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Abstract

For families of hypersurfaces with singular points, a classical definition of an envelope
is vague. In order to define an envelope for a family of hypersurfaces with singular points,
we consider r-parameter families of frontals and of Legendre mappings in the unit tangent
bundle over the Euclidean space. We define an envelope for the r-parameter family of
Legendre mappings. Then the envelope is also a frontal. We investigate properties of
the envelopes. As an application, we give a condition that the projection of a singular
solution of a first order partial differential equation is an envelope.

1 Introduction

Envelopes are classical object in the differential geometry. There are a lot of applications of
envelopes to differential geometry, differential equations and physics, for instance [4, 5, 7, 8,
9, 12, 15, 16, 18, 21, 23]. An envelope of a family of surfaces is a surface that is ”tangent”
to each member of the family at some point. If the surfaces are regular, then the tangent is
well-defined. However, a definition of an envelope is vague for singular surfaces (surfaces with
singular points). In [22], a definition and properties of an envelope for a one-parameter family
of Legendre curves in the unit tangent bundle over R2 were given. In this paper, we clarify
a definition of an envelope for a family of singular surfaces. As singular surfaces, we consider
frontals and Legendre mappings in the unit tangent bundle over Rn+1. The basic results on the
singularity theory see [1, 2, 4, 13, 14, 17].

We consider r-parameter families of Legendre mappings and define an envelope in §3. Then
the envelope of an r-parameter family of Legendre mappings is also a frontal. We give a
necessary and sufficient condition that the r-parameter family of Legendre mappings has an
envelope, see Theorem 3.6 as the envelope theorem. Moreover, we give relations between
envelopes of a classical definition and of a family of Legendre mappings. As an application,
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we give a condition that the projection of a singular solution of a first order partial differential
equation is an envelope by using the envelope theorem in §4.

All maps and manifolds considered here are differentiable of class C∞.
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constant encouragements. The author would also like to thank Professor Kentaro Saji for
valuable discussions and the referee for useful comments that improved the original manuscript.
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2 Preliminaries

Let Rn+1 be the (n + 1)-dimensional Euclidean space with the inner product x · y = x1y1 +
· · · + xn+1yn+1, where x = (x1, . . . , xn+1), y = (y1, . . . , yn+1) ∈ Rn+1. The norm of x ∈ Rn+1 is
given by |x| =

√
x · x.

Let F : W × Λ → R be an r-parameter family of smooth functions, where W and Λ are
domains in Rn+1 and in Rr, respectively. Then one of the classical definition of an envelope EI

is as follows, see for instance [3, 4, 11]:

Definition 2.1 The envelope of the family F is the discriminant set of F , that is, the set of
points given by

EI = {x ∈ Rn+1| for some λ ∈ Λ, F (x, λ) = Fλj
(x, λ) = 0, j = 1, . . . , r}.

If F (x, λ) = Fλj
(x, λ) = 0, j = 1, . . . , r, we say that x ∈ EI with respect to λ = (λ1, . . . , λr).

Here Fλj
(x, λ) = (∂F/∂λj)(x, λ).

Example 2.2 Let F : R3 × R → R, F (x, y, z, λ) = (x − λ)3 − y2. Then F = 0 is the image
of the cuspidal edge for each fixed λ ∈ R, see Figure 1 and Example 3.8. The definition and
properties of cuspidal edges see [10, 20]. Since Fλ(x, y, z, λ) = −3(x− λ)2, the envelope of the
family F is given by EI = {(λ, 0, z)} = xz-plane.

Example 2.3 Let F : R3×R → R, F (x, y, z, λ) = x3−(y−λ)2. Then F = 0 is the image of the
cuspidal edge for each fixed λ ∈ R, see Figure 2 and Example 3.9. Since Fλ(x, y, z, λ) = 2(y−λ),
the envelope of the family F is given by EI = {(0, λ, z)} = yz-plane.

Figure 1. Figure 2.
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However, in the sense of the limit tangent plane of the cuspidal edge, yz-plane is not tangent
to the cuspidal edge. Therefore, we would like to distinguish as envelopes, see Examples 3.8
and 3.9.

Let U ⊂ Rn be a domain in Rn. We say that (f, ν) : U → Rn+1×Sn is a Legendre mapping if
(f, ν)∗θ = 0, where θ is a canonical contact form on the unit tangent bundle T1Rn+1 = Rn+1×Sn

over Rn+1 (cf. [1, 2]). Moreover, f : U → Rn+1 is a frontal (respectively, a front) if there exists
a smooth mapping ν : U → Sn such that (f, ν) is a Legendre mapping (respectively, a Legendre
immersion). The condition (f, ν)∗θ = 0 is equivalent to df(u) · ν(u) = 0 for all u ∈ U . If we
denote f(u) = (f1(u), . . . , fn+1(u)), ν(u) = (ν1(u), . . . , νn+1(u)) and u = (u1, . . . , un), then the
condition df(u) · ν(u) = 0 for all u ∈ U is equivalent to

fui
(u) · ν(u) = f1ui

(u)ν1(u) + · · ·+ fn+1ui
(u)νn+1(u) = 0,

for all u ∈ U and i = 1, . . . , n.

