\right)$. Then $\left|C / K_{0}\right|=p^{-i} \cdot\left|A: K_{0}\right|$. Set $L=N_{A}\left(K_{0}\right)$ and $H=N_{M}\left(K_{0}\right)$. Since L / H is cyclic, it follows that C / K_{0} is a cyclic subgroup of L / K_{0} which acts on H / K_{0} by conjugation. Note that $\left|C / K_{0}\right| \geq p, N_{B}\left(K_{0}\right) /\left(K_{0} \cap B\right) \simeq K_{0} N_{B}\left(K_{0}\right) / K_{0} \leq H / K_{0}$, and $\left|H / K_{0}\right| \geq p$. Set $G=C H / K_{0}$ and $C_{2}(G)=[G, G]$. Since $L / N_{B}\left(K_{0}\right)$ is abelian, it follows that $C_{2}(G) \leq K_{0} N_{B}\left(K_{0}\right) / K_{0}$. Hence (i) yields $\left|C_{2}(G)\right| \leq\left|C / K_{0}\right|$. We define inductively $C_{j}(G)=\left[C_{j-1}(G), G\right]$ for each integer $j \geq 3$, so that $\left|C_{j}(G)\right|<$ $\left|C_{j-1}(G)\right|$ if $\left|C_{j-1}(G)\right|>1$. Set $p^{u}=\left|C / K_{0}\right|$. For each integer j with $3 \leq j \leq u+2$, $\exp C_{j}(G) \leq\left|C_{j}(G)\right| \leq p^{u+2-j}$, because $\left|C_{2}(G)\right| \leq p^{u}$. By [2, Lemma 2.5], $C_{2}(G)$ is a proper subgroup of H / K_{0}. Thus (ii) yields $\exp C_{2}(G)<p^{u}$. Since $\exp H / K_{0} \leq p^{u}$ by (iii), it follows from [2, Lemma 2.7] that

$$
\sharp \mathcal{M}_{A}\left(M, K_{0} ; p^{i}\right)=\sharp \mathrm{Z}\left(C / K_{0}, H / K_{0}\right)=\left|H / K_{0}\right| .
$$

Likewise, if $\mathcal{M}_{A}\left(M, K_{0} ; p^{i-1}\right) \neq \emptyset$, then $\sharp \mathcal{M}_{A}\left(M, K ; p^{i-1}\right)=\left|H / K_{0}\right|$. On the other hand, if $\mathcal{M}_{A}\left(M, K_{0} ; p^{i-1}\right)=\emptyset$, then $L=C H$ by [8, Proposition 2.2], which yields

$$
\sum_{K \sim_{A} K_{0}} \sharp \mathcal{M}_{A}\left(M, K ; p^{i}\right)=|A: L| \cdot\left|H: K_{0}\right|=|A: C H| \cdot|C H: C|=p^{i} .
$$

In either case, Eq. (2) holds. This completes the proof.
Lemma 2.4 Let $K \in I^{p}(M)$, and set $R=K \cap B$. Let $C \in \mathcal{M}_{A}\left(M, K ; p^{i}\right)$. Suppose that either $\exp M / B \leq|C / K|$ or $M / B=K B / B \times N / B$ for some subgroup N of M with $\exp N / B \leq|C / K|$. Then there exists a subgroup F of C such that $C / R=F / R \times K / R$ and F / R is cyclic.

Proof. Set $p^{u}=p^{-i} \cdot|A: K|$. Then C / K is a cyclic group of order p^{u}. Choose $c \in C$ so that $C / K=\langle c\rangle K / K$, and recall that $A / B=\langle\sigma\rangle B / B \times M / B$. We may assume that $c \in \sigma^{p^{e}} M$ for some nonnegative integer e. Hence $c=\sigma^{p^{e}} x$ for some $x \in M$. Observe that $c^{p^{u}} B=\sigma^{p^{e+u}} x^{p^{u}} B$ and $c^{p^{u}} x^{-p^{u}} B=\sigma^{p^{e+u}} B \leq\langle\sigma\rangle B \cap M=B$. Thus, if $\exp M / B \leq p^{u}$, then $c^{p^{u}} \in B$, and hence $C / R=\langle c\rangle R / R \times K / R$. Now let N be a subgroup of M containing B with $\exp N / B \leq p^{u}$, and suppose that $M / B=K B / B \times N / B$. Since $c^{p^{u}} x^{-p^{u}} \in B$, it follows that $c^{p^{u}} B=x^{p^{u}} B=y^{p^{u}} B$ for some $y \in K$. Consequently, $C / R=\left\langle c y^{-1}\right\rangle R / R \times K / R$. This completes the proof.