The parallel of a Legendre mapping (f, ν) : U → Rn+1 × Sn is defined by fk : U →
Rn+1, fk(u) = f(u) + kν(u), where k ∈ R. Then it is easy to see that (fk, ν) : U → Rn+1 × Sn

is also a Legendre mapping for each fixed k ∈ R.

3 Envelopes of families of Legendre mappings

We say that (f, ν) : U × Λ → Rn+1 × Sn is an r-parameter family of Legendre mapping if
(f(·, λ), ν(·, λ)) : U → Rn+1 × Sn is a Legendre mapping for each λ ∈ Λ ⊂ Rr.

Let (f, ν) : U × Λ → Rn+1 × Sn be an r-parameter family of Legendre mappings. Let
V ⊂ Rn be an open subset and e : V → U × Λ, e(p) = (u(p), λ(p)) be a smooth mapping. We
denote E = f ◦ e : V → Rn+1.

Definition 3.1 We call E an envelope (and e a pre-envelope) for the r-parameter family of
Legendre mappings (f, ν), when the following conditions are satisfied.

(i) The set of regular points of λ : V n → Λr is dense in V . (The Variability Condition.)

(ii) For all p ∈ V and i = 1, . . . , n, Epi(p) · ν(e(p)) = 0. (The Tangency Condition.)

The definition of the envelope is a generalisation of the definition of the envelope of a
one-parameter family of Legendre curves in [22]. By definition, we have the following.

Proposition 3.2 Let (f, ν) : U × Λ → Rn+1 × Sn be an r-parameter family of Legendre
mappings. Suppose that e : V → U × Λ is a pre-envelope and E = f ◦ e : V → Rn+1 is
an envelope of (f, ν). Then E is a frontal. More precisely, (E, ν ◦ e) : V → Rn+1 × Sn is a
Legendre mapping.

Proof. Since the tangency condition, we have Epi(p) · ν(e(p)) = 0 for all p ∈ V . It follows that
dE(p) · (ν ◦ e)(p) = 0 for all p ∈ V . That is, (E, ν ◦ e) : V → Rn+1 ×Sn is a Legendre mapping.
2

Proposition 3.3 Let (f, ν) : U × Λ → Rn+1 × Sn be an r-parameter family of Legendre
mappings. Suppose that e : V → U × Λ is a pre-envelope and E = f ◦ e is an envelope of
(f, ν). Then we have the following.
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(1) e : V → U × Λ is also a pre-envelope of (f,−ν) and E = f ◦ e is also an envelope of
(f,−ν).

(2) e : V → U × Λ is also a pre-envelope of (−f, ν) and −E = −f ◦ e is an envelope of
(−f, ν).

Proof. (1) By definition, (f,−ν) is also an r-parameter family of Legendre mappings. Since e
is a pre-envelope of (f, ν), Epi(p) · (−ν(e(p)) = −Epi(p) · ν(e(p)) = 0 for all p ∈ V . Hence, e is
also a pre-envelope and E = f ◦ e is also an envelope of (f,−ν).

(2) By similarly, we have the result. 2

Remark 3.4 By Proposition 3.3 (1), we may define an envelope for an r-parameter family of
Legendre mapping in PT ∗Rn+1.

Remark 3.5 As the same definition, we can define an envelope of a family of Legendre map-
pings in the unit tangent bundle over a smooth manifold. Especially, we can define envelopes
not only of families of Legendre mappings in the unit spherical bundle (cf. [19]), but also of
families of frontals in the hyperbolic or de-Sitter space (cf. [6]).

We give a necessary and sufficient condition that the r-parameter family of Legendre map-
pings has an envelope. We call this result the envelope theorem (cf. [11, 22]).

Theorem 3.6 (The Envelope Theorem) Let (f, ν) : U×Λ → Rn+1×Sn be an r-parameter
family of Legendre mappings, and let e : V → U × Λ be a smooth mapping satisfying the
variability condition. Suppose that n ≥ r. Then e is a pre-envelope of (f, ν) (and E is an
envelope) if and only if fλj

(e(p)) · ν(e(p)) = 0 for all p ∈ V and j = 1, . . . , r.

Proof. Suppose that e is a pre-envelope of (f, ν). We denote f = (f1, . . . , fn+1), ν =
(ν1, . . . , νn+1). By a direct calculation,

Epi(p) =
∂

∂pi
(f ◦ e(p))

=
( n∑

k=1

f1uk
(e(p))ukpi(p) +

r∑
j=1

f1λj
(e(p))λjpi(p), . . . ,

n∑
k=1

fn+1uk
(e(p))ukpi(p) +

r∑
j=1

fn+1λj
(e(p))λjpi(p)

)
.

Since Epi(p) · ν(e(p)) = 0 for all p ∈ V and i = 1, . . . , n, and (f, ν) is an r-parameter family of
Legendre mappings, we have

(fλ1(e(p)) · ν(e(p)))λ1pi(p) + · · ·+ (fλr(e(p)) · ν(e(p)))λrpi(p) = 0,

for all p ∈ V and i = 1, . . . , n. It follows that λ1p1(p) · · · λrp1(p)
... · · · ...

λ1pn(p) · · · λrpn(p)


 fλ1(e(p)) · ν(e(p))

...
fλr(e(p)) · ν(e(p))

 =

 0
...
0

 .

By the assumption n ≥ r and the variability condition, we have fλj
(e(p)) · ν(e(p)) = 0 for all

p ∈ V and j = 1, . . . , r.
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Conversely, suppose that fλj
(e(p)) · ν(e(p)) = 0 for all p ∈ V and j = 1, . . . , r. By a direct

calculation, we have

Epi(p) · ν(e(p)) =

(
n∑

k=1

f1uk
(e(p))ukpi(p) +

r∑
j=1

f1λj
(e(p))λjpi(p)

)
· ν1(e(p))

+ · · ·+

(
n∑

k=1

fn+1uk
(e(p))ukpi(p) +

r∑
j=1

fn+1λj
(e(p))λjpi(p)

)
· νn+1(e(p))

=
n∑

k=1

ukpi(p)fuk
(e(p)) · ν(e(p)) +

r∑
j=1

λjpi(p)fλj
(e(p)) · ν(e(p))

= 0

for all p ∈ V and i = 1, . . . , n. It follows that e is a pre-envelope of (f, ν). 2

Remark 3.7 In Theorem 3.6, the assumption n ≥ r does not need to prove the converse.

Example 3.8 Let (f, ν) : R2 × R → R3 × S2 be

f(u, v, λ) = (u2 + λ, u3, v), ν(u, v, λ) =
1√

9u2 + 4
(3u,−2, 0).

Then (f, ν) is a one-parameter family of Legendre mappings (immersions) and f is the cuspidal
edge for each fixed λ ∈ R. Since fλ(u, v, λ) · ν(u, v, λ) = 3u/

√
9u2 + 4, if we take e : R2 →

R2 ×R, e(p, q) = (0, p, q), then the variability condition holds and fλ(e(p, q)) · ν(e(p, q)) = 0 for
all (p, q) ∈ R2. By Theorem 3.6, e is a pre-envelope and E(p, q) = f ◦ e(p, q) = (q, 0, p) is an
envelope. Hence xz-plane is an envelope of (f, ν), see Example 2.2.

Example 3.9 Let (f, ν) : R2 × R → R3 × S2 be

f(u, v, λ) = (u2, u3 + λ, v), ν(u, v, λ) =
1√

9u2 + 4
(3u,−2, 0).

Then (f, ν) is a one-parameter family of Legendre mappings (immersions) and f is the cuspidal
edge for each fixed λ ∈ R. Since fλ(u, v, λ) · ν(u, v, λ) = −2/

√
9u2 + 4 ̸= 0, (f, ν) does not have

an envelope by Theorem 3.6. Hence yz-plane is not an envelope of (f, ν), see Example 2.3.

Definition 3.10 We say that a map Φ : Ũ × Λ̃ → U ×Λ is an r-parameter family of parameter
change if Φ is a diffeomorphism and given by the form Φ(q, k) = (ϕ(q, k), φ(k)).

Proposition 3.11 Let (f, ν) : U × Λ → Rn+1 × Sn be an r-parameter family of Legendre
mappings. Suppose that n ≥ r, e : V → U × Λ is a pre-envelope, E = f ◦ e is an envelope
and Φ : Ũ × Λ̃ → U × Λ is an r-parameter family of parameter change. Then (f̃ , ν̃) =

(f ◦ Φ, ν ◦ Φ) : Ũ × Λ̃ → Rn+1 × Sn is also an r-parameter family of Legendre mappings.

Moreover, Φ−1 ◦ e : V → Ũ × Λ̃ is a pre-envelope and E is also an envelope of (f̃ , ν̃).

Proof. By the chain rule, we have d(f ◦ Φ) · ν ◦ Φ = df(Φ)dΦ · ν(Φ) = 0 for fixed k ∈ Λ̃.