Definition 2.5 For any $K \in I^{p}(M)$, we define $\mathcal{M}_{A}\left(M, B, K ; p^{i}\right)$ to be the set of all subgroups C of index p^{i} in A such that $C \cap B=K \cap B, N_{M}(C \cap M)=N_{M}(K)$, and $(C \cap M) N_{B}(C \cap M)=K N_{B}(K)$. Given $K \in I^{p}(M)$ and $C \in \mathcal{M}_{A}\left(M, B, K ; p^{i}\right)$, we define $\mathcal{M}_{A}\left(M, B, K, C ; p^{i}\right)$ to be the set consisting of all $D \in \mathcal{M}_{A}\left(M, B, K ; p^{i}\right)$ such that $D N_{B}(K)=C N_{B}(K)$.

REmARK 2.6 For any $K \in I^{p}(M)$, there exist $C_{j} \in \mathcal{M}_{A}\left(M, B, K ; p^{i}\right), j=1,2, \ldots$, such that $\mathcal{M}_{A}\left(M, B, K ; p^{i}\right)$ is a disjoint union of $\mathcal{M}_{A}\left(M, B, C_{j} \cap M, C_{j} ; p^{i}\right), j=$ $1,2, \ldots$.

Lemma 2.7 Let $K \in I^{p}(M)$, and set $R=K \cap B$. Let $C \in \mathcal{M}_{A}\left(M, K ; p^{i}\right)$, and suppose that there exists a subgroup F of C such that $C / R=F / R \times K / R$ and F / R is cyclic. If $N_{B}(K) \neq R$, then

$$
\sharp \mathcal{M}_{A}\left(M, B, K, C ; p^{i}\right) \equiv 0 \bmod \operatorname{gcd}\left(p^{-i} \cdot|A: K|,\left|N_{B}(K): R\right|\right) \cdot|K / R: \Phi(K / R)| .
$$

Proof. Suppose that $N_{B}(K) \neq R$. Set $G=C N_{B}(K) / R, C_{1}(G)=N_{B}(K) / R$, and $C_{2}(G)=[G, G]$. We define inductively $C_{j}(G)=\left[C_{j-1}(G), G\right]$ for each integer $j \geq 3$. Set $p^{u}=p^{-i} \cdot|A: K|$, and observe that $p^{u}=|F / R|$. If $u \geq 1$, then we define a subgroup Q of $N_{B}(K)$ containing R to be

$$
Q / R= \begin{cases}N_{B}(K) / R & \text { if }\left|N_{B}(K): R\right| \leq p^{u-1} \\ \Omega_{u}\left(C_{j}(G)\right) & \text { if } p^{u-1}<\left|C_{j}(G)\right| \text { and }\left|C_{j+1}(G)\right| \leq p^{u-1}\end{cases}
$$

where $\Omega_{u}\left(C_{j}(G)\right)$ is the subgroup of $C_{j}(G)$ generated by all elements of order at most p^{u}. (In [2, Definition 2.6], Q / R is denoted by $Q_{u}\left(C N_{B}(K) / R\right)$.) If $u=0$, then we set $Q=R$. By [2, Proposition 2.8], $|Q / R| \geq \operatorname{gcd}\left(p^{u},\left|N_{B}(K): R\right|\right)$ and $\left|\left\langle x_{0} g\right\rangle R / R\right|=p^{u}$ for any $g \in Q$ and $x_{0} R \in C N_{B}(K) / R$ with $\left|\left\langle x_{0}\right\rangle R / R\right|=p^{u}$ and $\left\langle x_{0}\right\rangle R \cap N_{B}(K)=R$. We have $[Q / R,(D \cap M) / R]=1$ for each $D \in \mathcal{M}_{A}\left(M, B, K ; p^{i}\right)$, because