Therefore, (f̃ , ν̃) is also an r-parameter family of Legendre mappings. Since the form of Φ,
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there exists a smooth map ψ : U × Λ → Ũ such that Φ−1(u, λ) = (ψ(u, λ), φ−1(λ)). It follows
that Φ−1 ◦ e satisfies the variability condition. By a direct calculation, we have

f̃kj(q, k) =
∂

∂kj
f ◦ Φ(q, k)

=
( n∑

i=1

f1ui
(Φ(q, k))ϕikj(q, k) +

r∑
ℓ=1

f1λℓ
(Φ(q, k))φℓkj(k), · · · ,

n∑
i=1

fn+1ui
(Φ(q, k))ϕikj(q, k) +

r∑
ℓ=1

fn+1λℓ
(Φ(q, k))φℓkj(k)

)
for all (q, k) ∈ Ũ × Λ̃ and j = 1, . . . , r. Then

f̃kj(Φ
−1◦e(p))·ν̃(Φ−1◦e(p)) = φ1kj(λ(p))fλ1(e(p))·ν(e(p))+· · ·+φrkj(λ(p))fλr(e(p))·ν(e(p)) = 0

for all p ∈ V and j = 1, . . . , r. It follows that Φ−1 ◦ e is a pre-envelope of (f̃ , ν̃), and hence

f̃ ◦ Φ−1 ◦ e = f ◦ Φ ◦ Φ−1 ◦ e = f ◦ e = E is also an envelope of (f̃ , ν̃). 2

Let (f, ν) : U ×Λ → Rn+1×Sn be an r-parameter family of Legendre mappings. We define
the parallel of the r-parameter family of Legendre mappings by fk : U ×Λ → Rn+1, fk(u, λ) =
f(u, λ) + kν(u, λ), where k ∈ R. It is easy to see that (fk, ν) is also an r-parameter family of
Legendre mappings for each fixed k ∈ R.

Proposition 3.12 Suppose that e : V → U × Λ is a pre-envelope of (f, ν) (and E is an
envelope) and n ≥ r. Then the envelope of the parallel of the r-parameter family of Legendre
mappings is given by the parallel of the envelope.

Proof. Since ν is a unit vector, νλj
(u, λ)·ν(u, λ) = 0. Therefore, fk

λj(u, λ)·ν(u, λ) = (fλj(u, λ)+

kνλj(u, λ)) ·ν(u, λ) = fλj(u, λ) ·ν(u, λ). If e is a pre-envelope of (f, ν), then fk
λj
(e(p)) ·ν(e(p)) =

fλj
(e(p)) · ν(e(p)) = 0 for all p ∈ V and j = 1, . . . , r. It follows that e is also a pre-envelope of

(fk, ν) by Theorem 3.6. By definition, the envelope of the parallel of the r-parameter family of
Legendre mappings is given by Ek = fk ◦ e = f ◦ e+ kν ◦ e = E + kν ◦ e. It follows that Ek is
the parallel of the Legendre mapping (E, ν ◦ e). 2

We give a relation between the envelope EI of the classical definition by using an implicit
function (Definition 2.1) and the envelope E of an r-parameter family of Legendre mappings
(Definition 3.1).

Proposition 3.13 Let (f, ν) : U × Λ → Rn+1 × Sn be an r-parameter family of Legendre
mappings, and let F (x, λ) = 0 be an implicit function of the r-parameter family of frontals,
that is, assume F (f(u, λ), λ) = 0 and (Fx1 , . . . , Fxn+1)(f(u, λ), λ) is parallel to ν(u, λ) for all
(u, λ) ∈ U × Λ. Suppose that n ≥ r. If e : V → U × Λ is a pre-envelope and E : V → Rn+1 is
an envelope of (f, ν), then E(V ) ⊂ EI .

Proof. By differentiating F (f(u, λ), λ) = 0 with respect to λj, we have

Fx1(f(u, λ), λ)f1λj
(u, λ) + · · ·+ Fxn+1(f(u, λ), λ)fn+1λj

(u, λ) + Fλj
(f(u, λ), λ) = 0,

where j = 1, . . . , r. By the assumption, there exists a smooth function a : U × Λ → R
such that (Fx1 , . . . , Fxn+1)(f(u, λ), λ) = a(u, λ)(ν1, . . . , νn+1)(u, λ) for all (u, λ) ∈ U × Λ. By
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Theorem 3.6, we have fλj
(e(p)) · ν(e(p)) = 0 for all p ∈ V and j = 1, . . . , r. It follows that

Fλj
(f(e(p)), λ(p)) = 0 for all p ∈ V and j = 1, . . . , r. Therefore E(p) ∈ EI with respect to λ(p)

for all p ∈ V . 2

Proposition 3.14 Let (f, ν) : U × Λ → Rn+1 × Sn be an r-parameter family of Legendre
mappings, and let e : V → U × Λ be a smooth map satisfying the variability condition. If
rank(fu1 , . . . , fun)(e(p)) = n and the trace of e lies in the singular set of f , then e is a pre-
envelope of (f, ν) (and E is an envelope).