$$
Q / R \leq N_{B}(K) / R=N_{B}(D \cap M) / R=C_{B / R}((D \cap M) / R)
$$

There exists an element z of $N_{B}(K)$ such that $z R \in Z\left(N_{A}(R) / R\right) \cap N_{B}(K) / R$ and $|\langle z\rangle R / R|=p$. Now let S be the direct product of Q / R and an elementary abelian p-group $\left\langle g_{1}\right\rangle \times\left\langle g_{2}\right\rangle \times \cdots \times\left\langle g_{k}\right\rangle$, where $p^{k}=|K / R: \Phi(K / R)|$, and define a monomorphism φ from S to the symmetric group on the set $\mathcal{M}_{A}\left(M, B, K, C ; p^{i}\right)$ by

$$
\left(\left\langle x_{0}, x_{1}, \ldots, x_{k}\right\rangle R\right)^{\varphi\left(g R, g_{1}^{e_{1}}, \ldots, g_{k}^{e_{k}}\right)}=\left\langle x_{0} g, x_{1} z^{e_{1}}, \ldots, x_{k} z^{e_{k}}\right\rangle R
$$

where $\left\langle x_{0}, x_{1}, \ldots, x_{k}\right\rangle R \in \mathcal{M}_{A}\left(M, B, K, C ; p^{i}\right)$ such that $F N_{B}(K)=\left\langle x_{0}\right\rangle N_{B}(K)$ and $\left\langle x_{1}, \ldots, x_{k}\right\rangle N_{B}(K)=K N_{B}(K)$. Then S acts on $\mathcal{M}_{A}\left(M, B, K, C ; p^{i}\right)$ via the action φ. Since this action is semiregular (see [2, Lemma 3.1]), we conclude that

$$
\sharp \mathcal{M}_{A}\left(M, B, K, C ; p^{i}\right) \equiv 0 \bmod |Q / R| \cdot|K / R: \Phi(K / R)| .
$$

This completes the proof.
Remark 2.8 Let $K \in I^{p}(M)$, and set $R=K \cap B$. If $N_{B}(K) \neq R$, then by an argument analogous to the proof of Lemma 2.7, we have

$$
\begin{equation*}
\sharp \mathcal{M}_{A}\left(M, B, K ; p^{i}\right) \equiv 0 \bmod |K / R: \Phi(K / R)| . \tag{3}
\end{equation*}
$$

We need one more lemma.

Lemma 2.9 Let K and T be subgroups of M such that $R:=K \cap B=T \cap B \in I^{p}(M)$, $N_{M}(K)=N_{M}(T)$, and $K N_{B}(K)=T N_{B}(T)$. Set $p^{k}=\exp N_{M}(K) / K$. Assume that $\exp M / B \leq p^{2}$. Then either $p^{k} \leq p \exp N_{B}(T) / R$ or $p^{k} \leq \exp N_{M}(T) / T$.

Proof. By the assumption,

$$
K N_{B}(K) / R=K / R \times N_{B}(K) / R=T / R \times N_{B}(T) / R=T N_{B}(T) / R
$$

Choose $x \in N_{M}(K)$ so that $|\langle x\rangle K / K|=p^{k}$. If $\left|\langle x\rangle K N_{B}(K) / K N_{B}(K)\right| \leq p$, then $p^{k} \leq p \exp N_{B}(T) / R$. If $\left|\langle x\rangle K N_{B}(K) / K N_{B}(K)\right|=p^{2}$, then $x^{p^{2}} \in N_{B}(K)=N_{B}(T)$ and $|\langle x\rangle T / T|=p^{k}$. Hence we have $p^{k} \leq \exp N_{M}(T) / T$. This completes the proof.

3. The proof of Theorem 1.6

Recall that $|A / B|=p^{s}$. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ be the type of A / B. We show that, if either $\lambda_{2} \leq 1$ or $\lambda_{2}=2$ and $\lambda_{3}=0$, then A admits $\mathbf{C}\left(p^{s}\right)$ and that, if $\lambda_{2}=2$, $\lambda_{3}=1$, and $\lambda_{1} \geq \lambda_{2}+\lambda_{3}+\cdots$, then A admits $\mathbf{C P}\left(p^{s}\right)$.

The proof of the following proposition is analogous to that of [8, Theorem 1.1].
Proposition 3.1 Assume that every subgroup C of A admits $\mathbf{C P}(|C /(C \cap B)|)$. Then A admits $\mathbf{C}\left(p^{s}\right)$.