Proof. We denote the set of singular points (singular set) of f by Σ(f). Since e(p) ∈ Σ(f), we
have the condition

rank

 f1u1 · · · f1un f1λ1 · · · f1λr

...
...

...
...

fn+1u1 · · · fn+1un fn+1λ1 · · · fn+1λr

 (e(p)) < n+ 1.

By the assumption rank(fu1 , . . . , fun)(e(p)) = n, there exist smooth functions aij : V → R,
i = 1, . . . , n, j = 1 . . . , r such that fλj

(e(p)) = a1j(p)fu1(e(p)) + · · ·+ anj(p)fun(e(p)). It follows
that fλj

(e(p)) ·ν(e(p)) = 0 for all p ∈ V and j = 1, . . . , r. Hence e is a pre-envelope of (f, ν). 2

Proposition 3.15 Let (f, ν) : U × Λ → Rn+1 × Sn be an r-parameter family of Legendre
mappings, and let F (x, λ) = 0 be an implicit function of the r-parameter family of frontals,
that is, assume F (f(x, λ), λ) = 0 and (Fx1 , . . . , Fxn+1)(f(u, λ), λ) is parallel to ν(u, λ) for all
(u, λ) ∈ U ×Λ. Suppose that e : V → U ×Λ, e(p) = (u(p), λ(p)) is a smooth mapping satisfying
the variability condition. If E(p) = f ◦e(p) ∈ EI with respect to λ(p), rank(fu1 , . . . , fun)(e(p)) =
n and

(Fx1 , . . . , Fxn+1)(f(e(p)), λ(p)) ̸= (0, . . . , 0)

for all p ∈ V , then e is a pre-envelope of (f, ν) (and E is an envelope).

Proof. By differentiating F (f(u, λ), λ) = 0 with respect to ui and λj, we have

Fx1(f(u, λ), λ)f1ui
(u, λ) + · · ·+ Fxn+1(f(u, λ), λ)fn+1ui

(u, λ) = 0,

Fx1(f(u, λ), λ)f1λj
(u, λ) + · · ·+ Fxn+1(f(u, λ), λ)fn+1λj

(u, λ) + Fλj
(f(u, λ), λ) = 0,

where i = 1, . . . , n, j = 1, . . . , r. Since E(p) ∈ EI with respect to λ(p), we have Fλj
(f(e(p)), λ(p)) =

0 for all p ∈ V and j = 1, . . . , r. It follows that

f1u1(e(p)) · · · fn+1u1(e(p))
...

...
f1un(e(p)) · · · fn+1un(e(p))
f1λ1(e(p)) · · · fn+1λ1(e(p))

...
...

f1λr(e(p)) · · · fn+1λr(e(p))


 Fx1(f(e(p)), λ(p))

...
Fxn+1(f(e(p)), λ(p))

 =

 0
...
0

 .

If the rankdf(e(p)) = n+1, then (Fx1 , . . . , Fxn+1)(f(e(p)), λ(p)) = (0, . . . , 0). By the assumption
(Fx1 , . . . , Fxn+1)(f(e(p)), λ(p)) ̸= (0, . . . , 0), we have rank df(e(p)) < n + 1. It follows that
e(p) ∈ Σ(f). By Proposition 3.14, e is a pre-envelope of (f, ν). 2
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4 Singular solutions of first order partial differential equa-

tions

As an application of the theory of envelopes of families of Legendre mappings, we give a
condition that the projection of a singular solution of a first order partial differential equation
is an envelope.

We quickly review the theory of singular solutions and of Clairaut type of first order partial
differential equations, in detail see [15, 16].

An equation is a submersion germ F : (J1(Rn,R), z0) → (R, 0) on the 1-jet space of func-
tions of n-variables, where z0 = (x0, y0, p0). Let θ be a canonical contact 1-form on J1(Rn,R)
which is given by θ = dy −

∑n
i=1 pidxi, where (x, y, p) = (x1, . . . , xn, y, p1, . . . , pn) is the canon-

ical coordinate on J1(Rn,R). We define a geometric solution of F = 0 to be an immersion
germ i : (L, q0) → (F−1(0), z0) of an n-dimensional manifold such that i∗θ = 0, that is, a
Legendre submanifold which is contained in F−1(0). We say that z0 is a contact singular
point if θ(Tz0F

−1(0)) = 0. It is easy to see that z0 is a contact singular point if and only if
F = Fpi = Fxi

+ piFy = 0 for i = 1, . . . , n at z0. We also say that z0 is a π-singular point if
F = Fpi = 0 for i = 1, . . . , n at z0. We denote the set of contact singular points by Σc(F ),
the set of π-singular points by Σπ(F ) and π(Σπ(F )) = DF , where π : Jn(Rn,R) → Rn+1 is the
canonical projection π(x, y, p) = (x, y). We call the set DF a discriminant set of the equation
F = 0.