Proof. Suppose that $i \leq[(s+1) / 2]$, and let q be a positive integer such that $\operatorname{gcd}(p, q)=1$. In the statement of [8, Proposition 3.2], we may remove the assumption that A / B is elementary abelian, if we assume that every subgroup C of A admits $\mathbf{C P}(|C /(C \cap B)|)$. Hence the statements (1) and (2) of [8, Proposition 3.2] hold under the assumption of this proposition. In particular,

$$
\begin{equation*}
m_{A}\left(q p^{i-1}\right)-m_{A}\left(q p^{i}\right) \equiv \sum_{C \in \mathcal{M}_{A}(q)} \nu_{i}^{i}(C) \bmod p^{i} \tag{4}
\end{equation*}
$$

where $\mathcal{M}_{A}(q)$ is the set of all subgroups of index q in A and $\nu_{i}^{i}(C)$ are integers determined by $C \in \mathcal{M}_{A}(q)$ (see [8, Definition 3.1]). Let $C \in \mathcal{M}_{A}(q)$. Then $C /(C \cap$ $B) \simeq A / B$. By the above congruence with $A=C$ and $q=1$, we have

$$
m_{C}\left(p^{i-1}\right)-m_{C}\left(p^{i}\right) \equiv \nu_{i}^{i}(C) \bmod p^{i}
$$

Hence the assumption implies that $\nu_{i}^{i}(C) \equiv 0 \bmod p^{i}$. This, combined with Eq. (4), yields (C1). Likewise, (C2) holds. We have thus proved the proposition.

By Proposition 3.1, it suffices to verify that, if either $\lambda_{2} \leq 1$ or $\lambda_{2}=2>\lambda_{3}$ and $\lambda_{1} \geq \lambda_{2}+\lambda_{3}+\cdots$, then A admits $\mathbf{C P}\left(p^{s}\right)$ (see the end of this section). We owe the first half of the proof to [8, Proposition 2.1]:

Proposition 3.2 Let R_{0} be a subgroup of B with $N_{B}\left(R_{0}\right)=R_{0}$. If $i \leq[(s+1) / 2]$, then

$$
\sum_{R \sim_{A} R_{0}}\left\{\sharp \mathcal{M}_{A}\left(B, R ; p^{i-1}\right)-\sharp \mathcal{M}_{A}\left(B, R ; p^{i}\right)\right\} \equiv 0 \bmod p^{i} .
$$

Moreover,

$$
\sum_{R \sim_{A} R_{0}}\left\{\sharp \mathcal{M}_{A}\left(B, R ; p^{[(s+1) / 2]}\right)-\sharp \mathcal{M}_{A}\left(B, R ; p^{[(s+1) / 2]+1}\right)\right\} \equiv 0 \bmod p^{[s / 2]} .
$$

The following proposition completes the second half of the proof.

Proposition 3.3 Assume that either $\lambda_{2} \leq 1$ or $\lambda_{1}=[(s+1) / 2]$ and $\lambda_{2}=2>\lambda_{3}$. Let $\widetilde{\mathcal{M}}_{A}\left(B ; p^{i}\right)$ be the set of all subgroups C of index p^{i} in A with $N_{B}(C \cap B) \neq C \cap B$. Then

$$
\sharp \widetilde{\mathcal{M}}_{A}\left(B ; p^{[(s+1) / 2]}\right) \equiv \sharp \widetilde{\mathcal{M}}_{A}\left(B ; p^{[(s+1) / 2]+1}\right) \bmod p^{[s / 2]} .
$$

Moreover, if $i \leq[(s+1) / 2]$ and $\lambda_{2} \leq 1$, then

$$
\sharp \widetilde{\mathcal{M}}_{A}\left(B ; p^{i-1}\right) \equiv \sharp \widetilde{\mathcal{M}}_{A}\left(B ; p^{i}\right) \bmod p^{i} .
$$

Proof. For each $K \in I^{p}(M)$ with $N_{B}(K \cap B) \neq K \cap B$, we have

$$
K N_{B}(K) /(K \cap B)=N_{K N_{B}(K \cap B) /(K \cap B)}(K /(K \cap B)) \neq K /(K \cap B)
$$

whence $N_{B}(K) \neq K \cap B$. Suppose that $1 \leq i \leq[(s+1) / 2]+1$. Let \mathcal{X} be the set of all $K \in I^{p}(M)$ with $N_{B}(K \cap B) \neq K \cap B$ and \mathcal{Y} the set consisting of all $K \in \mathcal{X}$ which satisfy the following conditions.
(i) $p^{i} \cdot\left|N_{B}(K): K \cap B\right| \leq|A: K|$.
(ii) Either $p^{i} \cdot\left|N_{M}(K): K\right| \leq|A: K|$ or $p^{i} \exp N_{B}(K) /(K \cap B)<|A: K|$.
(iii) $p^{i} \exp N_{M}(K) / K \leq|A: K|$.