An equation F = 0 is said to be completely integrable at z0 if there exists a foliation by
geometric solution on F−1(0) around z0, that is, there exists an immersion germ Γ : (Rn ×
Rn, (u0, c0)) → (F−1(0), z0) such that Γ(·, c) is a geometric solution of F = 0 for each c ∈
(Rn, c0). In this case, such a foliation is called a complete solution of F = 0 at z0. We say that
an n-parameter family of function germs f : (Rn×Rn, (x0, c0)) → (R, y0) is a classical complete
solution of F = 0 at z0 if a complete solution is a form of j1f : (Rn×Rn, (x0, c0)) → (F−1(0), z0),
that is, F (x, f(x, c), fx(x, c)) = 0 and j1f(x, c) = (x, f(x, c), fx(x, c)) is an immersion germ.
An equation F = 0 is said to be classical completely integrable at z0 if there exists a classical
complete solution of F = 0 at z0.

A geometric solution i : (L, q0) → (F−1(0), z0) of F = 0 is called a singular solution of
F = 0 at z0 if for any representative ĩ : U → F−1(0) of i and any open subset V ⊂ U , ĩ(V ) is
not contained in a leaf of any complete solutions of F = 0.

An equation F = 0 is called of Clairaut type at z0 if there exist smooth function germs
Bji, Ai : (J

1(Rn,R), z0) → R for i, j = 1, . . . , n such that

Fxi
+ piFy =

n∑
j=1

BjiFpj + AiF, Bji = Bij

and
∂Bjk

∂xi
+ pi

∂Bjk

∂y
+

n∑
ℓ=1

Bℓi
∂Bjk

∂pℓ
=
∂Bji

∂xk
+ pk

∂Bji

∂y
+

n∑
ℓ=1

Bℓk
∂Bji

∂pℓ

at any (x, y, p) ∈ (F−1(0), z0) for i, j, k = 1, . . . , n. Then we have the following result.

Theorem 4.1 ([15, 16]) Let F : (J1(Rn,R), z0) → (R, 0) be a first order partial differential
equation germs.
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(1) F = 0 is completely integrable at z0 if and only if Σc(F ) = ∅ or Σc(F ) is an n-
dimensional submanifold around z0. Moreover, if Σc(F ) ̸= ∅, then Σc(F ) is a singular solution
of F = 0 at z0.

(2) F = 0 is smooth completely integrable at z0 if and only if F = 0 is of Clairaut type
at z0. In this case, if Σπ(F ) ̸= ∅, then Σπ(F ) is a singular solution of F = 0 at z0 and the
discriminant set DF is the envelope of the family of graphs of the smooth complete solution.

By using the envelope theorem (Theorem 3.6), we have the following result.

Theorem 4.2 Let F : (J1(Rn,R), z0) → (R, 0) be a first order partial differential equation
germs and not of Clairaut type at z0. Suppose that Γ = (x, y, p) : (Rn × Rn, (u0, c0)) →
(F−1(0), z0) is a complete solution of F = 0 at z0, Σc(F ) = Σπ(F ) ̸= ∅ and e : (Rn, q̃0) →
(Rn × Rn, (u0, c0)) is a smooth mapping satisfying the variability condition. Then e is a pre-
envelope and E = π ◦ Γ ◦ e is an envelope of (π ◦ Γ, ν) if and only if E(q) ∈ π(Σc(F )) for all
q ∈ (Rn, q̃0), where ν(u, c) = (−p(u, c), 1)/

√
1 + |p(u, c)|2.

Proof. By the assumption and Theorem 4.1 (1), Σc(F ) = Σπ(F ) is an n-dimensional manifold
around z0 and a singular solution of F = 0 at z0. Since z0 ∈ Σc(F ) and F = 0 is submersion,
we may consider F (x, y, p) = −y + g(x, p), where g is a smooth function, x = (x1, . . . , xn) and
p = (p1, . . . , pn). We denote the complete solution of F = 0 at z0 by

Γ(u, c) = (x(u, c), y(u, c), p(u, c)) = (x1(u, c), . . . , xn(u, c), y(u, c), p1(u, c), . . . , pn(u, c)),

where u = (u1, . . . , un), c = (c1, . . . , cn). Since y(u, c) = g(x(u, c), p(u, c)) and Γ∗θ = 0, we have
yui

(u, c) = p1(u, c)x1ui
(u, c) + · · · + pn(u, c)xnui

(u, c) for i = 1, . . . , n. Since F = 0 is not of
Clairaut type at z0, we have

rank

 x1u1 · · · xnu1

...
...

x1un · · · xnun

 (u0, c0) < n

and

rank

 x1u1 · · · xnu1 yu1 p1u1 · · · pnu1

...
...