Obviously, both \mathcal{X} and \mathcal{Y} are closed under conjugation. Given $K_{0} \in \mathcal{Y}$, it follows from Lemma 2.3 that

$$
\sum_{K \sim_{A} K_{0}}\left\{\sharp \mathcal{M}_{A}\left(M, K ; p^{i-1}\right)-\sharp \mathcal{M}_{A}\left(M, K ; p^{i}\right)\right\} \equiv 0 \bmod p^{i} .
$$

Assume that M / B is of type $\left(\lambda_{2}, \lambda_{3}, \ldots\right)$. If $\lambda_{1}=[(s+1) / 2]$, then by Lemma 2.2 ,

$$
\sharp \mathcal{M}_{A}\left(B, R ; p^{[(s+1) / 2]}\right) \equiv \sharp \mathcal{M}_{A}\left(B, R ; p^{[(s+1) / 2]+1}\right) \bmod p^{[s / 2]}
$$

for any subgroup R of index p in B such that $A=N_{A}(R)$ and M / R is abelian. For each $K \in \mathcal{X}-\mathcal{Y}$ with $|A: K| \geq p^{i-1}$, we consider the two conditions

$$
\begin{equation*}
\sharp \mathcal{M}_{A}\left(M, B, K ; p^{i-1}\right) \equiv \sharp \mathcal{M}_{A}\left(M, B, K ; p^{i}\right) \equiv 0 \bmod p^{s-i+1} \tag{5}
\end{equation*}
$$

and

$$
\begin{array}{r}
\sum_{a N_{A}(R) \in A / N_{A}(R)}\left\{\sharp \mathcal{M}_{A}\left(M, B,{ }^{a} K ; p^{[(s+1) / 2]}\right)-\sharp \mathcal{M}_{A}\left(M, B,{ }^{a} K ; p^{[(s+1) / 2]+1}\right)\right\} \tag{6}\\
\equiv 0 \bmod p^{[s / 2]},
\end{array}
$$

where $R=K \cap B$. (Note that $s=[s / 2]+[(s+1) / 2]$.) Given $K \in \mathcal{X}$ and $C \in$ $\mathcal{M}_{A}\left(M, B, K ; p^{i}\right)$, it follows from Lemma 2.9 that $K \in \mathcal{Y}$ if and only if $C \cap M \in \mathcal{Y}$. Hence it suffices to verify that for any $K \in \mathcal{X}-\mathcal{Y}$ with $|A: K| \geq p^{i-1}$, Eq. (5)
holds if $\lambda_{2} \leq 1$, and either Eq. (5) or Eq. (6) holds if $\lambda_{1}=[(s+1) / 2], \lambda_{2}=2>\lambda_{3}$, $i=[(s+1) / 2]+1$, and $R(=K \cap B)$ does not satisfy the assumptions of Lemma 2.2.

Suppose that $K \in \mathcal{X}-\mathcal{Y}$ with $|A: K| \geq p^{i-1}$, and set $R=K \cap B$. We complete the proof by three steps.

Step 1. We first assume that $|A: K|=p^{i-1}$. Obviously, $\mathcal{M}_{A}\left(M, B, K ; p^{i}\right)=\emptyset$. By the assumption, we have $\left|N_{B}(K): R\right| \geq p>p^{-i+1}|A: K|$. Moreover,

$$
|A: K| \cdot|K / R: \Phi(K / R)| \geq p^{-1} \cdot|A: R| \geq p^{s}
$$

Hence it follows from Lemma 2.7 that $\sharp \mathcal{M}_{A}\left(M, B, K ; p^{i-1}\right) \equiv 0 \bmod p^{s-i+1}$.
Step 2. We next assume that $p^{i} \cdot\left|N_{B}(K): R\right| \geq|A: K| \geq p^{i}$ and one of the following conditions are satisfied.
(i) $|B: R| \geq p^{2}$.
(ii) Either $|A: K|=p^{i}$ and $\exp K / R \leq p$ or $|A: K|=p^{i+1}$ and $\exp M / B \leq p$.