...
...

...
x1un · · · xnun yun p1un · · · pnun

 (u0, c0)

= rank

 x1u1 · · · xnu1 p1u1 · · · pnu1

...
...

...
...

x1un · · · xnun p1un · · · pnun

 (u0, c0) = n. (1)

Set f(u, c) = π ◦ Γ(u, c) and ν(u, c) = (−p(u, c), 1)/
√

1 + |p(u, c)|2. By a direct calculation, we
have fui

(u, c) · ν(u, c) = 0 for all (u, c) ∈ (Rn × Rn, (u0, c0)) and i = 1, . . . , n. It follows that
(f, ν) is an n-parameter family of Legendre mappings (immersions). Moreover, we have

fci(u, c) = (x1ci(u, c), · · · , xnci(u, c), yci(u, c))

=
(
x1ci(u, c), · · · , xnci(u, c),

n∑
j=1

xjci(u, c)gxj
(x(u, c), p(u, c)) +

n∑
j=1

pjci(u, c)gpj(x(u, c), p(u, c))
)
.
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It follows that fci(u, c) · ν(u, c) =

1√
1 + |p(u, c)|2

(
n∑

j=1

(−pj(u, c) + gxj
(x(u, c), p(u, c)))xjci(u, c) +

n∑
j=1

pjci(u, c)gpj(x(u, c), p(u, c))

)
.

We now consider the following case. Suppose that

rank

 p1u1 · · · pnu1

...
...

p1un · · · pnun

 (u0, c0) = n.

By using an n-parameter family of parameter change, we may assume that pi(u, c) = ui for
i = 1, . . . , n by Proposition 3.11. If e : (Rn, q̃0) → (Rn ×Rn, (u0, c0)) is a pre-envelope of (f, ν),
then  x1c1(e(q)) · · · x1cn(e(q))

...
...

xncn(e(q)) · · · xncn(e(q))


 (−p1 + gx1)(e(q))

...
(−pn + gxn)(e(q))

 =

 0
...
0

 .

Here we denote a local coordinate (Rn, q̃0) by q instead of p in §3. Since Γ is an immersion germ
and by Theorem 3.6, we have (−pi+gxi

)(e(q)) = 0 for i = 1, . . . , n. It follows that gpi(e(q)) = 0
for i = 1, . . . , n and hence E(q) ∈ π(Σπ(F )) = π(Σc(F )). Conversely, if E(q) ∈ π(Σc(F )), then
fci(e(q)) · ν(e(q)) = 0 for all i = 1, . . . , n. By Theorem 3.6, e is a pre-envelope of (f, ν).

Moreover, suppose that

rank

 x1u1 · · · xnuk
pk+1u1 · · · pnu1

...
...

...
...

x1un · · · xnuk
pk+1un · · · pnun

 (u0, c0) = n.

By using an n-parameter family of parameter change, we may assume that xi(u, c) = ui for
i = 1, . . . , k and pj(u, c) = uj for j = k + 1, . . . , n by Proposition 3.11. Then we also have
(−pi + gxi

)(e(q)) = 0 for i = 1, . . . , k and gpj(e(q)) = 0 for j = k + 1, . . . , n. It follows
that gpi(e(q)) = 0 for i = 1, . . . , k and hence E(q) ∈ π(Σπ(F )) = π(Σc(F )). Conversely, if
E(q) ∈ π(Σc(F )), then fci(e(q)) · ν(e(q)) = 0 for all i = 1, . . . , n. By Theorem 3.6, e is a
pre-envelope of (f, ν).

The other cases, we can also prove by similarly. This completes the proof of Theorem. 2

By Theorems 4.1 and 4.2, if Σc(F ) = Σπ(F ) is an n-dimensional submanifold around z0,
then Σc(F ) is a singular solution of F = 0 at z0 and the projection π(Σc(F )) is an envelope
when the variability condition holds.

We give concrete examples for completely integrable partial differential equations with a
singular solution.

Example 4.3 Let F : J1(R2,R) → R be given by F (x1, x2, y, p1, p2) = −y + pn1
1 + pn2

2 = 0,
where n1, n2 ≥ 2. That is, we consider the partial differential equation

y =

(
∂y

∂x1

)n1

+

(
∂y

∂x2

)n2

.
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Then Σc(F ) = Σπ(F ) = {(x1, x2, 0, 0, 0)} is a 2-dimensional submanifold. The complete solu-
tion Γ : R2 × R2 → F−1(0) is given by

Γ(u1, u2, c1, c2) =

(
n1

n1 − 1
un1−1
1 + c1,

n2

n2 − 1
un2−1
2 + c2, u

n1
1 + un2

2 , u1, u2

)
.

Then (f, ν) : R2 × R2 → R3 × S2 is a 2-parameter family of Legendre mappings, where

f(u1, u2, c1, c2) = π ◦ Γ(u1, u2, c1, c2) =
(

n1

n1 − 1
un1−1
1 + c1,

n2

n2 − 1
un2−1
2 + c2, u

n1
1 + un2

2

)
,

ν(u1, u2, c1, c2) =
1√

1 + u21 + u22
(−u1,−u2, 1).

Since

fci(u1, u2, c1, c2) · ν(u1, u2, c1, c2) = −ui/
√

1 + u21 + u22, i = 1, 2,

e : R2 → R2 × R2, e(q1, q2) = (0, 0, q1, q2) is a pre-envelope and hence E(q) = f ◦ e(q) =
(q1, q2, 0) ∈ π(Σc(F )) is an envelope of (f, ν).

Example 4.4 Let F : J1(R2,R) → R be given by F (x1, x2, y, p1, p2) = −y+pn1
1 +x2p2+x

n2
2 = 0,

where n1, n2 ≥ 2. That is, we consider the partial differential equation

y =

(
∂y

∂x1

)n1

+ x2
∂y

∂x2
+ xn2

2 .

Then Σc(F ) = Σπ(F ) = {(x1, 0, 0, 0, p2)} is a 2-dimensional submanifold. The complete solution
Γ : R2 × R2 → F−1(0) is given by

Γ(u1, u2, c1, c2) =

(
n1

n1 − 1
un1−1
1 + c1, u2, u

n1
1 +

2n2 − 1

n2 − 1
un2
2 + c2u2, u1,

n2

n2 − 1
un2−1
2 + c2

)
.

Then (f, ν) : R2 × R2 → R3 × S2 is a 2-parameter family of Legendre mappings, where

f(u1, u2, c1, c2) = π ◦ Γ(u1, u2, c1, c2) =
(

n1

n1 − 1
un1−1
1 + c1, u2, u

n1
1 +

2n2 − 1

n2 − 1
un2
2 + c2u2

)
,

ν(u1, u2, c1, c2) =
1√

1 + u21 + ( n2

n2−1
un2−1
2 + c2)2

(
−u1,−

n2

n2 − 1
un2−1
2 − c2, 1

)
.

Since

fc1(u1, u2, c1, c2) · ν(u1, u2, c1, c2) = − u1√
1 + u21 + ( n2

n2−1
un2−1
2 + c2)2

,

fc2(u1, u2, c1, c2) · ν(u1, u2, c1, c2) =
u2√

1 + u21 + ( n2

n2−1
un2−1
2 + c2)2

,

e : R2 → R2 × R2, e(q1, q2) = (0, 0, q1, q2) is a pre-envelope and hence E(q) = f ◦ e(q) =
(q1, 0, 0) ∈ π(Σc(F )) is an envelope of (f, ν).
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Example 4.5 Let F : J1(R2,R) → R be given by F (x1, x2, y, p1, p2) = −y+pn1
1 +x2p2+g(p2) =

0, where n1 ≥ 2 and g is a smooth function. That is, we consider the partial differential equation

y =

(
∂y

∂x1

)n1

+ x2
∂y

∂x2
+ g

(
∂y

∂x2

)
.

Then Σc(F ) = Σπ(F ) = {(x1,−g′(p2),−g′(p2)p2+g(p2), 0, p2)} is a 2-dimensional submanifold.
The complete solution Γ : R2 × R2 → F−1(0) is given by

Γ(u1, u2, c1, c2) =

(
n1

n1 − 1
un1−1
1 + c1, u2, u

n1
1 + c2u2 + g(c2), u1, c2

)
.

Then (f, ν) : R2 × R2 → R3 × S2 is a 2-parameter family of Legendre mappings, where

f(u1, u2, c1, c2) = π ◦ Γ(u1, u2, c1, c2) =
(

n1

n1 − 1
un1−1
1 + c1, u2, u

n1
1 + c2u2 + g(c2)

)
,

ν(u1, u2, c1, c2) =
1√

1 + u21 + c22
(−u1,−c2, 1).

Since

fc1(u1, u2, c1, c2) · ν(u1, u2, c1, c2) = −u1/
√
1 + u21 + u22,

fc2(u1, u2, c1, c2) · ν(u1, u2, c1, c2) = (u2 + g′(c2))/
√
1 + u21 + u22,

e : R2 → R2 × R2, e(q1, q2) = (0,−g′(q2), q1, q2) is a pre-envelope and hence E(q) = f ◦ e(q) =
(q1,−g′(q2),−g′(q2)q2 + g(q2)) ∈ π(Σc(F )) is an envelope of (f, ν).
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