By the assumption, $|A: K| \cdot|K / R: \Phi(K / R)| \geq p^{s+1}$. Hence, if $|A: K|=p^{i}$, then Eq. (5) follows from Eq. (3). Suppose now that $|A: K| \geq p^{i+1}$. If $|B: R| \geq p^{2}$, $\exp K / R \leq p$, and $|A: K|=p^{i+1}$, then

$$
p^{i+1} \cdot|K / R: \Phi(K / R)|=|A: K| \cdot|K / R: \Phi(K / R)|=|A: R| \geq p^{s+2}
$$

and hence Eq. (5) follows from Eq. (3). Excepting the case where $|B: R| \geq p^{2}$, $\exp K / R \leq p$, and $|A: K|=p^{i+1}$, Eq. (5) follows from Lemmas 2.4 and 2.7. Thus Eq. (5) holds in any case.

Step 3. In the situation apart from the assumptions for Steps 1 and 2, the remaining cases are as follows.
(a) $p^{i}=p^{i-1} \cdot|B: R|=|A: K|$ and $\exp K / R=p^{2}$.
(b) $p^{i+1}=p^{i} \cdot|B: R|=|A: K| \leq p^{i-1} \cdot\left|N_{M}(K): K\right|$ and $\exp M / B=p^{2}$.
(c) $p^{i+1} \cdot\left|N_{B}(K): R\right| \leq|A: K| \leq p^{i-1} \exp N_{M}(K) / K$.
(In the cases (a), (b), and (c), we assume that $|A: K|=p^{i},|A: K|=p^{i+1}$, and $|A: K| \geq p^{i+2}$, respectively. By the hypothesis, $K \in \mathcal{X}-\mathcal{Y}$, which is reflected in the conditions.) Obviously, $\exp N_{M}(K) / K \leq p^{2} \exp N_{B}(K) / R$. If either $\exp M / B \leq p$ or $\exp K / R=p^{2}$, then $x^{p} \in K N_{B}(K)$ for any $x \in N_{M}(K)$, which implies that $\exp N_{M}(K) / K \leq p \exp N_{B}(K) / R$. Hence the case (c) is rewritten as
$(\mathrm{c})^{\prime} p^{i+1} \cdot\left|N_{B}(K): R\right|=|A: K|=p^{i-1} \exp N_{M}(K) / K$, $\exp M / B=p^{2}$, and $\exp K / R \leq p$.

In this case, if $|B: R| \geq p^{2}$, then Lemmas 2.4 and 2.7 yield Eq. (5). Hence we may restrict the case (c) to the following.
(d) $p^{i+2}=p^{i+1} \cdot|B: R|=|A: K|=p^{i-1} \exp N_{M}(K) / K$, $\exp M / B=p^{2}$, and $\exp K / R \leq p$.

Note that $\exp M / B=p^{2}$ in the cases (a), (b), and (d). Hence Eq. (5) already holds in any case if $\lambda_{2} \leq 1$. We assume that $\lambda_{1}=[(s+1) / 2], \lambda_{2}=2>\lambda_{3}$, and $i=[(s+1) / 2]+1$. If K satisfies one of the conditions in the cases (a), (b), and (d), then by an argument analogous to Step 2, we have

$$
\sharp \mathcal{M}_{A}\left(M, B, K ; p^{\lambda_{1}}\right) \equiv \sharp \mathcal{M}_{A}\left(M, B, K ; p^{\lambda_{1}+1}\right) \equiv 0 \bmod p^{[s / 2]-1} .
$$

Moreover, if $A \neq N_{A}(R)$, then Eq. (6) holds in the cases (a), (b), and (d). Thus we may assume that $A=N_{A}(R)$. If $|B: R|=p$ and M / R is abelian, then R satisfies the assumptions of Lemma 2.2. We conclude the proof with the assertion that M / R is abelian in each of the cases (a), (b), and (d). Recall that $|A: M|=p^{\lambda_{1}}$.
(a) Assume that $p^{\lambda_{1}+1}=p^{\lambda_{1}} \cdot|B: R|=|A: K|$. We have $|M / K|=p=|B / R|$, whence $M / R=K B / R$. Since $B / R \leq Z(A / R)$, it follows that M / R is abelian.
(b) Assume that $p^{\lambda_{1}+2}=|A: K| \leq p^{\lambda_{1}} \cdot\left|N_{M}(K): K\right| \leq p^{\lambda_{1}} \cdot|M: K|=p^{\lambda_{1}+2}$. Then $|M / K|=p^{2}$ and $M=N_{M}(K)$. Since M / B and M / K are abelian, it turns out that

$$
[M / R, M / R] \leq B / R \cap K / R=R / R
$$

Thus M / R is abelian.
(d) Assume that $p^{\lambda_{1}+3}=|A: K|=p^{\lambda_{1}} \exp N_{M}(K) / K \leq p^{\lambda_{1}}|M: K|=p^{\lambda_{1}+3}$. Then $|M / K|=p^{3}, M=N_{M}(K)$, and M / K is a cyclic group of order p^{3}. Consequently, M / R is abelian.

This completes the proof.

Remark 3.4 Assume that $\lambda_{1} \geq \lambda_{2}+\lambda_{3}+\cdots$. Then $\lambda_{1} \geq[(s+1) / 2]$. If $\lambda_{1} \geq$ $[(s+1) / 2]+1$, then by Corollary $1.5, A$ admits $\mathbf{C}\left(p^{s}\right)$. If $\lambda_{1}=[(s+1) / 2]$ and i is a positive integer less than or equal to $[(s+1) / 2]$, then by Theorem 1.4,

$$
m_{A}\left(q p^{i-1}\right) \equiv m_{A}\left(q p^{i}\right) \bmod p^{i}
$$

for any positive integer q such that $\operatorname{gcd}(p, q)=1$.
We are now in a position to prove an analogy of Theorem 1.6 stated at the beginning of this section.

Theorem 3.5 Let A be a finite group and B a normal subgroup such that A / B is a finite abelian p-group of order p^{s}. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ be the type of A / B. If either $\lambda_{2} \leq 1$ or $\lambda_{2}=2$ and $\lambda_{3}=0$, then A admits $\mathbf{C}\left(p^{s}\right)$. If $\lambda_{2}=2, \lambda_{3}=1$, and $\lambda_{1} \geq \lambda_{2}+\lambda_{3}+\cdots$, then A admits $\mathbf{C P}\left(p^{s}\right)$.

Proof. Assume that either $\lambda_{2} \leq 1$ or $\lambda_{2}=2>\lambda_{3}$ and $\lambda_{1} \geq \lambda_{2}+\lambda_{3}+\cdots$. Then by Propositions 3.2 and 3.3 and Remark 3.4, A admits $\mathbf{C P}\left(p^{s}\right)$. Moreover, if either $\lambda_{2} \leq 1$ or $\lambda_{2}=2$ and $\lambda_{3}=0$, then A satisfies the assumption of Proposition 3.1, whence A admits $\mathbf{C}\left(p^{s}\right)$. This completes the proof.

Proof of Theorem 1.6. The assertions follow from Theorem 3.5 with $B=A^{\prime}$.

REFERENCES

1. T. Asai and Y. Takegahara, On the number of crossed homomorphisms, Hokkaido Math. J. 28 (1999), 535-543.
2. T. Asai and Y. Takegahara, $|\operatorname{Hom}(A, G)|$ IV, J. Algebra 246 (2001), 543-563.
3. T. Asai and T. Yoshida, $|\operatorname{Hom}(A, G)|$, II, J. Algebra 160 (1993), 273-285.
4. L. M. Butler, A unimodality result in the enumeration of subgroups of a finite abelian group, Proc. Amer. Math. Soc. 101 (1987), 771-775.
5. G. Frobenius, Verallgemeinerung des Sylowschen Satzes, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin (1895), 981993; in :"Gesammelte Abhandlungen," Bd. II, pp. 664-676, Springer-Verlag, Berlin, 1968.
6. P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. (2) 36 (1933), 29-95.
7. Y. Takegahara, On the Frobenius numbers of symmetric groups, J. Algebra 221 (1999), 551-561.
8. Y. Takegahara, The number of subgroups of a finite group, J. Algebra 227 (2000), 783-796.
9. T. Yoshida, $|\operatorname{Hom}(A, G)|$, J. Algebra 156 (1993), 125-156.

[^0]: 2000 Mathematics Subject Classification: Primary 20B05; Secondary 20D15, 20D40, 20 E07.
 Keyword : finite p-group; complement; semidirect product; subgroup; homomorphism.

